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Departamento de Informática e Ingenierı́a de Sistemas

Universidad de Zaragoza
Zaragoza, Spain

{simonab,758906,jmerse}@unizar.es
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Abstract— Today cyber-attacks to critical infrastructures can
perform outages, economical loss, physical damage to people
and the environment, among many others. In particular, the
smart grid is one of the main targets. In this paper, we develop
and evaluate software detectors for integrity attacks to smart
meter readings. The detectors rely upon different techniques and
models, such as autoregressive models, clustering, and neural
networks. Our evaluation considers different “attack scenarios”,
then resembling the plethora of attacks found in last years.
Starting from previous works in the literature, we carry out
a detailed experimentation and analysis, so to identify which
“detectors” best fit for each “attack scenario”. Our results
contradict some findings of previous works and also offer a light
for choosing the techniques that can address best the attacks to
smart meters.

Index Terms—integrity attacks, smart grids, anomaly-based
detection, ARIMA, clustering, neural networks

I. INTRODUCTION

Smart grids are complex cyber-physical systems, built on
top of electrical power infrastructures. Although smart grids
allow a more resilient, secure and reliable electricity supply,
they are vulnerable to cyber-attacks [1]. Each type of attack
focuses on a different aspect of the smart grid. But, any
successful intrusion will lead to a malfunction of the power
supply chain, information leaks, energy theft and many other
security, safety or economical issues [2].

Energy thefts [3] and private information leaks [4], [5] are
ranked as the most prominent threats to smart grids. These
threats are closely linked to the advanced metering infrastruc-
ture (AMI), that provides smart meters, in consumers’ houses.
Smart meters allow for recording consumption, adjusting
power delivery and many other features. But according to
estimates, the theft of electricity, in this technical context, is as
much as $96 billion every year globally [6]. Hence, protecting
the smart grid is an economical need, but also a social one
since outages may cause even more severe consequences.

This work wants to contribute to improve the technology for
protecting the AMI. In particular, that part of the technology
in charge of preserving the integrity of the smart meters. For
this goal, we carry out a detailed evaluation of techniques, that
can discover attacks to the smart meter infrastructure. Such
techniques, when implemented as software, are called “in-
tegrity attack detectors”. Concretely, we evaluate five different

types of detectors from the literature. The evaluation is carried
out considering different “attack scenarios” and datasets. Our
findings allow to know which category of detectors fits better
for a kind of attack. We believe that the importance of our
work strives both on cutting paths that should not be followed,
i.e., techniques that should not be used, at least for some kind
of attacks, and on finding the paths that promise good results
for protecting the AMI.

A. Related work

The detection and identification of frauds started with
statistical techniques [7], [8]. Since then, a variety of software
approaches to detect malicious attacks in power systems
appeared due to the fast development and exposition of AMI
in smart grids [9], [10].

Usually, AMI energy-theft attacks are based on fault data
injection or mimicking customers’ consumption profiles. Elec-
tricity theft detection methods range from specialised methods
on well-defined attack strategies to the discovery of general
consumption behaviour anomalies [11]. The goal is to distin-
guish between normal and anomalous energy usage patterns
in order to classify the samples in the dataset into one of the
predefined attack profiles.

Detection methods generally fall into three categories:
classification-based methods, state-based methods and game
theory-based ones. Classification-based schemes stem from
data mining and machine learning techniques. These methods
look for patterns in the electricity consumption of a customer
or a group of customers over a period of time. Classification-
based techniques include, for instance, Support Vector Ma-
chine (SVM) approaches [12], average-based detectors [13],
time series and autoregressive (integrated) moving average
(ARIMA) detectors [14], neural networks [15], Principal Com-
ponent Analysis (PCA) [16], relative frequency distribution-
based detectors [17], fuzzy classifiers [18] or P2P computing
algorithms [19]. In this work, we consider a subset of detectors
belonging to this category.

In order to improve the accuracy and detection rates, state-
based methods combine data from multiple sources (e.g., the
monitoring state of physical sensors and devices) [3].

Finally, in game theory-based approaches [20], [21] the
problem of integrity attack detection is formulated as a game
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between the electricity company and the attacker. In the
game, the goal of the electricity thief is to steal a predefined
amount of electricity while reducing the likelihood of being
detected. Conversely, the utility companies want to maximize
the probability of detection and decrease the operational cost
of managing the anomaly detection mechanism. The game
theory-based detection schemes return a reasonable, some-
times optimal, solution to minimize the electricity losses as
a result of energy theft.

The paper is structured as follows. Section II settles the
bases of our experimentation. Section III describes the de-
tectors under evaluation. Section IV proposes the evaluation
approach. Section V summarizes our results. Conclusions are
drawn in Section VI.

II. BASIS OF THE EVALUATION

The inputs for assessing a detector will be the information
it has to evaluate and the scenarios in which it will be tested.
Hence, the basis for our experimentation relies on the datasets
used and on the scenarios considered. In the following, we
explain their ground.

A. Datasets

We have used two datasets, both from the Ireland’s Com-
mission for Energy Regulation [22]. One of them provides
information on electricity consumption of customers, the other
about gas consumption. Both are available, for research pur-
poses, upon request, and the information provided is anony-
mous. Both datasets are characterized by the same meta-data:
• smart meter identifier (meterID),
• timestamp (coded with a number that indicates the time

of the reading), and
• the electricity/gas consumption (kWh).

The frequency of the readings is the same for both datasets,
that is, every half an hour.

The electricity dataset considers 6,445 smart meters, during
a period of 76 weeks, categorized as residential, small and
medium enterprises (SME), and unclassified. The gas dataset
considers 1,576 smart meters, during a period of 78 weeks,
and it is partitioned in testing and control groups. The testing
groups are categorized according to the different types of
contract.

a) Datasets preprocessing: The information provided by
the datasets was not complete for all smart meters readings.
Hence, we needed to process it before our evaluation. We
firstly identified the smart meters with complete readings, i.e.,
those having 336 readings per week. Among the valid smart
meters, we randomly chose 500 from the electricity dataset
and another 500 from the gas one, ensuring that the proportion
was preserved according to the categorization of the original
datasets. We considered that 1,000 smart meters was a good
balance between computational needs and representativeness
of the datasets1. Regarding the period, we could get 75 weeks,

1Consider that the experiments lasted about 9 days, in a powerful cluster,
as described in Subsection V-A.

for all selected smart meters, in the case of the electricity
dataset, i.e., only one week got lost. For the 500 gas smart
meters, we achieved 74 complete weeks, i.e., four weeks got
lost.

It is worth to observe that the electricity dataset has been
used in [14], [16], [17]. Unfortunately, their experiments are
tricky to reproduce, precisely due to the absence of information
about how the missing information was treated. Also, as far
as we know, there are no public repositories offering the
original experiments. Therefore, a fair comparison between
their findings and ours will not be possible.

B. Scenarios

We assume that the original information in the datasets
is not affected by integrity attacks. Thus, we consider such
information as a proper scenario, that we call normal scenario.
In Figure 1, such scenario is represented by the curve with
solid line. This curve depicts the electricity consumed by a
smart meter, concretely #1024, every half an hour during
two days. We can observe a periodic behaviour following the
normality of daily life, which is characterized by off-peak and
peak hours of consumption.

In addition to a normal scenario, we consider attack sce-
narios. The information in such scenarios is assumed to have
been tampered with by external malicious agents. We get such
behaviours by generating synthetic datasets from the original
ones. The attack scenarios considered are the following ones.

a) False data injection (FDI): The goal of FDI [15] is
to defraud the energy utility. It changes, each smart meter
reading, by a given percentage x% (x ∈ [0, 100]). Hence, it
achieves that the customer pays less than consumed. We have
considered two FDI scenarios, cf. Figure 1a.

b) Average attack (Avg): It has the same goal as FDI.
However, data are manipulated by replacing each reading in
the week by the average consumption of the week multiplied
by the realization of a uniform random variable r ∈ U [1 −
a, 1 + a], where 0 < a. This strategy [16] is used to go
unnoticed by average-based anomaly detectors, e.g., the Min-
Avg detector described in Section III. We have considered one
attack scenario of this type, cf. Figure 1b.

c) Random scale attack (RSA): It can be used to achieve
different goals [16]. If, on average, consumption data are
over-reported, then the attack may cause instability in the
smart-grid system. Whereas, if on average the consumption
data are under-reported, then the attack causes energy theft.
In particular, an RSA scenario is obtained from the normal
scenario by multiplying each consumption with a realization
of a uniform random variable r ∈ U [a, b], where 0 < a < b.
We have considered two RSA scenarios, one for each goal, cf.
Figure 1c.

d) Swap attack: Also this type of attack aims at defraud-
ing the energy utility by paying less than consumed. It assumes
a time-of-use contract, where the cost of energy depends
on peak and off-peak periods [17]. We assume the peak
period from 9:00am to midnight and the off-peak period from
midnight to 9:00am. Then, the attack consists in swapping the
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consumption data registered by a smart meter between the two
periods, cf. Figure 1d.

Table I offers an initial insight about potential benefits of
each kind of attack. In the case of the normal scenario the bill
cost would be 1,104.59 euros2. In particular, in all the attack
scenarios but the RSA[0.5,3], the attacker gain corresponds to
the percentage of money saved by the customer compared to
the bill cost of the normal scenario. Whereas in RSA[0.5,3],
that aims at over-reporting the consumption, indicates the
percentage of money overpaid by the customer to the utility.

Attack scenario Bill cost (e) Attacker gain (%)

FDI 10 110.46 90%
FDI 30 331.38 70%
Avg[0.5,1.5] 982.53 11%
RSA[0.25,1.1] 749.40 32%
Swap 744.58 33%
RSA[0.5,3] 1,944.22 76%

TABLE I: Consequence of successful attacks to smart meter
#1014, over a period of 60 weeks

III. ATTACK DETECTORS

Detectors are pieces of software, that analyse a set of
data to try to foresee anomalies. From the analyses of the
consumption data, our detectors try to predict attacks on
integrity. Basically, they decide whether the data belong or
not to a normal scenario. We have implemented the detectors
using Python [23].

Table II presents the detectors we implemented for assess-
ment. Most of them belong to the literature, the others are
variants that we propose, i.e., ARIMAX and JSD. In the

Name Technique

Min-Avg Comparison of the minimum of the average
consumptions in the past

ARIMA, ARIMAX Auto-Regressive models

PCA-DBSCAN Principal component analysis, clustering

KLD, JSD Comparison of relative frequency distributions
of consumption

NN Deep learning

TABLE II: Detectors considered in the experiments

following we provide a brief description of the detectors.
a) Minimum average detector: The Min-Avg detector

was proposed in [13] with a straightforward design. From
a time series of consumption data, representing a training
period of n weeks, the prediction model calculates the av-
erage consumption of each week and gets the minimum, m.
Then labelling as “anomalous”, those weeks whose average
consumption is less than m.

2The reference used to calculate the cost of the energy was https://selectra.
es.

b) Auto-Regressive models: ARIMA (Auto-Regressive
Integrated Moving Average) was proposed by [14]. ARIMAX
(Auto-Regressive Integrated Moving Average with Explana-
tory Variable) is a variant that, unlike ARIMA, includes
exogenous Fourier variables to take into account the daily
frequency of consumption. Both detectors construct an auto-
regressive model, from time series of consumption data.

An ARIMA(X) prediction model is characterized by a triplet
(p, q, d) [24]:
• p is the autoregression order,
• q is the moving average order, and
• d is the degree of differentiation of the time series.

The more accurate the parameters are, the better the model
fits the time series.

We use the Python API auto_arima3 to set the param-
eters automatically. Finally, we obtain an optimal prediction
model, with respect to the BIC (Bayesian Information Crite-
rion). BIC is generally preferred for large samples [24], as it
is the case of our data sets.

Once we get the ARIMA(X) model, it is used to predict
the consumption every half hour, with a confidence interval
of 95%. The detection criterion verifies whether the registered
consumption, at timestamp t, lies within the confidence in-
terval of the prediction at t. If not, the consumption will be
labeled as “anomalous”.

c) PCA and clustering: The PCA-DBSCAN detector was
proposed by [16]. It combines two data-mining techniques:
• First step. It uses PCA (Principal Component Analy-

sis) [25] to reduce the dimensionality of the consumption
data. Unlike the other detectors, that build a prediction
model per smart meter, it uses the entire training dataset.
So, it applies PCA to the consumption data registered by
all the meters of the smart-grid. The result is a reduced
matrix, that characterizes each training week with a point
in a two-dimensional space.

• Second step. It applies DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) [26] to the set of
points, of the reduced matrix, that correspond to a given
smart meter. Then, it creates a prediction model as a clus-
ter of points, that represents the normal behaviour. The
points outside the cluster will be labelled as “anomalous”.

DBSCAN uses two parameters to create the model. The
radius of the circular region around a point (eps), and the
minimum number of points at a Euclidean distance less than
eps point. We set these parameters using the Rousseeuw and
Croux estimator [27] for the calculus of the radio, and simple
majority for the second parameter, as in [16]. It is worth to
observe that the condition may not be satisfied for any of the
points in the space, which means that no grouping is generated.
In this case the detector cannot be applied.

d) Comparison relative frequency distributions:
Kullback-Leibler Divergence (KLD) was proposed by [17].
We have also implemented a variant, using Jensen-Shannon
Divergence (JSD). Both detectors classify a week, as

3Python Library pmdarima: http://alkaline-ml.com/pmdarima.
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Fig. 1: Consumption in the normal scenario vs. consumption in attack scenarios (electricity dataset, smart meter #1014 over
two days of observations)

anomalous, when its distribution does not match the
distribution of the training data. The detectors differ in the
function used to quantify such divergence [28].

The prediction model is built based on the divergence
function and the relative frequency distributions associated to
the training weeks. The latter are characterized by the same
frequency intervals, in particular we considered 30 contiguous
intervals of equal length between the minimum and maximum
consumption of the training set. The divergence function
calculates the deviation between the distribution of a week A
and the distribution of all n weeks of training, such n values
define the prediction model. The detection criterion relies on
the 95 percentile threshold of the n values. If the divergence
of the distributions is greater than the threshold, the week is
labelled as “anomalous”.

e) Deep learning: In [15] was proposed a detector based
on neural networks (NN). It relies on deep learning. Unlike

previous detectors, NN follows a supervised learning approach
and it is able to identify the type of attack. Thus, it requires
to train different scenarios, including the normal and attack
scenarios described in Subsection II-B.

The prediction model is a neural network made of two
layers. The first layer has 10.000 neurons. The second one
has N neurons, where N is the number of scenarios. The
neural network is trained for each scenario, which consists
of n training weeks partitioned into samples of 48 hours,
i.e., two days. We have considered several statistical qualifiers
to characterize each sample within a scenario. In particular,
mean, standard deviation, quartiles, interquartile range, and
the difference between the last and the first sample.

From a testing sample, the NN produces a probability
distribution over the set of scenarios. The sample is classified
according to the scenario with the highest probability. Thus, in
case of attack scenario, the sample is labelled as “anomalous”.
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IV. EVALUATION APPROACH

Let E = 〈M,D,S〉 be an experimentation plan, where M
is a set of smart meters, D a set of detectors to be assessed and
S a set of scenarios. In an E plan, for each triplet (m, d, s) ∈
M×D×S, we collect a set of metrics. Then, we distinguish
between basic metrics and aggregated metrics.

Basic metrics are computed for each experiment (m, d, s).
They are summarized in Table III4, as follows:
• Partial confusion matrices qmds of each experiment

(m, d, s), that is matrices with either the true posi-
tives/false negatives column or the false positives/true
negatives column.

• Performance metrics: tbmds as the execution time to build
a prediction model for an experiment (m, d, s), and tpmds

as the execution time to make predictions for (m, d, s).

q ≡
[
tp fp
fn tn

] [
true positives false positives
false negatives true negatives

]
〈tb, tp〉 〈time to build the model, time to get pre-

dictions from the model〉

TABLE III: Basic metrics

From the basic metrics, we compute aggregated metrics of
quality, as shown in Table IV. They are obtained as statistics
values from the basic metrics.

tpr true positive rate tp/(tp+ fn)

tnr true negative rate tn/(fp+ tn)

prev prevalence (tp+ fn)/(tp+ fn+ fp+ tn)

ba balanced accuracy (tpr + tnr)/2

mcc Matthews correlation
coefficient

tp·tn−fp·fn√
(tp+fp)(tp+fn)(tn+fp)(tn+fn)

TABLE IV: Aggregated metrics of quality

The aggregated metrics of quality are proposed at two
levels. In particular, the single scenario level and the global
level. The latter to provide an insight of the quality of the
detectors for all the scenarios.

At single scenario level s ∈ S, we are interested in the
sensitivity, in case of attack scenarios, and the specificity, in
case of the normal scenario. Indeed, the former (also called
true positive rate, tpr, or recall) indicates how often a detector
d correctly predicts an actual attack. The latter (also called true
negative rate, tnr) indicates how often a detector d correctly
predicts that there is not an attack. Such metrics are computed
from the partial confusion matrices (i.e., matrices characterized
by one zero-column) qds =

∑
m∈M qmds, where the sum is

the matrix addition operator.
At the global level, for each detector d ∈ D, we are

interested in computing not only aggregated metrics of quality,
but also performance metrics.

4We omit the subindices in the tables to avoid burdening.

Concerning aggregated metrics of quality, besides the sen-
sitivity and specificity, we have considered the balanced ac-
curacy and the Matthews correlation coefficient. Both metrics
are useful in case of unbalanced data [29], as it occurs in our
experiments, where there are six types of attack scenarios but
only one normal scenario. Moreover, the prevalence metric
indicates how often the attack condition actually occurs in the
overall observed results. All quality metrics are computed from
the full confusion matrices qd =

∑
s∈S qds.

Finally, concerning performance metrics, we have consid-
ered those already given, i.e., tb and tp. But now, they are also
aggregated, that is computed as means over all smart meters
m ∈M and all scenarios s ∈ S.

V. EXPERIMENTATION RESULTS

This section presents the experimentation plans and the
results obtained.

A. Experimentation set-up

We set up two experimentation plans, Eel and Egas, using
the datasets described in Subsection II-A. Each plan considers
500 smart meters, with complete readings, and all scenarios in
Subsection II-B. Eel uses all detectors in Section III, whereas
Egas could not apply PCA-DBSCAN, next subsection will
detail the reason.

Algorithm 1 describes the experimentation launcher, at a
high-level of abstraction. It takes E , as input, and produces
basic metrics, as described in Section IV. Concretely, the
confusion matrices Q, and execution times P .

Algorithm 1: Experimentation launcher
Data: E = 〈M,D,S〉 (smart meters, detectors,

scenarios)
Result: Q (quality metrics), P (performance metrics)

1 Q = ∅, P = ∅;
2 foreach m ∈M do
3 foreach d ∈ D do
4 train = getTrainingDataset(d,m, dsPath);
5 〈µ, tb〉 = buildModel(d, train);
6 foreach s ∈ S do
7 test = getTestingDataset(s,m, dsPath);
8 〈pred, obs, tp〉 = predict(d, test, µ);
9 q = getConfusionMatrix(pred, obs, s);

10 Q = Q∪ {q};
11 P = P ∪ {〈tb, tp〉};
12 end
13 end
14 end

We partitioned the consumption readings in two sets, train-
ing and testing. Eel and Egas used the same percentage of
readings, for all the smart meters. Concretely, 80% for training
and 20% for testing, over all the observed period. The training
set is loaded from secondary storage (line 4). It depends on
both, the smart meter m and the detector d, and it is used to
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build the prediction model µ (line 5). Besides, the execution
time tb, required to build the model, is monitored. Then, for
each scenario s, the corresponding testing set, associated to
m, is loaded (line 7), and predictions of d are made using the
model µ (line 8). As a result of the predictions, in addition to
the execution time tp, we get the number of attacks predicted,
pred, and the number of observations, obs. The latter are used
to compute the confusion matrix (line 9).

As experimental environment, we used a cluster with 8
physical cores, Intel Xeon Gold 6254 CPU, 32GB RAM,
1 TB SSD, running Ubuntu 20.04 OS. The time needed
for the experimentation plans to complete took nine days,
approximately. We carried out them twice, so to ensure results
consistency.

B. Results

This section presents the results obtained for the quality and
performance metrics, at both levels, scenario and global.

First, we provide an insight of the global metrics, for
both plans. We observe that, Eel and Egas are characterized
by the same prevalence (prev = 0.92). Hence, resulting
in unbalanced columns of the confusion matrices, qd. This
confirms that the total number of attack events is dominant,
with respect to the normal consumption.

All the detectors managed to make predictions for the
entire set of smart meters, but PCA-DBSCAN. Indeed, PCA-
DBSCAN only succeeded for 66.2% of smart meters, in case
of Eel. Whereas in Egas it could not be applied5.

Detector Quality metrics Perf. metrics

tpr tnr ba mcc tb (s.) tp (s.)

Min-Avg 0.441 0.978 0.709 0.236 0.086 0.020
ARIMA 0.040 0.934 0.487 -0.035 67.499 0.134
ARIMAX 0.068 0.928 0.498 -0.005 974.368 0.152
PCA-DBSCAN 0.145 0.954 0.550 0.080 4.326 5.929
KLD 0.646 0.834 0.740 0.271 0.008 0.002
JSD 0.628 0.867 0.747 0.278 0.009 0.002
NN 0.932 0.137 0.535 0.073 9.078 1.654

TABLE V: Global metrics results for Eel

1) Global level results: Table V shows the global metrics
results of Eel. It discloses that the sensitivity (tpr) is very
low for Min-Avg, ARIMA(X) and PCA-DBSCAN, medium
for KLD and JSD, while the NN detector is highly sensitive
to attacks. On the other hand, with respect to the specificity
(tnr), the detectors behave in opposite manner. In particular,
the NN detector raises false positives for most of the normal
events.

The balanced accuracy (ba) and the Matthews correlation
coefficient (mcc) provide reliable statistical rates in the eval-
uation of the overall quality of the detectors. The first reveals

5In Eel, PC-DBSCAN could not generate a cluster for the remaining 33.8%
of smart meters, therefore the detection criterion was not performed. In Egas,
the smart meters are not highly correlated, thus, the reduction with PCA (i.e.,
the first step to get the prediction model) to a two dimensional space was not
applicable.

that the Min-Avg, KLD and JSD are fair detectors, yielding
a correct prediction between 70.9% − 74.7% of the sample
experiment, while the remaining detectors behave quite badly.
The mcc metric, whose domain is [−1,+1], confirms this
interpretation. We observe that best mcc values correspond
to Min-Avg, KLD and JSD, although they are still close to
zero. The rest of the values are approximately equal to zero,
thus indicating that the detectors are no better than a random
flip of a fair coin.

Concerning mean execution times, ARIMA(X) detectors
have definitely the poorest performance, in building the predic-
tion models, than the rest (crf. tb values). Moreover, ARIMAX
is about 14 times slower than ARIMA, however the quality
improvement, of the prediction model, with respect to the latter
is negligible (crf. ba values). The Min-Avg, KLD and JSD de-
tectors are very fast (order of milliseconds), both for building
the model and for making predictions. PCA-DBSCAN is the
slowest detector in making prediction, the main reason is that
we considered the second phase (DBSCAN) as part of the
prediction step.

Results of Egas are similar to those in Eel. Table VI discloses
that, in general, quality metrics are slightly worse, for all
detectors. The only exception is the specificity of KLD and
JSD, that increases of more than 0.1.

Detector Quality metrics Perf. metrics

tpr tnr ba mcc tb (s.) tp (s.)

Min-Avg 0.144 0.991 0.568 0.110 0.086 0.023
ARIMA 0.026 0.934 0.480 -0.066 50.562 0.078
ARIMAX 0.035 0.936 0.485 -0.043 630.984 0.155
PCA-DBSCAN
KLD 0.477 0.965 0.721 0.246 0.008 0.002
JSD 0.512 0.971 0.742 0.268 0.009 0.002
NN 0.939 0.113 0.526 0.057 9.021 1.668

TABLE VI: Global metrics results for Egas

2) Scenario level results: Table VII shows the results for
both experimenation plans. The metrics are computed from
the partial confusion matrices qds. The sensitivity at this level
provides a useful feedback about the detection capabilities for
the different types of attacks. The specificity has been already
discussed (cfr. columns tnr of Tables V and VI).

Let us consider first Eel (upper part). Min-Avg detector, as
expected, is able to detect deterministic attacks (i.e., FDI),
but not the others. ARIMA(X) and PCA-DBSCAN are very
poor detectors, for all types of attacks. KLD and JSD are
good to detect FDI and Avg attacks, however they are not
able to recognize Swap attacks nor RSA, that under-reports
consumptions. Moreover, they behave different with respect to
the RSA that over-reports consumptions. In particular, KLD
performs better than JSD. Finally, NN is excellent to detect
all types of attack scenarios, however its main problem is the
high number of false positives (i.e., very low specificity).

The results for Egas (lower part) confirm the previous obser-
vations on the global metrics for the same dataset. Concerning
the sensitivity values, they are in general worse than the
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Electricity experimental plan Eel
Metric Scenario Min-Avg ARIMA ARIMAX PCA-DBSCAN KLD JSD NN

tnr Normal 0.978 0.934 0.928 0.954 0.834 0.867 0.137

tpr

FDI 10 0.955 0.002 0.029 0.281 0.887 0.909 0.863
FDI 30 0.757 0.002 0.015 0.187 0.738 0.789 0.863
Avg 0.022 0.010 0.028 0.044 0.902 0.912 1.000
RSA[0.25,1.1] 0.226 0.030 0.037 0.090 0.202 0.203 0.942
RSA[0.5,3] 0.003 0.170 0.185 0.015 0.765 0.554 0.952
Swap 0.022 0.066 0.130 0.051 0.166 0.133 0.988

Gas experimental plan Egas
Metric Scenario Min-Avg ARIMA ARIMAX PCA-DBSCAN KLD JSD NN

tnr Normal 0.991 0.934 0.936 0.965 0.971 0.113

tpr

FDI 10 0.286 0.000 0.005 0.650 0.807 0.887
FDI 30 0.093 0.000 0.003 0.588 0.661 0.887
Avg 0.009 0.002 0.007 0.852 0.905 1.000
RSA[0.25,1.1] 0.022 0.028 0.029 0.089 0.047 0.930
RSA[0.5,3] 0.004 0.120 0.122 0.355 0.049 0.933
Swap 0.009 0.066 0.125 0.035 0.029 0.991

TABLE VII: Scenario level metrics (specificity, for the normal scenario, and sensitivity, for the attack scenarios).

electricity ones (the only exception is NN, which performs
slightly better). In particular, we can remark that Min-Avg
loses its FDI detection capabilities.

3) Fine-grain analysis: Figure 2 shows fine grained results
for the 30% false data injection scenario (FDI 30). In par-
ticular, the boxplots show the distributions of the sensitivity
values over the entire set of smart metersM: the orange lines
indicate the median values, the top and bottom sides of the
boxes represent the third and first quartiles, respectively, and
the vertical lines that extend from either side of the boxes
represent the ranges for the bottom 25% and the top 25%
of the values, excluding outliers (white dots). The Min-Avg
boxplot has several outliers, nevertheless, for the 75% of the
smart meters the sensitivity is approximately zero, and for the
rest the sensitivity is below 0.2. ARIMA(X) definitely are not
able to recognize the attack. KLD and JSD show better results
than Min-Avg, but still poor. They are characterized by a high
variability of the sensitivity values among the different smart
meters. NN has very good detection capabilities, however we
can observe many outliers.

Fig. 2: Fine-grained results of the sensitivity (tpr) in the
FDI 30 scenario (gas experimental plan).

VI. CONCLUSION

This work has carried out an exhaustive experimentation,
that allows us to get some interesting results. First, we have
to say that a fair comparison with results of previous works
has not been possible. It is true that we have borrowed
techniques from the literature, although some improvements
are originally ours. However, for most of the similar works it
has not been possible to reproduce their experiments. This is
mainly due to two problems: the not complete specification of
the information used and the unavailability of the software
detectors. As a result, our findings, which we completely
trust, are for certain detectors different of those reported
in the literature. We make available the software developed
for implementing and assessing the detectors as well as the
experimentation results6.

As a synthesis of our results, we can conclude that none of
the detectors is good enough to predict all types of attacks,
while maintaining a low rate of false positives. On the one
side, KLD and JSD perform better than the others, globally.
On the other hand, NN is very promising in detecting attacks,
however it needs to be adjusted so that it can discover normal
behaviours as well. Nevertheless, we recognize that more
experiments are needed, in order to consider different baseline
periods for detection, for example, of swap attacks (e.g., 12
hours instead of week).

We have learned that, in this context, experimentation is
tricky and costly. But, at the same time, more of it is needed:
new detectors need to be implemented, more datasets and sce-
narios have to be considered, also different plan settings will
offer more insights. Our intention is to completely automate
the experimental process. Therefore, we are currently working
on a software framework, that allows researchers to plug new
detectors, scenarios and datasets.

6URL: https://github.com/DiasporeUnizar/smartest.
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