
Vol.:(0123456789)

Automated Software Engineering (2022) 29:36
https://doi.org/10.1007/s10515-022-00335-z

1 3

DICE simulation: a tool for software performance
assessment at the design stage

Simona Bernardi1 · Abel Gómez2 · José Merseguer1  · Diego Perez‑Palacin3 ·
José I. Requeno4

Received: 20 April 2021 / Accepted: 15 February 2022
© The Author(s) 2022

Abstract
In recent years, we have seen many performance fiascos in the deployment of new
systems, such as the US health insurance web. This paper describes the functionality
and architecture, as well as success stories, of a tool that helps address these types
of issues. The tool allows assessing software designs regarding quality, in particular
performance and reliability. Starting from a UML design with quality annotations,
the tool applies model-transformation techniques to yield analyzable models. Such
models are then leveraged by the tool to compute quality metrics. Finally, qual-
ity results, over the design, are presented to the engineer, in terms of the problem
domain. Hence, the tool is an asset for the software engineer to evaluate system
quality through software designs. While leveraging the Eclipse platform, the tool
uses UML and the MARTE, DAM and DICE profiles for the system design and the
quality modeling.

 *	 José Merseguer
	 jmerse@unizar.es

	 Simona Bernardi
	 simonab@unizar.es

	 Abel Gómez
	 agomezlla@uoc.edu

	 Diego Perez‑Palacin
	 diego.perez@lnu.se

	 José I. Requeno
	 jrequeno@ucm.es

1	 Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, Zaragoza,
Spain

2	 Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya (UOC), Barcelona,
Spain

3	 Department of Computer Science, Linnaeus University, Växjö, Sweden
4	 Dpto. de Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Madrid,

Spain

http://orcid.org/0000-0001-5538-3553
http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00335-z&domain=pdf

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 2 of 36

Keywords  Software performance · Reliability · UML · Software tool

1  Introduction

Recently, many industrial-grade software systems have exposed significant perfor-
mance issues when they were already deployed. For example, the US health insur-
ance web1 reported major outages when it was launched, and finally it crashed due
to the heavy traffic of users. The Royal Bank of Scotland and other financial institu-
tions were fined £42 millions by the Financial Conduct Authority (FCA2) in 2014
for IT failures related to performance, in particular pointing “risks related to the
design of the software system”. Most of these performance problems were due to
a software deployed with no special concerns about software bottlenecks, resources
provision, scalability or even without a users workload analysis.

The software performance engineering (SPE) field (Smith and Lloyd 2002, 2003;
Cortellessa et al. 2011) deals with the above issues by assessing the quantitative
behavior of the software systems. SPE was defined by Smith and Lloyd (2002) as
“a systematic, quantitative approach to the cost-effective development of software
systems to meet performance requirements. SPE is a software-oriented approach
that focuses on architecture, design, and implementation choices. SPE gives the
information needed to build software that meets performance requirements on time
and within budget.". In consequence, the idea is to identify performance flaws, even
before the system is deployed, hence comprehensively analyzing the structure and
behavior of the software system, from design to code. As stated by Cortellessa et al.
(2011), the performance analysis should be common practice within the software
development process, then introducing performance concerns in the scope of soft-
ware models. But for this to be real, we need methodologies and tools. Methodolo-
gies for properly fitting the performance practice in the software life cycle, and tools
for ensuring the automation of such methodologies.

For automation, the European DICE project3 (Casale et al. 2015) developed a
tool chain for systems quality assessment. DICE used model-driven techniques (The
Object Management Group 2018), from design to deployment, aimed at the quality
assurance in the software engineering process. This tool chain addresses not only
performance, but also reliability and safety quality aspects. The tools in the chain
automatically generate performance, scalability and reliability predictions for differ-
ent deployment scenarios. Although DICE is particularly focussed on data-intensive
applications, most of their tools can be used in more general software contexts, by
leveraging the Unified Modeling Language (UML OMG 2007).

The aim of this paper is to present one of the tools developed within the DICE
project, the DICE Simulation tool, called “Simulation tool” from now on. This tool
is for software engineers to carry out quality assessment. In particular, performance

1  https://​www.​healt​hcare.​gov/.
2  https://​www.​fca.​org.​uk/.
3  https://​cordis.​europa.​eu/​proje​ct/​id/​644869.

https://www.healthcare.gov/
https://www.fca.org.uk/
https://cordis.europa.eu/project/id/644869

1 3

Automated Software Engineering (2022) 29:36 	 Page 3 of 36  36

and reliability assessment of software systems, early in the life-cycle. Although the
Simulation tool follows SPE principles, it does not prescribe a specific SPE meth-
odology. The approach for assessment is scenario-based, as it is common practice
in the performance evaluation field. Scenario-based means that the engineer defines
the scenarios of interest and computes metrics for each of them, e.g. throughput or
resource utilization. From the metrics, assessment regarding bottlenecks, scalability
or fulfillment of requirements can be carried out. The Simulation tool agnostically
focuses on the software design stage, and as scenarios it uses UML sequence and
activity diagrams. The deployment diagram is for representing and quantifying sys-
tem resources. The tool introduces the performance view in the software design by
means of UML profile annotations (OMG 2007). By design, decisions can be made,
such as replicating threads or servers or sizing repositories, to meet performance and
reliability requirements. It is well known that the earlier the requirements are veri-
fied the more economical it is to fix them if necessary.

The tool contributes to automate some advances in the SPE field, it specifically:

•	 Allows to improve UML system models with quality profile annotations (The
Eclipse Foundation 2012). In particular, the MARTE (OMG 2013), DAM (Ber-
nardi et al. 2011) and DICE (Perez-Palacin et al. 2019) profiles.

•	 Transforms UML-profiled models into analyzable models (Woodside et al.
2014), i.e, Petri nets and reliability models.

•	 Allows to assess performance metrics (Cortellessa et al. 2011). Concretely,
response time, throughput and resource utilization.

•	 Allows to assess reliability metrics (Bernardi et al. 2013) . Concretely, mean time
to failure, availability, reliability and probability of failure.

The rest of the paper is organized as follows. Section 2 revises the related work. Sec-
tion 3 explains the methodological approach followed to develop the tool. Section 4
introduces necessary scientific context. Section 5 presents the tool. Section 6 tells
how to use the tool. Section 7 recalls successful stories of the tool. Section 8 dis-
cusses our final concers on the tool. Section 9 concludes the paper.

2 � Related work

The Simulation tool, as the rest of the DICE tools, has been developed on top of
the Eclipse Platform (The Eclipse Foundation 2021). Concretely, our tool leverages
Eclipse Papyrus (The Eclipse Foundation 2012) for the modeling of UML sequence
and activity diagrams. The work in Ozkaya et al. (2019) analyses 58 UML tools,
from many different points of views. None of these tools explicitly address the top-
ics of our tool, that is, the analysis of system performance and reliability require-
ments. However, 18 ( 31% ) of the tools support some kind of model analysis, such
as the simulation of some UML diagram or the checking of well-formedness rules.

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 4 of 36

Regarding system formal verification, only Reactive Blocks4 and Umple5 perform
it. But, these tools address functional aspects, such as the verification of the correct
system behaviour, while the Simulation tool addresses non-functional ones. Besides,
different to the Simulation tool, none of these 18 tools consider specific technolo-
gies or current practices in software engineering, such as DevOps or data-intensive
applications.

There are tools, not reviewed in Ozkaya et al. (2019), that transform UML-anno-
tated diagrams into analyzable models. Very few of them target performance or reli-
ability models, as the Simulation tool does. For performance models, Tulsa Li et al.
(2017) transforms UML diagrams, annotated with the DICE profile, into Layered
Queuing Networks (Neilson et al. 1995), but it is exclusively focused on data-inten-
sive applications. For reliability models, OpenMADS (Andrade et al. 2013) trans-
forms SysML diagrams and MARTE annotations into deterministic and stochastic
Petri nets, but they only address the availability analysis.

Likewise the DICE Simulation tool, the Palladio Tool (Ralf et al. 2016) has been
developed for the Eclipse platform. Palladio Tools6 implement an integrated mod-
eling environment for computing performance, reliability, maintainability, and cost
metrics. One main difference is that its modeling language is the Palladio Compo-
nent Model Becker et al. (2009) (PCM) rather than UML. PCM for performance
assessment fits smoothly in component-based software development. However, for
other approaches, PCM may require to model a subset of the system characteristics
twice, and in two different languages, i.e., in the design language chosen by software
engineers and in PCM for the performance view. Moreover, considering that per-
formance evaluation is usually scenario-based, then the component-based approach
presents a disadvantage. At this regard, the Simulation tool is scenario-based and it
is useful when engineers use UML for the system design. Then, they only need to
add relevant performance information to such design models. The XMI Object Man-
agement Group (2006) format also helps the Simulation tool, since a UML model
can be created with tools supporting this format and then feed our tool with it. Per-
Tract (Kroß and Krcmar 2019) is a tool that also uses PCM, in this case for the spe-
cific topic of extraction of performance models for stream applications.

Finally, some tools implement very specific aspects of SPE. For example, Filling-
the-gap (Wang et al. 2015) implements routines to estimate parameters of perfor-
mance models using monitoring information. MLOS (Curino et al. 2020) is an infra-
structure that uses data science to automate performance tuning. The guest editorial
Automation in software performance engineering (Merseguer et al. 2017) gathers
recent advances in SPE tools at the time of publication.

6  https://​www.​palla​dio-​simul​ator.​com/​tools/

4  https://​iot.​eclip​se.​org/​commu​nity/​resou​rces/​videos/​2017-​03-​08-​virtu​al-​iot-​recor​ding/
5  https://​cruise.​umple.​org/​umple/

https://www.palladio-simulator.com/tools/
https://iot.eclipse.org/community/resources/videos/2017-03-08-virtual-iot-recording/
https://cruise.umple.org/umple/

1 3

Automated Software Engineering (2022) 29:36 	 Page 5 of 36  36

3 � Methodology

The Simulation tool aims at supporting performance and reliability assessment
of software systems. More general, it is widely recognized that assessing non-
functional properties of software systems, early in the lifecycle, i.e., before imple-
mentation, increases the quality of the delivered product (Smith and Lloyd 2003;
Dependability Management 2003; McGraw 2016). In particular, early performance
and reliability assessment can be facilitated by transformations of software design
models into formal models. The latters are amenable for analysis with mathematical
techniques.

To deal both, with models from a software design standpoint and to manipulate
them from a mathematical standpoint, we use two complementary technical spaces.
The concept of technical space was introduced by Kurtev et al. when discussing
the problem of bridging different technologies (Ivanov et al. 2002). It is a common
abstraction when dealing with this interoperability problem in MDE7-based devel-
opments (Brambilla et al. 2017). A technical space is a working context, with a set
of concepts, a body of knowledge, tools, required skills, and possibilities (Bézivin
et al. 2006). For example, we use UML and Generalized Stochastic Petri Nets
(GSPN) (Ajmone Marsan et al. 1995) as technical spaces for our Simulation tool.
UML is characterized by its wide support in industrial modeling tools—such as
Papyrus UML—for solving actual Software Engineering problems. While GSPN is
a well-know formalism for the stochastic modeling of systems, that constitutes the
formal backbone for our simulation approach.

Thus, as proposed by Bézivin and Kurtev (2006), and as it has been common
practice in the MDE field in the last decades, we have bridged both technical spaces
using model transformations (e.g., Boronat et al. (2006); Cabot et al. (2008); Gómez
et al. (2018); Esther et al. (2009)). The Simulation tool implements automatic for-
ward transformations from UML models to GSPN. The obtained GSPN models are
then analyzed, transparently to the user, with event-driven Monte Carlo simulation
techniques (Rodríguez et al. 2020). The simulation enables to get estimates of the
performance/reliability metrics at GSPN model level, i.e., throughput of transitions
and number of tokens in places. Such estimates are then post-processed by the Sim-
ulation tool, in a backward transformation, to map them at UML model level.

The Simulation tool can leverage the best from both, UML and GSPN, by mak-
ing an extensive use of traceability links. Specifically, the Simulation tool follows a
loosely coupled traceability approach (Galvao and Goknil 2007), which allows you
to use traceability links as any other modeling asset. Such traceability links maintain
all the information about which elements in the UML technical space correspond to
those in the GSPN space and vice versa.

The techniques above explained allow the engineer to detect performance and
reliability issues, e.g., software bottlenecks or low expected mean time to failure, in
the design and, thus, to improve such software design before implementation. But

7  Model Driven Engineering.

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 6 of 36

it is noteworthy that, thanks to technical spaces, model transformations, and trace-
ability, engineers do not need to apply a specific SPE methodology. The intuition
for the Simulation tool is that it automates and makes transparent to the user some
of the steps that are necessary to follow for a model-based software performance
evaluation activity. In this way, the engineers are relieved of error-prone tasks, such
as manually creating the formal model and extracting the appropriate values from
the large set of outputs that a model-simulation can offer. All the required knowl-
edge remains in the software modeling technical space, hence, engineers only have
to model their software as they are used to.

Figure 1 sketches the rationale for the tool development, where the following
decisions about methodological aspects have been made:

•	 The technical space for software modeling is UML, profiled with MARTE (OMG
2013), DAM (Bernardi et al. 2011) or DICE (Perez-Palacin et al. 2019). In
particular, a UML model represents usage scenarios of the software system
at design stage, a UML scenario includes a behavioral diagram, activity or
sequence, and a deployment diagram. A UML performance or reliability sce-
nario is a UML scenario profiled with MARTE (performance), DAM (reliabil-
ity) or DICE (performance/reliability in data-intensive applications context) to
specify input parameters and metrics as non-functional properties (NFPs).

•	 The technical space for performance/reliability analysis consists of GSPN and
event-driven Monte Carlo simulation for the analysis of GSPN models (Rod-
ríguez et al. 2020). Although several analysis techniques are available for GSPN,
we opted for simulation ones since they have a wider applicability than state-
based and bound-based approximation techniques, as it will be explained in
Sect. 4.2.

•	 The forward transformations map the software models with NFP annotations to
formal models in two sequential steps, which rely on Model-2-Model (M2M)
and Model-2-Text (M2T) (Brambilla et al. 2017) transformations. The M2M
is applied in the first step to derive a tool-independent GSPN model specifica-
tion, based on the ISO/IEC standard Petri Net Markup Language (Billington
et al. 2003). The M2T is applied in the second step to get the tool-specific GSPN
model suitable for the analysis. This two-step approach facilitates the tool exten-
sibility for what concerns the use of the backend GSPN-tools for the analysis,
since a new GSPN-tool solver can be supported by implementing only the sec-
ond step.

•	 The backward transformation synthetizes the GSPN metrics estimation, com-
puted by the tool-specific GSPN simulator, to produce the metrics estimation in
the software modeling technical space, i.e., NFP metrics, and to present them
in a “software-developer-friendly” manner. On the one hand, we selected the
most commonly used NFP metrics in performance/reliability assessment, they
are detailed in Sect. 4.1. On the other hand, the presentation of the results is both
textual and graphical, the latter option is useful in case of sensitivity analysis.

Besides decisions related to methodological aspects, design decisions concerning
the modeling and analysis framework were taken, some of them detailed in Sect. 5.

1 3

Automated Software Engineering (2022) 29:36 	 Page 7 of 36  36

Regarding the modeling framework, the DICE consortium decided to develop the
tool chain within the Eclipse platform (The Eclipse Foundation 2021) and its Eclipse
Modeling Framework (EMF) (Steinberg et al. 2009). Document (The DICE Con-
sortium 2015) provides details about the rational behind this decision, which was
taken after careful analyses of many different UML modelling frameworks. EMF
provides the Ecore language, which can be regarded as the reference implementation
of the Meta-Object Facility (OMG 2016) standard proposed by the OMG8. Moreo-
ver, on top of EMF, we find a plethora of tools supporting model-driven develop-
ment (MDD). Among them, general-purpose modeling languages such as UML,
domain specific languages -either based on MOF/Ecore or on UML by using pro-
files-, query languages and M2M and M2T transformation languages. It is notewor-
thy that Eclipse is, to the best of our knowledge, the only platform providing tools in
the same integrated environment, covering all phases of an MDD process, and using
OMG standards.

Thus, from the modeling point of view, our open-source Simulation tool presents
a consistent ecosystem not only for its users, but also for engineers extending or
customizing the tool itself. The Simulation tool, among other OMG standards, relies
on: (a) Papyrus (The Eclipse Foundation 2010) as front-end UML modeling tool, (b)
UML profiles (MARTE, DAM and DICE) to specify NFPs also with Papyrus (The
Eclipse Foundation 2012), (c) QVTo (OMG 2011) and Acceleo (The Eclipse Foun-
dation & Obeo 2015) (an implementation of the MOFM2T (OMG 2008)) to spec-
ify M2M and M2T transformations, respectively, and (d) OCL to specify model

Fig. 1   Model-driven performance and reliability assessment of software systems

8  https://​www.​omg.​org/

https://www.omg.org/

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 8 of 36

constraints and model queries. Even considering that the Simulation tool relies
upon GreatSPN (Dipartimento di informatica 2015) as back-end for the analysis, its
integration is achieved by using Ecore (i.e. MOF) similarly to other intermediate or
internal models.

4 � Estimation of performance and reliability metrics

This section introduces the performance and reliability metrics offered by the Simu-
lation tool and the analysis techniques used to estimate them.

4.1 � Metrics

The tool allows to compute the most commonly used performance and reliability
metrics (Jain 1991) on UML scenarios. In particular, the tool supports the following
basic metrics:

Response time of the usage scenario. It measures the time between the arrival of a
request, to be processed by the system, and the completion of the scenario.
Throughput of the usage scenario. It measures the number of processed requests
per time unit.
Utilization of a software resource. It measures the percentage of “busy” time of a
software artifact, that collaborates in the execution of the usage scenario, over the
observation period.
MTTF of the execution environment. It measures the expected time until the
infrastructure resources fail. Its computation requires the MTTF values of the
each infrastructure resource.
Availability of the execution environment. It measures the percentage of time
that the infrastructure resources is ready for utilization. It is calculated by using a
mean time to repair (MTTR) value provided by the user and the previously men-
tioned MTTF.
Probability of failure of a concrete execution of the usage scenario. It measures
the probability that an execution of the usage scenario workflow fails. It requires
the definition of the probability of failure of some actions in the workflow.
Reliability of the execution environment. It measures the probability of the infra-
structure resources to continuously work up to a user defined time value, called
mission time.

The first three are performance metrics, whereas the other four are reliability met-
rics. Table 1 summarizes the UML profile extensions to be applied to define the
performance and reliability metrics in a UML scenario. Concerning performance,
all the usage scenario metrics have to be annotated in the behavioral diagram. Con-
cretely, by stereotyping either the Activity model element (activity diagram) or the
Interaction model element (sequence diagram) as GaScenario. The utilization metric

1 3

Automated Software Engineering (2022) 29:36 	 Page 9 of 36  36

must be annotated in the deployment diagram. In particular, each software artifact of
interest for the performance analysis, needs to be stereotyped as PaLogicalResource.
Depending on the type of metric (fourth column), the table indicates the correspond-
ing tag (last column) to be used. Concerning reliability, the properties to be modeled
are: (a) the probability of failure of software operations and, (b) the mean time to
failure and mean time to repair of infrastructure elements. Whereas, the metrics to
be annotated are summarized in Table 1.

4.2 � Analysis techniques

The estimation of metrics is carried out, transparently to the practitioner, using
GSPN simulation techniques. Several GSPN solution techniques are available in
the literature and have been implemented in GSPN tools. We can roughly classify
them in state-based, bound-based approximation and simulation techniques (Balbo
and Silva 1998). We opted for event-driven Monte Carlo simulation (Rubinstein and
Kroese 2008), since it has a wider applicability than both, state-based and bound-
based, approximation techniques. On the one hand, simulation can be used also
when the state space of the GSPN model is too large to be analyzed with state-based
techniques, or even infinite. Moreover, unlike bound-based approximation tech-
niques, the quality of the results does not depend on the topological structure of
the GSPN model. On the other hand, unlike state-based techniques, which provide
“exact” values for performance metrics, simulation computes a confidence interval,
by generating randomly chosen paths through the state space.

Concretely, the Simulation tool relies upon the steady state simulator imple-
mented in GreatSPN (Dipartimento di informatica 2015), which estimates two types
of basic metrics at GSPN level. Concretely, mean throughput of transitions and
mean marking of places. The correctness and performance of the GreatSPN simu-
lator has been extensively tested in Rodríguez et al. (2020), through a comparative
analysis, based on a GSPN benchmark, with other two simulation techniques imple-
mented in different tools. For each basic metric, the simulator provides the estimated
value, the confidence interval and the precision error, i.e., the real (unknown) value
falls into the confidence interval with a certain probability (i.e., confidence level)
and with a precision error (Rubinstein and Kroese 2008). The confidence level and
the maximum threshold of precision error are input parameters to be set for a simu-
lation experiment. The simulator implements the batch means method, thus meas-
urements of statistics variables associated to the GSPN model, such as the number
of transition firings or token residence time in places, are taken across successive
epochs or “batches” of a single simulation run. After the termination of an epoch,
the simulator estimates each basic metric. The simulation terminates when the preci-
sion error of the confidence interval of all the basic metrics is lower than, or equal
to, the established maximum threshold.9

9  A minimum number of 10 batches is executed, in each simulation run, before computing the confi-
dence intervals the first time.

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 10 of 36

Regarding the computation of performance metrics. The throughput of the GSPN
transition that represents the scenario termination is mapped directly to the through-
put of the usage scenario. The former is also used, together with the mean marking
of the GSPN place that models the requests arrived to the system, to compute the
response time of the usage scenario, by applying the Little’s formula (Jain 1991).
The mean marking of the GSPN places representing software resources are used to
compute the utilization of the corresponding software resources.

Regarding the computation of reliability metrics. They are calculated using the
Petri net simulation results, as explained above, and the principles for analyzing
Reliability Block Diagrams in series/parallel systems.10

The simulation results are then post-processed, in a backward transformation,
by the Simulation tool to present the performance and reliability metrics results at
UML model level, as explained in Sect. 3.

5 � Software framework

The Simulation tool can be used as a standalone software, directly running on
Eclipse, or it can be integrated, as an Eclipse plugin, with another third-party tool.
The latter scenario has been successfully addressed by integrating the tool into the
DICE platform11 (The DICE Consortium 2015). For both cases, the functionalities,
software architecture and execution workflow remain the same, as explained in the
following.

Table 1   List of performance and reliability metrics for a UML scenario

Diagram Model Stereotype Metric Tag

Performance metrics (MARTE profile)
 Activity Activity GaScenario Throughput throughput

Response time respT
 Sequence Interaction GaScenario Throughput throughput

Response time respT
 Deployment Artifact PaLogicalResource Utilization utilization

Reliability metrics (DAM profile)
 Deployment Node DaComponent Availability ssAvail

Reliability reliability
MTTF failure.MTTF

 Activity Activity DaService Prob. of failure failure.occurrenceProb

10  Document (The DICE Consortium 2017), Sect. 4.2, provides details about the formulas used for cal-
culating reliability.
11  https://​github.​com/​dice-​proje​ct

https://github.com/dice-project

1 3

Automated Software Engineering (2022) 29:36 	 Page 11 of 36  36

5.1 � Software functionalities

The functionalities are organised in three groups: main functionalities, additional
functionalities, and user facilities.

Three main functionalities allow to carry out a quantitative analysis of a soft-
ware system, in particular, performance and reliability analysis:

MF1 — The tool allows the annotation of UML diagrams with system quantita-
tive properties (e.g., host demands, routing rates or workloads). The annotations
follow the standard MARTE UML profile (OMG 2013), as well as the DAM pro-
file (Bernardi et al. 2011). The UML diagrams considered are activity diagrams,
sequence diagrams and deployment diagrams.
MF2 — The tool allows to compute performance metrics (response time,
throughput and resource utilization) on a UML scenario12 that represents a par-
ticular system execution.
MF3 — The tool allows to compute reliability metrics (MTTF, availability and
reliability) on a UML scenario that represents a particular system execution. Per-
formance and reliability metrics (MF2 and MF3) are detailed in Sect. 4.

The tool offers additional functionalities, also from the end user point of view, that
improve the main ones:

AF1	 — The tool allows the annotation of UML diagrams with quantitative proper-
ties which are data-intensive applications specific (i.e., Apache Hadoop, Spark,
Storm and Tez applications). The annotations conform to the DICE profile (Perez-
Palacin et al. 2019). This functionality improves MF1 for addressing specific big
data applications.

AF2	 — The tool can perform what-if or sensitivity analysis for MF2 and MF3.
So, the tool allows the user to see multiple output results, i.e., quantitative metrics,
in a user-friendly format, showing the result values in a 2D plot.

AF3	 — The tool transforms a UML scenario into a Generalized Stochastic Petri
net (Ajmone Marsan et al. 1995). The output format can be: PNML (Petri Net
Markup Language (Billington et al. 2003)), GreatSPN (Dipartimento di infor-
matica 2015) format or DOT (Gansner 2015) (only graphical). GreatSPN format
is in fact used for computing the metrics in MF2, but all formats are made avail-
able outside the tool, in case the engineer requires other kind of analyses.

Other functionalities of the tool are useful facilities for the end user:

FF1	 — The tool allows to set parameters of the simulation carried out by MF2.
Rationale: GreatSPN enables configuring the computation of performance metrics

12  By UML scenario, we mean the combination of an activity diagram plus a deployment diagram, or a
sequence diagram plus a deployment diagram.

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 12 of 36

in terms of the confidence interval and error of the results. Our tool offers widgets
in the user interface to set them.

FF2	 — The tool allows to stop long run simulations carried out by MF2. Ration-
ale: Some simulations may last for long time periods, depending on the model
and parameters used (FF1). Our tool offers a simple user interface button to stop
these simulations, while the results computed so far are presented, also indicating
the accuracy reached.

FF3	 — The tool allows to configure and use simulators installed in remote com-
puters. Rationale: In MF2, the simulation of complex systems or the simulation
of what-if scenarios, that depend on multiple parameters, may demand significant
computing resources. Our tool provides a friendly user interface for remotely
configure and use the GreatSPN tool, that can be running anywhere in the world.
This characteristic brings special benefit when a developer runs the tool on a
battery-powered laptop.

5.2 � Software architecture

Figure 2 depicts a simplified view of the architecture of the Simulation tool. It repre-
sents the dependencies with other tools and the integration into the DICE platform11 .
The dependencies are with:

1.	 Eclipse Papyrus modeling environment (The Eclipse Foundation 2010). It is an
open source UML modeling tool that supports the MARTE profile natively. It also
supports the DAM and DICE profiles. Its main role is to enable to create profiled
UML models. So, it offers support to MF1 and AF1.

2.	 GreatSPN (Dipartimento di informatica 2015) is a third-party tool used for Petri
nets performance analysis. Since it does not provide a specific Application Pro-
gramming Interface (API), its integration is made through native ssh calls and
standard input/output. It gives support to MF2.

The tool is made of two layers, a GUI layer and a model-based simulation layer,
as follows.

5.2.1 � GUI layer

This layer contributes with a set of graphical interfaces to provide the user with a
transparent and intuitive interaction. The main responsibilities are to collect infor-
mation for the simulation of the UML scenario, and to display the results. It com-
prises the following components.

–	 The Simulation configuration asks the user for: (i) the UML scenario to be
simulated13; (ii) the metrics to be computed; (iii) the simulation parameters; (iv)

13  A UML model can include multiple scenarios.

1 3

Automated Software Engineering (2022) 29:36 	 Page 13 of 36  36

the user’s choice on performing what-if analysis; and (v) the location (local or
remote) of the GreatSPN tool. Therefore, this module gives support to AF2, FF1
and FF3. It saves the choices in a configured model.

–	 The Results display is implemented as an Eclipse view and it depicts the results
in a user-friendly mode. When the what-if analysis is configured, this module
plots results in 2D graphics. So, it helps for AF2.

Moreover, this layer also implements a button to abort long-run simulations (FF2).

5.2.2 � Model‑based simulation layer

This layer comprises OSGi components, called by the GUI layer, that run in back-
ground. It has been specifically designed to orchestrate the interaction among the
different tools that perform the actual analysis and simulation. This layer receives
UML models and configured models, with the user’s expectations of the simulation,
and it produces the performance and reliability results. Concretely, it is made of:

•	 M2M transformation component, which executes a model-to-model transfor-
mation of the UML scenario to a Petri net model. The transformation selected
depends on the metric that the user needs to compute. Transformations are
implemented using QVTo (OMG 2011), being the resulting Petri net an instance
of the PNML meta-model.

•	 M2T transformation component, which executes model-to-text transforma-
tions from the PNML to create Petri nets in the GreatSPN tool format. The trans-

Fig. 2   High-level architecture of the DICE Simulation tool

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 14 of 36

formations are developed using the Acceleo (The Eclipse Foundation & Obeo
2015) MOFM2T14 implementation.

•	 Simulator engine handler component, which orchestrates all interactions with
GreatSPN. It invokes GreatSPN commands, receives a stream of (partial) final
results, parses them and creates the simulation result models. These results are
in terms of Petri net concepts, i.e., they are statistical information about the
throughput of each transition and the number of tokes in each place.

•	 Solution builder component, which transforms the simulation results into
proper performance and reliability results. Hence, it receives statistical informa-
tion, about throughput and tokens, and computes results in terms of the UML
scenario response time, throughput, utilization of resources, mean time to failure
or availability.

The M2M and M2T transformation components implement AF3. The Simulator
engine handler and the Solution builder implement the part of AF2 not dealt by
the GUI layer.

5.3 � Execution workflow

Figure 3 depicts a UML activity diagram that represents an execution workflow of
the tool. The partitions in the diagram refer by name to the layers and tools in Fig. 2.

First of all, the annotated UML model must be created (1). Then, the simulation
must be configured (2). After that, the tool proceeds with the performance or reli-
ability evaluation of the configured UML scenario without requiring any other input
from the user. To do that, it executes a sequence of operations composed of: the
model-to-model transformations (3), model-to-text transformations (4), the simula-
tion and evaluation of the Petri nets (5) (6), the generation of the performance and
reliability results from the Petri nets simulation results (7), and the display of results
to the user (8).

When the user configures the simulation for a what-if evaluation, setting ranges
of values for some model variables, then the model transformation creates several
Petri nets that have to be simulated. Then, the simulation engine handler (5) needs
to sequentially invoke the GreatSPN tool (6), once per Petri net, as indicated by the
decision node.

6 � Illustrative example

The wiki of the tool in the GitHub repository offers a complete information about:

•	 How to install the tool15

15  https://​github.​com/​dice-​proje​ct/​DICE-​Simul​ation/​wiki/​Insta​llati​on.

14  MOF Model to Text Transformation Language. https://www.omg.org/spec/MOFM2T/

https://github.com/dice-project/DICE-Simulation/wiki/Installation

1 3

Automated Software Engineering (2022) 29:36 	 Page 15 of 36  36

•	 How to install tool updates16

•	 How to set up the tool17

•	 How to use the tool18

Once the tool has been installed and the environment set up, according to the guide-
lines in the Wiki17 , the practitioner can use the DICE Simulation Examples shortcut
to download the PosidoniaSimplified model. Alternatively, this model can be down-
loaded from GitHub19 (PosidoniaSimplified folder). This model is a simplified ver-
sion of the Posidonia case study, that will be described in Sect. 7.1.

6.1 � UML modeling and MARTE profiling with the tool

The simplified UML model includes only one performance scenario, consisting of
an activity diagram and a deployment diagram (Fig. 4). In the following paragraph,
we describe the activity diagram, which corresponds to the workflow of the Com-
plex Event Processing (CEP) component.

Two components of the CEP are involved in the scenario: AIS Sentence Listener
and Stateful Knowledge Session. The former continuously monitors a message
queue, and when a new AIS statement occurs it adds the statement to the database
and delegates the rest of the operations to the Stateful Knowledge Session. This latter
component updates the list of active rules. A rule is made of two parts: the trigger

Papyrus GUI layer

(2) Configure
simulation

(8) Display
results

(6) Evaluate
Petri net

(7) Build
results

(3) M2M
transformation

(4) M2T
transformation

(5) Simulation
engine handler

(1) Create
annotated UML

model

Model-based
simulation layer GreatSPN

[all Petri nets evaluated]

[not all Petri nets evaluated]

Fig. 3   Execution workflow of the DICE Simulation tool

16  https://​github.​com/​dice-​proje​ct/​DICE-​Simul​ation/​wiki/​Insta​lling-​Updat​es-​And-​Utils.
17  https://​github.​com/​dice-​proje​ct/​DICE-​Simul​ation/​wiki/​First-​Steps.
18  https://​github.​com/​dice-​proje​ct/​DICE-​Simul​ation/​wiki/​Getti​ng-​Start​ed.
19  https://​github.​com/​dice-​proje​ct/​DICE-​Simul​ation/​tree/​master/​bundl​es/​es.​unizar.​disco.​pnml.​m2m/​
examp​les.

https://github.com/dice-project/DICE-Simulation/wiki/Installing-Updates-And-Utils
https://github.com/dice-project/DICE-Simulation/wiki/First-Steps
https://github.com/dice-project/DICE-Simulation/wiki/Getting-Started
https://github.com/dice-project/DICE-Simulation/tree/master/bundles/es.unizar.disco.pnml.m2m/examples
https://github.com/dice-project/DICE-Simulation/tree/master/bundles/es.unizar.disco.pnml.m2m/examples

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 16 of 36

condition and the body. Then, it decides whether to execute the active rules. If so, a
second phase starts by firing all active rules and their management. If not, the execu-
tion cycle ends. Since the firing of a rule can cause the activation of other rules, then
the component updates the list of active rules again. Finally, this component decides
whether to publish the identified AIS events in the message queue.

The UML diagrams in Fig. 4 contain MARTE profile annotations needed for per-
formance analysis. The Simulation tool supports a subset of the standard MARTE
annotations, those needed to specify model parameters and metrics to be com-
puted20. This subset of annotations is the most commonly used, in practice, for per-
formance analysis (Smith and Lloyd 2003). For example, to mention few of them,
the mean arrival rate for open workloads, the mean time and probability associ-
ated to execution steps, and common metrics such as the system response time and
resource utilization.

These annotations are easily accessible in the tool, just by selecting the stere-
otyped model element and the Profile tab of the Properties view, in the Papyrus

Fig. 4   Activity and deployment diagrams

20  A comprehensive list of supported annotations is available at: https://​github.​com/​dice-​proje​ct/​DICE-​
Simul​ation/​wiki/​Profi​les-​Refer​ence

https://github.com/dice-project/DICE-Simulation/wiki/Profiles-Reference
https://github.com/dice-project/DICE-Simulation/wiki/Profiles-Reference

1 3

Automated Software Engineering (2022) 29:36 	 Page 17 of 36  36

perspective. The screenshot in Fig. 5 shows, as an example, the tagged values asso-
ciated to the start initial node, in the activity diagram, that has been stereotyped as a
GaWorkloadEvent.

The practitioner can navigate, in the tool, both diagrams and browse all the ste-
reotyped model elements already defined. Table 2, first and second columns, sum-
marizes all stereotypes and tags used in the example, they define the performance
parameters and the metrics to compute. The tagged-values are expressed using the
Value Specification Language (VSL)21 and most of them include variables (third
column).

The tagged-values representing metrics must include output variables, which are
prefixed with out$. Their values are unknown before the analysis and they will be
estimated with the simulation.

On the other hand, the tagged-values representing performance parameters can
include values or input variables. The latter need to be set to values for conducting a
performance analysis experiment. The choice of the values for the input variables is
up to the practitioner. In fact, it is the practitioners experience and knowledge in the
problem domain what certainly gives the insights for the choice. For example, in the
Posidonia project, we used, for setting the performance parameters, already existing
system logs. In particular, these logs were useful to make accurate estimates regard-
ing activities durations and their execution probabilities. Finally, the input variables
can also be used for sensitivity analysis. Concretely, when one aims to define differ-
ent analysis experiments for the same annotated model.

Fig. 5   UML activity diagram with MARTE profile annotations (tagged values of the GaWorkloadEvent
stereotype)

21  VSL is defined in (OMG 2013).

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 18 of 36

6.2 � Performance analysis with the tool

A performance analysis experiment consists in creating and running a new
configuration.

Table 2   MARTE Profile annotations, model parameters and basic configuration of a performance analy-
sis experiment

Activity diagram

Model element (stereotype) NFP (tag) Variable Value
Activity (GaAnalysisContext)
CEP scenario variable list (context) [...]
Activity (GaScenario)
CEP scenario throughtput (throughput) out$XCep

response time (respT) out$RTCep
used resources (usedResources) CEP

Initial node (GaWorkloadEvent) open workload (pattern=open)
Start mean arrival rate (arrivalRate) $arrRate [0.02–0.2]
Action (GaStep) mean duration (hostDemand)
InsertDB $timeAdd 590
ActRule (first phase) $timeActRule 400
Update (first phase) $timeUpdate 100
FireRules $timeFire 500
ActRule (second phase) $timeActRule 400
Update (second phase) $timeUpdate 100
Publish $timePubEvent 240
Transitions (GaStep) execution probability (prob)
First activation loop–cont $probActLoop 0.9
First activation loop–end 1-$probActLoop 0.1
Fire rules?–yes $probFireRules 0.5
Fire rules?–no 1-$probFireRules 0.5
Second activation loop–cont $probActLoop2 0.8
Second activation loop–end 1-$probActLoop2 0.2
Publish events?–yes $probPublish 0.5
Publish events?–no 1-$probPublish 0.5
Deployment diagram
Model element (stereotype) NFP (tag) Variable Value
Artifact (PaLogicalResource)
CEP Number of instances (poolSize) $CEP 1

Utilization (Utilization) Out$UCep

1 3

Automated Software Engineering (2022) 29:36 	 Page 19 of 36  36

Fig. 6   Selection of the model, analysis scenario, and type of analysis, and model input variables setting
(Main tab)

Fig. 7   Selection of the performance metrics and configurations (Filters tab)

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 20 of 36

6.2.1 � Creating a new configuration

The practitioner needs to open the Run Configurations window, either by select-
ing the Run as→Run Configurations... option from the contextual menu associ-
ated to the model (Project Explorer view), or by clicking the clock button in
the Eclipse icons topmost bar. The configuration is carried out through the fol-
lowing three main steps:

Step 1	 In the Main tab of the Model configuration (screenshot in Fig. 6), the prac-
titioner selects the UML annotated model, a scenario to analyse, and the type of
analysis (i.e., performance or reliability) and configure the input variable values.
When he/she selects the scenario to analyse, the tool retrieves all the related input
variables annotated in the model, and show them in the Variables field, with their
default values in the Values field. The practitioner can modify/add input variable
values directly in the Values field. In particular, a range of values can be assigned
to each input variable. For example, for the arrRate in Fig. 6, in the Values field it
can be specified the lower, upper and increment step of the range of values. The
syntax is available by positioning the mouse over the i symbol (see the zoomed
part of the screenshot). The tool generates all the values in the range. In the

Fig. 8   Setting of the simulation parameters (Parameters tab)

1 3

Automated Software Engineering (2022) 29:36 	 Page 21 of 36  36

example, a range of values between 0.02 and 0.2 Hz, with an incremental step of
0.02 Hz has been set up. Table 2 (last column) lists the variable values used in
the CEP analysis configuration: observe that all the values are numeric, whereas
the units of measure associated are defined with the MARTE annotations.

Step 2	 In the Filters tab of the Model configuration (screenshot in Fig. 7), the
practitioner selects the metrics to be computed and the experiments to carry out.

	  The Measures panel shows the metrics, that were annotated in the model. In the
example, the CEP scenario response time and throughput (from the activity dia-
gram), and the utilization of the CEP (from the deployment). Moreover, this panel
shows the model elements the metrics belong to, as well as the output variables
used in the annotations. The Sensitivity analysis panel shows the ten possible
experiments or configurations. Each experiment corresponds to a combination of
the input variables set in Step 1. In fact, when a range of values is assigned, the
tool generates all possible variable configurations (i.e., it generates the product
space D =

∏n

i=1
D

i
 , where D

i
 is the value domain of the ith variable).

	  Both, the performance metrics and the experiments configurations, have associ-
ated a checkbox, that can be used to select/deselect each of them.

Step 3	 In the Parameters tab of the Model configuration (screenshot in Fig. 8), the
practitioner can modify the default setting.

	  The General parameter enables to set a maximum execution time for a simula-
tion run. The Simulation parameters are specific of the GreatSPN engine (Dipar-
timento di informatica 2015). In particular, confidence level and accuracy, which
are also relevant for the duration of a simulation run. The zoomed part of the
screenshot in Fig. 8 shows the values set in the example for these parameters, i.e.,
maximum 5 minutes of execution time, 60% level for the confidence interval and
15% of accuracy. The accuracy is interpreted as a percentage of the approxima-
tion error, thus lower the value higher is the accuracy of the estimated metrics.
The changes made in the configuration are saved with the Apply button (see at
the bottom right of Fig. 8).

6.2.2 � Running a configuration

The practitioner can finally launch the simulation experiment with the Run button,
located below the Apply button (Fig. 8). Then, the tool will ask to switch to the
DICE Simulation perspective. In the example, the simulation experiment consists of
the 10 experiments previously commented.

In the DICE Simulation perspective (screenshot in Fig. 9), there are three key
views that allow monitoring the simulation runs:

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 22 of 36

•	 The Debug view (top left), it shows the information about the simulation pro-
cess.

•	 The Console view (top right), it shows the messages that the simulation process
dumps into the standard output and error streams. If an errror occurs during a
simulation run, it will be reported in this view.

•	 The Inspector view (bottom), it shows the starting/ending times and the status of
the simulation runs.

In this perspective, it is also possible to stop the simulation process by pushing
the Stop button (red rectangle icon) located above the Console view. As soon as a
simulation run finishes, it is possible to view the estimated performance metrics by
right clicking on a particular simulation run in the Inspector view (see Fig. 9 applied
on the third simulation run) and choosing Open Simulation Results option: a new
view will pop-up that enables to navigate the tree and see the metric results.

When sensitivity analysis is carried out, then it is possible to see 2D plots show-
ing trends of the metrics against an input variable, in the range of values set during
the first configuration step. To generate a 2D plot, the practitioner needs to right
click on the simulation experiment in the Invocation Registry view (see screenshot
in Fig. 10), then choose the Plot Results... option from the contextual menu and
follow the wizard provided by the tool. Observe that the simulation experiment in
Fig. 10 includes one simulation run that was killed. However, it is still possible to
generate the 2D plot from the results of the rest of simulation runs.

Figure 11 depicts the plot of the utilization of the CEP (cfr. Fig. 4, deployment
diagram) against the mean arrival rate of the input stream (cfr. Fig. 4, activity dia-
gram, GaWorkloadEvent annotation). The system is clearly not stable for mean
arrival rates greater than 0.14 Hz, this is the reason for the possible long simulation
runs that may occur for such variable configurations22. The user can modify the plot
characteristics by editing the Source tab (zoomed part in the figure).

7 � Empirical results

The tool has been applied to two industrial case studies. The first one carried out
for the performance assessment of Posidonia Operations system23. The second one
for the redesign of the NewsAssets suit24, which automates the editorial workflow
and analyzes millions of media items, in real time, from the social network, then
providing services for journalists. Both case studies have been reported by jour-
nal articles Bernardi et al. (2018) and Requeno et al. (2019), respectively. How-
ever, these papers exclusively focus on the product goals, methodology applied and

22  Indeed, the simulation run that failed in the experiment, was killed since it reached the maximum of 5
minutes execution time set in step 3, Fig. 8.
23  https://​www.​prode​velop.​es/​en/​ports/​posid​onia/​posid​onia-​opera​tions-2
24  https://​www.​atc.​gr/#​Innov​ation​Lab

https://www.prodevelop.es/en/ports/posidonia/posidonia-operations-2
https://www.atc.gr/#InnovationLab

1 3

Automated Software Engineering (2022) 29:36 	 Page 23 of 36  36

performance goals addressed, but none of them report, as this one, about the tool
architecture, its usage nor implementations specifically.

The models and results of both cases studies are publicly available. The mod-
els are provided with the installation of the tool, also they can be downloaded from
GitHub19 . The results are in the Zenodo2526 repository. We are aware of the diffi-
culty of reproducing these empirical results, mainly due to the inherent complexity
of the models and experiments and due to the need for experience in the application
domains. Therefore, we do not expect a practitioner to reproduce them, that is the
purpose of Sect. 6. The purpose of this section is only to reveal two cases where the
Simulation tool was successful.

In the following, we illustrate the major functionalities of the Simulation tool by
describing how it contributed to these case studies.

Fig. 9   Running a simulation experiment

Fig. 10   Generating a 2D plot of the performance results

25  http://​doi.​org/​10.​5281/​zenodo.​10104​46
26  http://​doi.​org/​10.​5281/​zenodo.​11342​67

http://doi.org/10.5281/zenodo.1010446
http://doi.org/10.5281/zenodo.1134267

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 24 of 36

7.1 � Posidonia case study

PRODEVELOP27, located in Valencia (Spain), is a medium-sized enterprise
employing more than 80 engineers, with high expertise in advanced geospatial tech-
nologies. PRODEVELOP developed Posidonia Operations, a commercial product
deployed by many port authorities across Europe, Africa and America. Posidonia
processes streamed data from Automatic Identification System (AIS) receivers, a
system that gets vessels position in real time. A complex event processing (CEP)
engine correlates the AIS messages in time and space by means of a set of geospa-
tial rules to identify events produced by the vessels in the port, e.g. port enter and
leaving, berth change, anchoring, tugs or repairs.

In particular, the Simulation tool helped evaluating three non functional require-
ments for the upcoming version of the system, as reported in Bernardi et al. (2018):

NFR1	 — Scalability of the product under different velocity and volume of data to
be processed.

NFR2	 — Bottlenecks in the processing of the CEP rules, as well as in the AIS data
parsing implementation.

NFR3	 — Performance impact of a business rule on the CEP.

System scenarios, in terms of UML sequence and activity diagrams were mod-
eled using the Simulation tool. Moreover, a UML deployment diagram, see Fig. 4,
modeled the distribution of system components onto processing nodes. The UML

Fig. 11   Plot of utilization vs. mean arrival rate

27  https://​www.​prode​velop.​es

https://www.prodevelop.es

1 3

Automated Software Engineering (2022) 29:36 	 Page 25 of 36  36

MARTE profile was used to annotate, in the model, performance input and output
parameters. Input parameters were the system open-workload, the duration of the
system activities and the load of the messages, the probabilities associated to deci-
sion steps and the number of logical resources allocated in physical ones. Regarding
output parameters (i.e., metrics), they were necessary for reasoning about the non
functional requirements. So, for NFR1, we explicitly annotated response times and
throughput in each performance scenario. For NFR2, we annotated the utilization
of the logical resources. For assessing NFR3, all the output parameters (response
time, throughput and utilizations) were used. Specific details about how the perfor-
mance assessment, for each NFR, was carried out with the support of the Simu-
lation tool were reported in Sect. 6 of Bernardi et al. (2018). Notably, for NFR3
we analyzed the impact of the mean execution time of a business rule activation
on the CEP execution cycle scenario and the CEP resource utilization. The perfor-
mance results, computed by the tool through sensitivity analysis, were synthetized
in 3D plots (Fig. 12) that revealed, from the one hand, the exponential grow of the
CEP execution cycle time (plot A) as the mean execution time of the rule activation
increased and, on the other hand, the saturation of the CEP resource (plot B) for
high values of the mean execution time and arrival rate parameters in the considered
range of values (i.e., mean execution time of rule activation greater than 5.4 ms and
arrival rate of 0.014 messages/ms).

7.2 � NewsAsset case study

NewsAsset24 is a commercial product developed by the Athens Technological
Center, ATC (Greece)28. Technically, it is a distributed multi-tier engine that pro-
vides services to journalist in handling large volumes of information from hetero-
geneous sources, like social or sensor networks that feed the Internet continuously.
News agencies realized the importance for journalists to access and handling, in real
time, the vast source of data provided by Twitter, Facebook or Instagram or by sen-
sors capturing traffic information on roads or air pollution levels. Managing such

Fig. 12   CEP response time (left) and utilization (right) vs/ rule mean time (ms) and arrival rate (msg/ms)
(taken from Bernardi et al. (2018))

28  https://​www.​atc.​gr/.

https://www.atc.gr/

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 26 of 36

volume of sensitive information of text, images, reports or videos requires to adopt
technologies, such as Apache Storm29, for collecting, processing and aggregating
big streams of data and converting them in useful services that help journalists to
produce new stories.

Services of NewsAsset need to continuously evolve while they must unceasingly
operate satisfying high quality requirements in terms of reliability and performance.
The work in Requeno et al. (2019) described the modernization of NewsAsset for
introducing Apache Storm, so to address three major challenges:

Ch1	 — Refactoring of the old-fashioned engine related to cloud processing and
Big Data technologies.

Ch2	 — Reconfiguration of the obsolete architecture with respect to quality-driven
metrics.

Ch3	 — Managing the complexity real-time responsiveness for temporal peaks of
high computational demand.

The refactoring (Ch1) was focused on changing the batch processing core, in the
News Orchestrator application, with stream processing capabilities. Then, optimiz-
ing processing time and maximizing the crawling capacity for analyzing as much
social networks content as possible. In particular, the topic-detector module of the
News Orchestrator was refactored using Apache Storm to increase data intensive
computation for extracting abnormal increase of frequent features (e.g., hashtags),
i.e., for detecting trending topics. The topic-detector was modeled using the Sim-
ulation tool, as an Apache Storm application (see functionality AF1 of the tool).
Fig. 13 depicts the workflow with the DICE profile annotations30. The profile anno-
tations introduced the system performance parameters, as well as the metrics to be
computed (MF1). Among the former, the tool allowed to model the parallelism and
expected mean execution times of the computational activities, i.e., spouts and bolts,
grouping policies, weights and probabilities of the communication streams and also
the characteristics of the computational resources in a deployment diagram. The
UML activity diagram, the deployment diagram and the profile annotations ena-
bled the Simulation tool to compute the quality-driven metrics (MF2 and MF3) that
assessed the reconfiguration of the architecture (Ch2).

The ATC engineers decided to evaluate the challenges addressed by carrying out
two studies with the Simulation tool:

S1	 — Scalability of the current topology.
S2	 — Performance of alternative architectures.

30  The image only depicts the profile stereotypes. However, the tool allows to specify for each stereo-
typed element all the tagged values that detail its properties. For example, for a bolt or a spout, its paral-
lelism, host demand or probability to execute can be specified.

29  https://​storm.​apache.​org.

https://storm.apache.org

1 3

Automated Software Engineering (2022) 29:36 	 Page 27 of 36  36

Fig. 13   UML activity diagram
with profile annotations (taken
from Requeno et al. (2019))

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 28 of 36

For S1 the software architects were interested in figuring out whether the system was
linearly scalable. The Simulation tool was used to conduct a bottleneck analysis, in
order to identify the type of resources that needed to be increased. Starting from the
UML diagrams that modeled the refactored architecture, the utilizations of different
software and hardware resources were computed, see Fig. 14. It was confirmed that
the increase in the number of computation cores will not improve the system perfor-
mance. The engineers were assessed to redesign certain algorithms in the workflow
implying the parallelism of some bolts that were identified as bottlenecks.

For S2 the software quality engineers were interested in measuring the impact of dif-
ferent architecture alternatives based on performance and cost. The engineers used the
Simulation tool for modeling Apache Storm performance features (AF1) on different
architectures for the News Orchestrator. In particular, multiple combinations of system
workloads were considered, including high peak demands (Ch3), bolts parallelism and
hardware configurations. Then, they conduct what-if analyses (AF2) of such architectures
by computing resource utilizations and system throughputs. Figure 15 depicts the utiliza-
tions and throughputs obtained for a critical component. Finally, the optimal configuration
was assessed, even detailing the specific configuration for each bolt in the system.

Fig. 14   Utilization (%) of bolts on the left, and utilization (%) of cores on the right (taken from Requeno
et al. (2019))

Fig. 15   Utilization (%) of SolrUpdater on the left, and throughput (tuples/ms) of SolrUpdater on the
right (taken from Requeno et al. (2019))

1 3

Automated Software Engineering (2022) 29:36 	 Page 29 of 36  36

8 � Discussion

The paper has so far presented the most important aspects of the Simulation tool.
However, we consider to discuss some final concerns, that will allow to better under-
stand about the suitability, scalability and limitations of the tool.

8.1 � On the tool correctness

The Simulation tool was proposed in the H2020 contract of the DICE project as a
functional demonstrator, i.e., Technology readiness level 5 (TRL 531). Therefore, we
developed an extensive plan of software tests, guided by examples, with the aim of
validating the tool functionalities described in the contract. The idea was that the
tool continually passes through validation and verification stages. Regarding the
verification, the tool repository includes groups of tests, both unit tests and integra-
tion tests between modules. For instance, an integration test involves the GreatSPN
engine and all the components in the Model-based simulation layer in Fig. 2. These
tests can be found in the GitHub project32 of the tool. Regarding the validation, we
claim it since the tool has been extensively tested in real projects, then ensuring that
it does the “right thing". Last paragraph of this subsection elaborates this aspect.

We also consider important to point out that the correctness of the tool mainly
resides on the implementation of the components that carry out the model transforma-
tions. Notably, on the correctness of the theoretical proposals to transform software
designs into formal models. At this regard, we identified two components, the M2M
transformation and Solution builder, see Fig. 2. Concretely, the first one implements
transformations from UML software models to Petri net models, following the theory
developed in Woodside et al. (2014). All the design decisions and details on the imple-
mentations of these model-to-model transformations are available in The DICE Con-
sortium (2016). The second component is to interpret the Petri nets results in the UML
domain, backward transformation, Sect. 4.2 already explained how to compute the per-
formance and reliability metrics. Although the development of the above components
required deep theoretical knowledge on the specific topic of the model-transformation,
we have made extensive use of traceability links between the assets exploited by both
components to ensure consistency and to minimize the chances of failure.

Another important aspect that impacts on the correctness of the Simulation tool
refers to the correctness of the third-party dependencies. The most prominent one
is the GreatSPN tool. Section 4.2 presented a broad discussion on the correctness
of GreatSPN. Despite the extensive tests passed by GreatSPN in the last decades, if
new bugs in the GreatSPN simulation engine were discovered, they would possibly
be inherited by the Simulation tool.

31  TRL 5 denotes technologies validated in relevant environments (industrially relevant environments in
the case of key enabling technologies). See Annex G of the HORIZON 2020 – Work Programme 2014–
2015: https://​ec.​europa.​eu/​resea​rch/​parti​cipan​ts/​data/​ref/​h2020/​wp/​2014_​2015/​annex​es/​h2020-​wp1415-​
annex-g-​trl_​en.​pdf
32  https://​github.​com/​dice-​proje​ct/​DICE-​Simul​ation/​tree/​master/​tests.

https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://github.com/dice-project/DICE-Simulation/tree/master/tests

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 30 of 36

The final aspect that deserves to be discussed regarding the correctness of the Simula-
tion tool refers to its use in real projects. The tool has been applied in two industrial case
studies. The results of both projects confirm that the simulations of the tool provide accu-
rate results, that are very close to the ones obtained by experimentation, as reported in
Sect. 7. Despite all these efforts, we can never claim to be completely bug free.

8.2 � On the tool scalability

Large-scale software, such as micro-services or distributed systems in general, are today
mainstream, as well as one of the main concerns in the field of software development.
The Simulation tool was developed in the context of the DICE project, that aimed to
address data intensive applications, an important kind of distributed systems. In fact, the
case studies reported in this paper, Posidonia and NewsAsset, are both examples of very
large distributed systems, where the Simulation tool has been successfully applied. Nev-
ertheless, we consider important to discuss about the ability of the Simulation tool to han-
dle models, that design large systems. since it will identify the components involved.

One of the main aspects that affects the execution time of the Simulation tool is the sim-
ulation of the GSPN models. The GreatSPN engine and Simulator engine handler com-
ponent are those active during simulation time. The simulation engine will keep running
until the results it produces reach a previously configured confidence interval and error.
But, depending on certain parameters of the model, specially the probabilities associated to
decision nodes, the simulation may last for long time. For example, if the scenario is repre-
sented by a UML activity diagram and it contains operations rarely executed, then the sim-
ulation will require longer execution times than if no rare operations are in the model. This
will happen irrespective of the topology of the scenario, i.e., even though the number of
operations, decision nodes and fork/joins are the same. By rare operations we mean those
reached only after passing a number of decision nodes with very low probability. Certainly,
this is a common issue in simulation-based system evaluations. To mitigate this situation
and to avoid that the Simulation tool freezes for long time, we implemented two solutions.
First, the simulation can be manually aborted using a button in the GUI (FF2). Second, the
tool allows to configure a maximum execution time for the simulation run.

Another issue could be in the generation of the formal models. However, the size
of the obtained GSPN model, that represents the software system, is linear with the
size of the corresponding UML model. Therefore, the M2M transformation or M2T
transformation components are not affected by combinatory or state space explosion
problems, which avoids any scalability issue when generating the models. In turn, the
Solution builder component may need to traverse the GSPN simulation output files in
order to extract the appropriate values to construct the performance or reliability result.
Since there is only one simulation output for each GSPN element, i.e., for each place
and transition, this component does not show scalability issues either.

8.3 � Limitations of the tool

The tool has limitations from both the modeling and analysis point of views. On the mod-
eling side, the system under analysis has to be represented by a UML scenario, consisting

1 3

Automated Software Engineering (2022) 29:36 	 Page 31 of 36  36

of exactly one behavioral diagram, either activity or sequence, and one deployment dia-
gram. The engineer can create different behavioral diagrams, but the analysis can be
performed considering each behavioral diagram separately. This is because the forward
transformations work on UML scenario basis. Another limitation is inherent to the front-
end tool, i.e., the Papyrus UML modeler. Definitely, it provides a modest support for the
modeling with sequence diagrams through the GUI, which limits its usability to the case
of simple scenarios. In the case of complex scenarios, although it is possible to create
combined fragments, the modeling task becomes cumbersome due to problems of syn-
chronization of the graphical elements with the model ones.

On the analysis side, the tool can compute a limited set of performance and reli-
ability metrics. This limitation is due to both the backward transformations and the
GreatSPN simulation engine. The backward transformations extract only a subset of
the results produced by the back-end tool and map them to the metrics at UML scenario
level, whereas the latter computes steady state estimations, basically, mean values.

9 � Conclusion

Systems need to meet functionalities, but quality attributes differentiate usable from
non-usable software. Indeed, performance and reliability are among the most impor-
tant quality attributes. The Simulation tool, presented in this paper, allows to ana-
lyze software models, according to the SPE principles, for assessing these quality
attributes. As a result, the tool is an asset for software engineers, since it allows them
to take informed decisions for sizing the software infrastructure to meet response
times, throughputs or to minimize probabilities of failure.

In fact, applying SPE principles is a very good choice for addressing quality
problems before the software is deployed. At this regard, our simulation tool is just a
small step ahead to contribute to the automation of the SPE methodologies.

The paper has identified and analyzed, in Sect. 8, the limitations of the tool.
Most of them are already addressed by the tool, others will be taken into account in
upcoming versions, but some of them depend on third-party tools, which is beyond
our possibilities. Although the tool addresses main performance and reliability met-
rics, others could be integrated, probably new solvers would be needed to implement
or existing ones could be connected.

Appendix

The manuscript has not been submitted to other journal for consideration. The sub-
mitted work is original and has not been published elsewhere. Regarding results in
Sect. 7, it is clearly identified the sources of the results.

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 32 of 36

Ta
bl

e 
3  

C
od

e
m

et
ad

at
a

N
r.

C
od

e
m

et
ad

at
a

de
sc

rip
tio

n

C
1

C
ur

re
nt

 c
od

e
ve

rs
io

n
v1

.1
.0

C
2

Pe
rm

an
en

t l
in

k
to

 c
od

e/
re

po
si

to
ry

ht
tp

s:
//​d

oi
.​o

rg
/​1

0.
​52

81
/​z

en
od

o.
​46

94
0​7

8
C

3
Le

ga
l C

od
e

Li
ce

ns
e

Ec
lip

se
 P

ub
lic

 L
ic

en
se

 -
v

1.
0

C
4

C
od

e
ve

rs
io

ni
ng

 sy
ste

m
 u

se
d

gi
t

C
5

So
ftw

ar
e

co
de

 la
ng

ua
ge

s,
to

ol
s,

an
d

se
rv

ic
es

 u
se

d
Ja

va
C

6
C

om
pi

la
tio

n
re

qu
ire

m
en

ts
, o

pe
ra

tin
g

en
vi

ro
nm

en
ts

 &
 d

ep
en

de
nc

ie
s

M
av

en
 3

.6
.3

, J
av

a
11

, E
cl

ip
se

 P
la

tfo
rm

 4
.1

8
(2

02
0-

12
) (

on
ly

 re
qu

ire
d

fo
r

de
bu

gg
in

g)
, a

nd
 G

re
at

SP
N

 3
.0

 (o
nl

y
re

qu
ire

d
fo

r e
xe

cu
tin

g
in

te
gr

at
io

n
te

sts
)

C
7

D
ev

el
op

er
 d

oc
um

en
ta

tio
n/

m
an

ua
l

ht
tp

s:
//​g

ith
ub

.​c
om

/​d
ic

e-
​pr

oj
e​c

t/​D
IC

E-
​Si

m
ul

​at
io

n/
​w

ik
i/​D

ev
el

​op
er

-​R
es

ou
​rc

es
C

8
Su

pp
or

t e
m

ai
l f

or
 q

ue
sti

on
s

jm
er

se
@

un
iz

ar
.e

s

Co
de

 a
va

ila
bi

lit
y

Ta
bl

e
3.

https://doi.org/10.5281/zenodo.4694078
https://github.com/dice-project/DICE-Simulation/wiki/Developer-Resources

1 3

Automated Software Engineering (2022) 29:36 	 Page 33 of 36  36

Table 4   Software metadata

Nr. (Executable) Software metadata description

S1 Current software version 1.1.0
S2 Permanent link to executables of this version https://​github.​com/​dice-​proje​ct/​DICE-​Simul​ation/​

wiki/​Insta​llati​on
S3 Legal Software License Eclipse Public License - v 1.0
S4 Computing platform / Operating System Eclipse Platform (cross-platform)
S5 Installation requirements & dependencies Java 11, Eclipse Platform 4.18 (2020-12), and

GreatSPN 3.0
S6 Link to user manual https://​github.​com/​dice-​proje​ct/​DICE-​Simul​ation/​

wiki/
S7 Support email for questions jmerse@unizar.es

Executable software version

Table 4.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
The Simulation tool was developed under DICE project, EU H2020 Grant agreement ID: 644869. J.
Merseguer and S. Bernardi have been funded by project PID2020-113969RB-I00 of the Spanish Ministry
of Science and Innovation. A. Gomez by FAME-RTI2018-093608-B-C31). J. Requeno by FORTE-CM
ref. S2018/TCS-4314.

Declarations 

Conflict of interest  The research leading to these results received the funding declared in Sect. A.1. The
authors have no other relevant financial or non-financial interests to disclose. The authors have no conflict
of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized
Stochastic Petri Nets. Wiley Series in Parallel Computing. John Wiley and Sons (1995)

Andrade, E.C., Alves, M., Matos, R., Silva, B., Maciel, P.: Openmads: An open source tool for modeling
and analysis of distributed systems. In International Conference on Computer Safety, Reliability,
and Security, pages 277–284. Springer, (2013)

https://github.com/dice-project/DICE-Simulation/wiki/Installation
https://github.com/dice-project/DICE-Simulation/wiki/Installation
https://github.com/dice-project/DICE-Simulation/wiki/
https://github.com/dice-project/DICE-Simulation/wiki/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 34 of 36

Balbo, G., Silva, M. (eds.): Performance Models for Discrete Event Systems with Synchronizations: For-
malisms and Analysis Techniques. Editorial KRONOS, Zaragoza, Spain (1998)

Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-driven performance
prediction. Journal of Systems and Software 82(1), 3–22 (2009). https://​doi.​org/​10.​1016/j.​jss.​2008.​
03.​066. (Special Issue: Software Performance - Modeling and Analysis.)

Bernardi, S., Dominguez, J.L., Gomez, A., Joubert, C., Merseguer, José, Perez-Palacin, D., Requeno,
J.I., Romeu, A.: A systematic approach for performance assessment using process mining. Empiri-
cal Software Engineering, 23(6):3394–3441, 2018. https://​doi.​org/​10.​1007/​s10664-​018-​9606-9

Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile within MARTE. Softw. Syst. Model.
10(3), 313–336 (2011). https://​doi.​org/​10.​1007/​s10270-​009-​0128-1

Bernardi, S., Merseguer, J., Petriu, D.C.: Model-Driven Dependability Assessment of Software Systems.
Springer Publishing Company, Berlin (2013)

Bézivin, J., Devedzic, V., Djuric, D., Favreau, J.-M., Gasevic, D., Jouault, F.: An M3-Neutral Infrastruc-
ture for Bridging Model Engineering and Ontology Engineering. In D. Konstantas, J.-P. Bourrières,
M. Léonard, and N. Boudjlida, editors, Interoperability of Enterprise Software and Applications,
pages 159–171, London, (2006). Springer London

Bézivin, J., Kurtev, I.: Model-based Technology Integration with the Technical Space Concept, (2006).
Metainformatics Symposium. URL: https://​hal.​archi​ves-​ouver​tes.​fr/​hal-​00483​587

Billington, J., Christensen, S., Van Hee, K., Kindler, E., Kummer, O., Petrucci, L., Post, R., Stehno,
C., Weber, M.: The petri net markup language: Concepts, technology, and tools. In Applications
and Theory of Petri Nets 2003. ICATPN 2003. Lecture Notes in Computer Science, vol 2679,
ICATPN’03, page 483-505, Berlin, Heidelberg, (2003). Springer-Verlag

Boronat, A., Carsí, J., Ramos, I.: Algebraic Specification of a Model Transformation Engine. In Luciano
Baresi and Reiko Heckel, editors, Fundamental Approaches to Software Engineering, pages 262–
277, Berlin, Heidelberg, (2006). Springer Berlin Heidelberg

Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice: Second Edition.
Synthesis Lectures on Software Engineering. Morgan & Claypool, (2017). https://​doi.​org/​10.​2200/​
S0075​1ED2V​01Y20​1701S​WE004

Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL Class Diagrams using Constraint Program-
ming. In 2008 IEEE International Conference on Software Testing Verification and Validation
Workshop, pages 73–80, (2008). https://​doi.​org/​10.​1109/​ICSTW.​2008.​54

Casale, G., Ardagna, D., Artac, M., Barbier, F., Di Nitto, E., Henry, A., Iuhasz, G., Joubert, C., Merseg-
uer, J., Munteanu, V. I., Perez, J. F., Petcu, D., Rossi, M., Sheridan, C., Spais, I., Vladuic, D.: DICE:
Quality-driven development of data-intensive cloud applications. In 2015 IEEE/ACM 7th Interna-
tional Workshop on Modeling in Software Engineering, pages 78–83, (2015). https://​doi.​org/​10.​
1109/​MiSE.​2015.​21

Cortellessa, V., Di Marco, A., Inverardi, P.: Model-Based Software Performance Analysis. Springer
(2011). https://​doi.​org/​10.​1007/​978-3-​642-​13621-4

Curino, C., Godwal, N., Kroth, B., Kuryata, S., Lapinski, G., Liu, S., Oks, S., Poppe, O., Smiechowski,
A., Thayer, E., Weimer, M., Zhu, Y.: MLOS: An infrastructure for automated software performance
engineering. In Proceedings of the Fourth International Workshop on Data Management for End-to-
End Machine Learning, DEEM’20, pages 1–5, New York, NY, USA, (2020). ACM. https://​doi.​org/​
10.​1145/​33995​79.​33999​27

Dipartimento di informatica, Università di Torino. GRaphical Editor and Analyzer for Timed and Sto-
chastic Petri Nets, Dec., (2015). URL: www.​di.​unito.​it/​~great​spn/​index.​html

Galvao, I., Goknil, A.: Survey of traceability approaches in model-driven engineering. In 11th IEEE
International Enterprise Distributed Object Computing Conference (EDOC 2007), pages 313–313,
2007. https://​doi.​org/​10.​1109/​EDOC.​2007.​42

Gansner, E.R., Eleftherios, K., Stephen, N.: Drawing graphs with dot, (2015). URL: https://​www.​graph​
viz.​org/​pdf/​dotgu​ide.​pdf

Gómez, A., Smith, C.U., Spellmann, A., Cabot, J.: Enabling Performance modeling for the masses: Initial
experiences. In F. Khendek and R. Gotzhein, editors, System Analysis and Modeling. Languages,
Methods, and Tools for Systems Engineering, pages 105–126, Cham, (2018). Springer International
Publishing

Guerra, E., de Lara, J., Orejas, F.: Pattern-based model-to-model transformation: Handling attribute con-
ditions. In R.F. Paige, editor, Theory and Practice of Model Transformations, pages 83–99, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg

https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1007/s10664-018-9606-9
https://doi.org/10.1007/s10270-009-0128-1
https://hal.archives-ouvertes.fr/hal-00483587
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.1109/ICSTW.2008.54
https://doi.org/10.1109/MiSE.2015.21
https://doi.org/10.1109/MiSE.2015.21
https://doi.org/10.1007/978-3-642-13621-4
https://doi.org/10.1145/3399579.3399927
https://doi.org/10.1145/3399579.3399927
http://www.di.unito.it/%7egreatspn/index.html
https://doi.org/10.1109/EDOC.2007.42
https://www.graphviz.org/pdf/dotguide.pdf
https://www.graphviz.org/pdf/dotguide.pdf

1 3

Automated Software Engineering (2022) 29:36 	 Page 35 of 36  36

Dependability Management (2003). Part 3-1: Application Guide: Analysis Techniques for dependability:
Guide on methodology

Ivanov, I., Bézivin, J., Aksit, M.: Technological spaces: An initial appraisal. In 4th International Sympo-
sium on Distributed Objects and Applications, DOA 2002 - University of California, Irvine, United
States, pages 1–6, October (2002). URL: https://​resea​rch.​utwen​te.​nl/​en/​publi​catio​ns/​techn​ologi​cal-​
spaces-​an-​initi​al-​appra​isal

Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling. Wiley Professional Computing, (1991)

Kroß, J., Krcmar, H.: PerTract: model extraction and specification of big data systems for performance
prediction by the example of apache spark and hadoop. Big Data Cogn. Comput. 3(3), 47 (2019)

Li, C., Altamimi, T., Zargari, M. H., Casale, G., Petriu, D.: Tulsa: a tool for transforming UML to layered
queueing networks for performance analysis of data intensive applications. In International Confer-
ence on Quantitative Evaluation of Systems, pages 295–299. Springer, (2017)

McGraw, G.: Software Security: Building Security In. Addison Wesley Professional, (2006)
Merseguer, J.: Binder, Walter, Murphy, John: Guest editorial: Automation in software performance engi-

neering. Autom. Softw. Eng. 24(1), 71–72 (2017). https://​doi.​org/​10.​1007/​s10515-​016-​0201-2
Neilson, J.E., Woodside, C.M., Petriu, D.C., Majumdar, S.: Software bottlenecking in client-server sys-

tems and rendezvous networks. IEEE Trans. Software Eng. 21(9), 776–782 (1995). https://​doi.​org/​
10.​1109/​32.​464543

Object Management Group (OMG). XML Metadata Interchange, Version 2.5.1. OMG Document Num-
ber formal/2015-06-07 (http://​www.​omg.​org/​spec/​XMI/2.​5.1), (2006)

OMG. Modeling and Analysis of Real-time Embedded Systems (MARTE), Ver. 1.1. (2013) URL: http://​
www.​omg.​org/​spec/​MARTE/1.​1/

OMG. Unified Modeling Language (UML), Ver. 2.5. (2007) URL: http://​www.​omg.​org/​spec/​UML/2.​5/
OMG. MOF Model to Text Transformation Language (MOFM2T), 1.0, Jan. (2008). URL: http://​www.​

omg.​org/​spec/​MOFM2T/​1.0/
OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, Version 1.1, January

(2011). URL: http://​www.​omg.​org/​spec/​QVT/1.​1/
OMG. Meta Object Facility (MOF) Core, Version 2.5.1, November (2016). URL: http://​www.​omg.​org/​

spec/​MOF/2.​5.1/
Ozkaya, M.: Are the UML modelling tools powerful enough for practitioners? A literature review. IET

Softw. 13(5), 338–354 (2019)
Perez-Palacin, D., Merseguer, J., Requeno, J., Guerriero, M., Di Nitto, E., Tamburri, D. A.: A UML pro-

file for the design, quality assessment and deployment of data-intensive applications. Software and
Systems Modeling, 18(6):3577–3614, (2019). https://​doi.​org/​10.​1007/​s10270-​019-​00730-3

Requeno, J.I., Merseguer, J., Bernardi, S., Perez-Palacin, D., Giotis, G., Papanikolaou, V.: Quantitative
analysis of apache storm applications: The newsasset case study. Inf. Syst. Front. 21(1), 67–85
(2019). https://​doi.​org/​10.​1007/​s10796-​018-​9851-x

Reussner, R. H., Becker, S., Happe, J., Heinrich, R., Koziolek, A., Koziolek, H., Kramer, M., Krogmann,
K.: The Palladio Approach. The MIT Press, Modeling and Simulating Software Architectures
(2016)

Rodríguez, R.J., Bernardi, S., Zimmermann, A.: An evaluation framework for comparative analysis of
generalized stochastic petri net simulation techniques. IEEE Trans. Syst. Man Cybern. Syst. 50(8),
2834–2844 (2020). https://​doi.​org/​10.​1109/​TSMC.​2018.​28376​43

Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method. Wiley, (2008)
Smith, C.U., Williams, L.G.: Performance solutions: A practical guide to creating responsive. Addison-

Wesley, Scalable Software (2002)
Smith, C.U., Lloyd, G.W.: Software performance engineering. In L. Lavagno, G. Martin, and B.V. Selic,

editors, UML for Real: Design of Embedded Real-Time Systems, pages 343–365. Springer, (2003)
Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework 2.0. Addi-

son-Wesley Professional, 2nd edition, (2009)
The DICE Consortium. State of the art analysis. deliverable d1.1. Technical report, European Union’s

Horizon 2020 research and innovation programme, (2015). URL: http://​wp.​doc.​ic.​ac.​uk/​dice-​h2020/​
wp-​conte​nt/​uploa​ds/​sites/​75/​2015/​08/​D1.1_​State-​of-​the-​art-​analy​sis1.​pdf

The DICE Consortium. Transformations to analysis models. Deliverable D3.1, (2016). url: https://​ec.​
europa.​eu/​resea​rch/​parti​cipan​ts/​docum​ents/​downl​oadPu​blic?​docum​entIds=​08016​6e5ab​ac3ce​2&​
appId=​PPGMS

https://research.utwente.nl/en/publications/technological-spaces-an-initial-appraisal
https://research.utwente.nl/en/publications/technological-spaces-an-initial-appraisal
https://doi.org/10.1007/s10515-016-0201-2
https://doi.org/10.1109/32.464543
https://doi.org/10.1109/32.464543
http://www.omg.org/spec/XMI/2.5.1
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/MOF/2.5.1/
http://www.omg.org/spec/MOF/2.5.1/
https://doi.org/10.1007/s10270-019-00730-3
https://doi.org/10.1007/s10796-018-9851-x
https://doi.org/10.1109/TSMC.2018.2837643
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.1_State-of-the-art-analysis1.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.1_State-of-the-art-analysis1.pdf
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5abac3ce2&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5abac3ce2&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5abac3ce2&appId=PPGMS

	 Automated Software Engineering (2022) 29:36

1 3

 36   Page 36 of 36

The DICE Consortium. DICE simulation tools - Final version. Deliverable D3.4, (2017). url: https://​
ec.​europa.​eu/​resea​rch/​parti​cipan​ts/​docum​ents/​downl​oadPu​blic?​docum​entIds=​08016​6e5b4​19ef4​7&​
appId=​PPGMS

The Eclipse Foundation. Designing and using UML profiles with Papyrus, Juny, (2012). URL: https://​
eclip​se.​org/​papyr​us/​users​Tutor​ials/​resou​rces/​Papyr​usUse​rGuid​eSeri​es_​About​UMLPr​ofile_​v1.0.​0_​
d2012​0606.​pdf

The Eclipse Foundation. Eclipse Platform, March, (2021). URL: https://​proje​cts.​eclip​se.​org/​proje​cts/​eclip​
se.​platf​orm

The Eclipse Foundation. A slide-ware tutorial on Papyrus usage for starters, Oct, (2010). URL: https://​
eclip​se.​org/​papyr​us/​users​Tutor​ials/​resou​rces/​Tutor​ialOn​Papyr​usUSE_​d2010​1001.​pdf

The Eclipse Foundation & Obeo. Acceleo, Dec., (2015). URL: https://​eclip​se.​org/​accel​eo/
The Object Management Group (OMG). Model-Driven Architecture Specification and Standardisation,

(2018). url: http://​www.​omg.​org/​mda/
Wang, W., Pérez, J. F., Casale, G.: Filling the gap: A tool to automate parameter estimation for software

performance models. In Proceedings of the 1st International Workshop on Quality-Aware DevOps,
QUDOS 2015, page 31-32, New York, NY, USA, (2015). ACM. https://​doi.​org/​10.​1145/​28043​71.​
28043​79

Woodside, M., Petriu, D., Merseguer, J., Petriu, D., Alhaj, M.: Transformation challenges: from software
models to performance models. Software and Systems Modeling, 13:1529–1552, 10 2014. https://​
doi.​org/​10.​1007/​s10270-​013-​0385-x

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b419ef47&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b419ef47&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b419ef47&appId=PPGMS
https://eclipse.org/papyrus/usersTutorials/resources/PapyrusUserGuideSeries_AboutUMLProfile_v1.0.0_d20120606.pdf
https://eclipse.org/papyrus/usersTutorials/resources/PapyrusUserGuideSeries_AboutUMLProfile_v1.0.0_d20120606.pdf
https://eclipse.org/papyrus/usersTutorials/resources/PapyrusUserGuideSeries_AboutUMLProfile_v1.0.0_d20120606.pdf
https://projects.eclipse.org/projects/eclipse.platform
https://projects.eclipse.org/projects/eclipse.platform
https://eclipse.org/papyrus/usersTutorials/resources/TutorialOnPapyrusUSE_d20101001.pdf
https://eclipse.org/papyrus/usersTutorials/resources/TutorialOnPapyrusUSE_d20101001.pdf
https://eclipse.org/acceleo/
http://www.omg.org/mda/
https://doi.org/10.1145/2804371.2804379
https://doi.org/10.1145/2804371.2804379
https://doi.org/10.1007/s10270-013-0385-x
https://doi.org/10.1007/s10270-013-0385-x

	DICE simulation: a tool for software performance assessment at the design stage
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	4 Estimation of performance and reliability metrics
	4.1 Metrics
	4.2 Analysis techniques

	5 Software framework
	5.1 Software functionalities
	5.2 Software architecture
	5.2.1 GUI layer
	5.2.2 Model-based simulation layer

	5.3 Execution workflow

	6 Illustrative example
	6.1 UML modeling and MARTE profiling with the tool
	6.2 Performance analysis with the tool
	6.2.1 Creating a new configuration
	6.2.2 Running a configuration

	7 Empirical results
	7.1 Posidonia case study
	7.2 NewsAsset case study

	8 Discussion
	8.1 On the tool correctness
	8.2 On the tool scalability
	8.3 Limitations of the tool

	9 Conclusion
	References

