tegdet: An extensible Python library for anomaly detection using time evolving graphs

Simona Bernardia,*, Raúl Javierreb, José Merseguera

a Dept. de Informática e Ing. de Sistemas, Universidad de Zaragoza, Spain
b Hiberus, Spain

\textbf{A B S T R A C T}

This paper presents tegdet, a new Python library for anomaly detection in unsupervised approaches. The input of the library is a univariate time series, representing observations of a given phenomenon. Then, tegdet identifies anomalous epochs, i.e., time intervals where the observations differ in a given percentile of a baseline distribution. Epochs are represented by time evolving graphs and the baseline distribution is given by the dissimilarities between a reference graph and the graphs of the epochs. Currently, the library implements 28 dissimilarity metrics, i.e., 28 different anomaly detection techniques, and its extensible design allows to easily introduce new ones. tegdet exposes a complete functionality to carry out the anomaly detection, through a straightforward designed API. Summarizing, to the best of our knowledge, tegdet is the first publicly available library, based on time evolving graphs, for anomaly detection in time series. Our experimentation shows promising results. For example, Clark and Divergence techniques can achieve an accuracy of 100\%, while the time to build the model and predict lasts for few hundred milliseconds.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Motivation and significance

Time series analysis and forecasting is a noticeable branch of data science that focuses on developing models derived from a sequence of data points, observed at different time instants, to gain an understanding of a given phenomenon and to make predictions on its future [1]. Anomaly detection [2] in time series is a step forward and, nowadays, one of the main topics of interest for researchers and practitioners in uncountable application domains. For example, network intrusion detection, malware detection, fraud detection, data center monitoring, industrial damage detection, medical images, military surveillance or social media research.

Numerous anomaly detection methods, based on time series, have been proposed in the literature, and three categories have been identified [3]: statistical approaches, machine learning approaches and deep learning approaches. Detection methods can deal with univariate and/or multivariate time series. A univariate time series is an ordered set of real-valued observations, where each observation is recorded at a specific time. A multivariate time series is an ordered set of k-dimensional vectors, where each vector is recorded at a specific time and consists of k real-valued observations [4].

The tegdet library implements a statistical approach, in particular a class of dissimilarity-based anomaly detection methods.
for univariate time series. These methods rely on time evolving graphs (TEGs), which offer a graph-based representation of fixed-length subsequences of the original time series. According to Akoglu et al. [5] many reasons make graph-based approaches vital and necessary, among them a powerful representation of data inter-dependencies and its robust machinery. Each detection method in tegdet leverages a dissimilarity metric, which defines how to compare graph-based subsequences with a reference graph, and how to build a baseline distribution model. Then, anomalous epochs are identified as data subsequences that differ, from the reference graph, in a given percentile of the baseline distribution.

Statistical libraries for the analysis and forecasting of time series are available in Python [6] and R [7], e.g., `statsmodels` in Python or `stats` in R. However, to the best of our knowledge, none of these libraries provide support to the anomaly detection of time series based on time evolving graphs. Moreover, most dissimilarity-based implementations from the literature [4] are based on only one fixed metric, typically the Euclidean distance. The tegdet library overcomes these limitations by currently supporting 28 dissimilarity metrics using TEGs, and it has been designed to be easily extended to introduce new anomaly detection techniques. The tegdet design ensures the extensibility by decoupling the computation of the dissimilarity metric and the rest of the training and testing process. In particular, the abstract class `GraphComparator`, Fig. 1, will be specialized in as many classes as techniques want to be implemented. Fig. 1 depicts three specialized classes as examples, e.g., `GraphJSDissimilarity`, which implements the Jensen-Shannon metric [8]. Each specialized class only needs to implement the abstract method `compare_graphs`, having the purpose of implementing the technique defined by the dissimilarity metric.

As previously introduced, tegdet implements 28 dissimilarity metrics, hence, 28 different anomaly detection techniques. Moreover, it has been designed to be easily extended to introduce new anomaly detection techniques. The tegdet design ensures the extensibility by decoupling the computation of the dissimilarity metric and the rest of the training and testing process. In particular, the abstract class `GraphComparator`, Fig. 1, will be specialized in as many classes as techniques want to be implemented. Fig. 1 depicts three specialized classes as examples, e.g., `GraphJSDissimilarity`, which implements the Jensen-Shannon metric [8]. Each specialized class only needs to implement the abstract method `compare_graphs`, having the purpose of implementing the technique defined by the dissimilarity metric.

The decoupling introduced by tegdet not only ensures the extensibility, it also favors the good performance results of the library, as proved in [9]. Being the temporal complexity to create the TEGs linear, with respect to the length of the input, in

Fig. 1. Overview of the tegdet library architecture.

1 https://www.statsmodels.org/
3 A detailed description of the attributes and methods of these classes can be found in: https://github.com/DiasporeUnizar/TEG.
the worst case, then, the performance impact of adding a new detection technique is attributable to the implementation of the technique exclusively.

2.2. Software functionalities

The methods of the TEGDetector class, conform the API of the tegdet library. These methods are for the users of the library to: (a) discretize a dataset, (b) create TEGs, (c) construct a prediction model, and (d) detect outliers. The following list describes each of these methods in detail.

init(): This method is the constructor of the TEGDetector class. Hence, it is the entry point for the user of the library to initialize the parameters for constructing the model and carrying out the detection. These parameters conform the attributes of the class, they are described at the end of this section.

get_dataset(): This method is used to load a dataset, which is indicated as a parameter. The dataset file must be in CSV (comma-separated values) format. The method returns a pandas Dataframe ready to be used for building a model.

build_model(): This method is used to build a prediction model. The method receives as a parameter a training dataset, created by the previous method. The model is returned as a ModelBuilder object, also the time to build the model is returned.

predict(): This method is used to make a prediction. It receives a testing dataset and a model. Then, the method returns: the outliers, as a numpy array of (0,1) values, the total number of observations, and the time spent to make the prediction.

compute_confusion_matrix(): This method is used to compute a confusion matrix. It receives two numpy arrays, one with ground true values and the other with the predicted values obtained by the previous method. The method returns the confusion matrix.

print_metrics(): This method is used to print on the standard output. In particular, it prints: the name of the metric, the setting of the input parameters, the name of the testing dataset, the performance metrics (i.e., time to build the model and time to make predictions) and finally the confusion matrix.

metrics_to_csv(): This method is used to save information, in CSV format, in the file indicated as a parameter. In particular, it saves: the current configuration, the name of the testing dataset, the performance metrics and finally the confusion matrix.

The attributes of the TEGDetector class, which are the parameters of the constructor method, represent the information that the user needs to provide for carrying out the anomaly detection. The following list describes each of these attributes in detail.

metric: The name of the dissimilarity metric used to compare graphs. The complete list of metrics currently implemented in the library appears in Listing 1, lines 11–16.

n_bins: Being the time series observations mapped into an ordered set of levels, then n_bins represents the cardinality of this set, i.e., the number of levels (its default value is 30). The size of the generated graphs (i.e., number of nodes and edges) is proportional to this value.

n_obs_per_period: Being the time series partitioned into a set of consecutive periods, i.e., epochs, then this attribute represents the number of observations in each period, see Fig. 3. The length of the graph sequence, that corresponds to the number of period partitions, is inversely proportional to this value. Its default value is 336.

alpha: Represents a threshold for the anomaly detection (its default value is 5). Hence, an epoch will be labeled as anomalous when its observations differ from the reference model in a quantity above the 100-alpha percentile of the baseline distribution.

2.3. Usage of the library

The methods of the API previously described are for the users of the library to construct a prediction model and carry out the anomaly detection. Fig. 2 summarizes such steps, which are detailed in the following.

Construction of the prediction model. First, the init method is called to set the parameters needed to create the training TEGs and the prediction model. Next, the get_dataset method loads the training dataset. Then, the build_model method generates the prediction model, as follows: (a) it produces a discretized dataset; (b) it generates a sequence of training graphs; (c) it obtains the global graph; and (d) computes the dissimilarities between each graph of the sequence and the global graph.

Anomaly detection. Initially, the get_dataset method is called to load the testing dataset. Then, the predict method is called, which triggers: (a) the computation of the dissimilarities between each testing graph of the sequence and the global graph; and (b) the computation of outliers.
3. Illustrative examples

The following examples demonstrate how to use tegdet to: build prediction models using training datasets, make predictions using testing datasets and save results in CSV format. The script in Listing 1, that uses the methods of the API described in previous section, clearly identifies each step for using tegdet. The datasets and scripts used in these examples are available at the tegdet repository.4

3.1. Heartbeat anomaly detection

This example considers the QTDB 0606 ECG dataset [10], in textual format, which has been downloaded from the GrammarViz repository [11]. The time series, shown in Fig. 3 (blue curve), consists of 2299 observations, and the third heartbeat, emphasized by a red region, is known to be anomalous.

Concerning the input parameters: the number of observations per period \(n_{\text{obs.per.period}}\) has been set to 170, this value corresponds to the window size used in the experiment by GrammarViz [11], the number of levels and the significance level \(n_\text{bins} \text{ and } \alpha\) are set to their default values. In Fig. 3, the vertical dotted lines mark the start/end of each epoch according to this setting. The green and red regions in the plot, emphasize the normal and anomalous epochs, respectively, of the testing set.

Table 1 shows an excerpt of the results produced by running the script in Listing 1, which corresponds to this example. The first line contains the headers of the columns for the other lines. Then, each of the following lines indicate: the name of the metric, the setting of the parameters, the performance results, i.e., time to build the model and time to make predictions, and, finally, the entries of the confusion matrix, i.e., true positive, true negative, false positive and false negative, respectively.

These results have been post-processed to analyze the quality of the metrics, in terms of performance and detection capability. Fig. 4 shows the balanced accuracy of each metric, that is a function of the confusion matrix entries, as indicated by the formula in Table 2. Observe that most of the metrics make a correct prediction, i.e., two normal heartbeats and one anomalous (balanced accuracy of 100%), three metrics correctly identify the anomalous heartbeat but are not able to recognize the normal ones (balanced accuracy of 75%), whereas the remaining metrics have poor quality (balanced accuracy of 50%).

3.2. Energy fraud detection

Although resilient and reliable to supply electricity, smart grids are vulnerable to attacks and frauds [12]. In [9], tegdet is used to identify energy frauds caused by swap attacks, i.e., attacks aim at defrauding the energy utility by paying less than consumed. Moreover, [9] presents a complete assessment of the quality of the tegdet library. Experiments in [9] assume a time-of-use contract, and the cost of the energy depends on peak and off-peak periods [13].

The dataset used comes from the Ireland’s Commission for Energy Regulation [14], and it collects the energy consumption (in kWh) of a particular smart meter, every half an hour during 75 weeks. The time series is assumed not to be affected by attacks and it has been partitioned in training and testing sets,

4 https://github.com/DiasporeUnizar/TEG
respectively of 60 and 15 weeks length. Additionally, a synthetic
time-series, representing a swap attack, is used as a second train-
ing set: it is generated from the first training set, by swapping the
observations between peak and peak-off periods (from 9:00am to
midnight and from midnight to 9:00am) [15]. Fig. 5 shows the
first week observations from the two testing sets.
import os
import pandas as pd
import numpy as np
from tegdet.teg import TEGDetector

Input dataset/output results paths
TS_PATH = os.path.join('dataset', 'ecg', 'ecg0606.csv')
RESULTS_PATH = os.path.join('results', 'ecg', 'tegdet_variants_results.csv')

List of metrics (detector variants)

def build_and_predict(metric, n_bins, n_obs_per_period, alpha):
 # Create a new tegdet
tegd = TEGDetector(metric, n_bins, n_obs_per_period, alpha)

 # Load time series
cwd = os.getcwd()
 ts_path = cwd + TS_PATH
 ts = tegd.get_dataset(ts_path)

 # Partition the time series in training and testing sets
test = ts[:600]
 train = ts[600:]

 # Build model with the training set
 model, time2build = tegd.build_model(train)

 # Make prediction with the testing set
 outliers, n_periods, time2predict = tegd.predict(test, model)

 # Set ground true values
 ground_true = np.zeros(n_periods)
 ground_true[n_periods - 1] = 1

 # Compute confusion matrix
 cm = tegd.compute_confusion_matrix(ground_true, outliers)

 # Collect detector configuration
 detector = {'metric': metric, 'n_bins': n_bins, 'n_obs_per_period': n_obs_per_period, 'alpha': alpha}

 # Collect performance metrics in a dictionary
 perf = {'tmc': time2build, 'tmp': time2predict}

 # Store basic metrics
 results_path = cwd + RESULTS_PATH
tegd.metrics_to_csv(detector, 'testing', perf, cm, results_path)

if __name__ == '__main__':
 for metric in list_of_metrics:
 build_and_predict(metric, 30, 170, 5)

The experiments in [9] produced promising results regarding the accuracy of the Clark and Divergence dissimilarity metrics. For example, Fig. 6(a) shows that the Clark based detection method is slightly sensitive to the significance level \((\alpha)\) and it predicts correctly all the testing epochs, both normal and anomalous ones, when the length of the epochs are set at least half-week (168 observations). Concerning the execution time of the implemented algorithms, it is sensitive to the values set to the \(n_{\text{obs}}_{\text{per period}}\) and \(n_{\text{bins}}\) parameters, which define the characteristics of the graph sequence. Fig. 6(b) shows the mean time to build the model: the lower is the value of \(n_{\text{obs}}_{\text{per period}}\) the higher is the execution time, since the longer will be the sequence of graphs to be generated. Besides, the higher is the value of \(n_{\text{bins}}\) the higher is the execution time, since the size of the graphs to be generated (number of nodes and edges), as well as the computation of the graph dissimilarity, are in direct proportion to the number of levels.

4. Impact

Anomaly detection is a broad field of research that can be applied in uncountable application domains. The methods supporting the anomaly detection span multiple fields, from classical statistical methods to more actual machine learning techniques. The work in [3] compared the performance of 20 univariate anomaly detection methods by using 368 univariate time series.
datasets. The authors concluded that the statistical approaches perform best on univariate time-series by detecting anomalous epochs, also detecting point anomalies. The work affirms that statistical techniques require less computation time compared to machine learning and deep learning approaches. Although these facts highlight the significance of the statistical libraries, such as tegdet, we consider necessary to have software packages for each anomaly detection field. Moreover,-endowing these packages with capabilities for being easily extended, as tegdet does, the chances for addressing a large number of domains grow, hence the potential impact of the tegdet library.

In this context, tegdet is the first publicly available library for anomaly detection in time series, based on evolving time graphs. These graphs offer a better representation of inter-dependencies, as well as more robust mathematical machinery, than other formalisms [5]. Aside the experiments presented in this paper and in [9], tegdet was used in a project related to smart grid security [16] and it is currently being used in the project here referred in the Acknowledgments section. Since the release of version 1.0.0 in June 2022 in the PyPI public repository, tegdet has had around 960 downloads, according to Google BigQuery [17].

5. Conclusions

The tegdet library offers a simple API that intuitively enables the user to load datasets, build a prediction model and detect outliers. The user can fine-tune the detection process by customizing a few input parameters. Concretely, the metric or detection method, the number of observations per period, the number of levels and the significance level. The work in [9] explains how to easily improve the anomaly detection process by setting these parameters. For example, regarding the accuracy, it was achieved a 100%: first, by analyzing the periodicity of the time series thus setting the length of the periods, and later carrying out a sensitivity analysis over the complete set of the metrics in the library.

The software design of the library decouples, for the sake of the extensibility, the inherent processes of the anomaly detection. In fact, the simplicity of the design makes that users with very basic skills in Python, and completely oblivious to the time evolving graphs formalism, can introduce new methods of detection.

Another important aspect of the library is the good performance results achieved. Indeed, the experiments in [9] show that when the number of graphs is in the order of hundreds and their size ranges from 10 to 50 nodes then the time to build the model is around few hundreds milliseconds. For longer graph sequences, in the order of thousands, the time to build the model is around few hundredms. For longer time series, where the most time consuming step concerns the computation of graph dissimilarities (i.e., 70% of the overall time). As future work, we aim to investigate whether advanced representations for TEGs could improve the time to build the model. For example, graph implementations based on sparse matrices could improve the memory and time efficiency of the graphs comparison.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The data/code is available at: https://github.com/DiasporeUnizar/TEG.

Acknowledgments

S. Bernardi and J. Merseguer were supported by the Spanish Ministry of Science and Innovation [ref. PID2020-113969RB-I00]

Appendix A. Library repositories

The tegdet library is available at the official PyPi repository as well as at the GitHub repository. In particular, the latter also includes the following resources:

- API documentation.
- Documentation about the installation and implementation.
- Datasets used in this paper.
- Python scripts. Listing 1 shows the script used in Section 3.1.

References

[4] Blázquez-García Ane, Cone Angel, Moro Miquel, Lozano Jose A. A review on outlier/anomaly detection in time series data. ACM Comput Surv 2021;54(3).

6 PyPi url: https://pypi.org/project/tegdet/
7 GitHub url: https://github.com/DiasporeUnizar/TEG.