
Security Modelling and Formal Veri�cation of Survivability Properties:

Application to Cyber-Physical Systems

S. Bernardia, U. Gentileb, S. Marronec,∗, J. Merseguera, R. Nardoned

aUniversidad de Zaragoza, Dpto. de Informática e Ingeniería de Sistemas, Zaragoza, Spain
bDigital Food Safety Department, Nestlè Research, Lausanne, Switzerland

cUniversità della Campania �Luigi Vanvitelli�, Dip. di Matematica e Fisica, Caserta, Italy
dUniversità Mediterranea di Reggio Calabria, DIIES, Reggio Calabria, Italy

Abstract

The modelling and veri�cation of systems security is an open research topic whose complexity and importance
needs, in our view, the use of formal and non-formal methods. This paper addresses the modelling of security
using misuse cases and the automatic veri�cation of survivability properties using model checking. The
survivability of a system characterises its capacity to ful�l its mission (promptly) in the presence of attacks,
failures, or accidents, as de�ned by Ellison. The original contributions of this paper are a methodology and its
tool support, through a framework called surreal. The methodology starts from a misuse case speci�cation
enriched with UML pro�le annotations and obtains, as a by-product, a survivability assessment model
(SAM). Using prede�ned queries the survivability properties are proved in the SAM. A total of fourteen
properties have been formulated and also implemented in surreal, which encompasses tools to model the
security speci�cation, to create the SAM and to prove the properties. Finally, the paper validates the
methodology and the framework using a cyber-physical system (CPS) case study, in the automotive �eld.

Keywords: Security speci�cation, formal veri�cation, survivability properties, UML, Cyber-physical
systems (CPS)

1. Introduction

Some years ago, Cheng et al. [15] identi�ed that becoming computing systems ever more pervasive,
mobile and targets of security attacks, new challenges to security requirements engineering would be posed.
Therefore, they advised that works on notations and methodologies for modelling and verifying high-level
security policies would become strategic. More recently, Bures et al. [13] also identi�ed as open yet the
research topic on the need for verifying requirement speci�cations of cyber-physical systems (CPS) and
declared its inherent complexity.

CPS are networked embedded systems used to monitor and control the physical world [72], for exam-
ple, electrical power grids, oil and natural gas distribution, transportation systems or health-care devices.
Undoubtedly, CPS security is of primary importance in the current networked world and understanding
their vulnerabilities, attacks and protection mechanisms is a must for developing the underlying control
software [34].

Among the list of challenges, identi�ed by Cheng et al. [15] and Bures et al. [13], on requirements
engineering for securing CPS, this work helps in the modelling of security requirements, early in the software
life-cycle, and in the formal and automatic veri�cation of system properties. Regarding the kind of properties,
we mostly focus on system survivability ones. The survivability of a system can be de�ned as its capacity

∗Contact author
Email address: stefano.marrone@unicampania.it (S. Marrone)

Preprint submitted to Journal of Systems and Software July 6, 2020

�to ful�l its mission on time, in the presence of attacks, failures, or accidents� [20], then preventing perpetual
service degradations, outages or integrity leaks, for example.

Survivability, as de�ned in the original papers by Ellison et al. [20] and Knight et al. [38] embraces
security and safety requirements, since it encompasses under the term threats, both attacks (usually named
threats, in the security community) and accidental faults (often named hazards, in the safety community),
and corresponding protection mechanisms (i.e., survivability strategies). This work considers misuse cases,
introduced by Alexander [3] as follows: �Misuse cases � a form of use cases � help document negatives
scenarios. Use and misuse cases, employed together, are valuable in threat and hazard analysis, system
design, eliciting requirements, and generating test cases.� Consequently, misuse cases are used for eliciting
and specifying both security and safety requirements. In the context of CPS, we consider critical both types
of requirements, and survivability (also referred to as resilience, as stated more recently in Goertzel et al. [31])
provides a framework for their modelling and analysis. For example, consider in the critical infrastructure
domain, the well-known Stuxnet attack [40] � the �rst advanced persistent (APT) threat � to a CPS, that
is the SCADA and PLC system of the nuclear plants of Iran in 2010, that provoked substantial damage to
nuclear plants. The consequences of such damage could have been even more severe, also a�ecting people
and the environment. This paper considers a smart car case study, that is a safety-critical CPS (a system
failure may have catastrophic consequences on the user(s) and the environment), where safety requirements
(expressed by ASIL � safety-integrity levels) can be a�ected by attacks.

The original contributions of this paper are a methodology and its tool support, through a framework
called surreal. The methodology comprises di�erent phases, signi�cantly modelling and veri�cation, and
artefacts. For modelling, misuse cases are enriched with a UML1 pro�le, then de�ning a security speci�ca-
tion, where sequences of attacks and protections are inferred. By protections, we mean countermeasures,
introduced to allow the system to recover from an attack. The UML pro�le [67] extension mechanism enables
to tailor the language to di�erent domains, in our case, the survivability domain, by introducing concepts
such as survivability strategies or service modes. For veri�cation, state-of-the-art model-checking techniques
are used to prove prede�ned survivability properties on the security speci�cation. The surreal framework
o�ers support for all the methodology phases proposed in this paper.

The methodology and the framework, described in this work, contribute to the requirements engineering
process by supporting the analysts in better eliciting and assessing security requirements, especially those
related to system survivability. Concretely, the work contributes to:

• model threats to essential services, and the countermeasures needed to recover the system from de-
graded states;

• and to verify survivability properties by checking the modelled speci�cation.

More speci�cally, this paper extends our previous work [8, 27] in many di�erent aspects. First, it in-
troduces model-checking for producing an assessment model automatically. Second, it proposes fourteen
predetermined queries, ready to be used by the analyst, for verifying system survivability properties. Third,
model checking is also used for carrying out such veri�cation automatically. Fourth, we extend the UML
pro�les presented in [8, 27] to accommodate these new features, then improving the pro�les modelling capa-
bilities. Fifth, the current work provides tools that automate, for the analyst, the steps of the methodology.
Last, this paper validates the approach with a case study in the CPS domain.

The structure of the paper is as follows. Section 2 recalls the background supporting this paper as well as
some related works. Section 3 presents, at a glance, the methodology and tools that are part of the surreal
framework, for the reader to catch the overall picture. Sections 4 and 5 describe the internals of each phase
of the methodology. Section 6 elaborates a case study in the automotive �eld, which demonstrates the
applicability of the methodology in the CPS context and the usefulness of the tool framework. Finally,
Section 7 summarises the assumptions and conducts a threat to validity analysis, and Section 8 concludes
the paper.

1Uni�ed Modeling Language [67]

2

2. Background and related works

This section is devoted to review the background on survivability modelling and model-checking tech-
niques (Sub-section 2.1) and the related works (Sub-section 2.2).

2.1. Background on survivability modelling and model-checking techniques

On survivability modelling. In previous works [8, 27], we proposed and implemented a UML pro�le2 for spec-
ifying system survivability requirements. In particular, four main concepts are captured by our survivability
pro�le [20, 38]:

• Essential services �representing system services that must survive despite threats materialisation.
They are characterised by non-functional metrics (e.g., performance, integrity or availability) that
de�ne their health.

• Service modes � de�ning di�erent Quality of Service (QoS) levels of the system according to combi-
nations of essential services measured by their health, i.e., by a QoS index. For example, the system is
in �fully operational� service mode when the availability of all of its essential services is greater than
90%.

• Threats � representing either activity carried out by attackers or materialisations of natural causes
(e.g., blackouts) resulting in system failures. They may compromise essential services by degrading
the system quality.

• Survivability strategies � resistance, recognition and recovery actions aimed to prevent/react against
consequences of threats. They are countermeasures to threats that try to maintain or restore the
health of essential services.

Considering a military command and control system, used as a running example in this paper3, an
essential service is, for instance, the provision � via GPS trackers � of up-to-date position awareness of
military forces on a digital map. On the one hand, threats a�ecting this service can be either attacks or
accidental faults: for example, respectively, a man-in-the-middle attack � that counterfeits the position of the
enemy forces in the digital map � or unintentional destruction of the deployment platform where the essential
service is running on. On the other hand, for each threat, di�erent survivability strategies can be applied
to mitigate it. In particular, the man-in-the-middle attack could be reduced by combining di�erent types
of strategies, such as implementing cryptographic protocols in GPS communication (resistance), anomaly
detection techniques (recognition) and restoration of original geodata (recovery) after the attack has been
detected. The accidental destruction of the deployment platform could be mitigated by the implementation
of fault-tolerance mechanisms such as hardware and software redundancy and recon�guration (recovery).

As shown in Figure 1, the survivability pro�le has two main packages, Misuse case and SAM (Survivability
assessment model) extensions, and a package for types de�nitions. The Misuse case package extends UML
use cases, and it is used to enrich misuse case speci�cations.

«Profile»

Misuse case extensions

«Profile»

SAM extensions

«Model library»

Survivability types <<uses>><<include>>

Figure 1: Survivability pro�le overview

In particular, the Misuse case package extends existing concepts proposed in the original misuse case
notation [3] by including the survivability concepts from [20, 38], previously mentioned � i.e., essential

2A UML pro�le [42, 59] is a set of extensions (i.e., stereotypes and tags) that can be applied to UML model elements.
3The running example is introduced in Section 3.

3

services, service mode de�nition and survivability strategies � and by enabling the speci�cation of QoS
indices � e.g., availability metric. The SAM package is applied to UML state machines to specify system
service modes, sequences of threats and survivability strategies.

Table 1 summarises the stereotypes of the pro�le used in this paper, where the last column highlights
changes concerning the previous proposals [8, 27]. In particular, tag type means that the tag has a di�erent
meaning: in [27] misuse and recovery stereotypes have a targetServiceMode tag to specify the system service
mode reached as a consequence of the stereotyped (misuse or recovery) use case, whereas here the a�ects tag
is used to determine the QoS indices of the essential services a�ected by the stereotyped (misuse or recovery)
use case. Similarly, in [8], state machine transitions can be annotated with a tag to specify the event that
triggers the change of service mode (a misuse or a survivability strategy), whereas here the path tag of a
scenario stereotyped transition is used to specify a sequence of misuse cases and survivability strategies that
causes the change of a service mode. Tag re�nement means that the indices tag has the same meaning as in
our previous proposal [27], i.e., it is used to specify the QoS indices associated to an essential service, but it
enables a �ner-grained speci�cation (i.e., the type of value domain, the value domain and the initial value).
Appendix A presents the complete pro�le. The pro�le is now a component of the surreal framework that
supports this paper.

It is worth noticing that the Survivability pro�le provides general concepts that can be applied to
di�erent domains, including cyber-physical systems (CPS). The application of such concepts to CPS will be
illustrated, in this paper, with a running example of military command and control system and a case study
of a smart car, in the automation domain.

Misuse case extensions package

Stereotype Description Tags (type) Extended UML
metaclass

Changes
w.r.t. [8, 27]

service An essential service indices (index) Use case tag re�nement
misuse A threat scenario a�ects (a�ectConsequence) Use case tag type
threatens A threat to a service Dependency
mitigates A threat mitigation Dependency
service mode
de�nition

De�nition of the ser-
vice modes

formula (String) Constraint new

recovery A recovery strategy a�ects (a�ectConsequence) Use case tag type

SAM extensions package

Stereotype Description Tags (type) Extended UML
metaclass

Changes
w.r.t. [8, 27]

mode A service mode severity State
scenario A sequence of mis-

uses and survivability
strategies

path (MSactivation) Transition tag type

Table 1: UML pro�le extensions used in the approach

On model-checking techniques. Model-checking is a formal method that, given a �nite-state model of a
system and a formal property, systematically checks if the property is veri�ed for each possible sequence of
states in that model. If a violation of a property is detected, the model checker produces a counterexample
that is a sequence of analysed states whose crossing lead to the violation. Model-checking can be automated
and can be, in general, applied to both software and hardware systems for the veri�cation of properties related
to communication protocols, concurrent systems or even for safety-critical systems. In [4], model checking is
used to analyse the completeness of requirement speci�cation, the work in [29] proposes automated planning
to compute sequences of actions able to reach a speci�ed goal, while the work in [60] deals with the automatic
generation of attack graphs in network security. Model-checking is suggested by the international standards
(e.g., ISO 61508, ISO 26262) for the veri�cation of safety-critical system speci�cations. In the safety-critical
domains, Wang et al. [70] use a model checker to verify safety properties of the integrated modular avionics

4

(IMA) � a computing network involved in aircrafts software development � and Beneceretti et al. [7] proposes
a framework based on model checking for the automatic system-level test case generation.

Model-checking can be even combined with learning-based techniques to obtain and verify properties
from a black-box view of a system. In [21] model-learning combined with model checking, has been used to
detect some �aws within the TCP protocols, by verifying properties on learned models of di�erent clients and
servers. Despite all the bene�ts introduced, the use of model checking comes with some drawbacks. First,
the formal languages used to feed model checkers are mathematics-based and are often very complicated to
fully master. Second, there is no guarantee that the counterexamples generated by a model checker are of
a minimal length. To this aim, extra and more computation demanding techniques can be adopted, e.g.,
Bounded Model Checking [11].

2.2. Related works

In the following, we review the related works on the modelling of security and safety requirements and
their veri�cation with model checking techniques.

Security and safety requirements modelling. Hundreds of works can be found in the literature regarding the
elicitation and modelling of security and safety requirements. The surveys [68, 54, 66] o�er a good insight
in this �eld. However, unlike our work, the greatest part of these works deal with safety-related approaches
oriented to hazard identi�cation. Among them, the following ones are of interest, although they do not
use UML nor apply model checking techniques. In [65], the author proposes a method based on fault tree
analysis (FTA) to derive requirements with the support of a state-based model. The Event-B formalism
for control-systems is used in [45] and [49]; interestingly the former uses it to automate Failure Modes and
E�ects Analysis (FMEA) partially. In the area of safety management and safety-driven design, Leveson
presents the STAMP/SPTA approach [43] to meet assurance goals in software projects among other �elds.
This approach is followed and applied in other papers [61, 22]. In the �eld of cyber-physical applications, the
work in [48] presents a technique, to model interactions between components, that allows reasoning about
timing behaviour.

The works in [17, 39, 71] are also in the �eld of safety-related approaches but closer to ours. In particular,
Dörr et al. [17] propose a requirement elicitation process based on use case modelling. Koh et al. [39] use
model checking, as our work, and FTA and combine such techniques to verify security requirements auto-
matically. Yoo et al. [71] introduce a new formal method � NuSCR � to elicit safety-critical requirements
and apply it to nuclear plants.

Security and safety requirements modelling using UML. The literature on modelling security and safety
requirements, using UML is also large. In the following we only recall: a) some works highly cited in the
literature, some of them have inspired our approach, and b) some UML pro�les that have been the baseline
for the pro�le presented in this paper. SecureUML [44] is a seminal work in modelling security based on
UML and the model-driven paradigm. The approach presents a methodology for modelling access control
that also o�ers support for specifying complex authorisation constraints. Then, SecureUML focusses on
specifying role-based access control policies and requirements, while our approach is for the modelling of
attacks and protections. The �nal goal of SecureUML is to automatically generate security infrastructures
for access control while our approach aims to assess survivability properties of systems. The CORAS
method4 is oriented to model-driven risk analysis of changing systems [46], the CORAS language is used to
support the analysis of security threats and risk scenarios in security risk analyses. UMLsec [36] allows to
specify security information during the development of security-critical systems and provides tool-support
for formal security veri�cation according to the SVDT approach [32]. SVDT and its successor [28] allow
for evaluating (already) veri�ed alternatives against di�erent requirements, including time-to-market and
budget constraints. All these approaches are applied to software system design and IT security.

Regarding UML pro�les, MARTE [51] (Modeling and Analysis of Real-Time and Embedded Systems) is
an OMG standard mostly focussed on schedulability and performance. DAM [9] is a MARTE extension for

4http://coras.sourceforge.net/index.html

5

the modelling and analysis of dependable systems, while SecAM [55] extends DAM for security modelling of
critical infrastructures, early in the system development life-cycle. CIP_VAM [69, 18] is a UML pro�le for
vulnerability analysis and modelling in the �eld of critical infrastructure protection5. It is used in model-
driven chains involving Bayesian networks and quantitative modelling, and it focuses on physical aspects
modelling, integration with SecAM was proposed in [47]. Other approaches use SysML [23] instead of ad-hoc
UML pro�les, as in [57, 56], and others create speci�c pro�les for SysML [12]. An application of the SysML
language to a critical system for assessing repair/survivability strategies can be found in [10]. Finally, in [30]
a UML pro�le for modelling functional safety requirements is proposed, the requirements are expressed in
OCL and veri�ed directly on the UML model.

Security and safety requirements veri�cation using model checking. As stated at the beginning of the sub-
section, di�erent works exist having similar premises: the work [4] presents a tool, based on model checking,
to complete the operational requirement speci�cation according to the stakeholders' goals. However, this
approach strongly relies on the state-based speci�cation and forces the requirement engineer to de�ne positive
and negative scenarios each time the model checker veri�es a property violation. Thus, at each iteration,
there is the need to de�ne such scenarios against the properties, using the considered temporal logic language.

In this work, we propose a framework that allows the engineer to model safety and security requirements
in the same model, using an extended version of the use case diagram. The rationale behind our proposal
is to relieve the engineer from the modelling of a precise state-based speci�cation and the de�nition of the
properties to be checked in the temporal logic language. Then, the framework leverages model transforma-
tions for the state-based representation of the speci�cation to verify the properties, which are selected by
the engineer from a list of properties expressed as English sentences. The results of the veri�cation allow
the engineer to make informed decisions about the completeness of the requirement speci�cation.

Based on the STPA methodology, previously commented, the work [33] identi�es and formally analyses
safety and security requirements, but di�erent from our work, it is not focussed on verifying survivability
properties. Veri�cation of safety requirements in large software systems using probabilistic model-checking
is proposed in [14]. Unlike our work, the approach in [14] assumes the system already operational, and it is
aimed at verifying, at runtime, the compliance with safety requirements. Another work, with some common
points with our approach, is the seminal work in [25] that uses model-checking to test software implemen-
tations from requirements speci�cations. The main di�erence with this approach is that the methodology
here proposed aims at verifying the speci�cation instead of the resulting software artefact. Finally, the For-
mal Tropos [24] and Secure Tropos [50] approaches deserve to be mentioned. Formal Tropos is a language
that enables the automatic veri�cation of requirements using model-checking, although it is not explicitly
devoted to security requirements. Secure Tropos is for the analysis of security requirements alongside func-
tional ones. It drives system designers from the acquisition of requirements up to their veri�cation. There
exist two versions of Secure Tropos, one extends the i*-language and the other extending Tropos. Secure
Tropos also o�ers a CASE tool [53].

In the light of the works above reviewed and considering the improvements, summarised in Section 1, that
this paper o�ers concerning our previous works [8, 27], we can stress some conceptual di�erences with related
works in the literature, as follows. First di�erence, we overcome the single-stepped attack and single-stepped
recovery hypotheses assumed in [27], see Sub-section 4.2. Second, the proposed fourteen queries de�ne a
starting rich-full framework for guiding the analyst to select the requirements of interest to be veri�ed in
the system. Third, the use of model checking, for the automatic veri�cation of the selected requirements,
produces counterexamples that signi�cantly helps the analyst, for example: 1) to �nd sequences of attacks
and repairs, or 2) to �nd degradation paths, as well as recovery paths and strategies. All these improvements
conform to a framework that empowers the analyst to automatically obtain an assessment model, that helps
in many tasks concerning the automatic veri�cation of system security properties.

6

Figure 2: Methodology and tool framework overview

3. Methodology overview

Figure 2 presents the big picture of our methodology and related framework. The methodology is
composed of three phases: modelling, generation and veri�cation. Regarding tools, those depicted as black
gears are used by the CPS analyst, while the grey ones are invoked transparently by the other tools.

During the modelling phase, the CPS analyst de�nes (functional and non-functional) system require-
ments building a UML misuse case diagram (MUCD) [3]. This speci�cation is enriched by identifying
essential services, threats, survivability strategies, and system service modes, which are annotated using the
survivability pro�le recalled in the previous section.

During the generation phase, the aim is to create a survivability assessment model (SAM). The
SAM is a UML state machine that represents the system service modes and the change of service modes
caused by the occurrence of threats and the application of survivability strategies. The SAM generation tool
accomplishes the task automatically, through several steps. In the �rst step, starting from the MUCD, the
states of the SAM are created, they represent system service modes. Next, the tool transforms the MUCD
into a Kripke model (MUCD formal model), that can be analysed by a model checker, e.g., NuSMV [16].
The results of the analysis, in particular the counterexamples provided by the model-checker, are then
post-processed to add the transitions of the SAM and label them with sequences of events (threats and
survivability strategies). Consequently, the SAM represents the system evolution throughout the di�erent
service modes using the possible sequences of threats occurrences and survivability strategies execution.

In our methodology, the veri�cation phase deals with the veri�cation of system survivability properties.
The properties are speci�ed as abstract queries and stored in a query template repository (QTR). The
CPS analyst, using the query instantiation GUI, selects queries and instantiates them with actual ele-
ments of the MUCD (e.g., misuse cases) or of the SAM (i.e., service modes). Then, an engine is called,
which downloads, for each instantiated query, a solver capable of executing it. Finally, the query is proved
against the SAM by the solver and results are presented to the analyst in the form of an assessment

5CIP_VAM was developed within the European project METRIP http://metrip.unicampus.it/

7

report. Currently, the surreal framework allows assessing fourteen di�erent survivability properties, that
is the properties listed in Table 3. The rationale behind the choice of these properties is to provide a general
support for the assessment of systems survivability, and this paper applies them in the CPS context. The
support encompasses the analysis of the recoverability of service modes (Security level properties), and the
analysis of the e�ect of threat occurrences and survivability strategies on the service modes (Threat and
Mitigation properties). Moreover, the framework has been designed for being easily extensible regarding
new survivability properties.

The assessment report allows the analyst to make informed decisions about the completeness of the
requirement speci�cation. For example, one property of interest to verify is the strong reversibility, that
is the possibility to recover the system to a given service mode (property P1 in Table 3). This property
does not hold when the speci�cation omits possible survivability strategies mitigating one or more threats
represented as misuse cases; in such a case, the analyst can decide to re�ne the MUCD by adding such
strategies and repeat the generation and veri�cation phases with the re�ned speci�cation. Therefore, the
modelling and veri�cation activities, supported by the interactive methodology, are carried out by the CPS
analyst in a cyclic manner, until a requirement speci�cation that satis�es the properties of interest is found.

Motivation. In requirement engineering it is impossible to �nd a �silver bullet� and, in the case of cyber-
physical systems, this task is worsened by the con�uence of software, hardware, mutable operating environ-
ments and the human factor, since emerging behaviours are not rare but hard to predict. Hence, formal
methods are just one of the techniques that can be used in such systems. They proved their e�ectiveness with
many success stories, from Paris metro systems [6] to the Intel's practices for the design of CPU architectures
using model checking [37]. Notwithstanding such techniques, new vulnerabilities are found even in those
processors (e.g., the Spectre and Meltdown vulnerabilities). We strongly believe that the approach proposed
in this paper, like other similar techniques, can not be as a one-size-�ts-all tool for system hardening.

First, the proposed methodology is for eliciting security requirements, hence, it should be �rst used in
the early stages of the system development to discover failure scenarios. The ful�lment of such requirements
should be then assessed later in the lifecycle.

Second, the proposed approach does not exclude but creates synergy with other techniques as testing.
As it has been demonstrated in [7] model checking combined with functional testing may be successful in
industrial settings.

Finally, the proposed methodology must be embedded in the development process. As it is impossible
to have detailed knowledge in the early stages of development, we think that it should be applied more than
once during the system lifecycle.

The choice of focusing on a functional level description is because the most widespread methodologies
dealing with safety, security and in-the-large, dependability assessment of a product/system during the
whole duration of its lifecycle, start with some kind of Functional Hazard Assessment (FHA). This family
of methodologies is in charge of eliciting, determining the proper level of safety (or other dependability
attributes) for each component with the consequent de�nition of the appropriate design and validation
processes. Since such processes start in the very early phases of the system lifecycle, when the architecture
is not often de�ned yet, then functions that the system has to provide are the only known system assets.
Since our approach supports such phases, a functional view of the system is a right starting point. To help
this point of view, the most adopted international standards recommend FHA in the early phases across
di�erent domains (e.g., IEC 61508 [1], ISO 26262 [35], EN 50128 [2]).

Running example. Modern military command and control systems are actually systems of systems that
incorporate fully-integrated modular cyber-physical systems such as personal combat displays, unmanned
aerial systems and tactical mobility night vision devices to enhance the situational awareness and improve
decision-making [19]. To support the methodology description a military command and control system [8]
is used as a running example.. The system provides two basic essential services: messaging and map
positioning. These services must survive despite the presence of faults or attacks, thus allowing the o�cers in
charge to send timely their orders to subordinates and to achieve the situational awareness in the battle�eld.
In particular, we will address the following questions that indeed represent system survivability requirements:

8

• Is it always possible to recover to the service mode that provides the highest quality (the best service
mode)?

• Let us suppose the system is o�ering the highest quality service and man-in-the-middle attacks occur
that manipulate the information about the operations plan exchanged between the o�cers, what is
the service quality provided by the system after the attacks?

• Let us consider a set of possible survivability strategies that can be used to improve the service quality
in a degraded service mode. Which is the smallest subset that allows reaching the best service mode?

4. Modelling and generation phases

4.1. Modelling phase

In the modelling phase, the CPS analyst creates a MUCD enriched with a survivability speci�cation.
A MUCD is the result of a requirements elicitation process where four tasks can be emphasised: a) the
elicitation of the essential services, which should survive despite the presence of threats; b) the vulnerability
analysis (or threat modelling), where threats a�ecting essential services are identi�ed; c) the de�nition of
survivability strategies, that aim at eliminating or mitigating threats; and d) the de�nition of system service
modes, which guarantee di�erent levels of QoS, from the best one o�ered by the system, for all essential
services, to the most degraded, but still acceptable. Speci�cally, system service modes are ranked according
to the relevance of the QoS indices and their threshold values (i.e., QoS levels) associated to essential services:
all system service modes but the one with the best QoS level are considered degraded service modes (or
degraded states).

The speci�c methodology used to carry out the elicitation process has been already presented in [8] and
it is here omitted. the emphasis is, indeed, on the artefacts produced by the process. The vulnerability
analysis takes into account two hypotheses: (i) the threats (or misuses) are independent, they may occur
concurrently, and (ii) they are carried out in a single step. The same holds for the recovery strategies which
are considered as single-step actions to recover from a degraded state.

Military staff

 Sensor

«service»

UpdateMap

«service»

ExchangeInformation

«misuse»

Jamming

«misuse»

ManipulateInformation

«misuse»

DestroyNode

«recovery»

RestoreOriginalCommunication

«recovery»

ChooseAlternativeCommunication

«recovery»

RestoreOriginalData

«recovery»

Reconfigure

«serviceModeDefinition»

«threatens»

«threatens»

«threatens»

«threatens»

«mitigates»

«mitigates»

«mitigates»

«mitigates»

Figure 3: MUCD of the running example annotated with the survivability pro�le

Figure 3 shows an excerpt of the MUCD of the running example, where just two essential services are
considered: i.e., ExchangeInformation � that is initiated by the military sta� and includes di�erent scenarios,
such as the sending of reports, the request of supplies and the transmission of orders � and UpdateMap �

9

that is triggered by a sensor, like a GPS tracker, and it provides up to date position awareness of military
forces on a digital map. A more comprehensive model can be found in [8], herein we re�ne the misuse case
diagram applying the survivability pro�le, where for the sake of clarity, the tagged values associated to the
stereotyped model elements are summarised in Table 2. In particular, essential services are characterised by
two QoS indices, i.e., the availability and the integrity level, both express a percentage, thus they are de�ned
over the interval 0..100, and their initial values are set to the highest value. The initial values represent
the optimistic situation where the system is not a�ected by threats.

There are three misuse cases in the diagram: Jamming represents an attack aimed at interrupting (or
slowing down) the communication, it is usually carried out by sending interference signals; ManipulateIn-
formation represents an attack that is aimed at manipulating the geodata used to update the digital map
or the information exchanged by the military sta�; and DestroyNode that models the destruction of a node,
which can be either accidental or intentional. The misuse cases compromise the QoS of the essential ser-
vices, in particular, each misuse case may a�ect one or more QoS indices and the degradation of a QoS index
value is speci�ed using the a�ects tagged-value (see in Table 2). For example, the Jamming misuse case
a�ects the availability of the ExchangeInformation service, it may occur multiple times, and its occurrence
decreases the initial availability value of 10%, whereas the ManipulateInformation misuse case a�ects the
integrity level of the two essential services by halving its value. The DestroyNode misuse case a�ects both
the availability and the integrity level of the UpdateMap essential service by setting their value to zero and
10, respectively.

Stereotype: service Tagged-values: indices (name,kind,values,initial)
ExchangeInformation (avail, integerInterval, 0..100, 100)

(integLevel, integerInterval, 0..100, 100)
UpdateMap (avail, integerInterval, 0..100, 100)

(integLevel, integerInterval, 0..100, 100)
Stereotype: misuse Tagged-values: a�ects (index,set,inc,dec)
Jamming (avail, �, �, 10)
ManipulateInformation (integLevel, 50, �, �)
DestroyNode (avail, 0, �, �)

(integLevel, 10, �, �)
Stereotype: recovery Tagged-values: a�ects (index,set,inc,dec)
RestoreOriginalCommunication (avail, 100, �, �)
ChooseAlternativeCommunication (avail, �, 10, �)
RestoreOriginalData (integLevel, 100, �, �)
Recon�gure (avail, 100, �, �)

(integLevel, 90, �, �)
Stereotype: serviceModeDe�nition, tagged-values: formula
(GS0,0, (ExchangeInformation.avail > 90) & (ExchangeInformation.integLevel > 60) &

(UpdateMap.avail > 90) & (UpdateMap.integLevel > 60))
(GS1,1, (ExchangeInformation.avail > 80) & (ExchangeInformation.integLevel > 60) &

(UpdateMap.avail > 80) & (Update map.integLevel > 60))
(GS2,2, (ExchangeInformation.avail > 50) & (ExchangeInformation.integLevel > 30) &

(UpdateMap.avail > 50) & (UpdateMap.integLevel > 30))
(GS3,3,)

Table 2: Tagged-values speci�cation of the running example

For each misuse case, survivability strategies need to be speci�ed to mitigate the e�ect of the misuse
case on the QoS of the essential services. In the running example, only recovery strategies are modelled.
In particular, two di�erent strategies are included to mitigate a jamming attack, i.e., setting an alternative
communication with lower bandwidth (ChooseAlternativeCommunication) and the restoration of the original
communication (RestoreOriginalCommunication). The ManipulateInformation misuse case is mitigated by
restoring the original geodata before the attack, and the destruction of a node (DestroyNode) is overcome
through hardware redundancy and software recon�guration. Similar to misuse cases, recovery strategies are

10

annotated with a�ects tagged-values to specify how they a�ect the QoS indices of the essential services. For
example, a recon�guration, after node destruction, improves both the availability and the integrity level by
setting them to the initial value and 90, respectively; whereas the two alternative recovery strategies from a
jamming attack increase the availability di�erently: a 100% availability is guaranteed with the restoration
of the original communication and an increase of 10% (concerning the initial value) is obtained in case of
choosing the alternative communication mean.

Finally, the last annotation included in the MUCD speci�es the system service modes (see serviceMod-
eDe�nition in Table 2). We use an ad-hoc syntax that enables to de�ne each service mode as a triplet:
(name, severity, QoSlevel), where name is the name of the service mode, severity is the severity level (the
higher is the level more degraded the service mode is) and QoSlevel is a boolean expression that speci�es the
QoS level of the system in terms of the thresholds for the QoS indices associated to the essential services.
In the running example, the thresholds for both the QoS indices are minimum values, and there are four
service modes: GS0 is the best service mode that guarantees at least a 90% availability and at least a 60%
integrity level of the two essential services. The other service modes provide degraded services: in particular,
GS1 guarantees a lower threshold for the availability (i.e., 80%) concerning GS0, whereas in GS2 both the
availability and integrity thresholds are lower than GS1. Finally, GS3 is the worst service mode, and it
does not guarantee a QoS minimum threshold. Thus, the speci�cation of the system service mode enables
to divide the value domain space of the QoS indices into di�erent regions, where each region is de�ned by
the QoSlevel of a service mode: the Figure 4 shows a Venn's diagram representation of such regions.

GS3
GS2

GS1

GS0

Figure 4: Venn's diagram representing system service modes

4.2. Generation phase

The work in [27] already dealt with the automatic generation of the SAM. In that paper, starting from
a misuse cases diagram � that speci�es the system essential services, the attacks and countermeasures �
a SAM is produced by a model-to-model transformation. However, the approach has a limitation, it only
considers single-stepped attacks/recoveries, i.e., the direct transition from a service mode to another is due
to either a single attack occurrence or a single recovery execution. Although reasonable in some industrial
contexts, this paper wants to overcome such hypothesis, then allowing to elicit complex attack-recovery
sequences � that is sequences of multiple attack occurrences and multiple recovery executions that cause the
direct transition from a service mode to another � which postulates the main motivation of this phase of
the methodology.

In the generation phase, we use NuSMV [16] to produce the SAM. NuSMV is a powerful model-checking
tool characterised by its simplicity in specifying both models and properties. To generate the SAM, the
MUCD is �rst transformed into a Kripke model � MUCD formal model, in Figure 2 � and a �rst version of
the SAM, which includes just the states representing the service modes. Next, the Kripke model is analysed
by NuSMV and the counterexamples produced by the model checker are used to enrich the SAM with the
state transitions.

11

MUCD-to-Kripke. The generation process from the MUCD to the Kripke model is depicted, at a high level
of abstraction, in Figure 5 where a sample MUCD model is represented on the left and a scheme of the
Kripke model is on the right. In the Figure, the directed arrows show the mapping between the model

Kripke Model

Define Section

Module Section

Actor

<<service>>

<<misuse>>

<<recovery>>

<<Service Mode Definitions>> SM Symbols

Inhibit Symbols

Main

Properties

<<threatens>>
<<mitigates>>

Process
Process

Figure 5: MUCD-to-Kripke: overview

elements of the MUCD and the three main sections of the Kripke model, that is: Module Section, De�ne
Section and Properties.

The Module Section contains the description of the behaviour of the processes determining the evolution
of the system: this description is apportioned among as many modules as the number of the �service� use
cases, in the MUCD, and one main module. The De�ne Section contains the de�nition of symbols. In
particular, there are two sets of symbols: the Inhibit Symbols � used in the main module � to permit the
activation of one or more attacks, and the SM Symbols � used in the Properties section � that capture into
boolean variables the system service modes. In the end, the Properties section reports a list of CTL formulas
expressing the possibility to pass from a service mode to another.

In the following, we describe the generation process in details with the help of the running example
of Figure 3 and the Listing 1, that reports an excerpt of the Kripke model automatically generated from
Figure 3. The complete Kripke model can be found in the Appendix C.

Listing 1: MUCD Kripke model structure

-- Process modules
MODULE ExchangeInformation(p_Jamming ,p_ChooseAlternativeCommunication ,p_RestoreOriginalCommunication ,
p_ManipulateInformation ,p_RestoreOriginalData)
VAR
avail: 0..100;
integLevel: 0..100;
ASSIGN
init(avail) := 100;
init(integLevel) := 100;
next(avail) := case
(p_Jamming = TRUE) & (p_ChooseAlternativeCommunication = KO)
& (avail >= (10 + 0)): avail - 10;
(p_ChooseAlternativeCommunication = OK)
& (avail <= (100 - 10)): avail + 10;
(p_Jamming = TRUE) & (p_RestoreOriginalCommunication = KO)
& (avail >= (10 + 0)): avail - 10;
(p_RestoreOriginalCommunication = OK) & (avail < 100): 100;
TRUE: avail;

12

esac;
next(integLevel) := case
(p_ManipulateInformation = TRUE) & (p_RestoreOriginalData = KO)
& (integLevel > 50): 50;
(p_RestoreOriginalData = OK) & (integLevel < 100): 100;
TRUE: integLevel;
esac;

...
-- Main module
MODULE main
VAR
Jamming: boolean;
ManipulateInformation: boolean;
DestroyNode: boolean;
RestoreOriginalCommunication: {ENABLED , OK, KO};
ChooseAlternativeCommunication: {ENABLED , OK , KO};
RestoreOriginalData: {ENABLED , OK , KO};
Reconfigure: {ENABLED , OK, KO};
proc_ExchangeInformation: ExchangeInformation(Jamming ,ChooseAlternativeCommunication ,
RestoreOriginalCommunication ,ManipulateInformation ,RestoreOriginalData);
proc_UpdateMap: UpdateMap(DestroyNode ,Reconfigure ,ManipulateInformation ,
RestoreOriginalData);
ASSIGN
init(Jamming) := FALSE;
next(Jamming) := case
(Jamming_inhibitor = TRUE): FALSE;
(Jamming_inhibitor = FALSE): {TRUE , FALSE };
esac;
init(ManipulateInformation) := FALSE;
next(ManipulateInformation) := case
(ManipulateInformation_inhibitor = TRUE): FALSE;
(ManipulateInformation_inhibitor = FALSE): {TRUE , FALSE};
esac;
init(DestroyNode) := FALSE;
next(DestroyNode) := case
(DestroyNode_inhibitor = TRUE): FALSE;
(DestroyNode_inhibitor = FALSE): {TRUE , FALSE };
esac;
init(RestoreOriginalCommunication) := KO;
init(ChooseAlternativeCommunication) := KO;
init(RestoreOriginalData) := KO;
init(Reconfigure) := KO;
next(RestoreOriginalCommunication) := case
(RestoreOriginalCommunication = KO) & ((Jamming = TRUE)): ENABLED;
(RestoreOriginalCommunication = ENABLED): {ENABLED , OK};
(RestoreOriginalCommunication = OK): KO;
TRUE: RestoreOriginalCommunication;
esac;
next(ChooseAlternativeCommunication) := case
(ChooseAlternativeCommunication = KO) & ((Jamming = TRUE)): ENABLED;
(ChooseAlternativeCommunication = ENABLED): {ENABLED , OK};
(ChooseAlternativeCommunication = OK): KO;
TRUE: ChooseAlternativeCommunication;
esac;
next(RestoreOriginalData) := case
(RestoreOriginalData = KO) & ((ManipulateInformation = TRUE)): ENABLED;
(RestoreOriginalData = ENABLED): {ENABLED , OK};
(RestoreOriginalData = OK): KO;
TRUE: RestoreOriginalData;
esac;
next(Reconfigure) := case
(Reconfigure = KO) & ((DestroyNode = TRUE)): ENABLED;
(Reconfigure = ENABLED): {ENABLED , OK};
(Reconfigure = OK): KO;
TRUE: Reconfigure;
esac;
-- Inhibit Symbols
DEFINE
Jamming_inhibitor := FALSE;
ManipulateInformation_inhibitor := FALSE;
DestroyNode_inhibitor := FALSE;

-- SM Symbols
DEFINE
GS0 := (proc_ExchangeInformation.avail > 90)
& (proc_ExchangeInformation.integLevel > 60) & (proc_UpdateMap.avail > 90)

13

& (proc_UpdateMap.integLevel > 60);
GS1 := !(GS0) & (proc_ExchangeInformation.avail > 80)
& (proc_ExchangeInformation.integLevel > 60) & (proc_UpdateMap.avail > 80)
& (proc_UpdateMap.integLevel > 60);
GS2 := !(GS0 | GS1) & (proc_ExchangeInformation.avail > 50)
& (proc_ExchangeInformation.integLevel > 30) & (proc_UpdateMap.avail > 50)
& (proc_UpdateMap.integLevel > 30);
GS3 := !(GS0 | GS1 | GS2);

-- Properties
CTLSPEC AG (GS0 -> AX(!GS1))
...
CTLSPEC AG (GS3 -> AX(!GS2))

First, there are as many modules as use cases stereotyped �service� in the MUCD. The parameters of a
module are the names of the attacks and recovery actions related to the use case, i.e., the misuses that threat
the use case and the recoveries that mitigate the misuses. Each module is then responsible for determining
the evolution of the QoS indices speci�ed in the �service� as a response to the values speci�ed for the attacks
and recoveries.

The second part is the main module that instantiates all the attacks and recoveries in the MUCD
model with the following behaviour: attacks are represented by boolean variables (i.e., TRUE if the attack
is launched, otherwise FALSE); recoveries are represented by three-valued variables (i.e., KO if the recovery
is not active, ENABLED if a triggering attack has been launched, but the recovery is not executed, yet, and
OK if the recovery is executed). The body of the main module correlates the evolution of the attacks (KO
−→ OK) and of the recoveries (KO −→ ENABLED −→ OK). Furthermore, the main module instantiates the
attack-related Kripke modules passing the attack/recovery variables to the corresponding use case modules
as actual parameters. The usage of NuSMV's modules for the modelling of the behaviour of the �service� use
cases is not motivated by the need of instantiating these modules more than once in the main module; but
rather by choice of respecting a modular approach and easing the generation process. Moreover, the main
module instantiates the process modules by passing as actual parameters the misuse and recovery variables
since misuse and recoveries have global scope (i.e., they must be seen from all the service processes).

The third part of the NuSMV model is made of two DEFINE sections that are related to the de�nition of:
(1) attack inhibitor variables, used to inhibit one or more attack occurrences in �ne-grained analyses (see
Section 5); (2) service mode variables used to understand if the system is in one service mode or another.

Concerning the latter, there are as many boolean variables as service modes, which are de�ned according
to the QoSlevel boolean expressions in the tagged values of the �serviceModeDe�nition� stereotype. The
severity values of the service modes de�ne a total ordering relation of the service modes that is translated
into an expression by taking into account the precedence between the variables themselves. As an example,
if there are two service modes, Gx and Gy with severity of Gy greater than the severity of Gx, such service
modes are translated into two variables as in Listing 2:

Listing 2: De�ning auxiliary variables

Gx := expr_x;
Gy := (!Gx) & expr_y;

where expr_x and expr_y are, respectively, the QoSlevel boolean expressions associated to the service modes
Gx and Gy.

Both these groups of symbols are introduced for technical reasons. They simplify, respectively: 1) the
switching between the MUCD formal model used in the generation and the veri�cation phases (see Section 5
for further details); 2) the generation of the properties to check since, without de�ning such symbols, the
properties should report the whole expressions with QoS indices.

The last part de�nes the properties to check. There is one property per transition in the SAM, hence, if
we have n service modes, there will be n∗(n−1) transitions and properties to check. Each property computes
the sequence of events that brings from a service mode Gx to a service mode Gy. In order to compute such
sequence, we need to negate it in the form of a CTL expression � i.e., it is always true that starting from
Gx, all the next steps present !Gy, where the conditions Gx and Gy are the truth of the variables as de�ned
above. The CTL formula for checking the �Gx-to-Gy� property is then expressed as in the Listing 3:

14

Listing 3: De�ning CTL formula for the Gx-to-Gy property

CTLSPEC AG (Gx -> AX(!Gy))

Counterexamples-to-SAM. The SAM is a UML state machine, where the states represent the system service
modes, and the transitions allow the system to evolve through service modes. The statuses of the SAM are
directly generated from the MUCD, considering the serviceModeDe�nition, whereas the transitions between
states are added from the results provided by NuSMV from the checking of the Kripke model.

In particular, for each service mode in the serviceModeDe�nition, a state is generated and stereotyped as
�mode�; each state is annotated with the severity tagged value, representing the severity of the service mode.
The transitions between states are generated by considering the list of counterexamples that are produced by
NuSMV with the checking of the CTL formulas, for the Gx-to-Gy properties, de�ned in the Kripke model.
In the case that the Gx-to-Gy property is considered true by the model-checker, no counterexample is found
and thus there is no feasible sequence of attacks and/or repairs between the two service modes Gx and Gy.
Otherwise, the model checker produces a detailed description of the steps from Gx to Gy.

Such a description is parsed according to an EBNF grammar. By constructing a proper parser and
semantic analyser, the attacks/recoveries contained in the counterexample are �ltered and then used to
annotate the transition in the SAM, with the path tagged value of the �scenario� stereotype6. A path is a
sequence of misuse cases/recovery strategies states that cause the change of service mode, where each path
item is speci�ed by a triplet (service,value,step): service is the name of the misuse case/recovery strategy,
value is its state and step is the global system state (see Tables A.7 and A.8 of the Appendix A).

The Listing 4 reports an excerpt of the NuSMV output related to our running example, whereas Figure 6
shows the generated SAM in its graphical form.

Listing 4: Sample of a counterexample

-- specification AG (GS3 -> AX !GS2) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 12.1 <-
Jamming = FALSE
ManipulateInformation = FALSE
DestroyNode = FALSE
RestoreOriginalCommunication = KO
ChooseAlternativeCommunication = KO
RestoreOriginalData = KO
Reconfigure = KO
proc_ExchangeInformation.avail = 100
proc_ExchangeInformation.integLevel = 100
proc_UpdateMap.avail = 100
proc_UpdateMap.integLevel = 100
DestroyNode_inhibitor = FALSE
ManipulateInformation_inhibitor = FALSE
Jamming_inhibitor = FALSE
GS3 = FALSE
GS2 = FALSE
GS1 = FALSE
GS0 = TRUE
-> State: 12.2 <-
Jamming = TRUE
DestroyNode = TRUE
-> State: 12.3 <-
Jamming = FALSE
DestroyNode = FALSE
RestoreOriginalCommunication = ENABLED
ChooseAlternativeCommunication = ENABLED
Reconfigure = ENABLED
proc_ExchangeInformation.integLevel = 100
proc_ExchangeInformation.avail = 90
proc_UpdateMap.avail = 0
proc_UpdateMap.integLevel = 10

6The �lter consists in cutting the sequence between the relevant service modes (e.g., from Gx to Gy) also purging the sequence
from all the model variables evolution not related to attacks and/or recoveries.

15

GS3 = TRUE
GS0 = FALSE
-> State: 12.4 <-
ManipulateInformation = TRUE
RestoreOriginalCommunication = OK
ChooseAlternativeCommunication = OK
Reconfigure = OK
-> State: 12.5 <-
ManipulateInformation = FALSE
RestoreOriginalCommunication = KO
ChooseAlternativeCommunication = KO
RestoreOriginalData = ENABLED
Reconfigure = KO
proc_ExchangeInformation.avail = 100
proc_ExchangeInformation.integLevel = 50
proc_UpdateMap.avail = 100
proc_UpdateMap.integLevel = 90
GS3 = FALSE
GS2 = TRUE

The screenshot, in Figure 6 on the right, shows the property panel of the Eclipse-Papyrus tool, with
the path value (not complete) associated to the transition T_GS3_GS2 � from the service mode GS3
to the service mode GS2, with lower severity. The complete path has been manually added in the note
symbol attached to the transition. In particular, the path discovered by the model-checker represents the
situation where both a Jamming and a DestroyNode has occurred and the corresponding recovery actions
become enabled (step 0); in the next step (step 1), a ManipulateInformation attack is launched and, in the
meanwhile, the recovery actions for the attacks previously occurred are executed; �nally, recovery actions
are deactivated (step 2). The e�ect of the recovery actions is to re-establish the 100% availability of the
two essential services and increase the integrity level of updateMap; however, the attack in step 1 a�ects the
integrity level of the ExchangeInformation which remains equal to 50%. Thus, the reached service mode
GS2 is better than GS3, but it is still degraded.

Observe that, the paths found by the model-checker maybe not realistic in the context of the system under
analysis. For instance, according to the approach discussed above both the recovery strategies RestoreOrig-
inalCommunication and ChooseAlternativeCommunication are executed, whereas it seems straightforward
that the execution of just the former is su�cient to improve the availability of the essential services. In the
veri�cation phase, the CPS analyst can perform a �ne-grained analysis to check whether both are necessary,
or just one of them is su�cient to improve the QoS indices. The framework is also open for �ne-grained
automatic analysis that are future works for this paper.

5. Veri�cation phase

5.1. Properties and the query template repository

Once the system services, threats, strategies and service modes have been speci�ed, and the survivability
assessment model (SAM) automatically generated, then the system is ready for veri�cation purposes. To
this end, we have collected a set of survivability properties. Although large, the set is not exclusive but
expandable. Most of these requirements belong to the survivability analysis �eld since they test properties
related to system recovery. Table 3 presents the properties that are expressed as queries that can be proved
against the SAM by a solver. Each property has a unique identi�er (�rst column), a name (third column)
and speci�es a query template (fourth column) that will be eventually instantiated to the SAM. The query
is expressed in natural language (English), and it is characterised by input parameters (�fth column) that
may represent either service modes, misuse cases or recovery strategies. Depending on the property to be
assessed, a di�erent type of result will be returned by the solver (sixth column) that is a boolean value
(i.e., true/false), a service mode or a scenario (i.e., a sequence of misuse cases or recovery strategies). The
complete set of properties conforms what we call the query template repository (QTR) in the surreal

framework.
Table 3 shows the properties arranged according to their kind (second column), which guides the interests

of the analyst in the veri�cation phase. In particular, the Security level properties focus the analysis on the
recoverability of service modes, the Threat properties allow analysing the e�ect of threat occurrences on the

16

global mode

«mode»

{severity=3 }
GS3

«mode»

{severity=2 }
GS2

«mode»

{severity=1 }
GS1

«mode»

{severity=0 }
GS0

path= {
(Jamming,FALSE,0)
(DestroyNode,FALSE,0)
(RestoreOriginalCommunication,ENABLED,0)
(ChooseAlternativaCommunication,ENABLED,0)
(Reconfigure,ENABLED,0)
(ManipulateInformation,TRUE,1)
(RestoreOriginalCommunication,OK,1)
(ChooseAlternativeCommunication,OK,1)
(Reconfigure,OK,1)
(ManipulateInformation,FALSE,2)
(RestoreOriginalCommunication,KO,2)
(ChooseAlternativeCommunication,KO,2)
(RestoreOriginalData,KO,2)
(Reconfigure,KO,2)}

T_GS2_GS1
«scenario»

T_GS2_GS0

«scenario»

T_GS3_GS0

«scenario»

T_GS3_GS2

«scenario»

T_GS3_GS1

«scenario»

T_GS1_GS0

«scenario»

T_GS1_GS2

«scenario»

T_GS0_GS3

«scenario»

T_GS0_GS2

«scenario»

T_GS1_GS3

«scenario»

T_GS2_GS3
«scenario»

T_GS0_GS1

«scenario»

Figure 6: SAM of the running example

service modes and the Mitigation properties help the analyst in deciding on the survivability strategies to be
developed in the system. Appendix B formalises all the properties implemented by the surreal framework
and listed in Table 3.

The properties in the running example. Let us recall and interpret the three questions initially posed in
Section 3:

1. Is it always possible to recover to the service mode that provides the highest quality (the best service
mode)?

2. Let us suppose the system is o�ering the highest quality service and attacks that manipulate informa-
tion occur, what is the service quality provided by the system after the attacks?

3. Let us consider a set of possible survivability strategies that can be used to improve the service quality
in a degraded service mode. Which is the smallest subset that allows reaching the best service mode?

The �rst question can be pinpointed to P1 and can be answered by instantiating the service mode GS0 (see
Figure 6) to the 〈SMode〉 input parameter of the query template. The second question can be addressed by
instantiating P8, i.e., considering the ManipulateInformation misuse case (see Figure 3). Finally, the last
question can be answered by instantiating three times P14, one for each degraded service mode, i.e., GS1,
GS2 and GS3.

17

ID
K
in
d

N
a
m
e

Q
u
e
r
y
te
m
p
la
te

P
a
r
a
m
e
te
r
s
ty
p
e

R
e
su
lt
ty
p
e

P
1

S
ec
u
ri
ty

le
ve
l

R
ev
er
si
b
il
it
y

It
is
a
lw
ay
s
p
o
ss
ib
le
to

re
co
ve
r
to

th
e
〈S
M
od
e〉

〈S
M
od
e〉

(a
se
rv
ic
e
m
o
d
e)

b
o
o
le
a
n

P
2

S
ec
u
ri
ty

le
ve
l

S
tr
o
n
g
re
v
er
si
b
il
it
y

It
is
a
lw
ay
s
p
o
ss
ib
le
to

re
co
ve
r
to

th
e
〈S
M
od
e〉

w
it
h
-

o
u
t
fu
rt
h
er

d
eg
ra
d
a
ti
o
n

〈S
M
od
e〉

(a
se
rv
ic
e
m
o
d
e)

b
o
o
le
a
n

P
3

S
ec
u
ri
ty

le
ve
l

R
ec
ov
er
a
b
il
it
y

It
is
a
lw
ay
s
p
o
ss
ib
le
to

re
co
ve
r
to
〈D
eg
ra
d
ed
M
od
e〉

fr
o
m
〈W

or
se
D
eg
ra
d
ed
M
od
e〉

〈D
eg
ra
d
ed
M
od
e〉

(a
se
rv
ic
e

m
o
d
e)
,

〈W
or
se
D
eg
ra
d
ed
M
od
e〉

(a
w
o
rs
e
se
r-

v
ic
e
m
o
d
e)

b
o
o
le
a
n

P
4

S
ec
u
ri
ty

le
ve
l

S
tr
o
n
g
re
co
ve
ra
b
il
-

it
y

It
is
a
lw
ay
s
p
o
ss
ib
le
to

re
co
ve
r
to
〈D
eg
ra
d
ed
M
od
e〉

fr
o
m
〈W

or
se
D
eg
ra
d
ed
M
od
e〉

w
it
h
o
u
t
d
eg
ra
d
a
ti
o
n

〈D
eg
ra
d
ed
M
od
e〉

(a
se
rv
ic
e

m
o
d
e)
,

〈W
or
se
D
eg
ra
d
ed
M
od
e〉

(a
w
o
rs
e
se
r-

v
ic
e
m
o
d
e)

b
o
o
le
a
n

P
5

T
h
re
a
t

T
h
re
a
t
co
n
se
q
u
en
ce

(s
in
g
le
o
cc
u
rr
en
ce
)

D
o
es

a
si
n
g
le
o
cc
u
rr
en
ce

o
f
〈M

is
u
se
〉
p
ro
v
o
ke

a
sy
s-

te
m

d
eg
ra
d
a
ti
o
n
?

〈M
is
u
se
〉
(a

m
is
u
se

ca
se
)

b
o
o
le
a
n

P
6

T
h
re
a
t

T
h
re
a
t

co
n
se
-

q
u
en
ce

(m
u
lt
ip
le

o
cc
u
rr
en
ce
)

D
o
es

(m
u
lt
ip
le
)
o
cc
u
rr
en
ce

o
f
〈M

is
u
se
〉
p
ro
v
o
ke

a
sy
st
em

d
eg
ra
d
a
ti
o
n
?

〈M
is
u
se
〉
(a

m
is
u
se

ca
se
)

b
o
o
le
a
n

P
7

T
h
re
a
t

S
ec
u
ri
ty

le
ve
l

th
re
a
t

im
p
a
ct

(s
in
g
le
o
cc
u
rr
en
ce
)

G
iv
en

th
e
be
st

se
rv
ic
e
m
od
e,

w
h
ic
h
is

th
e
se
rv
ic
e

m
o
d
e
re
a
ch
ed

b
y
a
si
n
g
le
o
cc
u
rr
en
ce

o
f
〈M

is
u
se
〉

〈M
is
u
se
〉
(a

m
is
u
se

ca
se
)

〈S
M
od
e〉

o
r
∅

P
8

T
h
re
a
t

S
ec
u
ri
ty

le
ve
l

th
re
a
t

im
p
a
ct

(m
u
lt
ip
le

o
cc
u
r-

re
n
ce
)

G
iv
en

th
e
be
st

se
rv
ic
e
m
od
e,

w
h
ic
h
is

th
e
se
rv
ic
e

m
o
d
e
re
a
ch
ed

b
y
(m

u
lt
ip
le
)
o
cc
u
rr
en
ce

o
f
〈M

is
u
se
〉
〈M

is
u
se
〉
(a

m
is
u
se

ca
se
)

〈S
M
od
e〉

o
r
∅

P
9

T
h
re
a
t

T
h
re
a
t
sc
en
a
ri
o

G
iv
en

th
e
be
st
se
rv
ic
e
m
od
e,
w
h
ic
h
is
th
e
sm

a
ll
es
t
se
t

o
f
m
is
u
se
s
th
a
t
le
a
d
s
to
〈D
eg
ra
d
ed
M
od
e〉
?

〈D
eg
ra
d
ed
M
od
e〉

(a
se
rv
ic
e
m
o
d
e)

〈S
ce
n
a
ri
o〉

o
r
∅

P
1
0

M
it
ig
a
ti
o
n

R
ec
ov
er
y
fe
a
si
b
il
it
y

T
h
e
st
ra
te
g
y
〈R
ec
ov
er
y
〉
is
fe
a
si
b
le

〈R
ec
ov
er
y
〉
(a

re
co
v
er
y
st
ra
te
g
y
)

b
o
o
le
a
n

P
1
1

M
it
ig
a
ti
o
n

M
u
lt
ip
le
re
co
ve
ry

T
h
e
st
ra
te
g
ie
s
〈R
ec
ov
er
y 1
〉,.
..
,〈R

ec
ov
er
y N
〉
a
re

a
l-

w
ay
s
n
ee
d
ed

to
g
et
h
er

〈R
ec
ov
er
y
〉∗

(a
se
q
u
en
ce

o
f
re
co
ve
ry

st
ra
te
g
ie
s)

b
o
o
le
a
n

P
1
2

M
it
ig
a
ti
o
n

R
ec
ov
er
y

m
u
tu
a
l

ex
cl
u
si
o
n

T
h
e

st
ra
te
g
ie
s
〈R
ec
ov
er
y 1
〉,.
..
,〈R

ec
ov
er
y N
〉

a
re

n
ev
er

ca
rr
ie
d
o
u
t
to
g
et
h
er

〈R
ec
ov
er
y
〉∗

(a
se
q
u
en
ce

o
f
re
co
ve
ry

st
ra
te
g
ie
s)

b
o
o
le
a
n

P
1
3

T
h
re
a
t/

M
it
ig
a
ti
o
n

T
h
re
a
t/
re
co
ve
ry

ef
-

fe
ct
iv
en
es
s

Is
th
e
st
ra
te
g
y
〈R
ec
ov
er
y
〉
e�
ec
ti
ve

to
m
it
ig
a
te

th
e

th
re
a
t
〈M

is
u
se
〉?

〈R
ec
ov
er
y
〉

(a
re
co
ve
ry

st
ra
te
g
y
),

〈M
is
u
se
〉
(a

m
is
u
se

ca
se
)

b
o
o
le
a
n

P
1
4

M
it
ig
a
ti
o
n

B
es
t
se
t
o
f
st
ra
te
-

g
ie
s

in
a

se
rv
ic
e

m
o
d
e

A
m
o
n
g
th
e
fe
a
si
b
le

st
ra
te
g
ie
s
in
〈D
eg
ra
d
ed
M
od
e〉
,

w
h
ic
h
is
th
e
sm

a
ll
es
t
se
t
o
f
st
ra
te
g
ie
s
th
a
t
le
a
d
s
to

th
e
be
st
se
rv
ic
e
m
od
e
?

〈D
eg
ra
d
ed
M
od
e〉

(a
se
rv
ic
e
m
o
d
e)

〈S
ce
n
a
ri
o〉

o
r
∅

T
a
b
le
3
:
S
u
rv
iv
a
b
il
it
y
p
ro
p
er
ti
es

su
p
p
o
rt
ed

b
y
th
e
su
rr
ea
l
fr
a
m
ew

o
rk

18

5.2. The surreal framework

As shown in Figure 2, for the veri�cation phase the surreal framework encompasses several tools and
documents, as follows.

Repository. The QTR is currently implemented as a JSON �le deployed on a web server. The �le completely
describes each property and includes an extra line to indicate the URL of the solver for the query: the
Listing 5 reports an excerpt of it, where only the template of property P8 is shown.

Listing 5: Excerpt of the QTR (JSON implementation)

{
"queries":[
...
{"id":"P8",
"kind":"Threat",
"name":"Security level threat impact (multiple occurrence)",
"description":"Given the best service mode, which is the service mode reached by (multiple)"
"occurrence of <M>",
"paramlist"[
{"name":"M",
"stereotype":"Misuse"}
],
"result":"ServiceMode",
"solver":"http:// localhost:8081/ MultipleThreatImpactSolver.jar"},
...
]
}

Query instantiation GUI. The CPS analyst is now in charge of choosing the queries of interest and of
specifying the parameters for binding � i.e., selecting the actual model elements according to the parameter
type list. The query instantiation GUI guides the analyst in accomplishing this task for producing the query
instantiation document (QID). Figure 7 depicts a snapshot of the GUI when executed for our running
example analysis.

Engine and solvers. The engine is the core of the query analysis process. It is in charge to read the proper
solvers in the QTR and call them based on the instantiated queries in the QID. More in details, the engine
asks the QTR for the solver, retrieves the URL and dynamically loads it in the JVM7 to enable the solution
of the instantiated query according to the binding speci�ed in the QID. As inputs, the solver receives the
SAM and an instantiated query (i.e., a single element of the QID). The solution algorithms of each solver
are di�erent one from another, but three categories have been identi�ed:

• Type A: some solvers simply explore the SAM (e.g., in understanding which are the essential services
potentially recovered by a recovery action);

• Type B: others rely on the exhaustive state space exploration capability of the SAM by the model
checker;

• Type C: others can combine the two approaches above in e�ective and e�cient solution algorithms.
As an example of this class, Algorithm 1 sketches a pseudo-java solution for the solve method of the
�Best set of strategies in a service mode (P14)� solver. This solution method uses the �rst approach
(Type A) to analyse the SAM model by searching for a sequence of transitions from the queried service
mode to the best one (lines 2-5). In the case of negative response, there is no recovery strategy, and
hence the function ends returning an empty scenario. Otherwise, a recovery strategy is generated by
considering as actions the paths associated with the transitions of the sequence.

However, this set may be not minimal8. Therefore, the second approach is applied (Type B) and the
algorithm (lines 7-12) computes the smallest set of recovery actions by re-analysing the model with
Bounded Model Checking (BMC) technique. More in detail:

7Java Virtual Machine [52]
8The set is not minimal because traditional model checkers do not guarantee the minimal length of the computed coun-

terexamples: the application of further techniques is due (e.g., [26]).

19

Figure 7: Query instantiation GUI executed on the running example

� @line 7: the MUCD formal model is generated using a new transformation component which
is built based on the one developed in the Generation phase. These components di�er in the
number of properties to check (i.e., in P14 query template the model checker is asked to compute
the path from degradedModeName to bestModeName);

� @line 8: the MUCD formal model is analysed. In this case, the di�erence is just in the command
line for launching NuSMV. The -bmc �ag is just added (inside the called method);

� @lines 9-10: they create and invoke the proper method of the speci�c query template post-
processor to separate the requested answer among the other counterexamples;

� @lines 11-12: at these lines, the transition from degradedModeName to bestModeName is extracted,
parsed, cleaned and added to the returning Scenario.

It is worth noticing that the Query Template solvers of Type B and Type C require to analyse the MUCD
formal model again; the MUCD-to-Kripke transformation, described in Sub-section 4.2, is engineered to
reuse most of the Kripke model automatically obtained in the generation phase. However, in the veri�cation
phase, the model checker is not used to generate the labelled transitions of the SAM, but to verify a property

20

on the SAM. Hence, the Properties section of the Kripke model is di�erent from the one generated before.
Furthermore, while the Process Section is the same, few di�erences are present in the De�ne Section in case
the property deals with one single attack (e.g., P8). In this case, the evolution of the original MUCD formal
model is di�erent because all the attacks can not �re, but the one that is the subject of the analysis. To this
aim, the Inhibit Symbols of the De�ne Section are changed setting to TRUE all of them but the one related
to the attack that is free to �re.

Finally, and according to Figure 2, the called solver returns the results for the engine to generate a
textual report. All the reports related to all the queries in the QID are collected by the engine that returns
them to the user in terms of an assessment report (AR). Figure 8 depicts a snapshot of such a GUI for our
running example analysis. Thus, the feedback provided to the analysis are the following answers:

• P1(SM=GS0):true. It is always possible to recover to the best service mode.

• P8(M=ManipulateInformation):[GS2]. When manipulation information attacks occur in the best
service mode, then the system degrades to service mode GS2.

• P14(S=GS1):@0:(P)RestoreOriginalCommunication->OK. The best service mode can be restored
from the degraded service GS1 by carrying out the only RestoreOriginalCommunication strategy.

Algorithm 1 The Best set of strategies in a service mode solution process

1: procedure Result: solve(query: QueryInstantiation, model: SAMHandler)
2: retval = new ScenarioResult()
3: degradedModeName = query.getBindingEntry("S")
4: bestModeName = model.getBestServiceMode()
5: reachable = model.existingNotDegradingPath(degradedMode,bestMode)
6: if reachable == True then
7: P14Transformation t = new P14Transformation(model,degradedModeName,bestModeName)
8: String report = t.execute()
9: Postprocessor pp = new P14Processor()
10: pp.buildEvolution(report)
11: Transition extended = pp.getTransition(degradedModeName,bestModeName)
12: retval.load(extended)

return retval

On the extensibility of the solvers. The solution already presented for the solvers enables easy extensibility of
the tool by allowing developers to de�ne their query templates and related solvers. As supported by the UML
class diagram in Figure 9, the implementation of a solver is limited to the classes in the solver.specific
package. More in detail, a solver should use and/or extend only some classes in the surreal.engine and
surreal.samgen packages of the surreal framework, as depicted by the class hierarchy.

The main classes that a solver developer must implement are mainly related to: (1) the core of its solving
algorithm � SpecificSolvers's solve method �, (2) the usage of the SAMHandler containing the services
able to query the SAM enhanced model (Type A and Type C solvers), (3) the implementation of both
SpecificTransformation and SpecificPostProcessor in Type B and Type C. Solvers which respectively
extend the classes of the surreal framework � Transformation is in charge of generating the SAM while
PostProcessor parses the results of the model checker execution. Finally, as explained previously, each
solver returns the results, concretely an object of the class Result, for the engine to generate a textual
report as in Figure 8.

6. The case study

This section describes the application of the approach to a more complex case study in order to ex-
hibit its potentialities in real contexts. The considered system is a smart car in the domain of intelligent

21

Figure 8: The running example - Assessment Report

Figure 9: Class diagram for extending solvers in the surreal framework

transportation systems. The case study has been extensively described in [62], where readers can �nd the
complete description of the system and a survey of known attacks against it.

Modern smart cars are equipped with many sensors, actuators and a set of control units (Electronic
Control Units - ECUs) that are able to manage both mechanical and electrical components, such as braking,
transmission, airbags, infotainment, emergency call and adaptive cruise control. These components allow
the introduction of innovative smart control and assisting subsystems, such as Autonomous Driving Systems
(ADS), Adaptive Cruise Control (ACC), collision avoidance and emergency vehicle noti�cation systems. All
these systems rely on data collected by on-board sensors that automatically generate novel control actions

22

to maintain speed and safety distance, to immediately brake the car, to alert the driver with messages
transmitted by emergency vehicles and so on. Smart cars also integrate an Internet connection (mainly
through a data SIM card) for infotainment services to enable an in-car WiFi connection.

A single bus (Controlled Area Network - CAN) � introduced in the '80s to reduce the car wiring costs and
to share information among the di�erent subsystems � connects all the devices with the ECU. Furthermore,
wireless technologies enable communication with other vehicles (known as Vehicle-to-Vehicle communica-
tions) and with the tra�c infrastructures (Vehicle-to-Infrastructure communications). A physical connection
(On-Board Diagnostics Socket - ODB) is also present to provide physical access to the whole system. Typ-
ically, all these subsystems and components do not include any security mechanism making the smart car
vulnerable to various types of attacks.

 Driver

«service»

OnLineInfotainment

 OnBoardSensors

«service»

MaintainSpeed

«service»

MaintainDistance

«service»

EmergencyBraking

«service»

AlertDriver

«misuse»

TakeControl

«misuse»

SendCraftedDABdata

«misuse»

SensorsJamming

«misuse»

InjectCommandsViaWifi

«misuse»

BlindRadar

«misuse»

InjectMessages

«recovery»

ManualControl

«recovery»

DiscardSensor

«recovery»

DisableWiFi

«recovery»

«recovery»

ReconfigureFirmware

«recovery»

HideAlerts

«serviceModeDefinition»

 RoadSensors

 OnBoardActuators

«threatens»

«threatens»

«threatens»

«threatens»

«threatens»

«mitigates»

«mitigates»

«mitigates»

«mitigates»

«mitigates»

«mitigates»

«threatens»

«mitigates»

«threatens»

«threatens»

«threatens»

DisableDABReceiver

Autonomous Driving System

Adaptive Cruise Control

Collistion Avoidance

Internet Connectivity Services

Emergency Vehicle Notification

Figure 10: Misuse case of the case study.

Misuse case diagram. The misuse case diagram, shown in Figure 10, represents a set of subsystems of the
smart car at a high level of abstraction. As said previously, the depicted diagram is a UML use case diagram
where mainly the use cases are annotated as service, misuse or recovery to identify respectively essential
services, threat scenarios and recovery strategies. The ADS consists of two subsystems: the ACC and the
collision avoidance subsystems. The former is in charge of providing two essential services MaintainSpeed
and MaintainDistance, whereas the latter provides the EmergencyBraking. The �rst two services are needed
by the ACC to regulate the speed of the car to automatically keep a minimum distance from the preceding
vehicles. Both these services rely on the information provided by the on-board sensors, and speci�cally either
on a radar, or on a laser detector, or on a camera, and are able to brake the car when it is approaching a
slower vehicle, and then accelerates when the tra�c condition permits it. These services have been modelled
as UML use cases annotated with the stereotype service. The third service is needed to activate the
emergency braking of the car (with the maximum breaking strength) when an obstacle is detected in the
proximity of the car to avoid collisions. The other two sub-systems i.e., Internet connectivity services and

23

Emergency vehicle noti�cation, provide respectively the OnLineInfotainment and the AlertDriver essential
services. The former is initiated by the driver and it allows him/her to easily control all those systems
such as GPS navigation system, radio, music playing and smartphone integration using simple and intuitive
commands. The latter is waked up by road sensors and it shows alerts about the presence of emergency
vehicles with the rights of way in the proximity of the car. Also these two services are use cases of the misuse
case diagram, annotated as service. Furthermore, the diagram in Figure 10 contains six misuse cases (use
cases annotated with the stereotype misuse) which can threaten the essential services, and six recovery
strategies which can be applied to recover the system (use cases annotated with the stereotype recovery).
Each misuse case and recovery will be described in the following of this paragraph. The dependencies among
use cases are also annotated with the stereotype threatens to model the relationships between misuse cases
and services, and with the stereotype mitigates to model the relationships between recoveries and misuses.

According to the ISO 26262 � Functional Safety for Road Vehicles [35] � the essential services have to
be classi�ed considering the Automotive Safety Integrity Levels (ASILs). There are four levels in the ASIL
classi�cation: from ASIL A to ASIL D, where ASIL A represents the lowest requirement on the service
whereas ASIL D is the highest. In addition, ASIL QM means that there are not safety requirements associ-
ated to the service. As reported in Table 4, the services considered in this case study have all an impact on
safety. In particular, the indices tagged-values associated to the essential services correspond to the highest
value of ASIL (i.e., 100), indicating the highest safety requirement, where the ASIL enumeration domain
{QM,A,B,C,D} has been mapped to an integer interval 0..100 as follows: QM = 0, A = [1, 25], B =
[26, 50], C = [51, 75], D = [76, 100]. Moreover, the availability of the On-LineInfotainment and AlertDriver
essential services is also considered. This index, in fact, is expressed as an integer interval 0..6, which spec-
i�es the number of �nines� after the comma, i.e., 0 = 99%, 1 = 99.9%, ..., 6 = 99.999999%. Just to interpret
the availability values, considering a mission time of 1 year, the corresponding downtimes are about 30s
(avail=4), 3s (avail=5) and 315ms (avail=6). Thus, the availability initial values assigned to the essential
services are the highest ones.

There are six misuse cases in the diagram in Figure 10 (represented by the use cases annotated with
the stereotype misuse). SensorsJamming represents an attack aimed at slowing down (or interrupting) the
distance measurement by means of interference signals, thus it threatens the maintenance of the distance from
the preceding vehicle and the capability of activating the emergency braking. BlindRadar also threatens the
MaintainDistance service as the previous attack, but it is aimed to prevent the correct measurement of the
distance from the preceding vehicle. Each time one of these two attacks are launched, they decrease the initial
ASIL level of the a�ected services by 20%. TakeControl represents an attack aiming at taking the control
of the ADS system, e.g., managing speed and distance from the outside. A successful attack of this type
completely reduces the ASIL of the a�ected services to 0. InjectCommandsViaWi� and SendCraftedDABdata
are special cases of TakeControl, in the sense that they also aim to take control of the ADS of the car but they
act, indirectly, by exploiting vulnerabilities of the OnLineInfotainment service. The former represents an
attack conducted by a nearby adversary who wants to take control of the ADS of the car by injecting malicious
commands through the in-car WiFi; the latter models an attack conducted by an adversary who creates a
fake radio station and sends crafted Digital Audio Broadcasting (DAB) signals to compromise the on-line
infotainment of the smart cars in the range. Both these attacks reduce the ASIL of the a�ected services
to 50% and decrease the availability of the OnLineInfotainment service of 1 nine. Finally, InjectMessages
represents an attack to the emergency vehicle noti�cation system, where an adversary injects messages in
the tra�c control system of high-tra�c roads. This attack reduces the ASIL of the AlertDrive service to
50% and decreases its availability of 1 nine.

In the diagram depicted in Figure 10, six survivability strategies � modelled as use cases annotated
with the stereotype recovery � are de�ned to mitigate the e�ects of the misuse cases and recover the
system. DiscardSensor is introduced to mitigate the sensor jamming attack, and its e�ect on the QoS
indices of the services a�ected by the misuse case is to increase their ASIL of 20%. An extreme recovery
strategy consists in giving the manual control to the driver (ManualControl), which can help in case of
adversaries who take the control of the ADS of the car or blind radar, but with a negative impact on the
availability of the OnLineInfotainment service, reducing it to 0. To contrast the injection of commands via
Wi-Fi, applicable strategies are to recon�gure the �rmware (Recon�gureFirmware) or to disable the in-car

24

Stereotype: service Tagged-values: indices (name,kind,values,initial)
MaintainSpeed (ASIL,integerInterval, 0..100,100)
MaintainDistance (ASIL,integerInterval, 0..100,100)
EmergencyBraking (ASIL,integerInterval, 0..100,100)
On-LineInfotainment (ASIL,integerInterval, 0..100,100)

(avail, integerInterval, 0..6, 6)
AlertDriver (ASIL,integerInterval, 0..100,100)

(avail, integerInterval, 0..6, 6)
Stereotype: misuse Tagged-values: a�ects (index,set,inc,dec)
SensorsJamming (ASIL, �, �, 20)
BlindRadar (ASIL, �, �, 20)
TakeControl (ASIL, 0, �, �)
InjectCommandsViaWiFi (ASIL, 50, �, �)

(avail, �, �, 1)
SendCraftedDABData (ASIL, 50, �, �)

(avail, �, �, 1)
InjectMessages (ASIL, 50, �, �)

(avail, �, �, 1)
Stereotype: recovery Tagged-values: a�ects (index,set,inc,dec)
DiscardSensor (ASIL, �,20,�)
ManualControl (avail, 0, �, �)
Recon�gureFirmware (ASIL, 100, �,�)

(avail, �, 1, �)
DisableWiFi (ASIL, 100, �, �)
DisableDABReceiver (ASIL, 100, �, �)
HideAlerts (avail, 0, �, �)
Stereotype: serviceModeDe�nition, tagged-values: formula
(Optimal,0,(MaintainSpeed.ASIL > 75) & (MaintainDistance.ASIL > 75) &

(EmergencyBraking.ASIL > 75) & (AlertDriver.ASIL > 75) & (AlertDriver.avail > 5) &
(On-LineInfotaintment.ASIL > 75) & (On-LineInfotaintment.avail >5))

(DegradedICandEN,1,(MaintainSpeed.ASIL > 75) & (MaintainDistance.ASIL > 75) &
(EmergencyBraking.ASIL > 75) & (AlertDriver.ASIL > 50) & (AlertDriver.avail > 4) &
(On-LineInfotaintment.ASIL > 50) & (On-LineInfotaintment.avail >4))

(DegradedASDSafety,2,(MaintainSpeed.ASIL > 50) & (MaintainDistance.ASIL > 50) &
(EmergencyBraking.ASIL > 50) & (AlertDriver.ASIL > 75) & (AlertDriver.avail > 5) &
(On-LineInfotaintment.ASIL > 75) & (On-LineInfotaintment.avail >5))

(Degraded,3,(MaintainSpeed.ASIL > 50) & (MaintainDistance.ASIL > 50) &
(EmergencyBraking.ASIL > 50) & (AlertDriver.ASIL > 50) & (AlertDriver.avail > 4) &
(On-LineInfotaintment.ASIL > 50) & (On-LineInfotaintment.avail >4))

(VeryDegraded,4,(MaintainSpeed.ASIL > 25) & (MaintainDistance.ASIL > 25) &
(EmergencyBraking.ASIL > 25) & (AlertDriver.ASIL > 25) & (AlertDriver.avail > 4) &
(On-LineInfotaintment.ASIL > 25) & (On-LineInfotaintment.avail >4))

(WorstDegradation, 5)

Table 4: Tagged-values speci�cation of the case study.

WiFi (DisableWiFi). In both these cases, the strategies improve the ASIL of the services that is reset to
100%, while the availability of the OnLineInfotainment service increases by 1 nine only in case of �rmware
recon�guration. Instead, if the adversary tries to crack the DAB signal, it is possible to disable the DAB
receiver (DisableDABReceiver), which increases the ASIL to 100%. At last, to recovery the system from
fake messages injected against the emergency vehicle noti�cation system, it is possible to hide the alerts
(HideAlerts) but, as for the manual control, the availability of the alert service goes to 0.

At the bottom of Table 4, we reported the de�nition of the six system service modes which vary from the
Optimal to the WorstDegradation. In particular, the Optimal service mode guarantees ASIL D (i.e., greater
than 75) for all the essential services and an availability of at least 6 nines for the OnLineInfotainment and

25

AlertDriver services. Starting from the best service mode, two distinct degradations are possible: degrada-
tion of Internet Connectivity and/or of the emergency vehicle noti�cation services (DegradedICandEN), and
degradation of ADS services (DegradedASDSafety). The intersection of both these degradations is a di�erent
service mode, named Degraded. A last acceptable degraded service mode is VeryDegraded, where essential
services guarantee a minimum ASIL B, and the OnLineInfotainment and AlertDriver services guarantee
an availability of at least 5 nines. The last service mode, WorstDegradation, does not guarantee minimum
thresholds of the QoS indices. The inclusion relationship between the six services modes is represented by
the Venn's diagram shown in Figure 11.

WorstDegradation

VeryDegraded

Degraded

DegradedICandEN DegradedASDSafetyOptimal

Figure 11: Venn's diagram representing smart car service modes

The SAM model. Figure 12 depicts the SAM model that has been automatically generated from the misuse
case diagram of Figure 10 by the SAM generation tool. The generated state machine has 6 states, corre-
sponding to the service modes previously described, and 24 transitions, corresponding to the possibilities of
the system to pass through the di�erent service modes.

For sake of space, we do not report the NuSMV model of the case study; in the following paragraph,
we describe the counterexamples to SAM, which are automatically generated to verify some properties of
interest.

System veri�cation. The model previously described has been veri�ed against the three properties P1 (Re-
versibility), P8 (Security level threat impact) and P14 (Best set of strategies in a service mode). Excluding
the trivial case of the service modeWorstDegradation, we obtained that the reversibility is guaranteed for all
the service modes but VeryDegraded. In fact, the reader can verify that all the corresponding states except
VeryDegraded in the SAM model (depicted in Figure 12) have incoming transitions from all the states with
higher severity.

More complex results have been found for the remaining two properties. In fact, the analysis of the
security level threat impact (P8) highlights that multiple occurrences of TakeControl lead the system in
the state WorstDegradation. Instead, each of the remaining misuse cases sets ASIL of services to 50 and
decreases their availability one at a time up to unacceptable levels.

At last, the analysis of the best set of strategies in a service mode (P14) highlights that the recovery
Recon�gureFirmware is the shortest way � alone or in combination to other countermeasures � to recover
the system from the states DegradedICandEN, Degraded, VeryDegraded and WorstDegradation. In fact, this
recovery rises up the ASIL to 100, which is the level required by the best service mode.

In the last part of this paragraph, we report the execution times of the conducted analysis. All the results
have been obtained working on a laptop equipped with Intel(R) Core(TM) i7-2677M CPU @ 1.80GHz and
4 Gbyte of RAM. The SAM generation has been performed in 25.32 seconds. The analysis of P1 was almost
instantaneous (since it is of Type A). Concerning P8 and P14 properties, Table 5 reports the minimum,
maximum and average time. The di�erence between the execution times of these two analysis is due to
the need in P14 query to �nd the shortest counterexample, that we implement with the BMC analysis �
generally more complex and time-consuming than other kinds of analysis.

26

«mode»

Degraded

«mode»

Optimal

«mode»

DegradedASDSafety

«mode»

VeryDegraded

«mode»

WorstDegradation

«mode»

DegradedICandEN

T_VeryDegraded_WorstDegradation
«scenario»

T_Degraded_DegradedASDSafety
«scenario»

T_DegradedASDSafety_WorstDegradation

«scenario»

T_Degraded_Optimal
«scenario»

T_VeryDegraded_Optimal
«scenario»

T_DegradedASDSafety_Degraded

«scenario»

T_WorstDegradation_DegradedASDSafety

«scenario»

T_Degraded_WorstDegradation
«scenario»

T_Optimal_DegradedASDSafety

«scenario»

T_Optimal_VeryDegraded
«scenario»

T_Optimal_WorstDegradation

«scenario»

T_Degraded_DegradedICandEN

«scenario»

T_VeryDegraded_Degraded
«scenario»

T_WorstDegradation_Optimal

«scenario»

T_DegradedASDSafety_Optimal

«scenario»

T_DegradedICandEN_Optimal

«scenario»

T_DegradedASDSafety_VeryDegraded
«scenario»

T_DegradedICandEN_DegradedASDSafety

«scenario»

T_DegradedASDSafety_DegradedICandEN

«scenario»

T_WorstDegradation_DegradedICandEN
«scenario»

T_DegradedICandEN_Degraded

«scenario»

T_WorstDegradation_Degraded
«scenario»

T_VeryDegraded_DegradedICandEN

«scenario»

T_VeryDegraded_DegradedASDSafety

«scenario»

{severity=1}

{severity=0}

{severity=3}

{severity=4}

{severity=5}

{severity=2}

Figure 12: SAM of smart car (automatically generated).

execution time [sec]
property

min avg max

P8 0.01 0.05 0.07
P14 26.89 36.21 51.04

Table 5: Execution times

These values demonstrate the applicability of the proposed approach also on complex real-world case
studies, as the smart car could be. Up to now, the tool analyses each query separately: future tool opti-
mization actions would explore batch executions of properties on the same formal model (to exploit single
generation of the state space) and/or parallel executions.

7. Assumptions and threats to validity

The presented methodology relies, in our view, on realistic assumptions discussed throughout the paper
and here summarized. Mainly, the application of the surreal framework is enabled by the usage of pro�led
UML models representing both, use cases and misuse cases, but also service modes of the overall system
need to be known and well-de�ned. These assumptions can be easily satis�ed in realistic applications when
domain experts analyse the survivability from such an elicitation of possible misuse cases. Starting from this
model, the framework is able to conduct automatic veri�cation, so giving answers to common and important
properties in the survivability �eld. Summarizing, the main hypothesis supporting the methodology are the
following:

HP1: misuses may occur concurrently and are independent;

HP2: misuses are considered as carried out in a single step;

HP3: recovery strategies are independent;

HP4: recovery strategies are considered as single-step actions and are able to recover from a degraded state;

27

HP5: the QoS levels of each system status, as well as the impact of the attacks and the improvement due to
the mitigation strategies, are based on the requirement engineer domain knowledge.

When using surreal, we have observed that the framework is able to cope with the increasing size of the
models in realistic scenarios. In fact, the tree-like structure o�ered by the Eclipse plugin helped to the
scalability of the approach. Moreover, when the number of misuses increases, the model can be organized
in packages for a better visualization and management. In any case, surreal leverages, for modelling,
state of the art Eclipse tools and scales according to them. If some threat exists for these tools it will
apply to surreal as well. The application of the methodology and framework to the proposed case
study has shown us the e�ective management of a complex real-world application and its validation. In
fact, the manual modelling of the case study has not been a hard task and the framework well supported
this activity. So, we are also con�dent that more complex case studies can also be managed. Even if we
have investigated fourteen properties, the surreal framework can be extended with additional ones and
corresponding solvers. The latter can be carried out by downloading the source code of the framework,
freely available on the GitHub repository of the project, and developing a custom package, following the
instructions given in Section 5. According to our opinion, such development of a new solver is not a
challenging task for a medium experienced Java developer. At last, it is important to remark that the real
impact of attacks and recovery strategies during system service may not correspond, one by one, to those
estimated by the approach. In fact, estimated values can be a�ected by contextual factors that may not be
completely captured by the model initially. This threat is common to all modelling approaches, especially
in the initial stages of the life-cycle. In fact, there is extensive research on modelling under uncertainties [5].
However, as the development process progresses, the engineer is equipped with better knowledge and tools,
such as system prototypes, that help to gain insights for calibrating the model, then obtaining more accurate
estimations. In particular, for threat elicitation, discrepancies can derive from many sources, even from a
wrong threat analysis conducted by experts. Fortunately, in our proposal, the automation capabilities
provided by surreal, both at the modelling and solution levels, make feasible to re-apply the approach
several times in short time-span. This is useful for updating the UML models, as well as the estimations,
as such knowledge is acquired.

8. Discussion and conclusion

The relevant contribution of this work, in our view, is the capability of verifying survivability properties.
Moreover, the veri�cation is automatic, as well as the generation of the model where they are proved, i.e.,
the SAM. The SAM is a by-product of the security speci�cation developed by the analyst, mostly in terms
of misuse cases.

Currently, we have conceptually investigated fourteen properties, all of them implemented in the frame-
work. As explained in Sub-section 5.2, the set of properties is extensible, also in terms of tool implementation
- Figure 9 - which confers great potential to the approach. The properties are expressed abstractly, in terms
of security concepts, e.g., threats, which means that they need to be interpreted in the problem domain by an
expert, e.g., the CPS analyst in the case study. Such abstraction level makes more robust the proposal since
it is not bounded to a particular problem domain or application, but can address CPS at large. However, it
posed the challenge of formalising each property, as explained in Appendix B.

The methodological and theoretical contexts proposed by the work have indeed been made practicable.
The surreal framework has been developed for the Eclipse platform [63] and applying the model-driven [64,
58] paradigm for the SAM generation tool. The rest of the tools, query instantiation GUI, engine and
solvers have been developed in Java [52] language and they are also integrated in the framework, which
can be freely dowloaded from https://github.com/stefanomarrone/surreal.

Concerning the surreal architecture, the design choice to implement a lightweight analysis framework
with just the Solver interface has the following advantages: a) it gives the freedom to the user to implement
his/her speci�c solvers with the preferred technology; b) an open architecture supports extensibility of the
framework with third-party contributions, of new solvers; c) ad-hoc solvers, focussing on a single Query

28

Template, are more manageable to design, test and load at run-time in the engine during the veri�cation
phase.

The surreal framework and the overall approach have been validated through a CPS case study in the
automotive domain. The system is exposed to attacks that threaten the safety of the passengers. The case
study makes it clear at least: a) the complexity of survivability speci�cations in CPS, as manifested in the
speci�cations in Table 4 and in the complex de�nition of the transitions in Figure 12, b) the important role
of the CPS analyst for understanding the problem domain, for example, when s/he needs to classify essential
services considering the ASILs, and c) the need for verifying security properties. Although we decided not
to present all the details of the system veri�cation, we assess three interesting properties, and among others,
we conclude that for di�erent service modes the system could not reach an optimal mode, i.e., the safety is
not guaranteed.

As future work, we want to test the tool framework in various case studies and with new properties at
hand. Other research e�orts will be put on upgrading the methodology and tools by considering quanti-
tative aspects. Services, misuses and recovery actions can also be annotated with quantitative information
capturing the probability of their occurrence and/or success. Furthermore, we plan to integrate this quan-
titative information into the MUCD formal model, and use quantitative model checking frameworks (e.g.,
PRISM [41]). The �nal aim is to provide to the CPS analyst not only information about the possible sequence
of events but also to estimate the probability of their occurrence, to boost his/her decisional power.

Appendix A. Survivability pro�le

The survivability pro�le, see Figure 1, is structured in three separate packages:

• Misuse case extensions: it includes stereotypes to specify threats/attacks and protections in UML use
case diagrams, as a result of threats modelling and survivability analysis of the system. Table A.6 lists
all the stereotypes of this package.

• Survivability Assessment Model (SAM) extensions: it includes stereotypes to specify service modes
and changes of service modes in UML state machine diagrams. This package depends on the previous
one. Table A.7 lists all the stereotypes of this package.

• Survivability types: it includes a set of datatypes/enumeration used to de�ne the previous stereotypes.
Table A.8 lists all types in detail.

Table A.6: Misuse case extensions.

Stereotype/Tag Extension Description
misuse � (Generalization: serviceMS) A misuse case represents an

use case from the point of view of an hostile actor.
Tag
a�ects It is a set of consequences on the services threatened by the

misuse case. Each consequence is expressed in terms of the
(negative) impact on the value of a QoS index.

successProb It is the probability of succeeding.
attackDelay It is the mean time between the attack launching and the

intrusion occurrence.
misuser Actor A misuser is an hostile actor: it can be an attacker, an

unaware user who uses the system in the wrong way or the
environment that hinders the sytem being in operation.

mitigates Dependency It is a direct relationship between a strategy that aim at
mitigating a misuse case and the misuse case.

Continued on next page

29

Table A.6 � continued from previous page

resistance � (Generalization: strategy) It is a strategy aimed at repeal-
ing an attack or masking an accidental fault [20].

recovery � (Generalization: strategy) It is a strategy aimed at restoring
the service after an intrusion or failure [20].

Tag
a�ects It is a set of consequence on the services that were threat-

ened by the misuse cases mitigated by the strategy. Each
consequence is expressed in terms of (positive) impack on
the value of a QoS index.

MTTR (Mean Time To Recover) It is the time to undergo recovery.
recognition � (Generalization: strategy) It is a strategy aimed at detect-

ing an attack/fault and evaluating the damage [20].
service Use Case It is an essential service provided by the system that

must survive even when it is in�ltrated, compromised or
crashed [20].

Tag
indices It is a set of Quality of Service (QoS) requirements associ-

ated to the service. Each QoS requirement is expressed in
terms of a performance, dependability or security index.

serviceModeDe�nition Constraint It is a speci�cation of the global service modes of the sytem.
Tag
formula It is a set of global service modes. Each service mode is a

logical expression that de�nes the QoS requirements of the
system in terms of minimum/maximum acceptable values
for the QoS indexs associated to the essential services.

serviceSM Use Case It is an abstract stereotype that may represent either a
misuse case or a survivability strategy.

strategy Use Case (Generalization: serviceSM) It is an abstract stereotype
that represents a survivability strategy.

Tag
successsProb Probability of succeeding.
threatens Dependency It is a direct relationship between a misuse case that threat-

ens an essential service and the service.

Table A.7: Survivability Assessment Model extensions.

Stereotype/Tag Extension Description
mode State A global service mode.
Tag
severity The severity level of the service mode: the higher is the

level the more degraded mode is.
scenario Transition The system changes from a global service mode to another

global service mode.
Tag
path It is a sequence of misuse cases/recovery strategies that

causes the change of a service mode.

30

Table A.8: Survivability types.

Datatype/Attribute Description
MSActivation It is a misuse/strategy activation.
Attribute
service The misuse case or the survivability strategy.
value The state value associated to the service.
step The step number, representing a state of the global system, that includes

this service value.
a�ectConsequence It is the consequence on a QoS index.
Attribute
index The name of the QoS index.
set The value set to the QoS index.
inc The increment to the current value of the QoS index (positive conse-

quence due to a recovery strategy).
dec The decrement to the current value of the QoS index (negative conse-

quence due to a misuse case).
duration Mean duration.
Attribute
value Time value.
unit Time unit.
index QoS index.
Attribute
name The name of the QoS index.
kind The type of value domain.
values The value domain.
initial The initial value.
indexKind Index value domain
integerInterval An integer interval.
enum Enumeration.

Appendix B. Formalisation of the properties

This appendix provides a formalisation of the survivability properties that the surreal framework o�ers
currently. We realised the need for formalising the properties early while studying their application even to
simple examples, and de�nitively while implementing them. In fact, some properties where being interpreted
by each researcher slightly di�erent. However, it took discussions to �nd a better way of carrying out the
formalisation. Finally, we based the formalisation on two de�nitions: a) the SAM (survivability assessment
model), i.e., a state machine, given in De�nition 1; and b) the service mode reachability, given in De�nition 2.

De�nition 1. A state machine is a tuple SM = 〈S, T, C, [〉, π, ω〉, where:

• S is the set of service modes.

• T is the set of transitions representing the changes of service mode.

• C = T ∪ R is the set of (mis)use cases, which is partitioned into the set of threats T (misuse cases),
and the set of recovery strategies R (strategy use cases).

• The service mode change function [〉 : T → S × S associates to each transition t ∈ T a pair of service
modes (s, s′), where s is the leaving service mode and s′ is the entering service mode. The change from
service mode s to service mode s′ is denoted by: s[t〉s′.

31

• The priority function π : S → N assigns a natural number to each service mode: the lower is the
priority, the more degraded is the service mode. The priority function π de�nes a total ordering of the
service modes and s0 ∈ S such that π(s0) = maxs∈Sπ(s) is the best service mode.

• Let O = T ×{TRUE,FALSE}
⋃
R×{OK,ENABLED,KO} be the set of the possible threat/recovery

strategy states, the function ω : T → On assigns to each transition t ∈ T , where s[t〉s′, a sequence of
threat/recovery strategy occurrences (τ1, . . . , τn), where τi ∈ O, that causes the change of service mode
from s to s′. We denote by |(τ, ω(t))|, the number of occurrences of τ ∈ O in the sequence occurrence
ω(t) of transition t ∈ T .

De�nition 2. Let SM = 〈S, T, C, [〉, π, ω〉 be a state machine, a service mode s′ ∈ S is reachable from a
service mode s ∈ S if there exists a sequence of transitions σ ≡ (t0, t1, . . . , tn), where ti ∈ T, i = 0, . . . , n,
that leads from s to s′, i.e.:

s[t0〉s0[t1〉s1[. . . 〉sn−1[tn〉s′ ≡ s[σ〉s′.

In the following, each query template or property, listed in Table 3, is formally de�ned using the notation
just introduced.

Property 1 (Reversibility). Let SM = 〈S, T, C, [〉, π, ω〉 be a state machine and x ∈ S a service mode. Then,
it is always possible to recover to x i� ∀s ∈ SM \ {x} such that π(s) < π(x),∃σ ≡ (t0, t1, . . . , tn) : s[σ〉x.

Property 2 (Strong reversibility). Let SM = 〈S, T, C, [〉, π, ω〉 be a state machine and x ∈ S a service
mode. Then, it is always possible to recover to x without further degradation i� ∀s ∈ SM \ {x} such that
π(s) < π(x),∃σ ≡ (t0, t1, . . . , tn) : s[σ〉x ≡ s[t0〉s0[t1〉s1[. . . 〉sn−1[tn〉x and ∀i = 0, . . . , n− 1 : π(s) < π(si).

Property 3 (Recoverability). Let SM = 〈S, T, C, [〉, π, ω〉 be a state machine, s, s′ ∈ S two service modes,
where π(s′) < π(s). Then, it is always possible to recover to s from s′ i� ∃σ ≡ (t0, t1, . . . , tn) : s[σ〉s′.

Property 4 (Strong recoverability). Let SM = 〈S, T, C, [〉, π, ω〉 be a state machine and s, s′ ∈ S two service
modes, where π(s′) < π(s). Then, it is always possible to recover to s from s′ without further degradation
i� ∃σ ≡ (t0, t1, . . . , tn) : s

′[σ〉s ≡ s′[t0〉s0[t1〉s1[. . . 〉sn−1[tn〉s and ∀i = 0, . . . , n− 1 : π(s′) < π(si).

Property 5 (Threat consequence � single occurrence). Let SM = 〈S, T, C, [〉, π, ω〉 be a state machine and
τ ∈ T a threat. Then, a single occurrence of τ ≡ (τ, TRUE) provokes a system degradation i� ∃t ∈ T : si[t〉sj
such that:

1. π(sj) < π(si),

2. |(τ, ω(t))| = 1, and

3. ∀τ ′ ∈ T \ {τ} : (τ ′, TRUE) 6∈ ω(t).

Property 6 (Threat consequence � multiple occurrence). Let SM = 〈S, T, C, [〉, π, ω〉 be a state machine
and τ ∈ T a threat. Then, a multiple occurrence of τ ≡ (τ, TRUE) provokes a system degradation i�
∃t ∈ T : si[t〉sj such that:

1. π(sj) < π(si),

2. |(τ, ω(t))| ≥ 1, and

3. ∀τ ′ ∈ T \ {τ} : (τ ′, TRUE) 6∈ ω(t).

Property 7 (Security level threat impact � single occurrence). Let SM = 〈S, T, C, [〉, π, ω〉 be a state machine,
s0 ∈ S the best service mode and τ ∈ T a threat. Let us denote by target(s0) = {s ∈ SM | ∃t ∈ T : s0[t〉s},
the set of service modes that can be reached directly from s0. Then, the set Ŝ ⊆ target(s0):

Ŝ = {s | ∃t ∈ T : s0[t〉s, ∃ (τ, TRUE) ∈ ω(t) : |((τ, TRUE), ω(t))| = 1, 6 ∃ τ ′ ∈ T \{τ} : (τ ′, TRUE) ∈ ω(t)}

is the set of service modes reached by a single occurrence of the threat τ ∈ T from the best service mode s0.

32

Property 8 (Security level threat impact � multiple occurrence). Let SM = 〈S, T, C, [〉, π, ω〉 be a state
machine, s0 ∈ S the best service mode and τ ∈ T a threat. Let us denote by target(s0) = {s ∈ SM | ∃t ∈
T : s0[t〉s}, the set of service modes that can be reached directly from s0. Then, the set Ŝ ⊆ target(s0):

Ŝ = {s | ∃t ∈ T : s0[t〉s, ∃ (τ, TRUE) ∈ ω(t) : |((τ, TRUE), ω(t))| ≥ 1, 6 ∃ τ ′ ∈ T \{τ} : (τ ′, TRUE) ∈ ω(t)}

is the set of service modes reached by multiple occurrences of the threat τ ∈ T from the best service mode
s0.

Property 9 (Threat scenario). Let SM = 〈S, T, C, [〉, π, ω〉 be a state machine, s0 ∈ S the best service mode
and s ∈ S, s 6= s0 a service mode. Given a sequence of transitions σ ≡ (t0, . . . , tn) that leads from s0 to
s, i.e., s0[σ〉s, the set T (σ) = {τ ∈ T : ∃ti ∈ σ, (τ, TRUE) ∈ ω(ti)} contains the threats that cause the
service degradation to s from the best service s0. Then, the smallest set of threats T ∗ that leads to s from
s0 satis�es the equality:

|T ∗| = min
σ:s0[σ〉s

{|T (σ)|}

Property 10 (Recovery feasibility). Let SM = 〈S, T, C, [〉, π, ω〉 be a state machine and ρ ∈ R a recovery
strategy. Then, ρ is feasible i� ∃t ∈ T : s[t〉s′ where π(s) < π(s′) such that ∃(ρ,OK) ∈ ω(t).

Property 11 (Multiple recovery). Let SM = 〈S, T, C, [〉, π, ω〉 be a state machine and ρ1, . . . , ρn ∈ R, n
recovery strategies. Then, the n survivability strategies are always needed together i� ∀t ∈ T : s[t〉s′ where
π(s) < π(s′) such that ∃i ∈ {1, . . . , n} : (ρi, OK) ∈ ω(t) =⇒ ∀j ∈ {1, . . . , n} \ {i} : (ρj , OK) ∈ ω(t).

Property 12 (Recovery mutual exclusion). Let SM = 〈S, T, C, [〉, π, ω〉 be a state machine and ρ1, . . . , ρn ∈ R,
a subset of recovery strategies. Given a transition t ∈ T : s[t〉s′, let us denote by R(t) = {ρ ∈ R : (ρ,OK) ∈
ω(t)}, the set of recovery strategies that causes the change of service mode from s to s′. Then, the subset
of recovery strategies are never carried out together i�:

6 ∃s ∈ S : {ρ1, . . . , ρn} ⊆
⋃

t∈T :s[t〉s′
R(t).

Property 13 (Threat/recovery e�ectiveness). Let SM = 〈S, T, C, [〉, π, ω〉 be a state machine, τ ∈ T a threat
and ρ ∈ R a recovery strategy. Then, the strategy ρ is e�ective to mitigate the threat τ i�

∀s ∈ S, ∀t ∈ T : s[t〉s′, (τ, TRUE) ∈ ω(t), 6 ∃(τ ′, TRUE) ∈ ω(t), τ ′ 6= τ =⇒

∃t′ ∈ T : s′[t′〉s′′, (r,OK) ∈ ω(t′), 6 ∃(r′, OK) ∈ ω(t′), r′ 6= r

where π(s′) < π(s′′).

Property 14 (Best set of strategies in a service mode). Let SM = 〈S, T, C, [〉, π, ω〉 be a state machine,
s0 ∈ S the best service mode and sn ∈ S, sn 6= s0 a service mode. Given a sequence of transitions
σ ≡ (tn, . . . , t1) (ti ∈ T, i = 1, . . . , n) that leads sn to s0, i.e., sn[tn〉sn−1[. . . 〉s1[t1〉s0 ≡ sn[σ > s0, where
π(si) < π(si−1), i = n, . . . , 1, let R(σ) = {ρ ∈ R | ∃ti ∈ σ : (ρ,OK) ∈ ω(ti)} be the set of recovery strategies
that occurred in σ. Then, the smallest set of strategies R∗ that leads to the best service mode satis�es the
equality:

|R∗| = min
σ:s[σ〉s0

{|R(σ)|}

where |X| is the cardinality of the set X.

33

Appendix C. Kripke model of the running example

This appendix includes the complete Kripke model of the running example.

-- Process modules

MODULE ExchangeInformation(p_Jamming ,p_ChooseAlternativeCommunication ,p_RestoreOriginalCommunication ,
p_ManipulateInformation ,p_RestoreOriginalData)

VAR
avail: 0..100;
integLevel: 0..100;

ASSIGN
init(avail) := 100;
init(integLevel) := 100;
next(avail) := case
(p_Jamming = TRUE) & (p_ChooseAlternativeCommunication = KO) & (avail >= (10 + 0)): avail - 10;
(p_ChooseAlternativeCommunication = OK) & (avail <= (100 - 10)): avail + 10;
(p_Jamming = TRUE) & (p_RestoreOriginalCommunication = KO) & (avail >= (10 + 0)): avail - 10;
(p_RestoreOriginalCommunication = OK) & (avail < 100): 100;
TRUE: avail;

esac;
next(integLevel) := case
(p_ManipulateInformation = TRUE) & (p_RestoreOriginalData = KO) & (integLevel > 50): 50;
(p_RestoreOriginalData = OK) & (integLevel < 100): 100;
TRUE: integLevel;

esac;

MODULE UpdateMap(p_DestroyNode ,p_Reconfigure ,p_ManipulateInformation ,p_RestoreOriginalData)
VAR

avail: 0..100;
integLevel: 0..100;

ASSIGN
init(avail) := 100;
init(integLevel) := 100;
next(avail) := case
(p_DestroyNode = TRUE) & (p_Reconfigure = KO) & (avail > 0): 0;
(p_Reconfigure = OK) & (avail < 100): 100;
TRUE: avail;

esac;
next(integLevel) := case
(p_DestroyNode = TRUE) & (p_Reconfigure = KO) & (integLevel > 10): 10;
(p_Reconfigure = OK) & (integLevel < 90): 90;
(p_ManipulateInformation = TRUE) & (p_RestoreOriginalData = KO) & (integLevel > 50): 50;
(p_RestoreOriginalData = OK) & (integLevel < 100): 100;
TRUE: integLevel;

esac;

-- Main module
MODULE main
VAR

Jamming: boolean;
ManipulateInformation: boolean;
DestroyNode: boolean;
RestoreOriginalCommunication: {ENABLED , OK, KO};
ChooseAlternativeCommunication: {ENABLED , OK , KO};
RestoreOriginalData: {ENABLED , OK , KO};
Reconfigure: {ENABLED , OK, KO};
proc_ExchangeInformation: ExchangeInformation(Jamming ,ChooseAlternativeCommunication ,

RestoreOriginalCommunication , ManipulateInformation ,RestoreOriginalData);
proc_UpdateMap: UpdateMap(DestroyNode ,Reconfigure ,ManipulateInformation ,RestoreOriginalData);

ASSIGN
init(Jamming) := FALSE;
next(Jamming) := case

(Jamming_inhibitor = TRUE): FALSE;
(Jamming_inhibitor = FALSE): {TRUE , FALSE };

esac;
init(ManipulateInformation) := FALSE;
next(ManipulateInformation) := case

(ManipulateInformation_inhibitor = TRUE): FALSE;
(ManipulateInformation_inhibitor = FALSE): {TRUE , FALSE};

esac;
init(DestroyNode) := FALSE;
next(DestroyNode) := case

(DestroyNode_inhibitor = TRUE): FALSE;
(DestroyNode_inhibitor = FALSE): {TRUE , FALSE };

esac;
init(RestoreOriginalCommunication) := KO;

34

init(ChooseAlternativeCommunication) := KO;
init(RestoreOriginalData) := KO;
init(Reconfigure) := KO;
next(RestoreOriginalCommunication) := case

(RestoreOriginalCommunication = KO) & ((Jamming = TRUE)): ENABLED;
(RestoreOriginalCommunication = ENABLED): {ENABLED , OK};
(RestoreOriginalCommunication = OK): KO;
TRUE: RestoreOriginalCommunication;

esac;
next(ChooseAlternativeCommunication) := case

(ChooseAlternativeCommunication = KO) & ((Jamming = TRUE)): ENABLED;
(ChooseAlternativeCommunication = ENABLED): {ENABLED , OK};
(ChooseAlternativeCommunication = OK): KO;
TRUE: ChooseAlternativeCommunication;

esac;
next(RestoreOriginalData) := case

(RestoreOriginalData = KO) & ((ManipulateInformation = TRUE)): ENABLED;
(RestoreOriginalData = ENABLED): {ENABLED , OK};
(RestoreOriginalData = OK): KO;
TRUE: RestoreOriginalData;

esac;
next(Reconfigure) := case

(Reconfigure = KO) & ((DestroyNode = TRUE)): ENABLED;
(Reconfigure = ENABLED): {ENABLED , OK};
(Reconfigure = OK): KO;
TRUE: Reconfigure;

esac;

-- Inhibit Symbols
DEFINE

Jamming_inhibitor := FALSE;
ManipulateInformation_inhibitor := FALSE;
DestroyNode_inhibitor := FALSE;

-- SM Symbols
DEFINE

GS0 := (proc_ExchangeInformation.avail > 90) & (proc_ExchangeInformation.integLevel > 60) &
(proc_UpdateMap.avail > 90) & (proc_UpdateMap.integLevel > 60);

GS1 := !(GS0) & (proc_ExchangeInformation.avail > 80) &
(proc_ExchangeInformation.integLevel > 60) & (proc_UpdateMap.avail > 80) &
(proc_UpdateMap.integLevel > 60);

GS2 := !(GS0 | GS1) & (proc_ExchangeInformation.avail > 50) &
(proc_ExchangeInformation.integLevel > 30) & (proc_UpdateMap.avail > 50) &
(proc_UpdateMap.integLevel > 30);

GS3 := !(GS0 | GS1 | GS2);

-- Properties
CTLSPEC AG (GS0 -> AX(!GS1))
CTLSPEC AG (GS0 -> AX(!GS2))
CTLSPEC AG (GS0 -> AX(!GS3))
CTLSPEC AG (GS1 -> AX(!GS0))
CTLSPEC AG (GS1 -> AX(!GS2))
CTLSPEC AG (GS1 -> AX(!GS3))
CTLSPEC AG (GS2 -> AX(!GS0))
CTLSPEC AG (GS2 -> AX(!GS1))
CTLSPEC AG (GS2 -> AX(!GS3))
CTLSPEC AG (GS3 -> AX(!GS0))
CTLSPEC AG (GS3 -> AX(!GS1))
CTLSPEC AG (GS3 -> AX(!GS2))

Acknowledgments

This research was supported by the Spanish Ministry of Science, Innovation and Universities [ref.
Medrese-RTI2018-098543-B-I00]. The author U. Gentile thanks the European Organization for Nuclear
Research (CERN) where he started the activities described in the paper. Finally, the authors want to thank
the reviewers and editors for their invaluable help to improve the paper.

References

[1] IEC 61508: Functional Safety of Electrical/electronic/programmable Electronic Safety Related Systems (1998).
[2] Railway applications - Communication, signalling and processing systems - Software for railway control and protection

systems, CENELEC, 2011.

35

[3] I. Alexander, Misuse cases: use cases with hostile intent, IEEE Software 20 (2003) 58�66.
[4] D. Alrajeh, J. Kramer, A. Russo, S. Uchitel, Elaborating Requirements Using Model Checking and Inductive Learning,

IEEE Transactions on Software Engineering 39 (2013) 361�383.
[5] Ayyub, Bilal and Klir, George, Uncertainty Modeling and Analysis in Engineering and the Sciences, Chapman & Hall,

Taylor and Francis Group, 2006.
[6] P. Behm, P. Benoit, A. Faivre, J.M. Meynadier, Météor: A successful application of B in a large project, Lecture Notes in

Computer Science (including subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioinformatics) 1708
(1999) 369�387.

[7] M. Benerecetti, R.D. Guglielmo, U. Gentile, S. Marrone, N. Mazzocca, R. Nardone, A. Peron, L. Velardi, V. Vittorini,
Dynamic state machines for modelling railway control systems, Science of Computer Programming 133 (2017) 116�153.

[8] S. Bernardi, L. Dranca, J. Merseguer, A model-driven approach to survivability requirement assessment for critical systems,
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 230 (2016) 485�501.

[9] S. Bernardi, J. Merseguer, D.C. Petriu, Model-Driven Dependability Assessment of Software Systems, Springer Berlin
Heidelberg, 2013.

[10] M. Biagi, L. Carnevali, F. Tarani, E. Vicario, Model-based quantitative evaluation of repair procedures in gas distribution
networks, ACM Trans. Cyber-Phys. Syst. 3 (2018) 19:1�19:26.

[11] A. Biere, A. Cimatti, E. Clarke, O. Strichman, Y. Zhu, Bounded Model Checking, Advances in Computers 58 (2003)
117�148.

[12] G. Biggs, T. Sakamoto, T. Kotoku, A pro�le and tool for modelling safety information with design information in SysML,
Software & Systems Modeling 15 (2016) 147�178.

[13] T. Bures, D. Weyns, B. Schmer, E. Tovar, E. Boden, T. Gabor, I. Gerostathopoulos, P. Gupta, E. Kang, A. Knauss, P. Pa-
tel, A. Rashid, I. Ruchkin, R. Sukkerd, C. Tsigkanos, Software engineering for smart cyber-physical systems: Challenges
and promising solutions, SIGSOFT Softw. Eng. Notes 42 (2017) 19�24.

[14] R. Calinescu, S. Kikuchi, K. Johnson, Compositional reveri�cation of probabilistic safety properties for large-scale com-
plex it systems, in: R. Calinescu, D. Garlan (Eds.), Large-Scale Complex IT Systems. Development, Operation and
Management, Springer, Berlin, Heidelberg, 2012, pp. 303�329.

[15] B. Cheng, J. Atlee, Research directions in requirements engineering, FoSE 2007: Future of Software Engineering, pp.
285�303.

[16] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, A. Tacchella, NuSMV 2: An
open source tool for symbolic model checking, Lecture Notes in Computer Science 2404 (2002) 359�364.

[17] J. Dörr, D. Kerkow, A.V. Knethen, B. Paech, Eliciting e�ciency requirements with use cases, in: In Proceedings of the
International Workshop on Requirements Engineering: Foundations of Software Quality (REFSQ'2003).

[18] A. Drago, S. Marrone, N. Mazzocca, R. Nardone, A. Tedesco, V. Vittorini, A model-driven approach for vulnerability
evaluation of modern physical protection systems, Software and Systems Modeling 18 (2019) 523�556.

[19] D.A. Eisenberg, D.L. Alderson, M. Kitsak, A. Ganin, I. Linkov, Network foundation for command and control (c2) systems:
Literature review, IEEE Access 6 (2018) 68782�68794.

[20] R.J. Ellison, R.C. Linger, T.A. Longsta�, N.R. Mead, Survivable network system analysis: A case study, IEEE Software
16 (1999) 70�77.

[21] P. Fiter u-Bro³tean, R. Janssen, F. Vaandrager, Combining Model Learning and Model Checking to Analyze TCP Imple-
mentations, in: A. Chaudhuri, Swaratand Farzan (Ed.), Computer Aided Veri�cation, Springer International Publishing,
Cham, 2016, pp. 454�471.

[22] I. Friedberg, K. McLaughlin, P. Smith, D. Laverty, S. Sezer, Stpa-safesec: Safety and security analysis for cyber-physical
systems, Journal of Information Security and Applications 34 (2017) 183 � 196.

[23] S. Friedenthal, A. Moore, R. Steiner, A Practical Guide to SysML: Systems Modeling Language, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.

[24] A. Fuxman, M. Pistore, J. Mylopoulos, P. Traverso, Model checking early requirements speci�cations in Tropos, in:
Proceedings Fifth IEEE International Symposium on Requirements Engineering, 2001, pp. 174�181.

[25] A. Gargantini, C. Heitmeyer, Using model checking to generate tests from requirements speci�cations, SIGSOFT Softw.
Eng. Notes 24 (1999) 146�162.

[26] P. Gastin, P. Moro, Minimal Counterexample Generation for SPIN, in: D. Bo²na£ki, S. Edelkamp (Eds.), Model Checking
Software, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 24�38.

[27] U. Gentile, S. Bernardi, S. Marrone, J. Merseguer, V. Vittorini, A model driven approach for assessing survivability
requirements of critical infrastructures, Journal of High Speed Networks 23 (2017) 175�186.

[28] G. Georg, K. Anastasakis, B. Bordbar, S.H. Houmb, I. Ray, M. Toahchoodee, Veri�cation and trade-o� analysis of security
properties in UML system models, IEEE Trans. Software Eng. 36 (2010) 338�356.

[29] M. Ghallab, D. Nau, P. Traverso, Automated Planning: Theory and Practice, 2004.
[30] M. Gharib, P. Lollini, A. Ceccarelli, A. Bondavalli, Engineering functional safety requirements for automotive systems:

A cyber-physical-social approach, in: D. Yu, V. Nguyen, C. Jiang (Eds.), 19th IEEE International Symposium on High
Assurance Systems Engineering, HASE 2019, Hangzhou, China, January 3-5, 2019, IEEE, 2019, pp. 74�81.

[31] K. Goertzel, L. Feldman, Software Survivability: Where Safety and Security Converge, in: AIAA Infotech@Aerospace
Conference, 6-9 April, 2009.

[32] S.H. Houmb, G. Georg, S.H. St, F. Collins, R. France, An integrated security veri�cation and security solution design trade-
o� analysis, in: Integrating Security and Software Engineering: Advances and Future Visions, IDEA Group Publishing,
2007, pp. 190�219.

[33] G. Howard, M. Butler, J. Colley, V. Sassone, Formal analysis of safety and security requirements of critical systems

36

supported by an extended stpa methodology, in: 2017 IEEE European Symposium on Security and Privacy Workshops
(EuroS PW), pp. 174�180.

[34] A. Humayed, J. Lin, F. Li, B. Luo, Cyber-physical systems security � a survey, IEEE Internet of Things Journal 4 (2017)
1802�1831.

[35] ISO 26262, Road vehicles - Functional safety, ISO, 2011.
[36] J. Jürjens, UMLsec: Extending UML for secure systems development, in: Proceedings of the 5th International Conference

on The Uni�ed Modeling Language, UML '02, Springer-Verlag, London, UK, 2002, pp. 412�425.
[37] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav, A. Slobodová, C. Taylor, V. Frolov,

E. Reeber, A. Naik, Replacing testing with formal veri�cation in intel R© CoreTM i7 processor execution engine validation,
Lecture Notes in Computer Science (including subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes in
Bioinformatics) 5643 LNCS (2009) 414�429.

[38] J.C. Knight, E.A. Strunk, Achieving critical system survivability through software architectures, in: R. de Lemos, C. Gacek,
A. Romanovsky (Eds.), Architecting Dependable Systems II, Springer, Berlin, Heidelberg, 2004, pp. 51�78.

[39] K. Koh, P. Seong, SMV model-based safety analysis of software requirements, Reliability Engineering and System Safety
94 (2009) 320�331.

[40] Kushnet, D., The real story of Stuxnet, IEEE Spectrum (2013).
[41] M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Veri�cation of Probabilistic Real-time Systems, in: G. Gopalakr-

ishnan, S. Qadeer (Eds.), Proc. 23rd International Conference on Computer Aided Veri�cation (CAV'11), volume 6806 of
LNCS, Springer, 2011, pp. 585�591.

[42] F. Lagarde, H. Espinoza, F. Terrier, S. Gérard, Improving UML pro�le design practices by leveraging conceptual domain
models, in: 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE 2007), Atlanta (USA),
ACM, 2007, pp. 445�448.

[43] N. Leveson, N. Dulac, Safety and risk-driven design in complex systems-of-systems, in: A Collection of Technical Papers
- 1st Space Exploration Conference: Continuing the Voyage of Discovery, 2005, volume 1, pp. 584�608.

[44] T. Lodderstedt, D. Basin, J. Doser, SecureUML: A UML-Based Modeling Language for Model-Driven Security, in: l.J.
Jézéque, H. Hussmann, S. Cook (Eds.), The Uni�ed Modeling Language. UML 2002, volume 2460 of Lecture Notes in

Computer Science, Springer, Berlin, Heidelberg, 2002.
[45] I. Lopatkin, A. Iliasov, A. Romanovsky, Y. Prokhorova, E. Troubitsyna, Patterns for representing FMEA in formal

speci�cation of control systems, Proceedings of IEEE International Symposium on High Assurance Systems Engineering,
2011, pp. 146�151.

[46] M.S. Lund, B. Solhaug, K. Stølen, Foundations of security analysis and design VI, Springer-Verlag, Berlin, Heidelberg,
2011, pp. 231�274.

[47] S. Marrone, R. Rodríguez, R. Nardone, F. Flammini, V. Vittorini, On synergies of cyber and physical security modelling
in vulnerability assessment of railway systems, Computers and Electrical Engineering 47 (2015) 275�285.

[48] A. Masrur, M. Kit, V. Mat¥na, T. Bures, W. Hardt, Component-based design of cyber-physical applications with safety-
critical requirements, Microprocessors and Microsystems 42 (2016).

[49] D. Méry, N. Singh, Analyzing requirements using environment modelling, Lecture Notes in Computer Science (including
subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioinformatics) 9185 (2015) 345�357.

[50] H. Mouratidis, Secure Software Systems Engineering: The Secure Tropos Approach (Invited Paper), JSW 6 (2011).
[51] OMG-MARTE, UML Pro�le for MARTE: Modeling and Analysis of Real-time Embedded Systems, OMG, 2011. Version

1.1, formal/11-06-02.
[52] Oracle, Website, 2019. url: https://www.oracle.com/technetwork/java/index.html.
[53] M. Pavlidis, S. Islam, H. Mouratidis, A CASE Tool to Support Automated Modelling and Analysis of Security Require-

ments, Based on Secure Tropos, in: S. Nurcan (Ed.), IS Olympics: Information Systems in a Diverse World, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 95�109.

[54] M. Raja Ramesh, C. Satyananda Reddy, A survey on security requirement elicitation methods: Classi�cation, merits and
demerits, International Journal of Applied Engineering Research 11 (2016) 64�70.

[55] R.J. Rodríguez, J. Merseguer, S. Bernardi, Modelling security of critical infrastructures: A survivability assessment, The
Computer Journal (2014).

[56] Y. Roudier, M. Idrees, L. Apvrille, Towards the model-driven engineering of security requirements for embedded systems,
2013 3rd International Workshop on Model-Driven Requirements Engineering, MoDRE 2013 - Proceedings, pp. 55�64.

[57] S. Scholz, K. Thramboulidis, Integration of model-based engineering with system safety analysis, International Journal of
Industrial and Systems Engineering 15 (2013) 193�215.

[58] B. Selic, The pragmatics of model-driven development, IEEE Software 20 (2003) 19�25.
[59] B. Selic, A Systematic Approach to Domain-Speci�c Language Design Using UML, in: Tenth IEEE International Sym-

posium on Object-Oriented Real-Time Distributed Computing (ISORC 2007), 7-9 May 2007, Santorini Island, Greece,
IEEE Computer Society, 2007, pp. 2�9.

[60] O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. Wing, Automated generation and analysis of attack graphs, Proceedings
of the IEEE Computer Society Symposium on Research in Security and Privacy (2002) 273�284.

[61] J. Song, H. Zhao, X. Li, Y. Yang, C. Liu, H. Li, A new software failure analysis method based on the system reliability
modeling, Proceedings of 2019 IEEE 8th Joint International Information Technology and Arti�cial Intelligence Conference,
ITAIC 2019, pp. 1143�1149.

[62] I. Stellios, P. Kotzanikolaou, M. Psarakis, C. Alcaraz, J. Lopez, A survey of iot-enabled cyberattacks: Assessing attack
paths to critical infrastructures and services, IEEE Communications Surveys & Tutorials 20 (2018) 3453�3495.

[63] The Eclipse Foundation, Website, 2019. url: http://www.eclipse.org/oxygen/.

37

[64] The Object Management Group (OMG), Model-Driven Architecture Speci�cation and Standardisation, Technical Report,
2018. url: http://www.omg.org/mda/.

[65] E. Troubitsyna, Elicitation and speci�cation of safety requirements, 3rd International Conference on Systems, ICONS
2008, pp. 202�207.

[66] S. Ullah, M. Iqbal, A.M. Khan, A survey on issues in non-functional requirements elicitation, in: International Conference
on Computer Networks and Information Technology, 2011, pp. 333�340.

[67] UML2, Uni�ed Modeling Language: Infrastructure, 2017. Version 2.5.1, OMG document: formal/2017-12-05.
[68] J. Vilela, J. Castro, L. Martins, T. Gorschek, Integration between requirements engineering and safety analysis: A

systematic literature review, Journal of Systems and Software 125 (2017) 68�92.
[69] V. Vittorini, S. Marrone, N. Mazzocca, R. Nardone, A. Drago, A model-driven process for physical protection system

design and vulnerability evaluation, Topics in Safety, Risk, Reliability and Quality 27 (2015) 143�169.
[70] H. Wang, D. Zhong, T. Zhao, Avionics system failure analysis and veri�cation based on model checking, Engineering

Failure Analysis 105 (2019) 373�385.
[71] J. Yoo, T. Kim, S. Cha, J.S. Lee, H. Son, A formal software requirements speci�cation method for digital nuclear plant

protection systems, Journal of Systems and Software 74 (2005) 73�83.
[72] Y. Zacchia Lun, A. D'Innocenzo, F. Smarra, I. Malavolta, M. Benedetto, State of the art of cyber-physical systems security:

an automatic control perspective, Journal of Systems and Software 149 (2018).

38

