
Software and Systems Modeling (2024) 23:1455–1491
https://doi.org/10.1007/s10270-024-01228-3

THEME SECT ION PAPER

Completion of SysML state machines from Given–When–Then
requirements

Maria Stella de Biase1 · Simona Bernardi2 · Stefano Marrone1 · José Merseguer2 · Angelo Palladino3

Received: 14 August 2023 / Revised: 16 September 2024 / Accepted: 2 October 2024 / Published online: 27 November 2024
© The Author(s) 2024

Abstract
MDE enables the centrality of the models in semi-automated development processes. However, its level of usage in industrial
settings is still not adequate for the benefits MDE can introduce. This paper proposes a semi-automatic approach for the
completion of high-level models in the lifecycle of critical systems, which exhibit an event-driven behaviour. The proposal
suggests a specification guideline that starts from a partial SysML model of a system and on a set of requirements, expressed
in the well-known Given–When–Then paradigm. On the basis of such requirements, the approach enables the semi-automatic
generation of new SysML state machines model elements. Accordingly, the approach focuses on the completion of the
state machines by adding proper transitions (with triggers, guards and effects) among pre-existing states. Also, traceability
modelling elements are added to the model. Two case studies demonstrate the feasibility of the proposed approach.

Keywords Behaviour-driven development · Requirements engineering · SysML · Critical systems design · Event-driven
systems design
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1 Introduction

Model-driven development is a research field that advocates
the use of models as first-class citizens in the software devel-
opment process [9, 22]. A primary interest is the automatic
creation of software artefacts (including models) from mod-
els. Among the latter, behavioural models play a prominent
role, for many important reasons. For example, they are
fundamental for carrying out all kinds of non-functional anal-
yses, e.g. security [4], performance [15] or dependability [6,
7], also behavioural specifications provide themeans for exe-
cutable specifications [49]. Behaviour-driven development
(BDD),1 as an evolution of Test-driven development (TDD)
[5], elevates behavioural specifications to guide develop-
ment, system testing and communication with stakeholders.

Behavioural models, such as the System Modelling Lan-
guage (SysML) [40] or the Unified Modelling Language
(UML) [39] state machines, are often created manually,
which is a costly and error-prone task. However, we are
confident in taking advantage of much of the information
gathered during the early stages of the development pro-
cess, mainly requirements and architectural diagrams. In our

1 https://dannorth.net/introducing-bdd/.
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view, all these models and information may help to create
behavioural models automatically.

Because the automatic creation of behavioural models is
highly challenging, this work starts exploring autocomple-
tion as an initial step in that direction. Model autocompletion
was introduced by Burgueño et al. [12] as a new feature for a
future generation of modelling tools. In their opinion, auto-
completion could significantly improve the modelling task
and also modelling assistant tools [38], such as OutSystems
[41] or Mendix.2

This paper contributes to two goals. As a first goal, it
leverages SysML block diagrams and class diagrams to
semicomplete SysML state machines. Hence, proposing an
approach that identifies patterns in the system requirements
(expressed using Gherkin [53], as usual in BDD), so to
assist the autocompletion process. As a second goal, the
paper illustrates these findings in two case studies. The
first one in European Rail Traffic Management System
(ERTMS)/European Train Control System (ETCS). The sec-
ond one, proposed by Douglass in [18], considers a specific
critical event in the healthcare domain.

This work builds on previous results, described in the pre-
print [8] where a preliminary idea was sketched. Herein, in
pursuing the mentioned goals, our approach entails the fol-
lowing original contributions:

– Definition of a mechanism for a dynamically adapted
grammar, so to analyse system requirements;

– Definition of a knowledge base of possible requirement
schemes and related SysML model adaptations;

– Creation of a toolchain, open to integrate Natural Lan-
guage Processing (NLP) techniques that improve flexi-
bility.

The scope of this work is in the field of event-driven sys-
tems, which are usually modelled using State Machines. On
the other hand, the proposed approach requires modelling
with SysML, the usage of some requirements guidelines and
requirements traceability and all these characteristics often
found in critical systems. Certainly, both case studies, nicely
represent an intersection between these two categories of sys-
tems, the event-driven ones and the critical ones. The first
system using a messaging between vital ends in the ERTM-
S/ETCS specification. The second system focuses on the
design of a system to detect and respond to critical events
in an operational environment.

The rest of the paper is organized as follows. Sec-
tion2 introduces necessary background, and Sect. 3 reviews
related works. Section4 explains the proposed methodol-
ogy. The next sections define the technical details. Section5

2 https://www.mendix.com/platform/#assist.

reports on modelling. Sections6, 7 and 8 report on knowl-
edge representation. Section9 describes a supporting process
and toolchain. The previous sections use a software con-
trolled lamp as a running example. Section10 illustrates the
approach with a case study based on ETCS Level 3 (ETCS-
L3). Section11 evaluates the approach using the healthcare
case study. The paper concludes with remarks and observa-
tions in Sect. 12.

2 Background

This section introduces basic concepts that help to focus on
the context of the paper.

2.1 Behaviour-driven development

BDD is a software development methodology that aims to
improve communication between all involved stakehold-
ers through the formulation of use and test scenarios [49].
BDD focuses on the behaviours that the system should have,
rather than just on the desired functionality. Thus, the sys-
tem behaviours must be clearly and unambiguously defined
through Scenarios—presented in Sect. 3. The Gherkin lan-
guage is mainly associated with BDD, and it employs a
plain-text format to define the expected behaviour of the
software system. Gherkin is typically implemented in com-
bination with frameworks and tools, such as Cucumber [53],
and allows the definition of scenarios, which are described in
a simple, non-redundant and understandableway by different
teams, without source of ambiguity. Scenarios, in addition to
describing a behaviour or functionality, are executable spec-
ifications, i.e. they define the skeleton of acceptance tests
that are useful during the system verification phase. They,
therefore, help to ensure the correct behaviour of the system.

Gherkinwas chosen for thiswork primarily because of one
powerful characteristic: the linguistic structure’s simplicity
(Given–When–Then) combined with its capability for veri-
fication. The authors in [2] highlight:

The popularity of the Gherkin language is, in large
part, due to its ability to enforce the use of high-level,
domain-specific terms and supporting traceability from
AC (acceptance criteria) to executable test cases. More
precisely, the Gherkin syntax enables the automated
generation of executable test cases based on matching
AC text to APIs, thus leading to test case traceability.

2.2 ERTMS/ETCS-L3

The standard ERTMS has been designed to improve effi-
ciency, interoperability and safety in railway operations [21].
In particular, ERTMS establishes mandatory specifications
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Fig. 1 The ETCS control reference schema

on Trans European Network Routes. The main components
of the ERTMS are (1) European Traffic Management Layer
(ETML); (2) ETCS, in charge of the movement of the train;
and (3) Global System for Mobile Communications for Rail-
ways (GSM-R), responsible for the radio communication.

Different uses of ERTMS—resulting in different perfor-
mance system profiles—aremade possible on the basis of the
selected technologies. In particular, ETCS considers three
levels—defining how trackside, lineside and on-board con-
trollers are related to each other—which play a crucial role
in the determination of system overall performance.

The first two levels—i.e. ETCS Level 1 (ETCS-L1) and
ETCS Level 2 (ETCS-L2)—use fixed block signalling, i.e.
are based on “adding up” hardware equipment to better con-
trol the train running and the delivery of the Movement
Authority (MA), which authorizes a train to run safely for
a certain space. In particular, in ETCS-L2, the calculation of
such distance is computed by the Radio Block Centre (RBC)
which receives the position of the train via radiomessage (i.e.
the Position Report (PR)) and sends the authorization with
another message (i.e. the MA3). This situation is depicted in
Fig. 1.

One of the future challenges of the railway industry is con-
stituted by increasing the movement of goods on railways,
which can be pursued by increasing network capacity (and
not only train speed). Thus, extending the railway infrastruc-
ture is not always feasible due to the high costs of extra track
construction, especially in populous territories [24]. ETCS-
L3 introduces moving block as an answer to the problem
of “adding” new hardware; in ETCS-L3 the role played by
determining the exact position of a train by the train itself is
crucial not only for performance but also for safety purposes.

3 RelatedWork

Scenarios and requirements, when expressed in Natural Lan-
guage (NL), pose advantages, especially in the industrial

3 In this paper, the term MA both denotes the safe distance and the
radio message.

setting, since this is an easy way for engineers to commu-
nicate with stakeholders [30]. Consequently, the research
around Requirement Engineering (RE) andNL has advanced
remarkably, as surveyed in [56] and in [31], the latter to
include literature onMachine Learning (ML) for NLP. These
advances span many heterogeneous fields, from UML spec-
ifications [32, 43] to temporal logic formulae [11, 13, 23]
through grammar-based approaches [19]. However, there are
stillmany open challenges in the field ofRE andNL, as inves-
tigated in [16] and in [31]. The latter identifies the need of
introducing deep learning techniques in the field, since cur-
rently classical ML are predominant, and also the difficulty
of comparing different approaches due to the lack of bench-
mark cases.

More specifically, Controlled Natural Language (CNL)
techniques [33] provide templates, such as those of the
Gherkin language [53], that assist in capturing requirements
while describing BDD scenarios. BDD, as mentioned above,
builds upon TDD, and there is extensive literature that auto-
matically produces tests from BDD specifications, e.g. [29].
The Gherkin language defines the desired behaviour of the
software system in plain-text format. Listing 1 shows the
Gherkin syntax format, also called Scenario. Therefore,
through the use of theGherkin Scenario, it is possible to detail
every behaviour of the system. In particular, every Scenario is
made up of special keywords—some are optional and others
aremandatory—the three initial keywords represent different
information: (1) Feature, which briefly expresses the system
characteristic to be defined, it can be used to group related
Scenarios; (2) Rule, an optional keyword that serves as a
representation of a single business rule that needs to be fol-
lowed; and (3) Scenario, a description of the Scenario itself,
here, the behaviour of the system—that the Scenario wants
to introduce—can be expressed extensively and using NL.

The Gherkin syntax requires, after the description of the
Scenario keyword, three mandatory and fundamental key-
words: (1)Given, (2)When and (3) Then. TheGiven keyword
describes the initial context of the Scenario. The Given sen-
tence is designed to identify the system in a known state
before possible interactions between the system and the user
or other systems. The When sentence represents an event or
an action—for example, an action can be a user interacting
with the system, or an event can be the receiving of a mes-
sage from another system. The last keyword, the Then one,
expresses the desired final state of the system after the event,
depicted by the previous keyword, has occurred.

Listing 1 Gherkin Scenario

Feature: <<software feature >>
Rule: <<business rule to implement

>>
Scenario: <<description >>
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Given <<an initial context
>>

When <<an event >>
Then <<an expected outcome

>>

The Gherkin language, in combination with the Cucum-
ber tool, has been of primary importance in most of these
test automation processes [36, 53], even in the field of formal
methods to produce and execute acceptance tests [50]. Thus,
BDD and TDD are very mature fields regarding test automa-
tion, and its benefits, challenges and tools have been reviewed
in [34, 42]. However, to automatically produce behavioural
specifications from requirements, e.g. in Gherkin, is still a
task which requires mature scientific and technical propos-
als.

Reviewing the BDD literature to better learn how to lever-
age the Gherkin language to produce software artefacts, we
have found works in different domains. In the web domain,
Dimanidis et al. [17] aim at producing RESTful [44] web ser-
vices fromGherkin templates. Rocha [45] develops, based on
Gherkin, a domain-specific language to specify interaction
scenarios to produce web-based graphical user interfaces.
Similar to Rocha, Hesenius et al. [25] create a language,
based on Gherkin, in this case to test multimodal applica-
tions. The fact that both, the application domain and the type
of artefacts created by these three approaches, are so differ-
ent from ours makes it difficult to reuse these approaches in
our context, which aims to autocomplete models.

In the automotive domain, Wiecher et al. [52] propose a
scenarios-in-the-loop approach to automatically execute and
analyse requirements expressed in Gherkin. The ultimate
goal is to validate the implemented system through auto-
mated tests, but not to create behavioural models as in our
approach.

In the field of autocompleting models, where our work
also places, we have found the work of Burgueño et al. [12].
They propose an architecture based on NLP to autocomplete
domain models, like class diagrams, instead of behavioural
models as we do. Then, the automatic analysis of available
textual project and historical information provides model
autocompletion suggestions. The work, although not in the
BDD field and taking a different approach to ours, leverages
state-of-the-art NLP techniques instead of patterns. Also, the
work in [47] transforms NL requirements into domain mod-
els, in this case using machine learning techniques.

Among the works that transform requirements into design
models, we have found the one fromColombo et al. [14], that
uses SysMLand “transformation rules”, as in ourwork.How-
ever, in their approach the transformation is entirely model
driven, providing transformation rules inATL [28], while our
approach uses a grammar to generate fragments in the state
machine semi-automatically. Moreover, our approach uses

the Gherkin syntax to express the requirements. Finally, this
work considers architecture aspects (data and communica-
tion), whereas we focus on system behaviour.

The work of Bruel et al. [10] discusses the effectiveness of
different existing approaches to specify requirements. First,
the work classifies the approaches in five categories: natural-
language, semi-formal, automata/graphs, mathematical and
seamless (programming language-based). The authors chose
22 different representative languages of these categories,
e.g. Relax [51] for natural-language or Petri nets [37] for
automata/graphs. The effectiveness of these categories and
languages is assessed according to nine criteria: system
vs. environment, audience, level of abstraction, associated
method, traceability support, non-functional requirements
support, semantic definition, tool support and verifiability.
The most salient criteria regarding to formalize requirements
are, in our opinion, audience, traceability support, semantic
definition, tool support and verifiability. Regarding audience,
the approaches based on NL are the only ones that do not
require the use of special background, hence addressing a
larger audience. Traceability support is offered byRelax [51]
and NL2OWL [35] among NL approaches; however, semi-
formal approaches are the best for this criterion. Semantic
definition is the strong point for automata/graph, mathemat-
ical and seamless, which are also the categories best scoring
in verifiability, but some NL approaches also score in this
criterion, e.g. Relax, Stimulus, NL2OCL [27] and NL2STD
[1]. Regarding tool support almost all the approaches are
supported except for NL2OWL and NL2STD.

4 Methodology

The approach proposed aims to support system analysts in
the early stages of development. In particular, starting from a
preliminary system model, the approach semi-automatically
completes the specification of the architecture, leveraging a
set of requirements. Figure2 depicts, at-a-glance, the con-
ceptual architecture of the methodology, which relies upon
three layers: User, Knowledge and Tool.
User layer. The System Analyst, as responsible for this layer,
must provide a preliminary SysML model, which is made of
three views.

The Requirements view. Requirements can be either
expressed using the SysML’s Requirement Diagram (RD)
or a textual notation. In any case, they need to comply with
a notation, detailed in Sect. 6.

The Structural and Behavioural views. They specify the
system architecture. The former can be a SysML’s Block
Definition Diagram (BD).4 The latter includes a set of State

4 Since BDD is used as an acronym for Behaviour-driven development,
we prefer to use BD for Block Definition Diagram.
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Fig. 2 A conceptual architecture

Machine Diagrams (SMDs), which represent preliminary
owned behaviours of the blocks in the BD. By preliminary,
we mean that only states are defined in the SMD (i.e. white
parts in the Behavioural view of Fig. 2).
Knowledge layer. It represents the knowledge base, that is
leveraged by the Tool layer to semi-automatically autocom-
plete the preliminary model. This autocompletion process
carries out a detect-and-translate approach. Concretely,
requirement patterns are detected in the Requirements
view and then transformed into model fragments in the
Behavioural view. A model fragment can be a single model
element—i.e. a state machine transition—or a set of model
elements—i.e. a transition with a trigger and an effect. Fur-
thermore, traceability information can be added to the model
using a<<satisfy>> relationship stereotype from the added
model fragment to the generating requirement.

This layer includes two guidelines—Requirements and
Modelling—and a set of Model Refinement Rules that rely
on the former. The Requirements guideline includes require-
ment patterns (MetaReqX,…), i.e. requirement templates that
conform to the Given–When–Then structure. TheModelling
guideline consists of a set of meta-fragments (MetaFrag-
mentY,…), where each one is related to a requirement pattern
and it is defined in terms of the roles played by SysMLmodel
elements in the requirement pattern. The model refinement
rules are aimed at matching a requirement pattern, given a
concrete requirement in the Requirement view, and refining
the User Layer model by adding new model elements.

From theSystemAnalyst’s perspective, the twoguidelines
support him/her in the creation of the SysML model.

Tool layer. The tool implements the proposed approach.
It needs as input both, the SysML model of the system,
from the User layer, and the Model Refinement Rules, from
the Knowledge layer. Then, the tool instantiates the meta-
fragment with the elements of the SysML model and defines
the traceability information.

Figure 3 summarizes the workflow implemented by the
tool, as follows.

1. Model Element Extractor is the first phase of the work-
flow. It retrieves lists of the element names of the SysML
model which are known a-priori. In such named entity
lists, there are the names of blocks, states, signals, prop-
erties, operations, events and data types, which are all
model elements considered in the Knowledge Layer.

2. During the Processor Building phase, the named entities
already computed, in the previous step, are merged with
a model-independent
Extended Backus-Naur Form (EBNF) grammar. The lat-
ter defines the production rules describing the requirement
patterns.
Then, a parser is generated from the resulting model-
specific grammar.

3. For each requirement r in the Requirements view, the
Processing phase is carried out:

(a) r is parsed and an Abstract Syntax Tree (AST) is
generated (Parsing);

(b) The AST is explored and the model refinement rule
that matches with the requirement is detected (Rule
Matching);
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Processor
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Model Element
Extractioncomps: String[0..*];

states: String[0..*];
signals: String[0..*];
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datatypes: String[0..*];

modelFragments:
NamedElement[0..*];

<<loop>> Processing

for each
requirement

User
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requirements: String[0..*];

Knowledge
Layer
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rules: ModelRefinementRules[0..*];

Rule Matching

Model
Refinement

Fig. 3 Tool layer workflow

(c) The matched rule determines the model fragment to
apply, and the Model Refinement phase is enacted.

5 User Layer

Asdescribed in Sect. 4,methodological overview, the SysML
model is structured into three views.
Requirements View. This is the simplest view considered in
this work, whose aim is to report into SysML’s classes tagged
with the <<requirement>> stereotype, the text of the sys-
tem requirements, formatted according to the requirement
patterns described in Sect. 6. The requirements can be col-
lected into a SysML’s RD, where allocation information is
reported, related to the mapping between the requirements
and which part of the model fulfils each requirement. This
mapping can also take the form of a Requirement Allocation
Table (RAT).
Structural View. This is a component-based view of the sys-
tem in termsof aSysML’sBD/InternalBlockDiagram (IBD).
In such a view, blocks represent physical or software com-
ponents. Blocks communicate with each other through ports
and signals. Ports can beOutput Ports and Input Ports accord-

ing to the direction of the item flows that connect two blocks.
Input Ports—e.g. target ports of the item flows—are charac-
terized by a SysML’s signal. Item flows are characterized by
a property conveyed onto them. This property represents the
type of the data transported by the flow.
Behavioural View.Each component of the structural view has
a SMD associated, which models its behaviour. We assume
that the states of the SMD are known by the system ana-
lyst, whereas the transitions need to be semi-automatically
created according to the specified requirements. In our mod-
elling approach, signals and operations link the Structural
and the Behavioural views via signal and call events, respec-
tively. Considering the interaction via signal events, in the
Structural view, the sending and receiving components are
characterized by an output and input port, respectively, of
type “Signal”. The two ports are connected by an item flow
which conveys the signal property. In the Behavioural view,
the SMD of the sending component can include one or more
transitions with effect the generation of a signal event and the
SMD of the receiving component can include one or more
transitions triggered by a signal event of type “Signal”. Alter-
natively, the interaction can be carried out via call events; in
such a case, in the Structural view, an operation is defined
in the block representing the callee component, and the item
flow between the caller and the callee conveys the operation
parameter types. In this view the operation call is modelled
as the effect of a transition in the SMD of the caller compo-
nent, where the actual parameters of the operation conform
to the property of the item flow. In the SMD of the callee
component, the operation call is modelled as a trigger call
event of one or more transitions.
Modelling the running example. The User Layer in Fig. 2
represents a SysMLmodel of a switch and a lamp, as follows.

– The BDD requirement view, with the switching_on
requirement related to the behaviour of the Switch block;

– The structural view, specified by a BD, that consists of
two blocks: Switch, which is the source of an item flow to
the Lamp block. The Switch receives push signals via its
input port pushP and interacts with the Lamp via turn()
operation calls. In particular, turn() operation has an input
parameter of enumeration type LampAction—i.e. on/off
values—and the item flow between the two blocks con-
veys the LampAction property;

– The SMD represents the behaviour of the Switch and,
in the preliminary model, only the two states Closed
and Open are defined. The transition between them,
together with its trigger (push) and effect (i.e. the opera-
tion call Lamp.turn(on)) is automatically generated from
the requirement by following the proposed methodology.

123



Completion of SysML state machines... 1461

Ta
bl
e
1

G
iv
en
–W

he
n–
T
he
n
cl
au
se

te
m
pl
at
es

G
iv
en

G
1

a
<
<
B
lo
ck

as
gC

on
te
xt
>
>

in
<
<
St
at
e
as

gS
ou

rc
e>

>

G
2

a
<
<
B
lo
ck

as
gC

on
te
xt
>
>

W
he

n

W
1

th
e
<
<
B
lo
ck

as
w
R
ec
ei
ve
r>

>
re
ce
iv
es

<
<
Si
gn
al
as

w
E
ve
nt
>
>

W
2

th
e
<
<
B
lo
ck

as
w
C
on

te
xt
>
>

<
<
O
pe
ra
tio

n
as

w
A
ct
io
n>

>

W
3

th
e
<
<
Pr
op
er
ty

as
w
V
ar
>
>

of
<
<
B
lo
ck

as
w
C
on

te
xt
>
>

<
<
co
m
p_
op
>
>

<
<
V
al
ue
Sp

ec
ifi
ca
tio

n
as

w
V
al
ue
>
>

W
4

th
e
<
<
B
lo
ck

as
re
ce
iv
er
>
>

re
ce
iv
es

an
<
<
Si
gn
al
as

w
E
ve
nt
>
>

w
ith

<
<
Pr
op
er
ty

as
w
V
ar
>
>

W
5

th
e
<
<
Pr
op
er
ty

as
w
V
ar
>
>

of
<
<
B
lo
ck

as
w
C
on

te
xt
>
>

<
<
co
m
p_
op
>
>

<
<
Pr
op
er
ty

as
w
V
ar
2>

>
of

<
<
B
lo
ck

as
w
C
on

te
xt
2>

>
/<

<
Si
gn

al
as

w
C
on

te
xt
3>

>

W
6

th
e
<
<
Pr
op
er
ty

as
w
V
ar
>
>

of
<
<
B
lo
ck

as
w
C
on

te
xt
>
>

<
<
co
m
p_
op
>
>

<
<
al
ia
s>

>

W
7

th
e
<
<
B
lo
ck

as
w
R
ec
ei
ve
r>

>
re
ce
iv
es

an
<
<
Si
gn
al
as

w
E
ve
nt
>
>

w
ith

<
<
Pr
op
er
ty

as
w
V
ar
>
>

as
<
<
al
ia
s>

>

T
he

n

T
1

th
e
<
<
B
lo
ck

as
tC
on

te
xt
>
>

<
<
O
pe
ra
tio

n
as

tA
ct
io
n>

>

T
2

th
e
<
<
B
lo
ck

as
tC
on

te
xt
>
>

go
es

in
to

<
<
St
at
e
as

tT
ar
ge
t>

>

T
3

th
e
<
<
B
lo
ck

as
tS
en
de
r>

>
se
nd

s
to

<
<
B
lo
ck

as
tR
ec
ei
ve
r>

>
a
<
<
Si
gn
al
as

tM
es
sa
ge
>
>

w
ith

<
<
V
al
ue
Sp

ec
ifi
ca
tio

n
as

tV
al
ue
>
>

<
<
D
at
aT
yp
e
as

tT
yp
e>

>

T
4

th
e
<
<
B
lo
ck

as
tS
et
te
r>

>
se
ts
th
e
<
<
Pr
op
er
ty

as
tV
ar
>
>

of
th
e
<
<
B
lo
ck

as
tV
ar
ia
bl
eo
w
ne
r>

>
to

<
<
V
al
ue
Sp

ec
ifi
ca
tio

n
as

tV
al
ue
>
>

T
5

th
e
<
<
B
lo
ck

as
tS
et
te
r>

>
se
ts
th
e
<
<
Pr
op
er
ty

as
tV
ar
>
>

of
th
e
<
<
B
lo
ck

as
tV
ar
O
w
ne
r>

>
to

<
<
Pr
op
er
ty

as
tV
ar
2>

>
of

<
<
B
lo
ck

as
tV
ar
O
w
ne
r2
>
>

T
6

th
e
<
<
B
lo
ck

as
tS
et
te
r>

>
se
ts
th
e
<
<
Pr
op
er
ty

as
tV
ar
>
>

of
th
e
<
<
B
lo
ck

as
tV
ar
O
w
ne
r>

>
to

<
<
al
ia
s>

>

T
7

th
e
<
<
B
lo
ck

as
tS
en
de
r>

>
se
nd
s
a
<
<
Si
gn
al
as

tM
es
sa
ge
>
>

to
<
<
B
lo
ck

as
tR
ec
ei
ve
r>

>

T
8

th
e
<
<
B
lo
ck

as
tC
al
le
r>

>
ca
lls

th
e
<
<
C
al
lE
ve
nt

as
tC
al
l>

>
of

<
<
B
lo
ck

as
tC
al
le
d>

>

T
9

<
<
B
lo
ck

as
tC
al
le
r>

>
ca
lls

th
e
<
<
C
al
lE
ve
nt

as
tC
al
l>

>
of

<
<
B
lo
ck

as
tC
al
le
d>

>
w
ith

<
<
V
al
ue
Sp

ec
ifi
ca
tio

n
as

tV
al
ue
>
>

<
<
D
at
aT
yp
e
as

tT
yp
e>

>

123



1462 M. Stella de Biase et al.

6 Requirements Guideline

TheRequirements guideline, in theKnowledge layer (Fig. 2),
offers a set of requirements patterns. A requirement pattern
consists of a triplet<G,W,T>. Each triplet is a logical com-
bination (and, or, not) of clause templates (Given, When,
Then). Table 1 reports the allowed clause templates.

Clause templates are characterized by <<metaclass as
role>> fields.Metaclass indicates a SysML metaclass (e.g.
Block), while role refers the role played by this metaclass in
the template. In Table 1, <<comp_op>>—in clauses W3,
W5 and W6—means any generic comparison operator, e.g.
≥, ≤, �=, =. It should be noted that not all combinations of
clause templates are allowed, as some of them may contain
inconsistencies, e.g.:

– a triplet<G,W,T2andT2>with repetitionofT2 template
in the Then clause, each with different target states;

– using an alias (as in T6) without having defined it (as
example with a proper W6 clause template).

Clause templates are coded into proper production rules
of the EBNF grammar in Listing 2. As an example, T2 clause
template in Table 1 is defined in the grammar at line 36 of
Listing 2. The EBNF grammar defines the requirements pat-
terns without freezing them to a specific model. In particular,
the BDD and clause keywords (lines 5–10), the requirement
pattern structure (lines 22–26) and clause template structure
(lines 27–37) are model independent.

Listing 2 MetaReq grammar

1 Helpers
2 ...
3
4 Tokens
5 when_tok = ’when ’ | ’When ’;
6 given_tok = ’given ’ | ’Given ’;
7 then_tok = ’then ’ | ’Then ’;
8 ...
9 receives_tok = ’receives ’;
10 goes_tok = ’goes ’;
11 ...
12 <<comp_toks >>
13 <<state_toks >>
14 <<signal_toks >>
15 <<operation_toks >>
16 <<property_toks >>
17 <<event_toks >>
18 <<datatype_toks >>
19 ...
20
21 Productions
22 reqs =
23 {req} req semicolon |
24 {list} req semicolon reqs;
25 req =
26 {req} given [comma1]: comma when

[comma2]: comma then;

27 given = ...
28 when = ...
29 then =
30 {simple} then_tok then_body;
31 then_body =
32 {unary} then_single |
33 {binary} [then_one ]: then_single

bin_op [then_two ]:
then_single;

34 then_single =
35 {then_case1} article_tok

block_name operation_name |
36 {then_case2} article_tok

block_name goes_tok in_tok
state_name |

37 {then_case3} [art1]: article_tok
[sender]: block_name

sends_tok to_tok [art2]:
article_tok? [receiver ]:
block_name [art3]:
article_tok signal_name
with_tok? with_not_tok?
datatype_name |

38 ...
39 <<comp_rules >>
40 <<state_rules >>
41 <<signal_rules >>
42 <<operation_rules >>
43 <<property_rules >>
44 <<event_rules >>
45 <<datatype_rules >>
46 ...

6.1 User Layer knowledge enrichment

The EBNF grammar template in Listing 2 needs to be
enriched with information from the User Layer. In order to
make it workable for a specific model.

Concretely, those parts enclosed by “<<” and “>>”—
lines 12–18 and lines 39–45—are considered placeholders.
Hence, they need to be substituted with model-specific infor-
mation. Hence, during the Model Element Extraction and
Processor Building phases, see Fig. 3, the lists of elements in
the SysMLmodel are obtained from the User Layer, then for-
matted according to the concrete EBNF grammar and finally
substituted in the grammar template.

Considering the running example, the list of block
names—the comps: String[0..*]; from the SysML
model, Switch, Lamp—is transformed into two strings
and substituted in two points of the grammar:

– <<comp_toks>> at line 12 is substituted by the content
of Listing 3;

– <<comp_rules>> at line 39 is substituted by the content
of Listing 4.
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Listing 3 Component Names

comp1 = ’Switch ’;
comp2 = ’Lamp ’;

Listing 4 Component Rules

block_name =
{block1} comp1 |
{block2} comp2;

The Processor Building is a specific tool supporting this
task. It receives model element names from the Model Ele-
ment Extraction tool, and it leverages a template engine
technology, such as Apache Freemarker5 or Te4j.6

7 Modelling Guideline

TheModelling Guideline establishes the way for refining the
SysML model. Concretely, how to create transitions among
the already predefined states. For this task, a meta-fragment
is specified for each requirement pattern defined in Sect. 6.

Let us consider a requirement pattern<G,W,T>. A meta-
fragment defines amapping, between the roles of a clause and
theSysMLmodel elements, that conforms to themetaclasses.
Table 2 summarizes the mappings associated with the clause
templates of Table 1.

In general, the Given clause determines the source of
the transition to add, the When clause determines the trig-
gers and/or the guards of the transition, and the Then clause
detects the target state associated with the transition and
determines its effects.
Given clause. The Given rows of Table 2 show the mappings
associated with the clauses G1 and G2, respectively. The
first case indicates both the block framing the context of the
requirement and the state associated with the context, and the
G2 clause case does not specify the source state, intending
as default that the requirement (and hence the transition) can
be applied in each state of the context.
When clause. The next seven rows in the table show the map-
pings associated with the When clause templates:

– Clauses W1, W2 and W4 are translated into transition
triggers, respectively; in particular, W1 generates a trig-
ger from a signal (wEvent), whereas W2 generates a
trigger from an operation call (wAction). On the other
hand, the difference between W1 and W4 is reflected by
the trigger, that in the W4 case includes the signal actual
parameter (wVar).

– W3 and W5 are translated into transition guards;

5 https://freemarker.apache.org/index.html.
6 https://github.com/whilein/te4j.

– W6 extends W3, considering an alias, i.e. a variable
defined at SysML level as a local property of the state
machine or ,in case of the presence of the Modelling
and Analysis of Real-Time and Embedded Systems
(MARTE) profile), according to the Value Specification
Language (VSL);

– W7 extends W4 by adding the definition of an alias into
the entry section of the target state where the transition
ends, containing the definition of the alias according to
the used notation.

Then clause. Finally, the remaining rows of the table describe
the Then clauses: while the T2 clause is related to the target
of the generated transition, the others clauses impact the tran-
sition effects.

8 Model Refinement Rules

The model refinement rules are aimed at: 1) matching a
requirement pattern given a concrete requirement, which is
textually specified in the Requirement view of the User Layer
model, and 2) refining the User Layer model by adding new
model elements.

Thepseudo-algorithm, inListing5 (expressed in aPython-
like notation), specifies the procedure implementing the rule
matching and model refinement. In particular, the design of
the algorithm follows a detect-and-translate approach,which
is detailed in the following.

A concrete requirement req is firstly parsed to get its
abstract syntax tree ast (line 2). The latter is then used to
detect a requirement pattern mtreq that matches with the
concrete requirement (lines 4–7).

Listing 5 MetaReq2MetaFragment procedure

1 def metareq2metafragment(req ,mdl):
2 ast = parse(req)
3 # --- Detect ---
4 mtreq = getMetaRequirement(ast)
5 isvalid = checkFeasibility(mtreq)
6 isvalid &= checkRoles(mtreq)
7 isvalid &= mtreq.checkmodel(mdl)
8 if isvalid:
9 # --- Translate ---

10 t = Transition ()
11 t.source = mtreq.getSource(mdl)
12 t.target = mtreq.getTarget(mdl)
13 t.trigger = mtreq.getTrigger(

mdl)
14 t.guard = mtreq.getGuard(mdl)
15 t.effect = mtreq.getEffect(mdl)
16 mdl.add(t)
17 reqblock = mdl.getRequirement(

req)
18 traceinfo = trace(reqblock ,t)
19 mdl.add(traceinfo)
20 return mdl
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Table 2 Role-to-SysML model
element mappings associated
with clause templates of Table 1

The matching problem is tackled in four steps: first, a
candidate requirement pattern mtreq is identified (line 4);
second, its feasibility is checked (line 5). Indeed, mtreq
should be structured as a triplet <G,W,T> consisting of a

legal combination of Given, When and Then clause tem-
plates, as observed in Sect. 6. Third, mtreq is checked
against a possiblemismatching of roles in thematched clause
templates (line 6). A mismatching may occur, for example,
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when mtreq is identified as the legal triplet<G1,W1,T2>,
but the roles <<gContext>> (in G1) and <<tContext>>

(in T2) are different.
Finally, a check of the semantic consistency of mtreq

regarding the User Layer model mdl is done (line 7). The
checking is carried out by using the mapping defined by the
meta-fragment associated with the detected requirement pat-
tern. In particular, this checking aims at solving the matching
between the SysML model and the detected requirement
pattern; in fact, some of the matched roles in the clause
templates in mtreq —which syntactically belong to the
correct SysML’s metaclass, according to the mechanism of
the model-aware grammar—can violate the way the SysML
model itself is built. For example, let mtreq be the legal
triplet <G1,W1,T2>, where “a <<Block as gContext>>

in <<State as gSource>>” (G1) does not imply that the
gContext’s Block has an associated SMDwith a state named
gSource.

In case the detection of the requirement pattern succeeds,
then the translation phase follows (lines 9–19), where the
User Layer model is possibly refined by adding new model
elements.

A candidate transition t is firstly created (line 10) and,
then, t is refined with references to model elements—like,
source and target states—named in the detected requirement
pattern (lines 11–15), and it is added to the model mdl
(line 16). Also, mdl is enriched with traceability informa-
tion between the requirement, specified in the Requirement
view of the model, and the newly added transition (lines 17–
19).
Discussion of translation strategies

In the design of the pseudo-algorithm (Listing 5) a pes-
simistic strategy is adopted: in fact, the translation phase is
not performed when the set of checks (lines 5–7) does not
succeed. However, other strategies could be followed where
the translation phase is always present, as:

– optimistic: the transition is partially generated from the
parts of the requirement that are correct and missing val-
ues are present (e.g. guards, triggers);

– default: the missing transition parts are substituted with
default arguments.

The strategy can be chosen by the System Analyst, and it
should be set according to the level of automation to pursue.
As an example, for critical application, the risk of using an
optimistic or a default strategy is not negligible; these two
possibilities could, in fact, bring to inconsistent model, chal-
lenging to debug later. On the other hand, using an optimistic
approach could be useful in the case of a set of require-
ments at their very early stage of writing, since a throw-away
model could improve the level of understanding and allow a
rewriting of the same requirement set. In any case, detected

violations should be signalled to the System Analyst with
proper warnings.
Application to the running example.

Let us consider the switching_on requirement of the
running example, of which Fig. 2 depicts the three views
presented in Sect. 5. Table 3 shows the application of the
Knowledge Layer matching concepts to the requirement.

In the upper part, the requirement (left side) and the
matching MetaReq (right side) are reported. This matching
is possible after considering the lower part of the table. Con-
cretely, the lower part shows the terminal symbols (left side)
present in the model-specific grammar—defined according
to the techniques described in Sect. 6—matching the list of
the roles defined in the fields of the MetaReq (right side).

Once the matching is done, and the verification of the
above-mentioned constraints passes, the model fragment is
generated, refining the SysML model by adding the yellow
part of the User Layer in Fig. 2.7.

9 Tool Layer

This section reports a reference architecture for the Tool
Layer proposed in Fig. 2. This architecture, based on the
content of Sects. 5–8, is able to automate the proposed
methodology.

The components and artefacts of the architecture are
grouped in three sets, see Fig. 4. At the centre of the archi-
tecture, a master control component, the Core, orchestrates
and schedules the proper sequence of service invocations.

TheModel Processing is an interface for reading andwrit-
ing the SysML model elements. It groups a component, the
Model Handler, and an <<artifact>>, the SysML Model.

TheParserGenerator analyses themodels, hence it imple-
ments the phases Model Element Extraction and Processor
Building in Fig. 3, as follows:

– TheProcessorBuilder,which retrieves the lists of SysML
metaclasses, according to the substitution mechanism
reported in Sect. 6, detailed in Subsection 6.1. They are
substituted in the Grammar Template to generate the
Model-Specific Grammar.

– The Parser Generator, which uses the Model-Specific
Grammar to generate a parser for this EBNF grammar.
Practically, a set of software classes are generated (i.e. the
Parser), able to be integrated with the rest of the software
components.Manyparser generators are available for this
task, e.g. SableCC.8

7 In the figure, traceability is simplified by a dependency across two
views As it is reported in the case study, a dedicated diagram—an RD
—best shows such dependencies.
8 https://sablecc.org/
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Table 3 Textual BDD requirement, meta-requirement and elements matching

Requirement MetaReq (<G1,W1,T3 and T2>)

Given the Switch in closed Given <<Block as gContext>> in <<State as gSource>>

When the Switch receives push When <<Block as wContext>> receives <<Signal as wEvent>>

Then the Switch sends to Lamp Then the <<Block as tSender>> sends to <<Block as tReceiver>>

a turn with on LampAction a <<Signal as tMessage>> with <<ValueSpecification as tValue>> <<DataType as tType>>

and and

the Switch goes in open <<Block as tContext>> goes in <<State as tTarget>>

Role Matching
Value Role

Switch gContext (Block)

Closed gSource (State)

Switch wContext (Block)

push wEvent (Signal)

Switch tSender (Block)

Lamp tReceiver (Block)

turn tMessage (Signal)

on tValue (ValueSpecification)

LampAction tType (DataType)

Switch tContext (State)

Open tTarget (State)

Fig. 4 Tool layer architecture
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Requirement Processing

Parser Generation

Model
Handler

Parser
Generator

Processor
Builder

<<artifact>>
Grammar template

<<artifact>>
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Validator

Parser
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Requirement
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addElement

Core

build
generate

refine parsevalidate

The Requirement Processing automates those phases that
iterate each requirement, see Fig. 3. Its three components are:

– The Parser, generated in previous stages, that detects the
candidate requirement pattern (lines 2 of Listing 5).

– The Validator performs a comparison between the meta-
requirement (obtained in line 3 of Listing 5) and the

formal grammar’s rules (lines 4–7 of Listing 5). Only
if the validation is successful it is possible to move on to
the translation phase.

– TheModel Generator, that is able to generate the model
fragment to add to the SysML model (lines 11–19 of
Listing 5).
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10 The ETCS-L3 Case Study

This section introduces a case study that demonstrates how
to apply the proposed methodology. The case study, from
the railway domain, is an excerpt of the ETCS-L3 trackside-
train communication and control mechanisms presented in
Subsection 2.2.
The System Model. Let us consider two on-board macro-
functionalities of ETCS-L3:

– the braking supervision, which controls the speed of the
train and, in case of emergency, activates the train brakes;

– themovement supervision, which controls the position of
the train, on the base of what is received from the track-
side and on the actual position, commands an emergency
brake.

The systemstructural view, for these twomacro-functionalities,
is given in Fig. 5 by an IBD and in Fig. 6 by a Class Dia-
gram (CD). In addition, Fig. 7 reports details of the blocks,
presenting relevant properties and operations.

The BD in Fig. 5 presents four main components: Track-
side, Train, Brake and Odometer. The latter is responsible
for providing exact kinematic information—i.e. speed and
position—to the other components. Internal to the Train
component, we identify the Braking Supervision and the
Movement Supervision. TheBDalso reports the ports, signals
and exchanged data on the item flows, used by the compo-
nents in their interactions. Some of these interactions include
the following:

– Braking Supervision communicates braking intentions to
Brake via the command signal (from cmd port to getCmd
port), the flow conveys the BrakeCommand type;

– Movement Supervision asks for an emergency stop to
Braking Supervision via the emergencyStop signal (from
sendBrake port to recvES port), the flow conveys the
EmergencyStop type;

– Odometer sends two float values respectively to:

– Movement Supervision, this is the case of the position
(from updtPosition to getPosition via the updatedPo-
sition signal);

– Braking Supervision, this is the case of the speed
(from updtSpeed to getSpeed via the updatedSpeed
signal).

Figures 8 and 9 depict initial SMDs for both, the Move-
ment Supervision and Braking Supervision, offering the
Behavioural view. To complete this initial model, four
ETCS-L3 requirements make up the Requirements view, see
Listings 6, 7, 8 and 9. These requirements are expressed using
the Given–When–Then Gherkin syntax.

Table 4 Requirements and patterns

Requirement Matching MetaReq

REQ-1 <G1,W1,T1 and T2>

REQ-2 <G2,W2,T3>

REQ-3 <G1,W3,T3 and T2>

REQ-4 <G2,W4,T5>

Listing 6 ETCS-L3 requirements: REQ-1

Given a Braking Supervision in running ,
When the Movement Supervision

sends an Emergency Stop , Then the
Braking Supervision brakes and goes
in braking.

Listing 7 ETCS-L3 requirements: REQ-2

Given a Braking Supervision , When the
Braking Supervision brakes , Then
the Braking Supervision sends to
Brake a command with active
BrakeCommand.

Listing 8 ETCS-L3 requirements: REQ-3

Given a Braking Supervision in braking ,
When the speed of the Train is 0,

Then the Braking Supervision sends
to Brake a command with NonActive
BrakeCommand and goes in running.

Listing 9 ETCS-L3 requirements: REQ-4

Given a Movement Supervision , When the
Movement Supervision receives an
updated position with a position ,
Then Movement Supervision sets the
position of the Train to the
position value of updated position.

Starting from this initial model, the model element names
are extracted to make the concrete grammar and enable the
matching of the requirements:

– Blocks: Train, Braking supervision, Brake, Movement
Supervision, Odometer and Trackside.

– States: running, braking, updateWaiting and waiting.
– Signals: Emergency Stop Message and Acknowledge.
– Operations: activates, deactivates and brake.
– Properties: speed, position and safetyDistance.

Matching the requirements. Starting from the four require-
ments, Table 4 reports the meta-requirements matched by the
Tool Layer.
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Fig. 5 System blocks

Fig. 6 Exchanged data

Fig. 7 Block property

Model Completion. Given all the working hypotheses, it is
now possible to apply the second part of the workflow in
Fig. 3, as described in Sect. 4. Hence, analysing and translat-
ing each requirement. Figures 10 and 11 report the refined
SMDs of the Braking Supervision and the Movement Super-
vision components, respectively.
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Fig. 8 Braking supervision: SMD

Fig. 9 Movement supervision: SMD

Fig. 10 Braking supervision: refined SMD

In the SMD of Fig. 10, the following transitions have been
created:

– TR-1: it starts from the running state (G1), ends in the
braking state (T2), is triggered by emergencyStop (W1)
and activates the brake() operation (T1);

– TR-2a: self-transition on the braking state (G2), trig-
gered by the activation of the brake() operation (W2),

Fig. 11 Movement supervision: refined SMD

Fig. 12 RD of the case study

and sending a braking command to the Brake with the
Active parameter value (T3). It is important to underline
that other two transitions are generated (T2b, from/to the
running state, and T2c, from/to the updateWaiting state);
these transitions are not reported in the diagram for sim-
plicity.

– TR-3: it starts from the braking state (G1) and ends
in the running state (T2), is guarded by the condition
Train.speed == 0.0 and, when executed, sends a
message via the command signal (T3);

The SMDof Fig. 11 has been enrichedwith the self-transition
TR-4 that concerns thewaiting state of theMovement Super-
vision component (G2), and it is triggered by the reception
of the updatePosition signal with value p (W4) and assigns
such a value to the position property of the Train block (T5).

To complete the application, theRDshowing the<<satisfy>>

relationships between generated transitions and system
requirements is reported in Fig. 12.
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Fig. 13 UML state machine from [18] with traced requirements annotated

11 The Alarm on Critical Events Case Study

This case study leverages a critical event-based system, in the
medical domain, taken from the literature [18]. The objec-
tive of this section is to demonstrate the effectiveness of the
approach. We do this by (qualitatively) measuring how close
the models obtained by the proposed methodology are to the
model presented in the literature. The following steps are
taken:

1. Application of the methodology to the case study, and
2. discussion of the results.

11.1 Application of themethodology

The case study is an alarming system that visually and audi-
bly alerts the attending anaesthesiologist when the patient
is at imminent risk, so to take appropriate action. In [18],
behavioural requirements (Table 5) are introduced and par-
tially mapped to a UML state machine (Fig. 13). The aim
in [18] is to demonstrate the suitability of the UML state
machines in capturing and analysing non-trivial cause–effect
relationships in reactive systems. In particular, the UML
state machine includes annotations “ACE-n”, which trace
the requirements in Table 5. These annotations have been
defined by interpreting the informal mapping provided in

[18]. Observe that all the requirements, but “ACE-2”—which
addresses multiple alarms—are considered in the UML state
machine. Also, all the requirements, but “ACE-3”—which
states a negation of an event occurrence—express cause–
effect relations and are mapped to transitions in the state
machine.
Requirements view. To apply our approach, we had to
pre-process the original requirements: 1) rephrase them as
Given–When–Then statements and 2) refine them by taken
contextual information into account.

Specifically, the rephrasing was carried out with the help
of ChatGPT, where the following prompt was posed:

Write the following requirement in Given–When–
Then form: “original requirement (see Table 5)”

The resulting GWT requirements were manually refined
considering the contextual information in the SysML
model. Table 6 shows the results of the pre-processing
for the “ACE-1” requirement presented in Table 5. “ACE-
1”, in Table 6, appears as rephrased by ChatGPT, and
“REQ−1.1-REQ−1.4” represent its contextualized require-
ments. Appendix A contains an exhaustive description of the
pre-processing results for the remaining requirements.
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Table 5 Behavioural
requirements from [18]

Req. ID Description

ACE-1 When an alarming condition occurs, it shall be annunciated—that is, a
meaningful alarm message (including the time of occurrence, the
type of alarm, the source of the alarm and the likely cause of the
alarm) shall be displayed and an alarming tone shall be sounded

ACE-2 When multiple alarms are being annunciated, they shall be displayed
in order of severity first, then in order of occurrence, newest first

ACE-3 If an annunciated alarm isn’t displayed (because higher criticality
alarms are being displayed and there is insufficient space to display
the alarm in question), then it cannot be acknowledged without first
being displayed on the screen

ACE-4 Alarms must be explicitly acknowledged by the user pressing the
Alarm Ack button after they have occurred even if the originating
alarming condition has been corrected

ACE-5 If the originating condition of an alarm has been corrected but the
alarm has not yet been acknowledged, then the display of the alarm
message shall be greyed out. All other alarm messages shall be
displayed in the normal colour

ACE-6 The Alarm Ack button shall cause the audible alarm sound to be
silenced but does not affect the visual display of the alarm message.
The silence shall hold for 2min. If the alarm condition ceases after
the acknowledgement but before the silence period times out, then
the alarm shall be dismissed. If, after the silence period has elapsed,
the originating condition is still valid or if it has reasserted itself
during the silence period, then the alarm shall be reannunciated

Table 6 Pre-processing ACE-1: Alarming Condition Occurrence

Step: ChatGPT

ACE-1’ Given an alarming condition, when the condition occurs, then it shall
be annunciated by displaying a meaningful alarm message (including
the time of occurrence, the type of alarm, the source of the alarm and
the likely cause of the alarm) and sounding an alarming tone.

Step: Refinement
REQ ID Contextual information Description

REQ−1.1 AlarmingCondition, ConditionInactive, conditionActivate,
regular, DisplayStyle, ConditionActive

Given an AlarmingCondition in ConditionInactive, when the
AlarmingCondition receives a conditionActivate, then the
AlarmingCondition sends a regular event to DisplayStyle and
the AlarmingCondition goes into ConditionActive

REQ−1.2 DisplayStyle, GreyedOut, regular, alarmDisplay,
Acknowledgement, RegularDisplay

Given a DisplayStyle in GreyedOut, when the DisplayStyle
receives a regular event, then the DisplayStyle sends an
alarmDisplay to Acknowledgement and the alarmDisplay
goes into RegularDisplay

REQ−1.3 Sound, AlarmToneInactive, conditionActivate,
setAlarmTone(ON), AlarmToneActiveToneOn

Given a Sound in AlarmToneInactive, when the Sound receives
a conditionActivate, then the Sound calls setAlarmTone with
ON and the Sound goes into AlarmToneActiveToneOn

REQ−1.4 Acknowledgement, WaitForAcknowledgementNotViewed,
alarmDisplay, WaitForAcknowledgementViewed

Given an Acknowledgement in
WaitForAcknowledgementNotViewed, when the
Acknowledgement receives an alarmDisplay, then the
Acknowledgement goes into
WaitForAcknowledgementViewed

The automation of this pre-processing step goes beyond
the scope of this work, but certainly it could be improved by
applying prompt engineering techniques.

Structural view. The structural view has been defined from
scratch, as it is not developed in [18]. The system is made of
four main components: AlarmingCondition, Sound, Display
Style and Acknowledgement, as modelled in Fig. 14. Note
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Fig. 14 Structural view: block diagram

that with the aim of eventually facilitating the comparison
of the results, these components have been named using the
(first part of the) names of the parallel regions in Fig. 13—
e.g. AlarmingCondition component from AlarmingCondi-
tion _Status region. The components interact through signal
sending and reception: signal types correspond to the triggers
in Fig. 13—e.g. conditionActivate triggers in the Alarm-
ingCondition_Processing and Sound_Processing concurrent
regions.
Behavioural view. The initial behavioural view consists of
four state machines, each one representing the behaviour of
a component in Fig. 14. They only include initial and sim-
ple states—see Fig. 16 in Appendix A. The names of the
model elements of the state machines are similar to those
of the original model in Fig. 13. On the other hand, since
our approach does not currently support composite states,
we have considered nested states to keep trace of the original
composite state. The name of a nested state is obtained by
concatenating the name of the parent state with the name of
the nested state—e.g. AlarmToneActive concatenated with
ToneOn then resulting in AlarmToneActiveToneOn.
Matching the requirements.Once obtained the requirements,
the meta-requirements identification phase begins. In partic-
ular, the objective is to identify those clause templates, listed
in Table 1, that make up the requirements. As mentioned
in Sect. 7, the clause templates work as a relation between
the behavioural model’s components and the requirements’
contextual information.

Then, to perform the identification, the workflow, shown
in Fig. 3, is applied to each requirement. The result is the
mapping of each requirement with a meta-requirement and
the extrapolation of roles as shown in Tables 12-17.

Considering Table 12, REQ−1.1 matches with meta-
requirement<G1,W1,T7 and T2> and it provides infor-
mation regarding the behaviour and change of state of the
AlarmingCondition when it receives the conditionActive

signal. REQ−1.2 matches the same meta-requirement as
REQ−1.1, but it expresses the transition from the starting
stateGreyedOut to the final state RegularDisplay of theDis-
playStyle component when the regular signal is received.

The meta-requirement identified for REQ−1.3 is differ-
ent, and in fact it groups the clause templates <G1,W1,T1
and T2>. In this requirement, the Sound component under-
goes a change of state after receiving the conditionActive
signal, and in addition, the setAlarmTone method is called.
Finally, REQ−1.4 matches with <G1, W1,T2>, then
describing the behaviour of the Acknowledgement compo-
nent.
Model Completion. Once the matching of REQ-1.x require-
ments is completed, a model fragment is created from them
for each state machine. These newmodel elements are added
to the initial SysML model, augmenting it.

The creation of the transitions is obtained using the infor-
mation outlined by the meta-requirements and applying the
mapping rules collected in Table 2.

The first state machine depicted in Fig. 16 is the initial
state machine of the AlarmCondition block. The states to be
connected by a transition are ConditionActive and Condi-
tionInactive. REQ−1.1 comes into play here (see Table 12)
since the contextual block is precisely AlarmingCondition.
Moreover, the clause template G1 suggests as initial state
ConditionInactive and T2 suggests as final state Condition-
Active. Consequently, the transition is created following the
order of the states and enriched by the information of the
clause templates W1 and T7. The trigger is the signal con-
ditionActive, and the action is the event regular (affecting
DisplayStyle block). The result is the first state machine
depicted in Fig. 15.

The second state machine, of Fig. 16, represents the
behaviour of Sound_Processing. The initial states areAlarm-
ToneInactive, AlarmToneActiveToneOff and AlarmToneAc-
tiveToneOn. The requirement for expressing the correct
behaviour of the Sound component is REQ−1.3. Proceeding
in order and considering Table 12, themeta-requirement sug-
gests that one behaviour of Sound_Processing is the change
of states between AlarmToneInactive and AlarmToneActive-
ToneOn (clause templates G1 and T2). As a result, the new
transition connects these two states. Moreover, it is initi-
ated by the signal conditionActive and calls the function
setalarmTone() (clause templates W1 and T1). Once the
meta-requirements are translated, the complete and detailed
state machine, shown in Fig. 15, is obtained.

The DisplayStyle component is the subject of the next
statemachine to be completed. Here the relationship between
the RegularDisplay state and the GreyedOut state needs to
be defined employing the meta-requirement of REQ−1.2.
The GreyedOut is, indeed, detected as the source state of
the translation (G1), and T2 indicates RegularDisplay as the
target state. Moreover, the clause template W1 indicates that
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Fig. 15 Behavioural view: state machines of AlarmingCondition, Sound, DisplayStyle and Acknowledgement, respectively, after the application
of the approach

the transition occurs as it is generated by the reception of the
regular signal and, in turn, triggers another signal affecting
the Acknowledgement block (clause template T7).

TheAcknowledgement block in fact shifts from stateWait-
ForAcknowledgementNotViewed toWaitForAcknowledgement
Viewed according to REQ−1.4, in particular according to G1
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and T2. Finally, W1 completes the creation of the SysML
transition as in Fig. 15.

11.2 Discussion of the case study results

We have evaluated the effectiveness of the approach by mea-
suring how close the resulting state machines are to the
state machine presented in the literature [18]. Specifically,
we compare the added transitions with the model elements
(transitions and states) of the original model.

Quantitatively, 12 out of 15 transitions and the two states
of the original model (Fig. 13) have a counterpart in the cre-
ated model, which is a promising result of the automatic
generation capability of the proposed approach9.

From a qualitative point of view, we carried out a fine
grained analysis with the aim of evaluating the semantic
equivalence between the model elements of the two models.
In particular, the analysis relies in Table 18, which details
the mapping between the elements of the two models. The
detailed results of such analysis are reported in Appendix
(subsection A.4).

As a global assessment, we can conclude that the semantic
equivalence holds for a few transitions (rows1, 2, 11 and14of
Table 18), whereas the remaining transitions in the derived
model are even more informative than the mapped model
elements in the original model. For example, effect or guard
elements are added in the transitions of the derived model,
while there were not in the corresponding transitions of the
original model (e.g. rows 5, 6, 8–10 of Table 18). This result
is not surprising, since the pre-processing of the original
requirements entails the inclusion of contextual information
in the derived requirements, resulting in more precise speci-
fications.

12 Discussion and Conclusions

This paper develops an approach to semi-automatically com-
plete SysML models, on the basis of system-level require-
ments expressed using the Given–When–Then paradigm.
Hence, the paper shows, using a running example and two
case studies from different application domains, how to com-
plete a SysML model by adding transitions in an SMD
between pre-existing states.

The final impact, that the semi-automation of the approach
can achieve, is the creation of a Computer Aided Modelling
(CAM)-like tool that supports System Analysts. Also, the
work aims to propose a technically sound approach able to be
integrated into current industrial processes. Notwithstanding

9 Observe that the three transitions—annotatedwithACE-6 in Fig. 13—
which have the join node (or the final state) as source (or target), have
no counterpart in the new model, as the join node and the final states
were not considered in the initial behavioural view.

these aims, the paper opens questions, not fully addressed
here, that deserve a brief discussion, also to understand future
areas of investigation.

The most important question, for us, is related to the
role of the Parsing phase of the workflow. Our text-based
requirement specification relies on the definition of a for-
mal EBNF-based grammar. However, real-world industrial
practice should keep a balance between flexibility and the
existence of internal specifications and/or design standards.
To this aim, a balance between a grammar and the usage of
NLP techniques is needed. In future work, we will research
a way of harnessing these two needs.

To improve the flexibility of the parsing phase, some tech-
niques could be used in cooperation with the formal parsing
one. Two examples are the usage of lexical and syntactical
tools proposed in NLP—e.g. lemmatization, Part-of-Speech
(POS) tagging—and/or the application of probabilistic pars-
ing techniques to boost the capability of compilers to
recognize patterns [55].

Another important open point is the need to trans-
form requirements into the BDD paradigm. Even if BDD
is widespread and has demonstrated its easy and effec-
tive application in industrial settings—like emphasized in
Sect. 2.1—weknow that, in some legacy systems, the require-
ments should be rewritten from scratch, then limiting the
applicability of the approach. To this aim, generative tech-
nologies can help. The Alarm on Critical Event system
case study has shown the capabilities of current transform-
ers for this task. The non-BDD original requirements have
been transformed using the well-known OpenAI’s Genera-
tive Pre-trained Transformer (GPT−3.5),10 by means of a
given prompt. Furthermore, prompt engineering techniques,
when fine-tuned with system contextual information, help
to enrich the requirements, hence improving the two pre-
processing stages. In our view, this approach could lead to
a more precise and efficient automation of the methodology.
Consequently, the Alarm on Critical Event case study illus-
trates a practical and effective application of requirements
pre-processing using a Large Language Model.

There are several scientific papers addressing the consis-
tency and completeness of requirements. They span from
checking the consistency—at both, textual level (e.g. in [48])
and involved model (e.g. in [26])—to verify completeness
aspects, as in [20] or in [3], where SysMLmodel is involved.
Even if this paper does not explicitly address these two
features, the proposed approach enables the verification of
both properties. As an example, the verification of com-
pleteness could be addressed by constructing some SysML
model queries that retrieve “model anomalies” as isolated
states, transitions that are not mapped on any requirements or
requirements that are not satisfied by any model element. On

10 https://chat.openai.com/
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the other hand, consistency of requirements could be checked
using Gherkin, by means of static semantics checkers on the
constructed ASTs. As a further consideration, the approach
should rely on such tools in this phase since in the develop-
ment processes of critical systems the usage of “AI-based”
approaches is hard to certificate. This is also another moti-
vation to the semi-automatic nature of the approach itself.

A third point of discussion is related to the possibility
of non-optimal model refinement in the case of complex
requirements. If considering a G2 given clause, the approach
prescribes the generation of a transition for each state of the
component. However, this could be optimized, for example,
by considering hierarchical states. As in classical compilers,
optimization techniques could be explored to improve the
readability of the improved model.

Finally, full automation and its impact on the end user
must be taken into account. Our main goal is not to build an
interactive tool that refines the model, while the user carries
out themodelling activity, but to develop a back-end tool, that
is able to transform a SysML model into another model. To
develop such a tool, developers would rely on existing tech-
nologies, spanning from parser generators (e.g. SableCC),
to template engines (e.g. Te4j), to SysML model query and
manipulation libraries (e.g. the ones in the EclipseModelling
Framework (EMF) ecosystem). For the Knowledge layer, on
the other hand, a document-oriented database as MongoDB
is suggested. Papyrus11 is an open-source tool that serves a
valid front-end to build the User layer. As it is based on the
Eclipse platform, the entire approach can be implemented as
an Eclipse plugin. Further, investigations could be oriented
to develop a sort of co-pilot, which improves productivity
and user experience.

Summarizing, future work will be oriented to:

– the completion of Tool Layer prototyping and tuning of
the proposed approach;

– injection of NL-based techniques into the Parser compo-
nent;

– study of the possible optimization on refined SysML
model;

– training of Large LanguageModels (LLMs) to transform
free-expressed requirements to the BDD paradigm.

Another long-term research will also be oriented to reduc-
ing as much as possible the pre-existing, manually made
model part needed to enable the approach. As an example,
the first step could be constituted by inferring automatically
the states and adding them to the SysML model. Then, also
class/block diagrams could be inferred according to some
existing scientific papers (e.g. [46, 54]).

11 https://eclipse.dev/papyrus/
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A Alarm on Critical Event system (detailed)

This appendix reports the intermediate results of the
pre-processing steps (subsection A.1), the initial SysML
behavioural view (subsection A.2), the mapping of refined
GWT requirements to meta-requirements (subsection A.3)
and the mapping of the model elements in the original model
to the transitions in the derived model (subsection A.4).

A.1 Pre-processing of original requirements

The results of the pre-processing are shown in Tables 6, 7-
11. Each table details:

– The rephrasing of each requirement—labelled ACE-n’,
where ACE-n is the original requirement in Table 5, and

– the refinement of the rephrased requirement that con-
siders the contextual information in the structural and
behavioural views—Figs. 14 and 16, respectively.

Observe that a rephrased requirement ACE-n’ can be refined
in a set of m contextualized requirements, which are labelled
REQ-n.1 …REQ-n.m.
ACE-2 The requirement ACE-2 concerns multiple alarms
occurrence, and it was not considered in the original state
machine of [18] (see Fig. 13). For completeness, we also con-
sider this requirement and Table 7 details the corresponding
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Table 7 Pre-processing ACE-2: Multiple Alarms Occurrence

Step: ChatGPT

ACE-2’ Given multiple alarms are being annunciated, when displaying the
alarms, then they shall be displayed in the following order: First by
severity (from highest to lowest), then by occurrence, with the newest
alarms displayed first.

Step: Refinement
REQ ID Contextual information Description

REQ−2.1 DisplayStyle, GreyedOut, regular, numberOfAlarms, ordering Given a DisplayStyle in GreyedOut, when DisplayStyle
receives a regular event and the number of alarms of
DisplayStyle is greater than zero, then the DisplayStyle
orders the alarms by severity first, then in order of
occurrence, newest first

Table 8 Pre-processing ACE-3: Not Displayed Alarm

Step: ChatGPT

ACE-3’ Given an annunciated alarm is displayed (because there is sufficient
space to display the alarm in question), when attempting to acknowledge
the alarm, then it can be acknowledged.

Step: Refinement
REQ ID Contextual information Description

REQ−3.1 DisplayStyle, GreyedOut, regular, sufficientSpace,
higherCriticalityAlarms, alarmDisplay, Acknowledgement,
RegularDisplay

Given a DisplayStyle in GreyedOut, when the DisplayStyle
receives a regular event and the sufficient space of
DisplayStyle is true, then the DisplayStyle sends an
alarmDisplay to Acknowledgement and the DisplayStyle
goes into RegularDisplay

REQ−3.2 Acknowledgement, WaitForAcknowledgementViewed, silence,
Acknowledged

Given an Acknowledgement in
WaitForAcknowledgementViewed, when the
Acknowledgement receives a silence, then the
Acknowledgement goes in Acknowledged

Table 9 Pre-processing ACE-4: Explicit Acknowledgement Alarm

Step: ChatGPT

ACE-4’ Given an alarm has occurred, when the user presses the Alarm Ack
button, then the alarm must be explicitly acknowledged, even if the
originating alarming condition has been corrected.

Step: Refinement
REQ ID Contextual information Description

REQ−4.1 silence, Acknowledgement Given an Alarm Ack button in alarm occurred, when the user
presses the Alarm Ack button, then the Alarm Ack button
sends a silence to Acknowledgement

REQ−4.2 Acknowledgement, WaitForAcknowledgementViewed, silence,
Acknowledged

Given an Acknowledgement in
WaitForAcknowledgementViewed, when the
Acknowledgement receives a silence, then the
Acknowledgement goes into Acknowledged

refined requirement REQ−2.1. Nevertheless, the application
of the proposed approach considering also REQ−2.1 pro-
duces inconsistencies in the state machine of DisplayStyle
component which will be discussed in subsection A.3.

ACE-3 The requirement ACE-3 is stated as a negation of
an event—i.e. an alarm is not displayed—and, despite the
rest of the requirements in Table 5, it was mapped onto
states of the involved regions (see Fig. 13, state “RegularDis-
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play” of DisplayStyle_Processing and state “NotViewed” of
Acknowledgement_Processing). Since our approach enables
to enrich state machines with transitions, which represent
cause–effect relations, we have considered the negation of
ACE-3 as follows:

If an annunciated alarm is displayed (because there
is sufficient space to display the alarm in question), then
it can be acknowledged.

Table 8 shows the rephrased and refined requirements of
such negation.
ACE-4 The requirement ACE-4 states the explicit acknowl-
edgement of an alarm occurrence by the user through “Alarm
Ack button” pressing, and it has been partially mapped in the
original state machine (see Fig. 13, transition from “Viewed”
to “Acknowledged” of the Acknowledgement_Processing
region). Indeed, the original state machine does not include
the behaviour of the user interface. Althoughwe fully refined
this requirement for completeness purposes (see Table 9),
observe that REQ−4.1 cannot be mapped by applying the
proposed approach since contextual information is miss-
ing in the structural and behavioural views of Figs. 14
and 16, respectively (e.g. Alarm Ack button). Therefore,
only REQ−4.2—which is the same as REQ−3.2—has been
mapped by applying the proposed approach.
ACE-5 The requirement ACE-5 deals with the ceasing of
an alarm condition and its refinement leads to two require-
ments REQ−5.1 and REQ−5.2 (see Table 10). In particular,
REQ−5.1 states the occurrence of the alarm correction and,
therefore the ceasing of the alarm condition (the “given” part
ofACE-5’). REQ−5.2 involves theDisplayStyle component,
which has the visibility on the states of AlarmCondition
and Acknowledgement components (see Fig. 14, attributes
“alarm” and “ack” of the DisplayStyle block).
ACE-6 The requirement ACE-6 is the most complex: it con-
cerns silencing an audible alarm for a time period, and it is
partially refined as shown in Table 11. Indeed the ACE-6’
part “if the alarm condition ceases after the ack but before
the silence period time-out then the alarm shall be dismissed”
has not been refined since it involves global states/node in the
original state machine (Fig. 13) which we have not consid-
ered in the initial behavioural view (Fig. 16).

A.2 Initial SysML behavioural view

Figure16 shows the initial behavioural view, where a
state machine is associated with each component. The state
machines only include simple states, since the proposed
approach does not currently deal with composite states.

A.3 Mapping refined requirements to
meta-fragments

Refined requirements REQ-n.m have been matched to
requirement patterns. Tables 12, 13, 14, 15, 16, and 17present
such matching.

In particular, each table details requirements REQ-n.1-
REQ-n.x corresponding to the original requirement ACE-n.
For each refined requirement, the table reports the detected
requirement pattern (MetaReq) with the matching of the
contextual information in the initial model to the roles in
the pattern (Role matching). All the refined requirements,
but REQ−4.1, have been fully matched. REQ−4.1 is only
partially matched due to the absence of contextual informa-
tion related to the user interface in the initial SysML model
(see Table 15).

The translation of all the detected requirement patterns but
the REQ−2.1 leads to the resulting state machines of Fig. 15,
where the tracing of the added model elements (transitions,
trigger, effects, guards) to the refined requirements is shown
as annotations. In particular, there is a one-to-one mapping
between the refined requirements and transitions for almost
all the requirements. The exceptions are the following:

– REQ−6.2, where the translation produces multiple tran-
sitions; and

– REQ−1.2,REQ−3.1,REQ−3.2,REQ−4.1 andREQ−6.1,
where the translations produce refinements of transitions.

Creationofmultiple transitions.REQ−6.2matches themeta-
requirement <G1,W1,T2 and T4> (Table 17) which is
translated to three transitions, one for each simple state
of Sound_Processing state machine according to the meta-
fragment associated with the G1 clause in Table 2. All the
transitions have the same trigger, effect and target state.
Refinement of transitions. Let us consider requirements
REQ−1.2 and REQ−3.1 first, which concern the Dis-
playStyle_Processing state machine. They match the meta-
requirements<G1,W1,T7 and T2> (Table 12) and<G1,W1
and W3, T7 and T2> (Table 14), respectively, where
the second is a refinement of the first one. Therefore,
the translation of the second meta-requirement refines the
already created transition from GreyedOut to RegularState
by adding the guard.

Requirements REQ−3.2, REQ−4.1 and REQ−6.1 con-
cern the Acknowledgement_Processing state machine. In
particular, REQ−3.2 and REQ−4.1 are identical and they
match the meta-requirement <G1,W1,T2> (Tables 14
and 15). Therefore, the transition from WaitForAcknowl-
edgementViewed to Acknowledged with the trigger event
(silence) is created after the first occurrence of the meta-
requirement detection. The second occurrence of meta-
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Fig. 16 Behavioural view: initial state machines of AlarmingCondition, Sound, DisplayStyle and Acknowledgement, respectively
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Table 10 Pre-processing ACE-5: Alarm Condition Ceases

Step: ChatGPT

ACE-5’ Given the originating condition of an alarm has been corrected, when
the alarm has not yet been acknowledged, then the display of the alarm
message shall be greyed out, and all other alarm messages shall be
displayed in the normal colour.

Step: Refinement
REQ ID Contextual information Description

REQ−5.1 AlarmingCondition, ConditionActive, conditionCeases,
DisplayStyle, greyOut, ConditionInactive

Given an AlarmingCondition in ConditionActive, when the
AlarmingCondition receives a conditionCeases, then the
AlarmingCondition sends a greyOut to DisplayStyle and the
AlarmingCondition goes into ConditionInactive

REQ−5.2 DisplayStyle, RegularDisplay, alarm, ConditionInactive,
ack, Acknowledged, greyOut, GreyedOut

Given a DisplayStyle in RegularDisplay, when the alarm of
DisplayStyle is equal to ConditionInactive and the ack of
DisplayStyle is not equal to Acknowledged and DisplayStyle
receives a greyOut, then the DisplayStyle goes into GreyedOut

Table 11 Pre-processing ACE-6: Silencing audible alarm for a time period and possible reannunciation

Step: ChatGPT

ACE-6’ Given an alarm is being acknowledged using the Alarm Ack button,
when the button is pressed, then the audible alarm sound shall be silenced
for 2min, and the visual display of the alarm message shall remain
unaffected. If the alarm condition ceases within the 2-minute silence
period, then the alarm shall be dismissed. If the originating condition
remains valid or reasserts itself after the silence period, then the alarm
shall be reannunciated.

Step: Refinement
REQ ID Contextual information Description

REQ−6.1 Acknowledgement, WaitForAcknowledgementViewed,
silence, Sound, Acknowledged

Given an Acknowledgement in WaitForAcknowledgementViewed,
when the Acknowledgement receives a silence, then the
Acknowledgement sends a silence to the Sound and goes into
Acknowledged

REQ−6.2 Sound, AlarmToneActiveOn, silence,
AlarmToneInactive, setTimer(2min)

Given a Sound in AlarmToneActiveOn, when the Sound receives a
silence, then the Sound calls setTimer with 2min and the Sound goes
into AlarmToneInactive

REQ−6.3 Sound, AlarmToneInactive, timer, alarm,
ConditionActive, Acknowledgement, stopSilence,
AlarmToneActiveToneOff

Given a Sound in AlarmToneInactive, when the timer of the Sound is
equal to 2min and the alarm of the Sound is equal to
ConditionActive, then the Sound sends a stopSilence to the
Acknowledgement and the Sound goes into
AlarmToneActiveToneOff

REQ−6.4 Acknowledgement, Acknowledged, stopSilence,
WaitForAcknowledgementNotViewed

Given an Acknowledgement in Acknowledged, when the
Acknowledgement receives a stopSilence, then the
Acknowledgement goes into WaitForAcknowledgementNotViewed

requirement detection does not produce any further refine-
ments.RequirementREQ−6.1matches themeta-requirement
<G1,W1,T7 and T2> (Table 17), and it is a refinement
of the previous meta-requirement. Therefore, the translation
of this meta-requirement refines the already created transi-
tion by adding the effect.

Observe that the order of translation of the requirements
involving the same transition does not affect the results.

Mapping of multiple alarm occurrence requirement. If
REQ−2.1 is also considered (Table 13), the resulting state
machine of DisplayStyle component does not behave as
intended (Fig. 17). Indeed, the occurrence of the internal
transition (added by translating the instantiated requirement
patterns of REQ−2.1) and of the outgoing transition (from
GreyedOut to RegularDisplay) is not deterministic since the
two guards are not in mutex. This not intended behaviour
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Table 12 Mapping REQ−1.1-REQ−1.4: Alarming Condition Occurrence

REQ−1.1 MetaReq (<G1,W1,T7 and T2>)

Given an AlarmingCondition in ConditionInactive Given a <<Block as gContext>> in <<State as gSource>>

when the AlarmingCondition receives a conditionActivate When the <<Block as wReceiver>> receives <<Signal as wEvent>>

then the AlarmingCondition sends a regular event to
DisplayStyle

Then the <<Block as tSender>> sends a <<Signal as tMessage>> to
<<Block as tReceiver>>

and and

the AlarmingCondition goes into ConditionActive the <<Block as tContext>> goes into <<State as tTarget>>

Role Matching
Value Role

AlarmingCondition Block as: gContext, wReceiver, tSender, tContext

ConditionInactive State as gSource

conditionActivate Signal as wEvent

regular Signal as tMessage

DisplayStyle Block as tReceiver

ConditionActive State as tTarget

REQ−1.2 MetaReq (<G1,W1,T7 and T2>)

Given a DisplayStyle in GreyedOut Given a <<Block as gContext>> in <<State as gSource>>

when the DisplayStyle receives a regular event When the <<Block as wReceiver>> receives <<Signal as wEvent>>

then the DisplayStyle sends an alarmDisplay to
Acknowledgement

Then the <<Block as tSender>> sends a <<Signal as tMessage>> to
<<Block as tReceiver>>

and and

the DisplayStyle goes into RegularDisplay the <<Block as tContext>> goes into <<State as tTarget>>

Role Matching
Value Role

DisplayStyle Block as: gContext, wReceiver, tSender, tContext

GreyedOut State as gSource

regular Signal as wEvent

alarmDisplay Signal as tMessage

Acknowledgement Block as tReceiver

RegularDisplay State as tTarget

REQ−1.3 MetaReq (<G1,W1,T1 and T2>)

Given a Sound in AlarmToneInactive Given a <<Block as gContext>> in <<State as gSource>>

when the Sound receives a conditionActivate When the <<Block as wReceiver>> receives <<Signal as wEvent>>

then the Sound calls setAlarmTone with ON Then the <<Block as tContext1>> <<Operation as tAction>>

and and

Fig. 17 Behavioural view: state machines of DisplayStyle considering refined requirement REQ−2.1
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Table 12 continued

REQ−1.3 MetaReq (<G1,W1,T1 and T2>)

the Sound goes into AlarmToneActiveToneOn the <<Block as tContext2>> goes into <<State as tTarget>>

Role Matching
Value Role

Sound Block as: gContext, wReceiver, tContext1, tContext2

AlarmToneInactive State as gSource

conditionActivate Signal as wEvent

alarmingTone(ON) Operation as tAction

AlarmToneActiveToneOn State as tTarget

REQ−1.4 MetaReq (<G1,W1,T2>)

Given an Acknowledgement in wait for
WaitForAcknowledgementNotViewed

Given a <<Block as gContext>> in <<State as gSource>>

when the Acknowledgement receives an alarmDisplay When the <<Block as wReceiver>> receives <<Signal as wEvent>>

then the Acknowledgement goes in
WaitForAcknowledgementViewed

Then the <<Block as tContext>> goes into <<State as tTarget>>

Role Matching
Value Role

Acknowledgement Block as: gContext, wReceiver, tContext

WaitForAcknowledgementNotViewed State as gSource

alarmDisplay Signal as wEvent

WaitForAcknowledgementViewed State as tTarget

Table 13 Mapping REQ−2.1: Multiple Alarms Occurrence

REQ−2.1 MetaReq (<G1, W1 and W3, T1>)

Given a DisplayStyle in GreyedOut Given a <<Block as gContext>> in <<State as gSource>>

when DisplayStyle receives a regular event When the <<Block as wReceiver>> receives <<Signal as
wEvent>>

and and

the number of alarms of DisplayStyle is greater than zero the <<Property as wVar>> of <<Block as wContext>>

<<comp_op>> <<ValueSpecification as wValue>>

then the DisplayStyle orders the alarms (by severity first, then in
order of occurrence, newest first)

Then the <<Block as tContext>> <<Operation as tAction>>

Role Matching
Value Role

DisplayStyle Block as: gContext, wReceiver, wContext, tContext

GreyedOut State as gSource

regular Signal as wEvent

numberOfAlarms Property as wVar

greater than comp_op

zero ValueSpecification as wValue

ordering Operation as tAction
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Table 14 Mapping REQ−3.1-REQ−3.2: Not Displayed Alarm

REQ−3.1 MetaReq (<G1, W1 and W3, T7 and T2>)

Given a DisplayStyle in GreyedOut Given a <<Block as gContext>> in <<State as gSource>>

when the DisplayStyle receives a regular event When the <<Block as wReceiver>> receives <<Signal as wEvent>>

and and

the sufficient space of DisplayStyle is true the <<Property as wVar>> of <<Block as wContext>> <<comp_op>>

<<ValueSpecification as wValue>>

then the DisplayStyle sends an alarmDisplay to
Acknowledgement

Then the <<Block as tSender>> sends a <<Signal as tMessage>> to
<<Block as tReceiver>>

and and

the DisplayStyle goes into RegularDisplay the <<Block as tContext>> goes into <<State as tTarget>>

Role Matching
Value Role

DisplayStyle Block as: gContext, wReceiver, wContext, tSender, tContext

GreyedOut State as gSource

regular Signal as wEvent

sufficientSpace Property as wVar

is (equal to) <<comp_op>>

true ValueSpecification as wValue1

alarmDisplay Signal as tMessage

Acknowledgement tReceiver

RegularDisplay State as tTarget

REQ−3.2 MetaReq (<G1, W1, T2>)

Given an Acknowledgement in
WaitForAcknowledgementViewed

Given a <<Block as gContext>> in <<State as gSource>>

When the Acknowledgement receives a silence When the <<Block as wReceiver>> receives <<Signal as wEvent>>

Then the Acknowledgement goes in Acknowledged Then the <<Block as tContext>> goes into <<State as tTarget>>

Role Matching
Value Role

Acknowledgement Block as: gContext, wReceiver, tContext

WaitForAcknowledgementViewed State as gSource

silence Signal as wEvent

Acknowledged State as tTarget

could detected by model checking the state machine and
manually corrected.

A.4 Evaluation

We evaluate the effectiveness of the approach by compar-
ing the transitions of the resulting SMmodels and the model
elements (transitions and states) annotated with ACE-n in the
original model [18].

Table 18 summarizes the mapping of the transitions and
places–annotated with requirements ACE-n–in the original
state machine to the transitions—annotated with the derived
requirements REQ-n.m—in the derived model of Fig. 15. In

the following, we consider each concurrent region in Fig. 13–
respectively, each state machine in Fig. 15 and, informally,
discuss about the semantic equivalence of the mapping.
AlarmingCondition_Status There is a one-to-one mapping
between the transitions in the concurrent region and those
in the corresponding state machine—see Table 18, rows 1
and 2. The derived transitions are behavioural equivalent to
the mapped transitions: in particular, the effects produce the
same events (trigger event of DisplayStyle_Processing)—
regular (row 1) and greyOut (row 2).
Sound_Processing Considering rows 3 and 4 (Table 18), the
transitions in the original model have been mapped to a
unique transition in the derived model, which has a simi-
lar (but not the same) semantics of the former. Indeed, while
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Table 15 Mapping REQ−4.1-REQ−4.2: Explicit Acknowledgement Alarm

REQ−4.1 MetaReq (<G1, W2, T7>)

Given an Alarm Ack button in alarm occurred Given a <<Block as gContext>> in <<State as gSource>>

When the user presses the Alarm Ack button When the <<Block as wContext>> <<Operation as wAction>>

Then the Alarm Ack button sends a silence to
Acknowledgement

Then the <<Block as tSender>> sends a <<Signal as tMessage>> to
<<Block as tReceiver>>

Role Matching
Value Role

silence Signal as tMessage

Acknowledgement Block as tReceiver

REQ−4.2 MetaReq (<G1, W1, T2>)

Given an Acknowledgement in
WaitForAcknowledgementViewed

Given a <<Block as gContext>> in <<State as gSource>>

When the Acknowledgement receives a silence When the <<Block as wReceiver>> receives <<Signal as wEvent>>

Then the Acknowledgement goes into Acknowledged Then the <<Block as tContext>> goes into <<State as tTarget>>

Role Matching
Value Role

Acknowledgement Block as: gContext, wReceiver, tContext

WaitForAcknowledgementViewed State as gSource

silence Signal as wEvent

Acknowledged State as tTarget

Table 16 Mapping REQ−5.1-REQ−5.2: Alarm Condition Ceases

REQ−5.1 MetaReq (< G1, W1, T7 and T2>)

Given an AlarmingCondition in ConditionActive Given a <<Block as gContext>> in <<State as gSource>>

when the AlarmingCondition receives a conditionCeases When the <<Block as wReceiver>> receives <<Signal as wEvent>>

then the AlarmingCondition sends a greyOut to DisplayStyle Then the <<Block as tSender>> sends a <<Signal as tMessage>> to
<<Block as tReceiver>>

and and

the AlarmingCondition goes into ConditionInactive the <<Block as tContext>> goes into <<State as tTarget>>

Role Matching
Value Role

AlarmingCondition Block as: gContext, wReceiver, tSender, tContext

ConditionActive State as gSource

conditionCeases Signal as wEvent

DisplayStyle Block as tReceiver

greyOut Signal as tMessage

ConditionInactive State as tTarget

the trigger “conditionActivate”—row 3—is present in the
derived transition, the time-out trigger “tm(IN_TIME)”—
row 4—is not; the reason is that no information about the
time-out is given in the original requirement ACE-1, and
therefore in the derived requirement REQ−1.3.

The original transitions, in rows 5 and 6, have been
mapped tomore informative transitions in the derivedmodel:

indeed, the latter are characterized by the same effect as the
former and, additionally, by an effect (i.e. the time-out set-
ting to 2min) which was specified in the refined requirement
REQ−6.2 but not in the original one ACE-6.

The original transition in row 7 has been mapped to a
transition with similar semantics in the derived model; the
time-out trigger “tm(SILENCE_TIME)” is specified as part
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Table 16 continued

REQ-5.2 MetaReq (<G1, W3 and W3 and W1, T2>)

Given a DisplayStyle in RegularDisplay, Given a <<Block as gContext>> in <<State as gSource>>,

when the alarm of DisplayStyle is equal to ConditionInactive When the <<Property as wVar1>> of <<Block as wContext1>>

<<comp_op1>> <<ValueSpecification as wValue1>>

and and

the ack of DisplayStyle is not equal to Acknowledged the <<Property as wVar2>> of <<Block as wContext2>>

<<comp_op2>> <<ValueSpecification as wValue2>>

and and

DisplayStyle receives a greyOut, the <<Block as wReceiver>> receives <<Signal as wEvent>>,

Then the DisplayStyle goes into GreyedOut. Then the <<Block as tContext>> goes into <<State as tTarget>>

Role Matching
Value Role

DisplayStyle Block as: gContext, wContext1, wContext2, wReceiver, tContext

RegularDisplay State as gSource

alarm Property as wVar1

is equal to comp_op1

ConditionInactive ValueSpecification as wValue1

ack Property as wVar2

is not equal to comp_op2

Acknowledged ValueSpecification as wValue2

greyOut Signal as wEvent

GreyedOut State as tTarget

of the guard (“timer == 2min”) in the mapped transition.
Observe that the guard also includes a further restriction
(“alarm == ConditionActive”) which is not explicitly spec-
ified in the original model but it is stated in the original
requirementACE-6 and in the derived requirementREQ-6-3.
The effect of the original transition is semantically equivalent
to the effect in the derived transition.
DisplayStyle_Processing A one-to-one mapping exists
between the transitions in the concurrent region and those
in the corresponding state machine. However, the derived
transitions are more informative than the mapped transi-
tions: indeed they have the same trigger as the corresponding
transitions in the original model—“regular” (row 8) and
“greyOut” (row 10)—but, additionally, they are character-

ized by effects and/or guards. In particular, the requirement
REQ−3.1 enables to add the guard to the transition from
GreyedOut to RegularDisplay (row 10).
Acknowledgement_ProcessingThe transitions, in the derived
model, indicated in rows 11 and 14, are semantically equiv-
alent to the corresponding mapped transitions in the original
model. Rows 12 and 13 both concern the transition from
WaitForAckViewed to Acknowledged, in the derived model,
which ismore informative than the state (NotViewed, row12)
and the transition (fromViewed toAcknowledged, row 13) in
the originalmodel. In particular, the derived transition is char-
acterized by the same trigger as in themapped transition (row
13) but, additionally, an effect is added—by translating the
refined requirement REQ−6.1—which explicitly represents
the cause–effect relation between the Acknowledgement and
the Sound components.
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Table 17 Mapping REQ−6.1-REQ−6.4: Silencing audible alarm for a time period and possible reannunciation

REQ−6.1 MetaReq (<G1, W1, T7 and T2>)

Given an Acknowledgement in
WaitForAcknowledgementViewed

Given a <<Block as gContext>> in <<State as gSource>>

when the Acknowledgement receives a silence When the <<Block as wReceiver>> receives <<Signal as
wEvent>>

then the Acknowledgement sends a silence to the Sound Then the <<Block as tSender>> sends a <<Signal as tMessage>>

to <<Block as tReceiver>>

and and

the Acknowledgement goes into Acknowledged the <<Block as tContext>> goes into <<State as tTarget>>

Role Matching
Value Role

Acknowledgement Block as: gContext, wReceiver, tSender, tContext

WaitForAcknowledgementViewed State as gSource

silence Signal as: wEvent, tMessage

Sound Block as tReceiver

Acknowledged State as tTarget

REQ−6.2 MetaReq (<G1, W1, T1 and T2>)

Given a Sound in AlarmToneActiveToneOn a <<Block as gContext>> in <<State as gSource>>

when the Sound receives a silence When the <<Block as wReceiver>> receives <<Signal as
wEvent>>

then the Sound calls setTimer with 2min the <<Block as tContext1>> <<Operation as tAction>>

and and

the Sound goes into AlarmToneInactive Then, the <<Block as tContext2>> goes into <<State as tTarget>>

Sound Block as: gContext, wReceiver, tContext1, tContext2

AlarmToneActiveToneOn State as gSource

silence Signal as wEvent

AlarmToneInactive State as tTarget

setTimer(2min) Operation as tAction

REQ-6.3 MetaReq (<G1, W3 and W3, T7 and T2>)

Given a Sound in AlarmToneInactive, Given a <<Block as gContext>> in <<State as gSource>>,

when the timer of the Sound is equal to 2 minutes When the <<Property as wVar1>> of <<Block as wContext1>>

<<comp_op1>> <<ValueSpecification as wValue1>>

and and

the alarm of the Sound is equal to ConditionActive, the <<Property as wVar2>> of <<Block as wContext2>>

<<comp_op2>> <<ValueSpecification as wValue2>>,

then the Sound sends a stopSilence to the
Acknowledgement

Then, the <<Block as tSender>> sends a <<Signal as tMessage>>

to <<Block as tReceiver>>

and and

the Sound goes into AlarmToneActiveToneOff. the <<Block as tContext>> goes into <<State as tTarget>>
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Table 17 continued

Role Matching
Value Role

Sound Block as: gContext, wContext1, wContext2, tSender, tContext

AlarmToneInactive State as gSource

timer Property as wVar1

is equal to comp_op1

2 minutes ValueSpecification as wValue1

alarm Property as wVar2

is equal to comp_op2

ConditionActive ValueSpecification as wValue2

stopSilence Signal as tMessage

Acknowledgement Block as tReceiver

AlarmToneActiveToneOff State as tTarget

REQ-6.4 MetaReq (<G1, W1, T2>)

Given an Acknowledgement in Acknowledged, Given a <<Block as gContext>> in <<State as gSource>>

when the Acknowledgement receives a stopSilence, When the <<Block as wReceiver>> receives <<Signal as
wEvent>>,

then the Acknowledgement goes into WaitForAcknowledgementNotViewed. Then, the <<Block as tContext>> goes into <<State as
tTarget>>

Role Matching
Value Role

Acknowledgement Block as: gContext, wReceiver, tContext

Acknowledged State as gSource

stopSilence Signal as wEvent

WaitForAcknowledgementNotViewed State as tTarget
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