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Localization in urban environments
using a panoramic gist descriptor

A. C. Murillo, G. Singh, J. Košecká, J.J. Guerrero

Abstract—Vision based topological localization and mapping
for autonomous robotic systems are topics of increased interest in
recent years. The need for mapping larger environments requires
models at different levels of abstraction and additional abilities
to deal with large amounts of data efficiently. Most successful
approaches for appearance based localization and mapping with
large datasets typically represent locations using local image
features. We study the feasibility of performing these tasks in
urban environments using global descriptors instead and taking
advantage of the more and more common panoramic datasets.
This paper describes how to represent a panorama using the
global gist descriptor [1], while maintaining desirable invariance
properties for location recognition and loop detection. We propose
different gist similarity measures and algorithms for appearance
based localization and an on-line loop closure detection method,
where the probability of loop closure is determined in a Bayesian
filtering framework using the proposed image representation.
The extensive experimental validation in this paper shows that
their performance in urban environments is comparable to local
feature based approaches when using wide field of view images.

Index Terms—computer vision, appearance based localization,
recognition, gist descriptor, omnidirectional images

I. INTRODUCTION

Generating metric and topological maps from streams of
visual data has in recent years become an active area of
research. This increased interest has been facilitated to a large
extent by improvements in large scale wide-baseline matching
techniques and advances in appearance based localization by
means of place recognition. Place recognition, for purely
appearance based strategies, is typically formulated as an
image based retrieval task; given a database of views from
certain geographical area, and a new query view, the goal is
to determine the closest view from the reference database.
The related loop closure detection task aims to recognize
previously visited locations either in an on-line or batch
manner. One of the key issues in both tasks is the choice
of image representation and similarity measure between two
images.

In this paper, we investigate the suitability of the gist
descriptor, proposed by Oliva and Torralba [1], [2], for
panoramic image representation and propose how to build this
representation. Along with this representation, we introduce
and compare several similarity measures between panoramic
views captured at individual locations. We evaluate the pro-
posed omnidirectional gist descriptor on a large scale place
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Fig. 1: Google Maps Visualization of Street View dataset.

recognition task given the database of reference panoramas of
an urban environment, such as the one shown in Fig. 1. Given
the proposed image representation, we introduce an on-line
loop closure detection method, where the probability of loop
closure is determined in a Bayesian filtering framework.

Experimental results in this work show that despite the sim-
plicity and compactness of the gist descriptor, its effectiveness
and discrimination capability in urban settings is quite high.
This is partly due to the 360o field of view. We also present
a discussion of efficiency and scalability trade-offs between
gist descriptor and local feature based methods. Our extensive
experiments applied in panoramic images demonstrate similar
or superior performance and higher efficiency of gist descrip-
tor for both location recognition and loop closure detection
compared to local feature based methods.

In the rest of this paper, Section II briefly discusses the
related work. The proposed panoramic gist representation and
associated similarity measures are detailed in Section III. Our
approach for place recognition is evaluated on two different
urban panoramic datasets in Section IV, including comparisons
with local feature based methods. The proposed method for
loop closure detection is detailed and experimentally validated
in Section V. The conclusions are in Section VI.

II. RELATED WORK

Appearance based localization and mapping has been
studied extensively in robotics, using a large variety of
different approaches and camera systems. In recent years,
notable scalability and robustness have been achieved in
acquiring both metric and topological maps. This progress has
been fueled by an increase in computational speed, capabilities
for handling and discriminating large amounts of image data
and advances in effective image representations. An essential
component of vision based localization is the choice of image
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representation and associated similarity measure, which has
to be sufficiently invariant yet discriminative and enable
efficient search in large databases. Another key component
deals with means of modeling temporal and online aspects of
the loop detection and localization process. Next we review
some related approaches.

Image representation. The existing image representations
vary depending on the choice of local image measurements
and means of aggregating them spatially. Most of the recent
advances in appearance based localization are based on local
scale invariant features [3], [4] and a geometric verification
stage [5], [6], [7]. The effectiveness of local features for
wide-baseline matching is facilitated by approximate nearest
neighbor methods and quantization schemes, such as k-means
clustering, vocabulary trees and inverted file structures [8],
[9], [10], which enable scalability of these methods to large
datasets with large appearance variations. For example, Cum-
mins and Newman presented an appearance based localiza-
tion method handling extremely large trajectories with their
FABMAP approach [11], and Valgren and Lilienthal [12]
evaluated localization across different season variations.

Alternative image representations are based on global image
descriptors, which often forgo the feature location informa-
tion and aggregate various image statistics globally or over
large support regions. Early examples of these, both using
conventional or omnidirectional images, were global color his-
tograms, histograms of gradient orientations, Fourier transform
components or color invariant moments [13], [14], [15], [16],
[17]. These works typically dealt with small scale datasets.
More recently, the gist descriptor [1] has been shown to work
well for scene categorization, scene alignment or duplicate de-
tection in large datasets of millions of images [18], [19], [20].
The gist of an image captures image statistics of responses to
a filter bank, while weakly spatially integrating the responses
over a coarse image grid. More recent attempts to use the gist
descriptor in the context of robotic localization include [21],
[22]. In [22] initial location recognition is achieved using gist
descriptor and is refined by tracking salient image regions.
In [21], vanishing points are used as additional cues to obtain
more robust place recognition results. Some previous works
combine local feature information with the global descriptors
to augment a gist-based place recognition approach with object
recognition [23] or to re-rank the top candidates selected by
other types of global descriptor similarity [16], [24]. Some of
the known disadvantages of purely global descriptors include
lower invariance, difficulties with occlusions and inability to
incorporate stronger geometric constraints. Their main advan-
tage is the efficiency of computation and compact represen-
tation, allowing enhancements in storage and computational
speed, facilitating working with millions of images [25]. The
majority of the above mentioned works consider conventional
monocular images. While the representations based on local
scale invariant features can be naturally extended to an omni-
directional setting, the computation and the number of local
features per location increases bringing down the efficiency of
the matching stage [26].

In our work, we explore the effectiveness of the gist

descriptor and show how to compute “the gist of a location”
as captured by a panoramic image. We will demonstrate the
use of this representation in the context of location recognition
and loop closure detection. In order to maintain some of the
invariance properties required for image based localization
and place recognition, we propose a similarity measure which
weakly exploits a Manhattan world property [27] assuming
that camera/vehicle headings at revisited locations are related
by multiple of 90o degrees. This assumption is reasonable for
urban outdoors and indoors environments which can be often
viewed as networks of streets/corridors and intersections, with
the preferred directions of travel being related by 90o.

Our initial location recognition and loop closure detection
experiments using the proposed representation were shown
in [28] and [29]. In this work we extend them and incorporate
an on-line temporal model for loop closure detection which
computes the probability of loop closure in a Bayesian
filtering framework. We compare the proposed methods with
state of the art techniques based on local features and discuss
in detail the tradeoffs between local and global representations
and associated retrieval strategies as the size of the dataset
increases. We can find initial experiments towards adapting
the proposed panorama representation for different types of
omnidirectional images in [30].

Appearance based localization and loop closure. Given
the image representation and associated similarity measure,
the simplest version of appearance based localization can be
accomplished by means of place recognition. In this setting,
the environment is represented by a set of images acquired
at previously visited locations. In the localization stage, given
the query view, one seeks the closest view from the reference
set. In our approach, the model of the environment is simply
an unorganized database of images, as done for instance
by Fraundorfer et al. [5]. One can endow the model of
the environment with additional topological structure, which
captures neighboring relationships between the locations, as in
the approach for catadioptric systems by Goedeme at al [17]
or the proposed method for conventional images from Li
and Košecká [31]. The methods for inferring the topology
vary from supervised to unsupervised settings. We find many
place recognition approaches built on vocabulary tree based
methods, such as the work from Schindler et al [32], who
showed that the recognition performance improves when using
more informative features and heuristics in nearest neighbor
search.

In the map building stage, another important problem is the
loop closure detection. The existing loop closure strategies
can be broadly partitioned into on-line and off-line (batch)
methods. Among the on-line methods, the FAB-MAP [33] uses
a bag of words image representation and explicitly models
the dependencies between different visual words. In FAB-
MAP, each view is considered as a separate location and the
probability of loop closure is determined for each view at run-
time. Ranganthan at al [34] present a representation called
probabilistic topological maps (PTMs) that approximates pos-
terior distribution over possible topologies using odometry
and appearance measurements. Other examples for topological
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map building and loop closure detection which integrate metric
information in hybrid topological-metric approaches can be
found in [35], [36]. They model the environment with a global
topological map that relates local metric maps with each node
of the topological model. In Angeli et al [37], loop closures are
detected using “bag of features” representation in the Bayesian
setting, where at each instance the most likely sequence of
loop/no loop hypotheses is computed on-line. Our temporal
model for loop detection is closely related to [37], using a dif-
ferent model for image likelihoods and transition probabilities.
The off-line methods typically compute the similarity matrix
between all pairs of views acquired during the run. Ho and
Newman [38] detect loop closures directly from the similarity
matrix, by detecting statistically significant sequences from
this matrix. Anati and Daniilidis [26] formulate the loop clo-
sure detection in a Markov Random Field (MRF) framework
and propose a novel similarity measure for comparing two
panoramas. The rotational invariance with respect to changes
in heading is achieved by alignment of local features pro-
jected on the horizontal plane using a dynamic programming
approach. There is also a group of place recognition methods
which try to obtain a globally consistent set of matches given
a set of local loop closure hypotheses. These methods can be
seen as a post-processing step to filter out the false positives.
For example, Olson presented an approach [39] which uses
spectral clustering [40] for efficiently determining the globally
correct matches.

III. GIST IN PANORAMAS

Panoramic images are becoming a popular way of visually
mapping large environments. Both in the process of building
these models and at the time of using them, a measure for the
similarity between two given panoramas is needed. Finding
similar images is essential to build a topological map, detect
revisited areas or localize new measurements with regard to
reference ones. In this work, we investigate if the more detailed
place information and configuration contained in panoramic
images compensate for the lower discriminability of global
descriptors. This section describes our proposed gist based
panorama representation and similarity evaluation approaches.

A. Image representation

The gist descriptor [1], [2] aggregates image statistics of
the responses of several filters combined with the input image.
The advantage of the descriptor is that it is very compact and
fast to compute. In the standard configuration, each image
is represented by a 320 dimensional vector per color band,
resulting in a 960 dimensional descriptor per image. The
feature vector corresponds to the mean response to steerable
filters at different scales and orientations. Sample responses in
a conventional image to these filters are shown in Fig. 2. This
resulting descriptor vector coarsely encodes the distribution
of orientations and scales in the image. To get an intuition
of what this descriptor captures, images are clustered together
according to their gist descriptor and reference views from
some of these clusters are visualized in Fig. 3. One can note
that images with similar scene structure have the same type of

Fig. 2: Gist descriptor extraction. Example of intermediate
responses of an image to the 20-filter bank used to build the
descriptor.

Fig. 3: Clustering reference view gists into a k = 40 vocabu-
lary. Sample views from three of the clusters show how views
with similar structure get clustered together.

gist descriptors. The gist descriptor has been demonstrated to
be a good solution for scene categorization problems [1] and
it has been used effectively for retrieving nearest neighbors
from large scale image databases, both for place and object
recognition [41], suggesting how it could be combined with
local features to further improve the recognition system.

In our experiments, each location is represented with a
StreetViewTMpanorama acquired by a 360o field of view multi-
camera system. A single panorama is obtained by warping the
five radially undistorted perspective images onto the sphere as-
suming one virtual optical center. One virtual optical center is
a reasonable assumption considering that the structure around
the sensor is very far compared to the discrepancy between
optical centers of all the cameras. The sphere is backprojected
into a quadrangular prism to get a piecewise perspective
panoramic image, see Fig. 4a. The top camera acquisition is
discarded as it does not provide much information. Then, our
panorama is composed of four perspective images covering
360o horizontally and 127o vertically. We discard the bottom
part of all views, which always contains parts of the vehicle
acquiring the panoramas.

The gist descriptor for the entire panorama is obtained by
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Fig. 4: Panorama acquisition. (a) Multi-camera system with 5
side cameras, whose composed panorama can be re-projected
into any kind of f-faced prism, providing f sub-views from
the whole scene. (b) 4 sub-views from panoramic piecewise
perspective image as an outer surface of the quadrangular
prism. (c) Finer partitioning of the panorama into 8 sub-views.

computing the standard gist descriptor for each of the 4 views
and stacking them together. The panorama is then represented
by a 4-tuple of gist descriptors computed for left, front, right
and back portion of the panorama denoted by:

g = [g1, g2, g3, g4] = g1234. (1)

The aforementioned back-projection could be done to any
arbitrary number of faces. In urban environments, it is more
natural to follow the Manhattan world directions and use four
individual views. Partitioning the gist descriptor into the four
parts as described above, along with an appropriate similarity
measure detailed next, will enable us to strike a good balance
between discriminability of the proposed descriptor, viewpoint
invariance and compact representation. This partitioning is
suitable for urban indoors and outdoors environments which
can be well described as networks of roads/corridors and inter-
sections, such that the possible camera headings at a particular
location are related by multiple of 90o degrees. Deviations
from these assumptions are discussed in Section IV, where
we can see that obtaining finer panorama partitioning does not
provide significant improvements but it does carry significant
computational overload.

B. Image Similarity Measure

Given the proposed representation, this subsection details
how to compare two panoramas with three different methods.
They are all run and evaluated in the following section to
study the advantages and issues in each of them. We first
introduce a similarity measure for exact neighbor search
followed by two approximate more efficient methods.

1) Exact Gist distance - Egist: We are given the 4-tuple of
gist descriptors computed for the reference panoramic image,
denoted by gr = [gr

1, g
r
2, g

r
3, g

r
4] = gr

1234, and the query image
with corresponding gist descriptor of gq = [gq

1, g
q
2, g

q
3, g

q
4] =

gq
1234, where the short hand index 1234 denotes the order of

individual components of the descriptor. In order to compare
the two panoramic images, we want to take into account the
possibility that they have been taken at different orientation
headings. To accommodate this level of viewpoint invariance,
we propose to consider in the matching the following de-
scriptor permutations, obtained by circular shifts, g1234, g2341,
g3412, g4123. The similarity measure between two panoramic
images is then defined in the following way:

dist(gq
,gr) = min

m
de(gq

, πm(gr
1234)), (2)

where πm is the mth circular permutation of the gist compo-
nent vectors (m = 1,2,3,4) and de is the sum of the norms of
differences between the gist vector components,

de(gq
,gr) =

4∑

i=1

‖gq
i − g

r
i ‖. (3)

When using the exact distance measure, the computational
complexity of the problem of finding nearest neighbor in the
image database is linear with the size of the database. While
this strategy is acceptable for relatively small databases,
it does not scale to large ones, where sub-linear strategies
for nearest neighbor have to be sought. We now present
two strategies based on methods commonly used for sub-
linear nearest neighbor search: descriptor quantization and
approximate nearest neighbor methods.

2) Gist vocabulary - V Qgist: Following the commonly
used bag of words approach [8], the space of all gist descrip-
tors is quantized to build a vocabulary of k gist words. A
subset of training reference panoramas is used to build the
gist vocabulary Vgist = {w1, w2, ..., wk}. k-means clustering
is run on gist descriptors from each of the four parts of all
these reference images. The k cluster centroids are considered
to be the words, w, of the gist vocabulary. Typical values
for k and their impact in the results are discussed later at
the experiments in Section IV. Fig. 3 shows how views with
similar basic structure get clustered together. Fig. 5 presents
the average image of all views that belong to each cluster.
Notice that qualitatively different features of urban areas are
revealed by individual clusters.

We define the similarity measure, distV Q between two
panoramas using the gist vocabulary Vgist. It is defined using
the distance between the closest cluster (word) assigned to
the each of the original gist descriptors. Each of the four
gist descriptors, composing the panoramic image descriptor,
is assigned to the nearest gist word from Vgist:

gq = [gq
1, g

q
2, g

q
3, g

q
4] ← [wa, wb, wc, wd]

gr = [gr
1, g

r
2, g

r
3, g

r
4] ← [we, wf , wg, wh]

The complexity of this nearest neighbor search depends on the
number of words in the gist vocabulary - k - since the nearest
word for each gist descriptor needs to be found. Once the gist
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Fig. 5: Average view in several gist-vocabulary (k = 40) clus-
ters built from ≈ 9000 reference panoramas (36000 views).

word assignments are obtained, the distance between the two
panoramas is computed as described in (2):

distV Q(gq,gr) = dist([wa, wb, wc, wd], [we, wf , wg, wh]) (4)

In case the size of the vocabulary is small, further efficiency
can be gained by pre-computing the distance matrix between
all gist words: Dw(i, j) = ‖wi − wj‖. Using only distV Q,
we can efficiently retrieve a small set of likely candidates
including the best alignment of each candidate with the query
panorama. In a second stage, exact gist similarity measure
Egist, as described before, is used to re-rank these candidates
with regard to the query.

3) k-d tree based similarity - KDgist: Another commonly
used approach for speeding up nearest neighbor search are k-d

trees. In the basic k-d tree algorithm, the splitting dimension at
a node is the one with the highest variance and the threshold
for split is set to be the median value along that dimension.
The first candidate for the nearest neighbor is obtained from
a traversal through the tree by comparison to the thresholds
at each level. This can be optionally followed by the process
of backtracking in which other unexplored branches of the
tree are searched for better candidates. The search efficiency
was improved by [42] who described a priority queue based
backtracking known as Best Bin First (BBF). An improved
version of the k-d tree algorithm in which multiple randomized
k-d trees are used was proposed by [43]. The randomized trees
are built by choosing the split dimension randomly from the set
of dimensions with high variance. The aforementioned priority
queue is maintained across all these randomized trees and the
nearest neighbor is found through simultaneous independent
searches in different trees.

In previous works such as [44], it has been shown that
given a desired precision for an approximate nearest neigh-
bor method, the efficiency decreases dramatically with the
increased dimensionality making them comparable to linear
search methods. Therefore, we perform Principal Component
Analysis (PCA) for dimensionality reduction. Given a 4-tuple
of standard gist descriptors (4 × 960 = 3840 dimensions),
we compute the principal components for the set of reference
views and select the top principal components such that they
explain 99% of the variance in the data. In our experiments, we
kept the first 500 components. Projecting the original descrip-
tors on the principal components, we get a lower dimensional
representation gp for each composite gist descriptor.

The randomized k-d tree is built from the projected descrip-
tor values gp of the reference image set. In order to exploit the
Manhattan world assumption in the image comparison stage,
the k-d tree is queried with the projected gist descriptor from
all four possible permutations of the query image 4-tuple,

min
m

de(gkd
, πm(gq

p))

de(gkd
,gq) = ‖gkd − gq

p‖ (5)

where gkd is the approximate nearest neighbor returned by
the k-d tree method and πm is the mth circular permutation
of the 4-tuple gist elements (m = 1, 2, 3, 4) in the full gist
descriptor. The permutation yielding the smallest distance de

is kept as result.

IV. APPEARANCE BASED LOCALIZATION

Appearance based localization (location recognition) and
loop closure detection are closely related tasks. All of them
share the basic goal of finding the closest view in the reference
set, given some similarity measure.

In the localization problem, we evaluate the similarity of
a query view with respect to a given set of reference images
that cover the whole considered environment. For the loop
detection task, we evaluate the similarity in an on-line manner,
comparing the current view only with the set of images
acquired so far. This section evaluates our proposed image
representation and similarity measures for localization. The
techniques and results for loop closure detection are described
in Section V.

A. Experimental settings

Experiments in this section are designed to evaluate the
proposed panorama representation and image similarity mea-
sures. We present results for the three similarity measures
proposed in the previous section (Egist, V Qgist and KDgist)
and compare them to standard local feature “bag of words”
representation. All our experiments were run in Matlab. The
vocabulary and k-d tree for the V Qgist and KDgist ap-
proaches are built using the VLFeat open source library [45]
and gist descriptors were computed using the code provided
by the authors1.

We evaluate the performance as a function of the top-k
retrieved neighbors using the different similarity measures.
Quantitative evaluation of the localization accuracy is done
using the ground truth GPS annotations.

B. Localization in Street View dataset

This section analyzes and demonstrates several key de-
sign issues and evaluates the performance of the proposed
approaches on a large dataset of Street View images2. The
set consists of 12,000 panoramas acquired from a vehicle
along a 13 mile long run in an urban environment shown in
Fig. 1. All the locations in the dataset were provided with
GPS coordinates of the vehicle. The dataset is divided into a

1http://people.csail.mit.edu/torralba/code/spatialenvelope/
2Dataset provided for research purposes by GoogleTM.
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Fig. 6: Street View dataset. A general overview of this dataset
is shown in Fig. 1. Red locations (a) are the reference set;
blue locations (c) are later revisits to different areas used
as test set for the localization experiments and ground truth
for the loop closure experiments. The zoomed view of the
rectangular dashed area (b) shows some superposed reference
and test locations, where the vehicles traverses the same streets
at different time in different travel directions.

reference set and a test set (Fig. 6 visualizes the train-test split
of the dataset):

• The reference set contains all the images from the first
time the vehicle passes by a particular location (≈ 9000
panoramas).

• The test set is composed by the rest of images acquired
at a later time, when the vehicle passed through those
places again(≈ 3000 panoramas).

In the following results, we provide the accuracy for
correct localization (defined as the number of correctly
localized query views divided by the total amount of query
views) using different distance (dist) thresholds (10, 20
or 40m). Each column presents the results for considering
the nearest retrieved location within the top-k results. We
present the results for top-k = 1, 10, 20, 40. Top 1 is the
localization result provided by our approach, while the other
columns evaluate results if we consider a set of top candidates.

1) Panorama partitioning: The first set of experiments,
summarized in Table I, analyzes the proposed partitioning of
the panoramas into four views. We also evaluate if it can
be improved by finer grained image partitioning with the
corresponding alignment estimation. Localization is obtained
for all the test set images using the basic approach, Egist,
and a finer partitioning into 8 segments (See Fig. 4). It is
observed that the finer image partitioning does not lead to
any major improvement with changes up to 2% increase in
the recognition rates. However, the time for processing each
query view increases. In our Matlab implementation, the time
for computing the matches increased from 5 to 15 seconds
when a finer grained image partitioning is used. Therefore, for
the rest of our localization experiments, we use a partitioning
of the panoramas into 4 views.

We have also run this experiment without computing the
distance over all circular permutations, i.e., with similarity
which is not invariant to any rotation. For this dataset, even
with just a few locations which are revisited from opposite
direction, it decreased localization performance by 5%.

TABLE I: Localization results varying the partitioning

top 1 top 10 top 20 top 40
dist < 10m 0.88 0.92 0.93 0.94

Egist dist < 20m 0.93 0.94 0.95 0.96
(4-parts) dist < 40m 0.94 0.96 0.97 0.97

Average query search time: 5.23 s
dist < 10m 0.90 0.93 0.94 0.96

Egist dist < 20m 0.93 0.95 0.96 0.98
(8-parts) dist < 40m 0.95 0.97 0.98 0.99

Average query search time: 15.44 s

TABLE II: Localization results varying the field of view:
360oFOV (all faces) vs standard FOV (single face)

top 1 top 10 top 20 top 40
dist < 10m 0.88 0.92 0.93 0.94

Egist dist < 20m 0.93 0.94 0.95 0.96
(All faces) dist < 40m 0.94 0.96 0.97 0.97

Average query search time: 5.23 s
dist < 10m 0.75 0.82 0.84 0.86

Egist dist < 20m 0.78 0.85 0.87 0.89
(Single face) dist < 40m 0.81 0.88 0.90 0.92

Average query search time: 1.42 s

2) Field of view impact: In this set of experiments,
summarized in Table II, we evaluate the importance of using
panoramic images in our approach. We compare localization
results using wide field of view panoramas and narrow field
of view images. Localization in both cases is obtained using
the Egist approach. To facilitate the comparison, we run the
localization experiments on the entire panorama (360o FOV)
and on a single face of the panorama. As expected, using the
entire panorama has a higher computational cost compared
to using a single face (search for a single query needs about
5 and 1.5 seconds respectively). However, using the whole
field of view provides a significantly higher accuracy, with
an increase of more than 12%. Notice that localization for
conventional field of view images, using the proposed image
representation, achieves a performance above 90% when
considering a set of top-40 candidates, and therefore, a final
re-ranking step of these candidates would be required for the
case of conventional field of view images.

3) Exact vs approximate gist similarity: This subsection
provides an evaluation of the different similarity measures,
which use either the exact gist similarity or the approximate
approaches described in Section III-B, namely, Egist, V Qgist

and KDgist. The results, summarized in Table III and Fig. 7,
point that the most accurate localization, among the gist based
approaches, is achieved by an exhaustive search on the exact
gist representation, Egist. However, accuracy with the other
approaches is only slightly lower and presents advantages with
regard to memory and computational time requirements, as
described in more detail later in Table V.

We tested different vocabulary sizes k in the V Qgist exper-
iments (k = 40, 100, 1000). As the size of the vocabulary
increases, the accuracy of localization improves. We only
evaluated up to a vocabulary size of 1000 words since a
vocabulary of a larger order of magnitude will be the same
size as the number of images in the reference set.
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Fig. 7: Correct localization results for all approaches run in
Street View dataset, with acceptance threshold of 10 meters.

The KDgist approach uses a descriptor of reduced
dimensionality (500 dimensions). We used a single k-d tree
in our experiments. We experimented with a higher number
of trees and there was no performance improvement but the
execution time per query increased from 0.09s (using a single
tree) to 0.17s (using a forest of five trees). We also evaluated
the approach for using the entire descriptor instead of the
reduced one obtained through PCA. The performance was
similar but the execution time increased to 0.29s per query.

4) Gist-based vs. local features: This subsection compares
results obtained for the three gist based localization approaches
with a standard local feature based approach, Vsurf . The
Vsurf method uses SURF local features [4], extracted from
the whole panorama, in a bag of features approach which
is based on the hierarchical k-means clustering proposed by
Nistér and Stewénius [8]. Each of the obtained cluster centers
represents a visual-word, and the local features of an image
are quantized by assigning them to the nearest visual word. An
image is then represented by a weighted histogram of visual
words where the individual bin weights are determined by
the inverse frequency of the visual word across all reference
images. Normalized histogram distance is used to evaluate
image similarity and select the top-k most similar images
as most likely locations. As in our previous experiments,
we have used the publicly available VLFeat library [45].
We use hierarchical k-means to build a vocabulary tree with
the following parameter values for the tree construction: tree
depth of 4 and branching factor of 10, resulting in 10 000
leaves. Table III and Fig. 7 include the results obtained with
this approximated local feature representation. The quality of
the localization in urban panoramic datasets using the local
features is comparable to the gist descriptor based approaches
proposed in our work. A discussion of why we have chosen
quantized local features as baseline for our comparisons is
included in the following Section IV-D together with a detailed
analysis of memory and computational requirements presented
for all approaches.

Fig. 8 shows examples of the top two retrieved results
for two different queries. Note that even though the matched
panoramas may look quite alike at the shown scale, sequence

TABLE III: Localization results varying the image similarity
evaluation (exact vs approximate search; global vs local fea-
tures)

top 1 top 10 top 20 top 40
dist < 10m 0.88 0.92 0.93 0.94

Egist dist < 20m 0.93 0.94 0.95 0.96
dist < 40m 0.94 0.96 0.97 0.97
dist < 10m 0.36 0.61 0.68 0.74

V Qgist dist < 20m 0.47 0.66 0.72 0.77
(k = 40) dist < 40m 0.52 0.69 0.75 0.80

dist < 10m 0.74 0.84 0.85 0.87
V Qgist dist < 20m 0.84 0.87 0.88 0.89

(k = 1000) dist < 40m 0.86 0.89 0.90 0.91
dist < 10m 0.85 0.89 0.90 0.91

KDgist dist < 20m 0.90 0.91 0.92 0.93
dist < 40m 0.93 0.93 0.94 0.95
dist < 10m 0.81 0.89 0.91 0.92

Vsurf dist < 20m 0.87 0.92 0.94 0.95
dist < 40m 0.88 0.93 0.95 0.97

Query view, time index 4650 Query view, time index 6154

Best matches, time index 789, 4164 Best matches, time index 3410, 3411

Fig. 8: Street View dataset. The two most similar panoramas
found for two query views. Left column shows one test where
the most likely candidate is not correct but the second is.

frame index shows that these panoramas are actually far from
each other (in time). As can be seen in the examples, the
result provided using only gist-based representation, i.e. first
match, may not always be the correct localization as we can
see in the figure on the left. If we would consider a set of
top candidates selected by our approach, results can be re-
fined by post-processing the top candidates with exact nearest
neighbor matching using local features (for instance SURF
[4]) and choosing the candidate with the highest number of
correspondences. We validate in our experiments that selecting
the candidate (from the top-10 retrieved results) with the
highest number of SURF correspondences, without any spatial
verification, finds the correct solution 98% of the time if a
correct solution existed within the top-10 retrieved results.

C. Localization in New College Dataset

We have also evaluated our place recognition algorithms
on the New College dataset [46]1. It provides panoramic data
acquired from a multi-camera system mounted on a mobile
robot platform. The trajectories are performed along pedestrian
paths around college buildings and parks. The provided dataset
contains images which are stitched panoramas. The dataset

1http://www.robots.ox.ac.uk/NewCollegeData/
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Fig. 9: New College dataset. Plot of GPS tags from its three
parts (provided by the dataset authors [46]), manually aligned
with an aerial view of the traversed environment. Data detailed
description at authors’ website. (Best viewed in color)

Query view, time index 4809 Best match, time index 7500

Query view, time index 4044 Best match, time index 6957

Query view, time index 1299 Best match, time index 6295

Fig. 10: New College dataset. Each row visualizes a query
view (left column) and its corresponding top retrieved result
(right column). In the top two rows, besides lightning changes,
the query’s best match occurs rotated by 180o. Our proposed
similarity measure detects the match correctly in the three
examples.

consists of three parts, shown in Fig. 9. The locations in the
dataset have been provided with GPS tags but as can be seen
in the figure some revisited parts of the dataset contain GPS
errors of up to 40m even though they correspond to same
locations, e.g., the small loops on the top left.

Part C, which covers the entire area once, is used as the
reference set and images from trajectories A and B are used
as test images. Fig. 10 shows three examples of test images and
the most similar reference image retrieved. Fig. 11 presents a
visual summary of the localization results in this experiment. A
line is drawn between each test image (black colored) and the
most similar reference image (blue colored) found using Egist.
We can observe that generally the most similar panorama
selected corresponds to a correct location. Results in the figure
are shown for a GPS acceptance threshold of 40m. Table IV
shows the quantitative localization results. Note that as we
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Fig. 11: Localization results. Test images (colored in black)
are connected with the most similar reference image found
(in blue). Green and red lines visualize correct and incorrect
results respectively, using an acceptance threshold of 40m.

TABLE IV: Localization results with New College dataset

top 1
dist < 10m 0.25

Egist dist < 20m 0.73
dist < 30m 0.92
dist < 40m 0.99

increase the threshold distance for accepting a localization
result, the performance improves drastically. For example,
when distance is set at 10m, the accuracy is 25%. However
when the distance threshold is increased to 40m, it improves
to 99%. This accounts for the errors in the GPS annotations
which is corroborated by the visualization in Fig. 11.

D. Space and Time Complexity Issues

The previous subsections evaluated the quality of the lo-
calization results for the different proposed approaches. We
have seen in the summary from Table III and Fig. 7 that
results based on the gist representation, Egist and KDgist, are
comparable or outperform local feature “bag of words” model
Vsurf in our setting. In this section, we discuss in more detail
the space and time of execution tradeoffs for the different
proposed approaches.

Gist based representation provides advantages in memory
requirements and execution times. The evaluation by Douze
et al [20] illustrated considerable difference in using exact
local feature image representation compared to gist based ap-
proaches with a difference of more than an order of magnitude
for the memory requirements. We have chosen quantized local
features as a baseline for our comparisons because although
quantized approaches are less accurate than exact methods,
the representations using the quantized local features are
comparable with gist representations with regards to memory
and efficiency. As shown in the aforementioned evaluation,
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TABLE V: Memory bytes required and execution time per test
for a 10,000 image dataset

Approximate storage
requirements

Average execution
time per test (one
image search)

d (f )
length

Egist (N × f × d) : 146 MB O(N) : 5.23 s 960(4)
KDgist (N × f × d) : 20 MB O(log N): 0.09 s 500(1)
V Qgist

(k=40)
(k × d + N × k): 1.7 MB O(log k) : 0.8 s 960

V Qgist

(k=1000)
(k × d + N × k): 42 MB O(log k) : 1.02 s 960

Vsurf

(k=10000)
(k × d + N × k): 382 MB O(log k) : 5.5 s 64

when using the exact methods for local features, scalability
turns unfeasible for standard computers due to memory and
computational requirements.

The approximate requirements of the different approaches
for a dataset of 10 000 images (a size comparable to our Street
View dataset) are provided in Table V. The table includes
the parameters used to estimate the required storage - N the
number of images, f the number of features per image, d the
length of the feature descriptor and if applicable, k the size of
the vocabulary used. It also provides the time complexity of
the execution of a single search in the different methods. From
the results, we note that the k-d tree based method provides
the best compromise between accuracy, memory requirements
and speed of the retrieval. The advantage of “bag of words”
approaches (V Qgist and Vsurf ) is the flexibility to handle
bigger datasets: they require lower memory and search time
when large datasets are used, since their time search growth
is constant with the size of the database (N ) and the storage
depends less significantly on it. However, performance of the
“bag of words” method critically depends on the size of the
vocabulary. The performance improves as we augment the
size of the vocabulary, but it also raises the computational
cost and memory storage requirements, making V Qgist

similar to KDgist for our settings without reaching as good
recognition rates and efficiency.

It was already pointed out in previous evaluations of local
features vs. gist based representations in conventional im-
ages [20], that memory and efficiency wise, the gist image
representation presents clear advantages for scalability to large
datasets. Their work showed that quality of recognition for
global descriptor image representation was only comparable to
local feature approaches when searching for near-duplicates.
Our current problem is related to the duplicate detection
problem because, in spite of weather, lighting or occlusion
condition changes that make it harder, we consider that the
reference information covers the whole environment and we
can usually expect a good solution among the reference
information. This, together with the fact that large FOV are
more discriminative than conventional images, makes the good
performance of gist based approaches to find the most similar
location not surprising.

The work in [47] presents a detailed analysis of complexity
and storage requirements for approaches similar to ours.
Following their analysis, with datasets of 50K images, using

exact local feature descriptors memory requirements start
to be problematic for a conventional computer and “bag
of words” methods are recommended with vocabularies
about 1 million words. In our case, due to the smaller
memory requirements of global descriptors; 150KB for the
conventional image local feature descriptors vs 15KB for
our panorama gist descriptor; we could then handle datasets
up to one order of magnitude higher before using quantized
descriptor spaces.

As a summary, we state that in our settings the approximate
nearest neighbor technique based on k-d tree is the best
compromise between performance (execution time and dis-
criminability) and storage requirements. It runs around 8 times
faster to localize a new query in Matlab and also has the ad-
vantage of reduced dimensionality of the descriptor. However,
if the size of the reference image database grows by more than
an order of magnitude, memory requirements of this approach
would start to be problematic and the quantized version of
local or global descriptors should be used. Local descriptors
may provide better discriminability in some cases, although
global descriptors decrease computation requirements since
far less features have to be evaluated per image and smaller
representative vocabularies can be obtained.

V. LOOP CLOSURE DETECTION

As previously mentioned, appearance based localization and
loop closure detection are closely related tasks. They share the
basic goal of finding the closest view in the reference set, but
loop detection considers as reference set for a given view all
images acquired previously during current trajectory. Loop de-
tection requires to evaluate the similarity in an on-line manner.
This framework raises different issues and possibilities that
can be exploited through spatio-temporal constraints. In this
section, we first present a basic approach to detect revisited
places (Section V-A1). We then describe steps to incorporate
temporal context for an improved loop detection method which
explicitly models the probability of loop closure detection in
a Bayesian filter framework (Section V-A2).

A. Loop closure detection approaches

1) Basic revisited places detection: The problem of loop
closure detection involves detecting a return to a previously
visited location while traversing the environment. In our basic
loop closure detection method, we extend the place recognition
approaches described in the previous section to an on-line
setting. Given a query view, to decide if it corresponds to
a revisited place, we search for similar views among the
locations visited so far. From the previously described gist-
based similarity measures, we use Egist since it provided the
best accuracy in the localization experiments. At each location
of the vehicle’s traversal of the environment, the following
criteria is used to detect a revisit at that location.

Gist similarity distances are computed between the current
location and past locations. The closest match to the current
location (at time t) is defined as the location which has the
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minimum gist similarity distance, i.e.,

dmin = min (
i∈[0,t−p]

dist(gt
,gi)),

where dist(gt,gi) is computed using (2). If the gist similarity
distance to the closest match (dmin) is below a threshold
(τloop), we predict a loop closure at that location. Otherwise,
it is considered a visit of a new location. The search is not
performed for the last p locations to discard immediately
preceding locations since the appearances of scenes from
neighboring locations are very similar to each other.

A drawback to this approach is that it requires a user
specified threshold for predicting loop closure detections. We
now propose a method which overcomes this drawback and
also incorporates temporal information.

2) Bayes filter for loop closure detection: Instead of con-
sidering only the current view for loop closure detection,
we introduce a simple temporal model for determining the
probability of loop closure. This model captures the fact that if
the current view has a high probability of being a loop closure,
the subsequent view is more likely to be a loop closure. As
the vehicle traverses through the environment and acquires
new images, the gist based panorama representation is used to
evaluate the probability of loop closure in a Bayesian filtering
framework.

We now describe how the state is represented and estimated
at each time instance. Our approach is motivated by [37]. Let
St be the random variable that represents the loop closure
event at time t. The observable output is the visual appearance
It of the current location xt, which is represented as the tuple
of gist descriptors of the current location’s image. St = i

represents the event that the location with image It is a revisit
of previously traversed location xi with image Ii. St = 0
represents the event that no past location is being revisited
at time t, hence a new location is visited. In the Bayesian
framework, the problem of loop closure detection can be
formulated as searching for a past location j which satisfies:

j = arg max
i∈[0,t−p]

p(St = i|It), (6)

where It = I1, I2, ..., It are the images of the locations visited
so far in chronological order. Therefore, we need to estimate
the posterior probability p(St = i|It) for all i ∈ [0, t − p] in
order to detect if a loop closure has occurred or not. Expanding
the expression for the posterior probability we get

p(St = i|It) = p(St = i|I1, I2, ..., It).
= p(St = i|It−1

, It) (7)

Applying Bayes rule to the right hand side of (7),

p(St = i|It) =
p(It|St = i) p(St = i|It−1)

p(It|It−1)
= α p(It|St = i) p(St = i|It−1) (8)

where α is a normalization constant (since the denominator
p(It|It−1) is constant relative to the state variable). The
conditional probability p(It|St = i) is the likelihood of the
currently observed image It (represented by the tuple of gist

descriptors) given St = i. The right part of (8) can be further
decomposed as

α p(It|St = i)

t−p∑

j=0

p(St = i|St−1 = j) p(St−1 = j|It−1), (9)

where p(St = i|St−1 = j) is the state transition probability
for observing event St = i given St−1 = j. We now describe
the state transition probabilities and how to estimate the
likelihood term of this model.

Likelihood. The likelihood function for loop closure event
St is based on the similarity between the panoramas of the
two locations:

p(It|St = i) = exp

(
−dist(gt, gi)

σ2

)
, (10)

with dist(gt, gi) computed as in (2) and σ2 a user-defined
variance. This assumes an exponential decay with the gist
similarity distance for the observation likelihood.

We also need to compute the likelihood for the non-loop
closure event, St = 0, which does not have any image
associated with it. Therefore, to compute the likelihood for this
event, we construct a virtual image using the gist descriptors
of traversed locations. The virtual image at time t, denoted
by I0t, is built as the average of the gist tuples of the past K

locations:

I0t =
∑t−1

i=t−K gi

K
, (11)

where gi is the 4-tuple described in Section III. For locations
at time t < K, all the past locations are used for calculating
the virtual image. The virtual image I0t represents the average
appearance of the environment at time t. Its construction
reflects the idea that the gist similarity distance associated
with this virtual image will change according to the current
location. When a new location is visited (i.e. no loop-closure
occurs), the image at the current location - It - should appear
more similar to the average appearance of the environment
I0t than an image Ii from a previous timestep. However,
when the vehicle returns to a previously visited location xi,
the image It should appear more similar to the image Ii

since Ii is more specific to that location than the average
appearance described by I0t.

State Transition. The probability p(St|St−1) is used to
model all possible transitions between states at times t−1 and
t. The state transition diagram is summarized in the diagram
in Fig. 12 and we use the following transition probabilities:

• p(St = 0|St−1 = 0) = p0→0 is the probability of non-
loop closure event at time t given that no loop closure
occurred at t − 1.

• p(St = i|St−1 = 0) = 1−p0→0
t−p , with i ∈ [1, t-p], stands

for the probability of a loop closure event at time t given
that none occurred at t − 1. The possible states for a
moving vehicle are either the visit of a new location or
the revisit of the past locations (except the immediately
preceding p locations). This implies that

∑t−p
i=0 p(St =
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Fig. 12: Diagram of the HMM modeling of the loop closure
or non-loop closure events.

i|St−1 = 0) = 1 and we assign equal probabilities to all
the t − p possible loop closure events.

• p(St = 0|St−1 = j) = pj→0, with j ∈ [1, t-p], the
probability of non loop closure event at time t given that
loop closure occurred at t − 1.

• p(St = i|St−1 = j) = pj→i, with i, j ∈ [1, t-p] is
the probability of loop closure at time t at viewpoint xi

given that loop closure occurred at t−1 at viewpoint xj .
This probability is represented by a Gaussian distribution
based on the distance between viewpoints xi and xj .
It uses the assumption that among loop closure events,
the probability of transitioning to the nearest neighbor
locations will be higher and it will decrease as their
distance to the current location increases. The variance
of the Gaussian distribution is chosen in such a way that
it is non-zero for exactly 2w neighbors of viewpoint xj

i.e. pj→i > 0 if i ∈ [j − w, j + w]. This represents the
varying image similarity between neighboring viewpoints
according to the distance between them. The non-zero
probabilities in this case must sum to 1 − pj→0 since∑t−p

i=0 p(St = i|St−1 = j) = 1.

B. Experiments on loop detection

This section evaluates the proposed image representation
and methods for loop closure detection. We first discuss
the metrics used for evaluation. We then show the effect
of the main design decisions in our proposed panorama
representation for loop closure detection. This basic approach
is run on two different datasets, including a comparison with
a local feature based image representation. We then illustrate
the advantages and improvements obtained with the Bayes
filter loop detection approach.

1) Evaluation: Our metrics for evaluating the performance
of the framework are precision and recall:

Precision =
TP

TP + FP
100% Recall =

TP

TP + FN
100%

where TP is true positive, FP is false positive and FN is
false negative. A location is considered a true positive if
loop closure is successfully detected at that location. Loop
closure locations in the ground truth for which loop closure is
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Fig. 13: Street View dataset. Performance of Egist for basic
loop closure detection using the top-k nearest neighbors. Our
approach results are shown in red. (a) Maximum recall rate
of our approach (whole panoramic view) vs. a subset of the
views; (b) Maximum recall rate of our approach (doing circu-
lar permutation check) vs not checking the views alignment.

not detected successfully are false negatives, while locations
incorrectly predicted as loop closure are false positives. It is
trivial to obtain perfect recall by predicting loop closure at
every query location but it will lead to poor precision due to
the high number of false positives. Hence, it is essential to
achieve high precision, while trying to maintain a good recall.

To evaluate our results, for a given query view, locations
within a threshold distance are considered to be correct loop
closure detections. In order to avoid considering immediately
preceding locations as loop closures, we use a window of p

preceding frames so that views taken within short time of
each other are not considered for loop closure evaluations.

2) Influence of image representation decisions: Similar to
our experiments for the localization problem, we analyze the
impact of choices for panorama representation: the use of wide

field of view images and the alignment analysis, i.e., using the
four circular permutation possibilities when computing the gist
similarity as described in (2).

These experiments are run on the previously described
Street View dataset (Section IV-B). To set the ground truth
of actual revisited locations, we used a threshold distance of
10m and a window of size p = 25 yielding a ground truth set
of 3362 revisited locations (the same as the test set locations
in Fig. 6). The effect of using 360o field of view for loop
closure detection is demonstrated in Fig. 13a. Notice that
having the full FOV significantly improves the discrimination
capability of the loop closure detection. Considering a
smaller portion of the panorama, e.g., only two faces, which
resembles the localization with traditional cameras, is shown
to be detrimental to the overall performance. Fig. 13b
shows the effectiveness of the proposed similarity measure,
which compares each query panorama with all rotational
permutations of the reference views instead of using one
single alignment between the panoramas.

3) Comparison to local features based methods: The com-
parison is carried out on the New College dataset (detailed
previously in Section IV-C) since results for a local features
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Fig. 14: New College dataset loop detection results. Green
lines represent correct detected loops. Locations are plotted
according to the GPS tags available: trajectory used for this
experiment (part C) uses blue dots; locations shown in pink
are the ground truth for revisited locations. The black dots
correspond to GPS tags of images from other parts of the
dataset. They were not used in this experiment but visualize
the available GPS accuracy.

based method are publicly available and they provide us an
opportunity to carry out a direct comparison. We use only
part C of the dataset, because errors between GPS tags of
the other parts are too high. Loop detection results for this
experiment are obtained by running the basic loop closure
detection from Section V-A1. We discard a window of p = 50
preceding frames as non-valid candidates for loop closure. A
loop detection is predicted by setting the threshold τloop = 0.5.
This value for the threshold provides the maximum recall for
a precision of 100%. Figure 14 visualizes the loop closure
detection results, by drawing a line between later images and
the previous location they are revisiting. The loop detection
is considered correct if the two views are located within 15m
according to the reference GPS tags. Successful detections are
shown with green lines and incorrect ones with red lines.

Table VI presents the precision for our system in
comparison to the results in [48] on the same dataset3. We
achieve a higher recall than the basic FAB-MAP approach,
and are competitive with FAB-MAP 3D [48], where visual
information is augmented with range data. The proposed
gist representation does not suffer from the ambiguities,
responsible for matching errors, generated by approaches
using local feature quantization methods. An additional
advantage is the compactness of gist-based descriptors.

4) Bayesian Loop Closure Detection: We now present the
evaluation of the Bayesian filtering approach which uses
temporal context in comparison to the basic loop detection
method. We also illustrate the impact of different parameters

3The test sets for the final recall numbers may differ as the exact test set
used was not provided in [48]

TABLE VI: Egist based basic loop detection compared to pub-
lished results for the New College dataset for precision=100%

Gist-based FAB-MAP [48] FAB-MAP 3D [48]
Recall 0.71 0.42 0.74

to the task of loop closure detection. The experiments have
been performed on the Street View dataset.

As we gradually evaluate individual frames, the posterior
probability for non-loop and all possible loop closure events
at each query location is computed with (8). The event with
the maximum posterior probability is then chosen as its best
match. Experiments were carried out varying the state transi-
tion probabilities and the method for virtual image generation.
In the final configuration for all the experiments shown next,
the virtual image was computed as the average 4-tuple gist
descriptor of the past 1,000 locations i.e. when computing I0t,
K = 1,000. The number of neighbors which take non-zero
values for transition from loop closure event to loop closure
event p(St = i|St−1 = j) was set to 10.

The results for varying pj→0 i.e. p(St = 0|St−1 = j) are
shown in Table VII. A high value for pj→0 should lead to a low
recall rate because the possibility of a non-loop closure event
at time t after a loop closure event at time t− 1 is considered
more probable compared to loop-closure. The table shows that
the results are consistent with the above assumption. It can
be observed that a relatively high value detected fewer loop
closure locations. Consequently, a decrease in pj→0 lead to
higher recall rates, but also lower precision.

Similarly a high value for p0→0 i.e. p(St = 0|St−1 = 0)
should lead to detection of fewer loop closure locations. By
increasing p0→0, we increase the probability of non-loop
closure at time t after no loop closure is observed at time
t − 1 or in other words, decrease the possibility of observing

TABLE VII: Precision-recall by varying pj→0 (p0→0= 0.8, σ2= 1)

p(St = 0|St−1 = j) Precision Recall
0.1 100 15.56
0.01 79.64 71.33
0.005 71.40 72.99
0.002 64.14 74.48

TABLE VIII: Precision-recall varying p0→0 (pj→0= 0.01, σ2= 1)

p(St = 0|St−1 = 0) Precision Recall
0.9999 94.51 55.29
0.999 93.42 57.82
0.99 91.45 61.12
0.9 86.92 67.79
0.8 79.64 71.33
0.7 70.38 73.71

TABLE IX: Precision-recall varying σ2 (pj→0= 0.1, p0→0= 0.8)

σ2 Precision Recall
1.0 100 15.56
0.81 99.19 36.32
0.64 97.35 56.72
0.49 94.88 68.32
0.25 80.43 77.28
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(a) (b)

Fig. 15: Green colored locations are TP, Blue - TN, Red -
FN and Yellow - FP. (a) Analysis of loop detection in areas
not fitting the “Manhattan world” assumption. Some of the
locations are still correctly identified by using the Bayesian
loop detection method. (b) Sample panoramas from the same
location with a relative rotation violating the “Manhattan
world” assumption.

a loop closure. But by increasing p0→0, we can achieve a
higher precision since the possibility of predicting an incorrect
loop closure will decrease leading to fewer false positives. The
results shown in Table VIII validate this assumption.

By changing the variance σ2 used to compute p(It|St = i)
in (10), we vary the probability of observing the image given
the state. If σ is decreased, the value of the likelihood function
subsequently increases. This could lead to a higher recall due
to the increase in the likelihood values. Table IX shows the
result at different values of σ. As expected, the recall rate
increases as we decrease σ but precision drops.

The robustness of the proposed image representation and
similarity measure along with HMM can be illustrated in the
following example. Fig. 15a corresponds to a zoomed area
of top left corner of the whole trajectory where the vehicle
turns on streets which are not intersecting at 90o. Note that
due to the temporal model, if the loop closures were detected
successfully in the past, the model continues to correctly
detect loop closure despite the relatively oblique turns.
Fig. 15b shows two panoramas segmented into the four parts
from the same location but more oblique relative orientation.
Note that the content in each part is quite different and not
related by a simple circular permutation of the 4 views. The
gist similarity based on permutations of the views will not
give a high score between these two images. As the vehicle
progresses the views will be eventually better aligned with
the HMM helping to overcome some of these issues.

5) Discussion: We have shown that in the case of urban
panoramic data, the proposed approach provides comparable
or better performance to previously published results which
use local features. Besides, using temporal information proves
useful compared to a standalone loop detection method.

Fig. 16 provides the precision-recall curve comparing the
basic loop detection method to the Bayesian loop detection
method. To generate the precision-recall curve for the basic
loop detection method, we vary τloop for the basic loop
detection method described in Section V-A1. As τloop

increases, the recall increases (more locations satisfy the gist
similarity distance threshold) and precision decreases. For the

Fig. 16: Precision-recall curves comparing basic loop detection
method to the Bayesian loop detection.

(a) (b)

Fig. 17: Comparison of loop detection results at 100% pre-
cision. (a) Basic loop detection method (b) Bayesian loop
detection method. There were three areas in the city where
using temporal information improved the loop detection. The
color scheme is the same as Fig. 15. (Best viewed in color)

Bayesian loop detection precision-recall curve, we set σ2 =
0.81 and pj→0= 0.1. The precision-recall values are computed
for varying p0→0. As p0→0 is decreased, precision decreases
and recall increases. At 100% precision, the basic loop
detection achieves a recall of 20.9%. At the same precision,
the Bayesian loop detection method had 29.4% recall, an
increase of more than 8% over the basic loop detection
method. This proves the usefulness of temporal information
for such methods. A visualization comparing the basic loop
detection method results to that of Bayesian loop detection at
100% precision is provided in Fig. 17.

The Bayesian filtering framework presented further im-
proves loop closure detection compared to a non-Bayesian ap-
proach. However, the current design of the Bayesian approach
will not be able to deal efficiently with very large datasets.
From (8), we note that after the traversal of N locations, the
posterior probability is computed for all previous locations
except for the last p locations. To compute this, the posterior
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from all the past time steps have to be kept at runtime.
Therefore, the time complexity is O(N) and the memory cost
is O(N2). This makes it computationally expensive for large
scale experiments. Instead of the exact method described here,
we can use an approximate method which will reduce the
number of computations at runtime. One such model used in
the past is the particle filtering based approximation presented
in [49] which had a constant runtime and O(N) memory
requirements.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented how to adopt a global gist
descriptor for panoramas and proposed associated similarity
measures which strike a good performance between discrim-
inability and computational complexity in urban environments.
For the proposed representation and similarity measures,
we have evaluated performance and scalability of location
recognition using different strategies and introduced a novel
algorithm for loop closure detection. The effectiveness of the
approach has been demonstrated on extensive experiments
with 360o field of view panoramas, comparing them with local
feature based approaches.

For location recognition, the best results were obtained
using a k-d tree based approach with a PCA reduced version
of the panoramic gist descriptor. The performance of the
proposed representation was comparable or better than local
feature based approaches, with the advantage of higher effi-
ciency and smaller memory storage requirements for datasets
up to 100K images. We also compared the proposed approach
with a state of the art technique for loop closure detection
based on local features, reporting favorable or comparable per-
formance. Moreover, we described an approach to incorporate
temporal consistency, where the probability of a loop closure
is determined in a Bayesian filtering framework with a HMM
model.

The presented work emphasizes the issue of a compact
image representation and its effect on scalability and efficiency
for image-based localization. Additional improvements can be
achieved by endowing the database of images acquired along
the route with additional topological structure to achieve more
efficient loop closure detection framework and incorporating
stronger geometric constraints in the final verification stage.
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L. Van Gool, “From omnidirectional images to hierarchical localization,”
Robotics and Autonomous Systems, vol. 55, no. 5, pp. 372–382, 2007.
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