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Resumen

La visión por ordenador tiene un interés creciente en las tecnologı́as emergentes. Uno
de los retos de esta disciplina es el diseño y estudio de cámaras con un amplio campo de
vista que permiten obtener más información del entorno a partir de una única imagen.
En particular, la visión omnidireccional es útil para la estimación de la localización en
robótica, en conducción autónoma y en vehı́culos aéreos autónomos, entre otras aplica-
ciones. El amplio campo de vista de las cámaras omnidireccionales permite aprovechar
la descripción de la escena usando caracterı́sticas basadas en lı́neas rectas. Por un la-
do, las caracterı́sticas basadas en rectas representan referencias naturales en entornos
fabricados por el hombre y coinciden con los bordes de los elementos constructivos.
Además son muy informativas en entornos de interior con bajo nivel de textura. Por
otro lado, los segmentos largos, que son especialmente útiles para reducir derivas de
localización, suelen ser completamente visibles en la proyección omnidireccional. Sin
embargo, en cámaras omnidireccionales, la proyección de una recta sufre una defor-
mación debida a la distorsión y se convierte en una curva más compleja. Esta tesis se
centra en la geometrı́a de las proyecciones de rectas (o imágenes de recta) en sistemas
omnidireccionales. El principal tema tratado en este trabajo es la extracción de pro-
yecciones de recta en distintos tipos de cámaras centrales y no centrales. Sin embargo,
debido a la naturaleza de la propia proyección en las cámaras omnidireccionales, tam-
bién se ha investigado en calibración a partir de proyecciones de rectas y en el caso de
cámaras no centrales se ha estudiado la reconstrucción 3D a partir de rectas en una sola
imagen. En particular, se han analizado los siguientes problemas relacionados con las
proyecciones de rectas en cámaras omnidireccionales centrales y no centrales:

• Extracción de proyecciones de rectas en cámaras omnidireccionales centra-
les. El primero de los objetivos abordados en esta tesis es la extracción de rectas
en imágenes hiper-catadióptricas para la estimación de direcciones dominantes
en escenarios bajo condiciones de Manhattan. Además, el enfoque de extrac-
ción utilizado en este primer trabajo se ha generalizado para el resto de sistemas
centrales obteniendo un marco teórico para las ecuaciones de las curvas que des-
criben proyecciones de rectas en los sistemas catadióptricos y dióptricos. Usando
este marco teórico común se ha desarrollado la restricción plumb-line para cada
uno de estos sistemas obteniendo soluciones analı́ticas que permiten la extrac-
ción simultánea de la proyección de recta y de la calibración de la cámara. Estas
soluciones teóricas se han integrado en un método automático para extracción de
proyecciones de rectas cuando no se conoce la calibración en cámaras omnidi-
reccionales centrales. Esta propuesta utiliza posiciones de puntos y direcciones
de gradientes en estos puntos de manera que se puede reducir la complejidad del
esquema de extracción.



• Extracción de proyecciones de rectas y ajuste 3D de rectas en cámaras om-
nidireccionales no centrales.
Las caracterı́sticas de la proyección en sistemas no centrales permite la recons-
trucción completa de una recta 3D a partir de de una sola proyección. Los siste-
mas no centrales estudiados en esta tesis son los sistemas catadióptricos cónico
y esférico y el panorama no central. Generalizando la descripción utilizada an-
teriormente se han desarrollado las ecuaciones analı́ticas para los casos de sis-
temas catadióptricos cónicos y esféricos. En el caso cónico podemos estimar la
geometrı́a del espejo y la reconstrucción de la recta 3D a partir de cinco puntos
de la proyección de la recta. El principal problema de reconstruir en 3D a partir
de una única proyección de recta en sistemas no centrales es que la precisión de
los resultados es muy sensible al ruido ya que hay involucrados cuatro grados de
libertad. Por ello, la extracción en rectas en sistemas no centrales es un problema
abierto de difı́cil solución. Para abordar este problema se proponen diferentes
enfoques y soluciones. Para condicionar la selección de puntos en un esquema
de estimación robusto y evaluar la precisión se introduce el concepto de lı́nea
de base efectiva entre un conjunto de rayos que depende fuertemente del tipo
de sistema no central. Respecto a precisión en el ajuste 3D se ha observado que
utilizando el sistema panorámico no central se obtienen los mejores resultados
aunque la complejidad constructiva dificulta su uso en la práctica. Para resolver
la extracción automática de proyecciones de recta en sistemas no centrales se
propone un enfoque robusto que usa un paso de pre-evaluación similar al usado
en PROSAC y diferentes tipos de distancias. En particular, se ha resuelto analı́ti-
camente la distancia Euclı́dea de punto a proyección de recta para los sistemas
catadióptricos cónico y esférico y se propone una distancia basada en la proyec-
ción del punto más cercano en el espacio para el caso de panorama no-central.

• Ajuste de lı́neas en sistemas no centrales mediante la imposición de restric-
ciones geométricas.
Un planteamiento útil para incrementar la precisión y la estabilidad en la recons-
trucción de rectas en sistemas no centrales es explotar restricciones geométricas
adicionales utilizando información a priori. En esta tesis, se proponen nuevas so-
luciones mı́nimas para imponer restricciones entre pares de rectas en sistemas no
centrales. En concreto, se han desarrollado los casos de rectas secantes ortogona-
les y rectas paralelas. Finalmente, también se presenta la solución mı́nima para
el cálculo de recta paralela a un plano dado que permite explotar la dirección de
la gravedad cuando se asumen condiciones de Manhattan en el escenario.



Abstract

Computer vision has an increasing interest in most fields of emerging technologies. A
challenging topic in this field is to study how to enlarge the field of view of the camera
systems to obtain more information of the environment in a single view. In particular
omnidirectional vision can be useful in many applications such as estimating location
in robotics, autonomous driving and unmanned aerial vehicles. The wide field of view
(FOV) of omnidirectional cameras allows taking advantage of describing 3D scenarios
using line features. On the one hand, line features represent natural landmarks in man-
made environments, they are easy to understand, coincident with edges of constructive
elements and often still present when having texture-less scenarios. On the other hand,
long segments are especially useful for drift reduction because they are usually com-
pletely visible on the omnidirectional projection. However, in omnidirectional cameras
line projections are distorted by the projection mapping becoming complex curves.

This thesis is focused on the geometry of line projections (line-images) in omni-
directional systems. Main addressed topic of this work is line-image extraction on dif-
ferent kinds of central and non-central omnidirectional images. However, due to nature
of projection in omnidirectional cameras, other addressed topics are camera calibration
and, in the case on non-central cameras, 3D reconstruction from single images.

In particular, we analyzed the following problems involving line projections in cent-
ral and non-central omnidirectional cameras:

• Line-image extraction in central omnidirectional cameras. The presented re-
search begins with line-image extraction from hypercatadioptric images which is
used for estimating dominant directions in Manhattan scenarios. This extraction
approach has been generalized to a framework for central imaging systems ob-
taining the equations of line-images curves for a set of different catadioptric and
dioptric systems. Using this framework we have developed the plumb-line con-
straint for each of these systems and obtained analytical solutions that allow sim-
ultaneously recovering camera calibration and line-images. We have integrated
these theoretical solutions in an automatic method for line-image extraction in
central systems when the calibration is unknown. This proposal exploits location
of image points and gradient direction on these points reducing the complexity
of the extraction scheme.



• Line-image extraction and 3D line fitting in non-central omnidirectional
cameras. The characteristics of the projection in non-central systems allow re-
covering the complete 3D information of a line from a single projection. The
non-central systems addressed in this thesis are the conical and spherical cata-
dioptric systems and the non-central circular panorama. Generalizing the de-
scription used for central systems we have developed the analytical line-image
equations for conical and spherical catadioptric systems. The particularization
for conical catadioptric systems allows us to recover the geometry of the mir-
ror and the geometry of the 3D line from five points of the line-image. Main
problem of recovering 3D from single projections in non-central systems is that
results are very noise sensitive because four degrees of freedom are involved
making line-image extraction a challenging unsolved task. To address this issue
we propose different solutions and approaches. To select a set of rays in a ro-
bust framework and evaluate the accuracy we introduce the concept of effective
baseline among rays which strongly depends on the class of non-central system.
Regarding accuracy in line 3D fitting, the non-central panorama is the system
obtaining the best results although its constructive difficulties usually prevents
from a practical using. To solve the problem of automatic line-image extrac-
tion in non-central systems we propose a robust approach using a pre-evaluation
step, similar to the one used in PROSAC, and using different kind of distances.
In particular, we have analytically solved the Euclidean distance from a point
to line-image for conical and spherical catadioptric systems and we propose a
distance based on the projection of the closest points in the 3D space for the
non-central circular panorama.

• Minimal solutions for line-image fitting in non-central cameras by imposing
geometric constraints. Another way for increasing the accuracy in 3D line
reconstruction is exploiting geometric constraints and using prior information.
In this thesis, we propose a set of new minimal solutions for imposing additional
constraints between pairs of lines in non-central systems. In particular, we have
developed the cases of intersecting orthogonal lines and pairs of parallel lines.
Finally we present the minimal solution for computing a line which is parallel to
a given plane which can be exploited using the prior information of the vertical
direction in a Manhattan scenario.



Contents

1 Introduction 1
1.1 Computer vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Unconventional cameras . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Line-images . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

I Line-Images in central omnidirectional cameras 15

2 Hypercatadioptric line-images for 3D orientation and rectification 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Projections in central catadioptric systems . . . . . . . . . . . . . . . 20
2.3 Computation of hypercatadioptric line-images . . . . . . . . . . . . . 22

2.3.1 Conic definition using two points . . . . . . . . . . . . . . . 22
2.3.2 Distance from a point to a conic . . . . . . . . . . . . . . . . 23
2.3.3 Hypercatadioptric line-images extraction . . . . . . . . . . . 25

2.4 Influence of calibration and error propagation in the extraction of HLIs 28
2.4.1 Analytical study of errors propagation . . . . . . . . . . . . . 28
2.4.2 Empirical study of the influence of calibration . . . . . . . . . 30
2.4.3 Influence of observed length of the HLI . . . . . . . . . . . . 30

2.5 Vanishing points and image rectification . . . . . . . . . . . . . . . . 33
2.5.1 Intersection of two HLIs using the common self-polar triangle 33
2.5.2 Vertical vanishing point (VVP) . . . . . . . . . . . . . . . . . 34
2.5.3 Horizontal vanishing point (HVP) . . . . . . . . . . . . . . . 34
2.5.4 Image rectification . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.1 Orientation accuracy . . . . . . . . . . . . . . . . . . . . . . 36
2.6.2 Rectification of image sequences . . . . . . . . . . . . . . . . 41



ii Contents

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Line extraction in uncalibrated axial cameras 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Projection models for central systems with revolution symmetry . . . 48

3.2.1 Projection models for catadioptric systems . . . . . . . . . . 50
3.2.2 Fisheye models . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Unified description for line projection in central systems with revolu-
tion symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Line-image curve representation and unified main calibration

parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2 The sphere catadioptric model as fisheye model . . . . . . . . 54
3.3.3 The homogeneous line-image equation as a measure of distance 57
3.3.4 Line-image definition from two points . . . . . . . . . . . . . 58
3.3.5 Polynomials describing line-images . . . . . . . . . . . . . . 59

3.4 The straight-line constraint on the image . . . . . . . . . . . . . . . . 60
3.4.1 Location-based line-image constraint . . . . . . . . . . . . . 60
3.4.2 Gradient-based line-image constraint . . . . . . . . . . . . . 65
3.4.3 Unified computation of main calibration parameter r̂vl . . . . 66
3.4.4 Computing the focal distance in hypercatadioptric systems . . 68

3.5 Uncalibrated line-image extraction . . . . . . . . . . . . . . . . . . . 70
3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.1 Experiments with synthetic data . . . . . . . . . . . . . . . . 74
3.6.2 Experiments with real images . . . . . . . . . . . . . . . . . 80

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

II Line-images in non-central omnidirectional cameras 85

4 Line-image fitting in non-central catadioptric systems 87
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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Chapter 1

Introduction

1.1 Computer vision

Computer vision is a multidisciplinary topic involving 3D geometry, statistics, artifi-
cial intelligence, optics and electronics. From the physical point of view a camera is
composed by a light sensor at a given range of frequency with an optical system which
enforces a particular projection forming a two-dimensional distribution of measures
called image. From the geometrical point of view a camera is a projection system
mapping a 3D world on a 2D surface.

The goal of artificial intelligence in computer vision is recognizing abstract ele-
ments on the image such as objects, categories or features which are related with the
elements of the scene via the projection geometry. In this context, image processing is
used for detecting invariant features which describe the image using a smaller but dis-
criminant amount of information (LBP, HAAR [Viola and Jones, 2001], SIFT [Lowe,
2004], HOG [Dalal and Triggs, 2005] ,SURF [Bay et al., 2006], ORB [Rublee et al.,
2011]). When the categorization and abstraction of the image is solved (for example
by human intervention) the projection geometry allows using the camera as photo-
grammetric sensor. Geometric measures on the projected image are characterized by
stochastic distributions which encode the uncertainty inherent to any abstraction when
taking a measure.

In the projection mapping one of the three dimensions of the space is lost, meaning
that it is not possible to recover a 3D measure directly from a single image. However,
it is indirectly feasible when having a correspondence of elements from different im-
ages or when making some assumptions about the structure of the scene (for example:
assuming the scene is composed by planes along main directions following the Man-
hattan World assumption [López-Nicolás et al., 2014]). Multiple views of a projected
element can be achieved by moving a camera or using multiple cameras. The corres-
pondence of features or matching is estimated using the abstraction level tackled by
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artificial intelligence.

1.1.1 Motivation

Classical applications of computer vision in industry (machine vision) have been fo-
cused on visual inspection for quality control and robotic arm guidance. Controlled
illumination conditions and environment knowledge are used for guaranteeing the re-
quired performance. Another extended application for industry is 3D scanning of
pieces using structured light where the matching problem is solved by projecting light
features. Identification of products labels for logistics can be achieved using optical
character recognition (OCR) although in practice, for reducing the complexity and in-
creasing the precision in recognition the using of bar codes or QR codes is usual.

Nowadays, computer vision has an increasing importance in many other branches.
Emerging information technology companies, have made intensive use of visual re-
cognition for image searching in photographs where the environment and illumination
conditions are unknown. Other application taking advantage of visual recognition is
face recognition. The proposals adopted by the Computer Vision community for visual
recognition during the last ten years have been based in supervised machine learning
approaches, where a classifier is trained using a set of labelled examples. Two things
have been determinant for reaching the impressive results of the last times. First is the
using of huge amounts of training examples [Torralba et al., 2008] following the Big
Data paradigm. Second is the irruption of Deep Learning in computer vision in [Kr-
izhevsky et al., 2012]. In particular the exploiting of Convolutional Neural Networks
beating the state of the art that was based on support vector machines(SVM) classifiers
in combination with Big Data has completely changed the paradigm in visual recogni-
tion and computer vision community.

In mobile robotics 3D vision is used for localizing the robot improving the odo-
metry, making maps and recognizing objects for avoiding obstacles. In particular, sim-
ultaneous localization and mapping (SLAM) takes advantage of Bayesian filters [Dav-
ison et al., 2007] by propagating uncertainties of landmarks in sequences of images
simultaneously reconstructing a map of landmarks and the location of the robot. The
estimated map can be improved using loop closing [Kümmerle et al., 2011] and bundle
adjustment. Instead of discrete landmarks the map can densely describe the environ-
ments using surfaces [Newcombe et al., 2011]. Similar approaches [Klein and Mur-
ray, 2007] using discrete landmarks or even human made markers are used for es-
timating the camera location in augmented reality applications. Autonomous aerial
vehicles [Mahony et al., 2012] also can take advantage of computer vision [Meier et al.,
2012] and in particular of SLAM approaches by integrating the dynamic model of the
vehicle in the Bayesian filter [Achtelik et al., 2011].

Inspired by mobile robotics, computer vision is getting more popular in the auto-
mobile industry. Current cars already include a set of sensors and front cameras for



1.1. Computer vision 3

driving assistance. Complementing the cruise control, new cars1 include a vision based
lane detection system allowing the car autonomously follow the lane under human su-
pervision. Other features like collision avoidance are performed using radar although
the state of the art in pedestrian detection and car detection also allows using computer
vision [Ros et al., 2015]. Autonomous driving2 involves more computer vision chal-
lenges including vehicle, pedestrian, traffic light and signal detection [Carrasco et al.,
2012]. The work presented by Daimler in [Ziegler et al., 2014] describes a complete
autonomous driving combining GPS, radar and computer vision following the histor-
ical route of one of the first automobiles of the history. The challenge was possible
using a detailed map of the route involving location of signals and traffic lights. The
map for autonomous driving can be generated simultaneously when exploring the en-
vironment but the system usually takes advantage of more detailed maps acquired under
human supervision. For example, Google has deployed dedicated cars3 in routes and
cities along the word for its maps street-view project. These cars carry Laser Imaging
Detection and Ranging (LIDAR) systems for 3D acquisitions but the main sensor is
the omnidirectional camera which allows taking panoramic images around a spherical
view.

In this context, the using of omnidirectional cameras takes advantage of the high
field of view for most of computer vision topics (see Fig. 1.1 and Fig. 1.2). Since the
complete scene is observed, most features of a pair of images taken in the same position
are visible in both, which is particularly useful for place recognition. The visibility of
the whole scene is also valuable for visual odometry where features are seen for longer
in sequences of omnidirectional images. In particular, occlusions are reduced when
tracking longer features improving the pose estimation.

These advantages are even more relevant when dealing with line based features.
Lines represent natural landmarks in man-made environments. They define the edges
of constructive elements being particularly useful when having texture-less scenarios.
For example, straight lanes in roads and walls in most indoor scenarios can be described
by lines. Besides, because of a single line segment is defined along the 3D space of
the scenario, the persistence of a line feature along the sequence is longer than a point
feature, especially if the camera moves along the direction defined by the line. In
addition, occlusion due to lack of field of view is reduced in omnidirectional images.
More visibility of line features in omnidirectional images and persistence of lines along
sequences allows reducing drift in 3D estimation.

Nevertheless, due to high distortions induced by omnidirectional imaging systems,
lines are projected on curves making line related issues more difficult to solve. Open
problems related with line features in omnidirectional vision are in modelling, extrac-
tion, calibration and 3D reconstruction and most of them are related with understanding
the underlying geometry behind the line projection.

1htt p : //www.teslamotors.com/blog/your−autopilot−has−arrived
2htt p : //www.nytimes.com/2010/10/10/science/10google.html
3htt p : //www.google.com/maps/streetview/understand/
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(a) (b)

(c) (d)

Figure 1.1: Lane detection in different kinds of omnidirectional images. (a) Central
perspective image. (b) Central fisheye. (c) Central spherical panorama. (d) Non-central
circular panorama.

(a) (b) (c)

Figure 1.2: Lane detection in different kinds of catadioptric images. (a) Central
hyper-catadioptric. (b) Non-Central conical-catadioptric. (c) Non-central spherical-
catadioptric.
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Main drawbacks in omnidirectional vision are because the imaging projection in-
duces non-linearity in computer vision algorithms increasing the complexity, the local-
ity of linear approximations and the computational time. However, as we show in this
thesis, when dealing with line projections in omnidirectional cameras some of these
drawbacks can be turned into advantages.

For example, distortion on curves representing the line projections makes extraction
harder, on the other hand it embeds the calibration of the camera that can be recovered
by fitting line-images. This transformation from drawback into advantage is even more
evident with non-central imaging systems. In these systems, projecting rays do not
pass through a unique optical center. That means that sometimes there is not analytical
expression for the forward projection model and each projecting ray is defined by two
points and some of the axioms assumed in computer vision must be reconsidered. In
particular, from a single projection of a line on a single image it is possible to recover
the complete geometry of the original 3D line including the depth and scale because
the projection surface is not a plane and the projected curve embed the four degrees of
freedom of the 3D line.

This property is very promising for single-image 3D reconstruction. However, be-
cause of its complexity, line-extraction in non-central images is an unsolved challen-
ging problem.

1.1.2 Unconventional cameras

Conventional cameras have imitated the human vision which is almost perspective,
central and binocular. However, in last decades new kind of different visual systems
have been developed trying to exploit new ways of understanding the environment. One
example among these non-conventional cameras is the plenoptic camera [Lumsdaine
and Georgiev, 2009,Ng et al., 2005,Adelson and Wang, 1992] which is able to measure
not only the amount of light received by each pixel but the light distribution depending
on the incident direction. Other example is the event camera [Serrano-Gotarredona
et al., 2009] which only measures asynchronous variations in local intensity performing
faster measures. Finally, the set of different omnidirectional cameras which are optical
instruments designed to acquire images with a wide field of view. This advantage
allows them to include the whole scene in a single view. Some applications of these
kinds of systems are surveillance, tracking, localization, visual navigation, structure
from motion or SLAM. Omnidirectional cameras can be classified following different
criteria:

Central and non-central systems There exist several types of omnidirectional cam-
eras which can be classified as central and non-central. The central systems are those
which satisfy that all the projecting rays intersect a common viewpoint. By contrast, in
non-central systems the projecting rays do not intersect a common viewpoint. In this
case, the locus of the viewpoint is in general tangent to a caustic which is an envelope
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surface of the projecting rays.

Constructive classification Depending on the constructive set-up omnidirectional
cameras can be classified in several classes:

• Catadioptric systems combine a conventional camera with mirrors and lenses.
In [Baker and Nayar, 1999] is proven that the elliptic, parabolic and hyperbolic
mirrors, combined with conventional cameras, are the only ones ensuring the
single viewpoint property when the mirror is appropriately placed with respect
to the camera.

• Dioptric systems use wide-angle lenses such as fisheye lenses combined with
conventional cameras. Fisheyes are non-central by definition, but they can be
considered as central systems due to the tangent to the caustic being close to a
point.

• In moving cameras the resulting images are composed from the streaming of
line cameras. Two examples are the rotating camera and the pushbroom camera.
These kind of systems are non-central by definition because the optical center is
not unique in the image composition.

• Multi-camera systems stitch images obtained from a set of cameras forming a
panoramic image. Depending on the disposition of the cameras the system can
be considered central or non-central.

1.1.3 Line-images
The interest of the geometry behind the projections of 3D lines is that line-image fea-
tures represent natural landmarks of the environment. In man-made environments they
define the edges of constructive elements and they are particularly useful when having
texture-less scenarios. Main disadvantages of line-images as features are the lack of
robust descriptors for matching in comparison with point features and the fact that line
extraction is unstable because the supporting points of a given line-image can vary a
lot from one image to another.

A straight 3D line is a geometric arrange of 3D points having four degrees of free-
dom (DOFs) which is defined by the span of two 3D points or the intersection of two
planes. Considering projective geometry for describing the geometry of a scene, the
set of straight 3D lines forms a four-dimensional manifold induced by the underlying
geometry of the projective space P3 (See Appendix A). The projection of a straight 3D
line on an image is a curve called line-image or line projection. The surface defined
by the set of projecting rays passing through the straight 3D line and the line-image is
known as projection surface.

The projection surface of a 3D line in central systems is a plane passing through
the 3D line and the single viewpoint of the camera. In this projection, part of the
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information of the 3D line is lost and only two of the four degrees of freedom (DOF)
of the 3D line are preserved. All lines lying on this plane share the same line-image or
in other words, a 3D line occludes any other line located behind. In perspective central
systems the line-image is a straight 2D line on the image plane. When the central
system is not perspective, the line-image is a curve with more than two DOFs due to
the non-linearity of the projection. The additional DOFs of these curves are deeply
related with the parameters of the projection model and the calibration of the imaging
system.

The corollaries of these properties for central systems are the following:

• The projection plane in a central projection can be recovered from two projecting
rays intersecting the line-image. When the calibration of a central system is
known these two rays can be obtained from two points of the line-image meaning
that the line-image can be fitted from at least two points.

• If the system is not calibrated we still know that the rays intersecting the line
image must form a plane and this constraint can be used for estimating the
projection plane and the calibration of the system using additional points ly-
ing on the line-image. This constraint is known in the literature as plumbline
constraint [Devernay and Faugeras, 2001].

• From a single line-image the unique 3D structure we can recover is the projection
plane, hence the only ways to recover the direction and the depth up to scale of
the original 3D line are:

– knowing the correspondence between different line-images from different
views taken from different locations,

– imposing additional constraints like dominant directions or perpendicular-
ity.

In contrast with central systems, the projection surface of a straight 3D line in a
non-central system is in general a surface containing the 4 DOFs of the original 3D
line. Therefore, when the system is calibrated, the geometry of a straight 3D line can
be recovered from a single line-image. In particular, four points on a line-image (ex-
cept some degenerate cases) define four projecting rays providing four independent
constraints for computing the complete geometry of the line. This can be intuitively
understood as it is not possible to occlude a 3D line with other 3D line when the pro-
jection surface is not a plane or a regulus. The quality of the reconstructed 3D line
depends on a magnitude called effective-baseline of a set of rays which is related with
the distances between the four defining skew rays.

In non-central systems a line-image has in general more than 4 DOFs. As in central
systems, the additional DOFs encode the parameters of the projection model and can
be used for estimating the calibration of the system.
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1.2 State of the art

Main challenge of working with omnidirectional cameras is that the high distorted
images require additional geometry than the well known linear geometry used in per-
spective and conventional cameras. Historically, the community has researched for
omnidirectional systems having the single-view property. Main reason is the similarity
with conventional cameras which allows to use most of the classical 3D algorithms just
embedding the corresponding projection model. Another reason is that having central-
ity guarantees a closed form for the forward-projection model and finally, often central
images are easier to understand for the human cognition.

Projection models in central systems. The geometry of central catadioptric sys-
tems are extensively studied in [Baker and Nayar, 1999] proving that systems using
elliptic, parabolic and hyperbolic mirrors fulfil the single viewpoint property when
some configuration restriction are satisfied. Several projection models are proposed
for dealing with central catadioptric cameras (See [Sturm et al., 2011]). [Svoboda and
Pajdla, 2002] proposes models for different mirrors and study the epipolar geometry.
The physical reflection on the mirror can be directly modelled like in [Strelow et al.,
2001]. The projection model of a paracatadioptric system using a parabolic mirror
and an orthographic camera follows the classical stereographic projection which maps
a sphere onto a plane. Extending this idea, a unified model which is equivalent to the
physical reflection but considering projections on the unitary sphere instead is proposed
by [Geyer and Daniilidis, 2000] using the same parameters for different classes of cata-
dioptric systems. This model was extended by [Barreto and Araujo, 2001] and [Ying
and Hu, 2004b].

Fisheye cameras are intrinsically non-central. However, fisheye lenses are manu-
factured for reducing the effective baseline between rays hence in practice they have
a central behaviour [Sturm et al., 2011]. Actually, fisheye lenses are constructed in
order to satisfy any of the classical fisheye models: the equiangular-fisheye model
(also known as equidistant projection), the equisolid-fisheye model, the stereographic-
fisheye model and the orthographic fisheye model [Kingslake, 1989, Stevenson and
Fleck, 1996, Ray, 2002]. A validation of these geometric models for real fisheyes is
presented in [Schneider et al., 2009].

Assuming symmetry of revolution, these models are encoded using a function h
that relates the elevation angle φ of the projection ray with the radius of an image
point r. The function r = h(φ) can be an explicit expression [Kingslake, 1989, Ray,
2002] or can be defined as a series-based expression [Tardif et al., 2006, Kannala and
Brandt, 2006, Kannala et al., 2008b]. There exist other empirical models valid for
any central system that instead of defining series using the radius, use the elevation
angle [Scaramuzza et al., 2006].

Other approach for modelling the central behaviour of a fisheye lens is using radial
distortion models based on a transformation of the radius of an image point after a
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linear projection. Some of these models are the even order polynomial model used
in [Swaminathan and Nayar, 2000, Devernay and Faugeras, 2001, Thormählen et al.,
2003, Rosten and Loveland, 2011] and the division model proposed by Fitzgibbon in
[Fitzgibbon, 2001] which is extensively used in [Strand and Hayman, 2005,Wang et al.,
2009, Bukhari and Dailey, 2013, Melo et al., 2013]. These models are usually used to
describe radial distortion on conventional cameras and they can also be used to fit
catadioptric and dioptric systems.

Line extraction in central systems. Most approaches to extract lines from omni-
directional central images use camera calibration to back project the image points
to normalized rays lying on a unitary sphere around the viewpoint [Ying and Hu,
2004c, Bazin et al., 2010]. In this space the representation of the line projection be-
comes linear and classical approaches can be used. In the particular case of central
catadioptric systems the curve defining a line-image is a conic. Some approaches ex-
tract these conics directly on the images. In [Barreto and Araujo, 2005] conics are
computed using classical conic fitting approaches, hence 5 DOFs are required in this
fitting which is noise sensitive. In [Ying and Zha, 2005,Cucchiara et al., 2003] a Hough
transform approach is used to simultaneously extract lines and calibration parameters
from uncalibrated omnidirectional images.

As explained before, in central systems the projection plane provides a constraint
which can be exploited to estimate the calibration whenever more than two independ-
ent constraints are available [Devernay and Faugeras, 2001,Alvarez et al., 2009,Brown,
1971]. This constraint is known as plumb-line constraint [Sturm et al., 2011] and it is
one of the approaches used for self-calibration in central distorted images. The loca-
tion of additional edge points lying on the line-image provides additional independent
constraints allowing fitting the line-image and obtaining the projection plane and the
calibration.

Apart from the plumb-line approach there exist other methods for calibrating om-
nidirectional central cameras. A survey of these methods can be found in [Puig et al.,
2012]. We want to remark that, in spite of existing a considerable number of methods
for calibrating catadioptric systems [Wu and Hu, 2005,Barreto and Araujo, 2005,Gas-
parini et al., 2009, Puig et al., 2011] there are few methods for fisheye systems. A
general method for central systems that can be also used for fisheyes is presented
in [Scaramuzza et al., 2006]. In [Mei and Rives, 2007] the sphere model is used to
approximate the fisheye model. A calibration method specific for fisheyes is presented
in [Kannala and Brandt, 2006, Kannala et al., 2008a].This multi-view approach uses
a series-based description of the radially symmetric model. The radially symmetric
series-based model is also used in a plumb-line calibration method for central systems
in [Tardif et al., 2006]. More recently, in [Alemán-Flores et al., 2014] line projections
are detected in uncalibrated distorted images using a Hough transform approach.
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Projection models in non-central systems. The geometry of non-central systems
has previously been studied for most of catadioptric and non catadioptric systems. The
back projection of different non-central catadioptric systems is introduced in [Swam-
inathan et al., 2006]. Contrary to the back projection case, the forward projection of
non-central systems does not necessarily have a closed form solution. In [Agrawal
et al., 2010] Agrawal et al. present a polynomial solution for the forward projection in
axial non-central catadioptric systems based on a quadric mirror which is extended for
the non axial case in [Agrawal et al., 2011]. These approaches are used in a calibra-
tion method for multi-axial non-central systems in [Agrawal and Ramalingam, 2013].
In [López-Nicolás and Sagüés, 2014] the epipolar geometry of conical catadioptric
systems and its corresponding calibration are presented.

Another way to obtain non-central images is using images generated from moving
cameras without common viewpoint. The epipolar geometry is studied for the case of
linear pushbroom camera in [Gupta and Hartley, 1997] and for the case of non-central
circular panorama in [Menem and Pajdla, 2004]. A multi-camera system can be also
tackled as particular case of a non-central system. In [Lee et al., 2015] Lee et al. pro-
pose a new method to solve the pose estimation in a multi-camera system represented
by a set of ray bundles in a non-central description using Plücker coordinates.

Line-extraction in non-central systems. Some previous approaches have tried to
extract 3D lines from a single image in non-central catadioptric systems. The funda-
mentals of this approach are exposed in [Teller and Hohmeyer, 1999, Kneebone et al.,
1998, Griffiths and Harris, 2011] where is shown that two lines are the intersection
of four generic lines. In [Caglioti and Gasparini, 2005, Caglioti et al., 2007a, Gaspar-
ini and Caglioti, 2011] this approach is exploited to compute 3D lines from 4 rays in
non-central catadioptric systems. Different computation methods are considered and
the degeneracies and singular configurations are studied. In [Lanman et al., 2006] the
approach is used with spherical catadioptric mirrors, and in addition two non-central
systems are used for reconstruction. Work in [Swaminathan et al., 2008] extends the
approach to planar curves. To improve the accuracy in reconstruction using catadioptric
systems some approaches have been proposed: considering only horizontal lines [Pin-
ciroli et al., 2005, Chen et al., 2011] , exploiting cross-ratio properties [Perdigoto and
Araujo, 2012] . Using off-axis systems [Caglioti et al., 2007b] allows avoiding the
degeneracies caused by the revolution symmetry. As application, the pose of non-
central catadioptric systems is estimated in an image sequence [Miraldo and Araujo,
2014, Miraldo et al., 2015] using known 3D lines.

Line projections have been also used to estimate the calibration of non-central sys-
tems in a generalization of the plumb-line approach. In [Caglioti et al., 2007b] non-
central calibration using lines is studied. They exploit the fact that there exists less
ambiguity when the system is off-axis with impressive results. However, this work
does not exploit the particular geometric description of the line-images. In [Agrawal
and Ramalingam, 2013] they exploit particular geometric properties of spherical mir-
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rors for computing extrinsic calibration parameters but they do not use lines.

1.3 Contributions
In this thesis we focus on the geometry of line projections or line-images in different
kinds of central and non-central omnidirectional cameras. Main topics covered during
the development of this thesis cover: projection models of line-images, line-extraction,
calibration and 3D reconstruction. The most relevant contributions of the present thesis
can be summarized as follows:

Line extraction in central and calibrated cameras. We propose a new method
for extracting line-images in hypercatadioptric systems which is extended to different
classes of central catadioptric and dioptric systems. For the particular case of the hyper-
catadioptric systems the description of the vanishing points on the image are presented
and used for estimating dominant directions in Manhattan scenarios and rectifying the
original image.

Associated publications:

• [Bermudez-Cameo et al., 2012b] J. Bermudez-Cameo, L. Puig, J.J. Guerrero,
“Hypercatadioptric Line Images for 3D Orientation and Image Rectification”,
Robotics and Autonomous Systems, 60, pp: 755-768, 2012.

• [Bermudez-Cameo et al., 2012a] J. Bermudez-Cameo, G. Lopez-Nicolas and
J. J. Guerrero, “A Unified Framework for Line Extraction in Dioptric and Cata-
dioptric Cameras”, 11th Asian Conference on Computer Vision, ACCV, Dae-
jeon, Korea, Nov. 2012. In Computer Vision - ACCV 2012, volume 7727 of
Lecture Notes in Computer Science, pp: 627-639.

• [Bermudez et al., 2010] J. Bermudez, L. Puig, J.J. Guerrero, “Line extraction in
central hyper-catadioptric systems”, In 10th OMNIVIS Omnidirectional Vision,
Camera Networks and Non-classical Cameras, with RSS 2010, pp:8, 1-7, June
2010.

Uncalibrated line extraction in central cameras. We present a new proposal for the
automatic simultaneous extraction of line-images and the main calibration parameter
from uncalibrated omnidirectional images. The method is particularized for different
catadioptric and dioptric systems obtaining closed solutions for most of them. The
proposal also study the using of gradient information to reduce the complexity of the
robust extraction. The proposal is compiled in a fully functional toolbox 4 which has
been released as open source for research purposes.

Associated publications:
4webdiis.unizar.es/%7Ebermudez/toolbox.html
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• [Bermudez-Cameo et al., 2015c] J. Bermudez-Cameo, G. Lopez-Nicolas and J.J.
Guerrero, “Automatic Line Extraction in Uncalibrated Omnidirectional Cameras
with Revolution Symmetry”, International Journal of Computer Vision. 114(1)
pp:16-37, 2015.

• [Bermudez-Cameo et al., 2013] J. Bermudez-Cameo, G. Lopez-Nicolas and
J. J. Guerrero, “Line extraction in uncalibrated central images with revolution
symmetry”, BMVC 2013 - British Machine Vision Conference , Bristol, United
Kindom, 9-13 Sept 2013.

Line extraction in non-central cameras. The geometric development of line pro-
jections in different classes of non-central imaging systems. In particular, we present
the expression of the line-image for the conical catadioptric system, the spherical cata-
dioptric system and the non-central circular panorama. Using the proposed models
we present an automatic method for line-image extraction from non-central images
obtaining the complete 3D geometry of the lines from a single projection on a single
image. Up to our knowledge this is the first work addressing automatic line-extraction
in non-central images. We also present the concept of effective baseline of a set of
rays describing the suitability of a 3D line fitting from a set of rays, and a feature for
measuring this effective baseline. For achieving the non-central extraction we propose
a RANSAC based method using the effective baseline measure for filtering the candid-
ates. We also define a set of distances from point to line developed from the proposed
line-image descriptions. These distances are: an algebraic distance measured in pixels
based on the general proposal for line-images when having revolution symmetry, an
Euclidean distance developed from the quartic description of a line-image in conical
and spherical catadioptric systems and finally, a distance based on projecting the closest
point from ray to line. The later proposed distance has been used in non-central circular
panoramas.

Associated publications:

• [Bermudez-Cameo et al., 2014b] J. Bermudez-Cameo, G. Lopez-Nicolas and J.
J. Guerrero, “Line-images in Cone Mirror Catadioptric Systems”, ICPR 2014 -
22nd International Conference on Pattern Recognition, pp: 2083-2088, Stock-
holm, Sweden 24-28 August 2014.

• [Bermudez-Cameo et al., 2015a] J. Bermudez-Cameo, G. Lopez-Nicolas and J.
J. Guerrero, “Fitting Line Projections in Non-Central Catadioptric Omnidirec-
tional Systems” (Submitted as a journal paper), 2015.

• [Bermudez-Cameo et al., 2015d] J. Bermudez-Cameo, O. Saurer, G. Lopez-
Nicolas, J. J. Guerrero and M. Pollefeys, “Exploiting line metric reconstruction
from non-central circular panoramas” (Technical Report), 2015.
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Minimal solutions for line-fitting imposing constraints in non-central cameras.
We present analytical solutions in the form of roots of polynomials for solving line-
image fitting in non-central systems when imposing additional geometric constraints.
In particular we present the analytical solutions for: two parallel lines when having
three points lying on each line-image, two intersecting orthogonal lines when having
three points lying on each line-image, and the line parallel to a plane with known ori-
entation when having three points lying on the line-image. Last constraint has been
integrated in a line-image extraction method for non-central circular panorama sys-
tems exploiting Manhattan conditions and assuming the gravity direction is a prior
information obtained from other sensors like an IMU.

Associated publications:

• [Bermudez-Cameo et al., 2014a] J. Bermudez-Cameo, J.P. Barreto , G. Lopez-
Nicolas and J. J. Guerrero, “Minimal solution for computing pairs of lines in
non-central cameras”, ACCV 2014 - The 12th Asian Conference in Computer
Vision, Singapore 1-5 November 2014.

• [Bermudez-Cameo et al., 2015b] J. Bermudez-Cameo, C. Demonceaux, G.
Lopez-Nicolas and J. J. Guerrero, “Minimal solution for line parallel to a plane
in non-central systems” (Technical Report), 2015 .

I also collaborated in a survey of techniques for calibrating omnidirectional cam-
eras, with the following publications associated:

• [Puig et al., 2012] L. Puig , J Bermudez, P. Sturm, J.J. Guerrero, “Calibration
of Omnidirectional Cameras in Practice: A Comparison of Methods”, Computer
Vision and Image Understanding, 116, pp:120-137, 2012.

• [Puig et al., 2010] L. Puig, J. Bermudez, J.J. Guerrero, “Self-orientation of a
hand-held catadioptric system in man-made environments”, 2010 IEEE Interna-
tional Conference on Robotics and Automation, ICRA, pp:2549-2555, Anchor-
age, Alaska May 2010.

1.4 Outline
The thesis is organized in two parts, the first part is dedicated to central imaging sys-
tems (Chapters 2 and 3) and the second focus on non-central imaging systems.

In Chapter 2 we focus on line-image extraction from hypercatadioptric images and
its use for computing vanishing points and main directions in man-made environments.
In Chapter 3 we present a framework for describing line-images in central systems
with symmetry of revolution and integrate it in a method for automatically extracting
line-images and calibration exploiting the plumbline constraint.

Second part of the thesis deals with line-images in non-central systems where it
is possible to recover the 3D information of a line from a single image. Chapter 4
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introduces representations of line-images for conical and spherical catadioptric systems
and handles with line-image extraction in non-central catadioptric systems. In Chapter
5 we address line-image extraction from non-central panorama images and we explore
different ways for acquiring these panoramas. Chapter 6 is dedicated to the minimal
solutions for fitting pair of lines in non-central systems. The cases of two parallel lines
and two intersecting orthogonal lines are studied. Finally, in Chapter 7 we exploit
a minimal solution solving a line parallel to a plane to include prior information of
gravity direction in Manhattan scenarios.

Along this thesis, for describing straight 3D lines we use Plücker coordinates (See
Appendix A). In central systems the projection surface of a straight 3D line L =(
lT, l̄T

)T is a plane passing through the 3D line and the single viewpoint and it is
described by the normal n which is coincident with the moment of the straight 3D line
l̄. When dealing with central systems (Chapters 2 and 3) the projection surface it is a
plane and only the projection plane can be recovered from a single projection, therefore
we use the normal n for describing this plane and omit the straight 3D line notation. By
contrast, in Chapters 4-7 we address non-central systems where the concept of projec-
tion plane does not make sense (the projection surface is not a plane), hence we use the
notation based on Plücker coordinates for the recovered straight 3D line. In general,
the notation of each chapter is independent and self-explained.



Part I

Line-Images in central
omnidirectional cameras





Chapter 2

Hypercatadioptric line-images
for 3D orientation and
rectification

First part of this thesis is dedicated to line-images in central systems. In this
chapter we focus on central catadioptric systems where 3D lines are projected
into conics. In particular, we present a new approach to extract these conics in
raw hypercatadioptric images which correspond to projected straight lines in the
scene. Using the internal calibration and two image points we are able to com-
pute analytically these conics which we name hypercatadioptric line-images. We
obtain the error propagation from the image points to the 3D line projection de-
pending on the calibration parameters. We also perform an exhaustive analysis
on the elements that can affect the conic extraction accuracy. Besides that, we
exploit the presence of parallel lines in man-made environments to compute the
dominant vanishing points (VPs) in the omnidirectional image. In order to obtain
the intersection of two of these conics we analyze the self-polar triangle common
to this pair. With the information contained in the vanishing points we are able
to obtain the 3D orientation of the catadioptric system. This method can be used
either in a vertical stabilization system required by autonomous navigation or to
rectify images required in applications where the vertical orientation of the cata-
dioptric system is assumed. We use synthetic and real images to test the proposed
method. We evaluate the 3D orientation accuracy with a ground truth given by
a goniometer and with an inertial measurement unit (IMU). We also test our ap-
proach performing vertical and full rectifications in sequences of real images.
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2.1 Introduction

Omnidirectional cameras are devices designed to capture images with a wide field of
view. This characteristic introduces a new approach in computer vision minimizing the
possibility of fatal occlusions and helping the tracking of features. Among these cam-
eras we find the catadioptric systems, which are a combination of a mirror and a cam-
era. Some of these systems have the single viewpoint constraint. In [Baker and Nayar,
1999] an analysis of central catadioptric systems is presented describing which sys-
tems have the single viewpoint property. Among these we have the hypercatadioptric
system which is composed of a hyperbolic mirror and a perspective camera. In mobile
robotics when a catadioptric system is used it is commonly observed that it has a ver-
tical orientation. This is because most robotic platforms used are wheel-based. Under
this configuration planar-motion is assumed simplifying the localization algorithms.
In applications where line tracking or line matching is performed [Mezouar et al.,
2004, Guerrero et al., 2008, Scaramuzza et al., 2009] this assumption is useful since
vertical lines are coplanar with the optical axis becoming straight radial lines in the
catadioptric image. When this assumption is not satisfied, vertical lines are projected
as conics in the catadioptric image. This situation requires the development of new
algorithms capable to deal with these conic projections. Another advantage of the wide
field of view in catadioptric systems is that visible segments of projected lines are very
large. When we use catadioptric systems in man-made environments we can observe
sets of parallel and orthogonal lines. These sets of lines encapsulate geometrical in-
formation which we exploit in this work. In particular, vanishing points contain the
orientation of the camera with respect to the reference coordinate system defined by
the main directions of the environment. However, dealing with line projections in cent-
ral catadioptric images requires to solve the problem of extraction of conics. In general,
five points are required to determine uniquely a conic. When the internal calibration of
the central catadioptric system is known, only two points are needed to compute these
conics, which we particularly call Hypercatadioptric Line Images (HLIs).

Line extraction in omnidirectional catadioptric systems has been studied previ-
ously. In [Barreto and Araujo, 2006a] an exhaustive analysis of line images in para-
catadioptric cameras is presented for calibration purposes. In [Vasseur and Mouaddib,
2004], the space of the equivalent sphere which is the unified domain of central cata-
dioptric sensors combined with the Hough transform is used. They also perform tests
showing the influence of the calibration parameters in their approach. In [Ying and
Hu, 2004c] Ying and Hu also use the Hough transform and two parameters on the
unitary sphere to detect the image lines. The accuracy on the detection of these two ap-
proaches depends on the resolution of the Hough transform. The higher the accuracy,
the more difficult it is to compute the lines. In [Mei and Malis, 2006] the randomized
Hough transform is used to overcome the singularity present in [Vasseur and Mou-
addib, 2004, Ying and Hu, 2004c], which speeds up the extraction of conics. This
scheme is compared in converge mapping to a RANSAC approach. In [Bazin et al.,
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2007,Bazin et al., 2010] an scheme of split and merge is proposed to extract the image
lines present in a connected component. The connected components are computed in
two steps. The first step consists of detecting the edges using the Canny operator. The
second step is a process of chaining which builds the connected components.

A vanishing point (VP) is the point on the image where the projections of two
or more parallel 3D lines intersect. This point is the projection of a virtual 3D point
located at infinity. That means that coordinates of a VP on the image only changes
when the camera is rotated. This property is exploited to obtain the orientation of the
camera with respect to a global reference system. The relationship between the ori-
entation of the camera and the vanishing points of perspective images has been deeply
studied before [Hartley and Zisserman, 2000]. Due to the wide field of view of omni-
directional cameras VPs are commonly located inside the catadioptric image. For this
reason VP-based techniques are interesting with omnidirectional cameras. In [Bazin
et al., 2010] VPs are used with omnidirectional images to estimate the camera orienta-
tion. In [Bosse et al., 2002] vanishing points are used in omnidirectional sequences as
orientation feature in an Extended Kalman Filter. A method of expectation maximiza-
tion is used in [Antone and Teller, 2000] to classify and detect VPs from edges on the
Gaussian Sphere.

In this chapter we present a method to extract HLIs in the raw image in contrast to
the approaches presented in [Vasseur and Mouaddib, 2004, Ying and Hu, 2004c, Mei
and Malis, 2006, Bazin et al., 2007] which execute the fitting on the unitary sphere.
Our approach does not use the Hough transform so the computing of the HLI is made
directly from two image points. Extracting the HLIs directly on the image, means that
thresholds and fitting parameters are expressed in pixel units. An example of this is
the metric used to decide if a point belongs to a conic. Instead of using an algebraic
distance we propose an approximation to the geometrical distance on the image. A
RANSAC voting scheme is used to extract all the HLIs present in a single connected
component. Contrary to [Bazin et al., 2007], the extraction of one HLI is performed
in one step. We also perform an exhaustive analysis on the elements that can affect
the HLIs extraction accuracy. Since we work on the image it allows measuring the
influence and behaviour caused by calibration errors in pixels. This study is applicable
to single HLIs in opposition to the study performed in [Vasseur and Mouaddib, 2004]
which shows the influence of calibration parameters in a collection of projected lines.
The way the results are presented in [Vasseur and Mouaddib, 2004] is conditioned by
the Hough transform approach. To complete the analysis we present the propagation
error formulas from calibration parameters to the spatial representation of the 3D line
projection. Analogous formulation and analysis is performed with respect to the HLI
defining points on the image.

Once lines in the catadioptric images have been extracted, vanishing points are es-
timated by computing the intersection of parallel lines. We propose a modification to
the computation of the common self-polar triangle [Barreto, 2003] to compute the in-
tersection between a pair of HLIs. The intersection of two HLIs is a particular case in
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Figure 2.2: Projection of a line under the
sphere camera model.

which the number of intersections between conics is reduced from four to two points.
When this intersection corresponds to images of parallel lines these points are the van-
ishing points. We compute all the intersections between the HLIs present in the im-
age. Then with a voting approach we robustly determine which ones are the vanishing
points. The Vertical Vanishing Point (VVP) allows us to determine two of the three
orientation angles with respect to an absolute reference. Using an analogous process
we compute the horizontal vanishing points (HVP) and as consequence the full orient-
ation of the catadioptric system. This orientation can be used to perform a rectification
of the omnidirectional image.

The rest of the chapter is distributed as follows. In section 2.2 we describe the
unified theory to project points and lines in catadioptric systems [Geyer and Daniilidis,
2000]. In section 2.3 we present a new approach to describe conics which are pro-
jections of lines with two points and we show an algorithm to extract them from a
hypercatadioptric image. Section 2.4 presents an analysis of the influence of calibra-
tion on the extraction procedure and an analysis of the uncertainty propagation in the
HLI computation. Section 2.5 describes how to use these conics to estimate vanishing
points assuming dominant directions, in order to compute the orientation of the cam-
era. Some experiments are presented in section 2.6 to validate the proposed method.
Finally, we present the discussion in section 2.7.

2.2 Projections in central catadioptric systems
Under the sphere camera model [Geyer and Daniilidis, 2000] all central catadioptric
systems can be modelled by a projection to the unitary sphere followed by a perspect-
ive projection. The projection of a 3D point X = (X Y Z 1)T into an omnidirectional



2.2. Projections in central catadioptric systems 21

image point x̂ can be performed as follows (Fig. 2.1). First, the 3D point is associated
with a ray x in the mirror reference system. This is done by P, a conventional projec-
tion matrix, x = PX. We assume the world reference system and the mirror reference
system are the same P = [I|0]. Second, the 3D ray is projected onto the sphere passing
through its center and intersecting in two points r±. These points are then projected
into an intermediate perspective plane with focal length equal to one, giving the points
x̄±, one of which is physically true. This step is encoded in the function h̄ (2.1). The
last step is the projection of these points into the omnidirectional image, which is per-
formed by a collineation Hc [Barreto and Araujo, 2005]. Matrix Hc is the combination
of the intrinsic parameters of the perspective camera Kc, the rotation between the cam-
era and the mirror Rc assumed the identity I and the shape of the mirror Mc. This
model considers all central catadioptric cameras, encoded by ξ , which is the distance
between the center of the perspective projection and the center of the sphere. ξ = 0 for
perspective, ξ = 1 for paracatadioptric and 0 < ξ < 1 for hypercatadioptric.

h̄(x) =

 x
y

z+ξ
√

x2 + y2 + z2

 (2.1)

Hc =

 fx 0 u0
0 fy v0
0 0 1


︸ ︷︷ ︸

Kc

 ψ−ξ 0 0
0 ξ −ψ 0
0 0 1


︸ ︷︷ ︸

Mc

(2.2)

Let Π = (nx,ny,nz,0)
T be a plane defined by a 3D line and the effective viewpoint

in the sphere camera model O (see Fig. 2.2). The projected line n associated to the
3D line by P can be represented as n = (nx,ny,nz)

T. Then, the points X lying in the
3D line are projected to points x. These points satisfy nTx = 0 and x = h̄−1(x̄), so
nTh̄−1(x̄) = 0. As in [Barreto and Araujo, 2005], this equality can be written as

x̄TΩ̄x̄ = 0 (2.3)

where the image conic is

Ω̄ =

 n2
x
(
1−ξ 2)−n2

z ξ 2 nxny
(
1−ξ 2) nxnz

nxny
(
1−ξ 2) n2

y
(
1−ξ 2)−n2

z ξ 2 nynz
nxnz nynz n2

z

 (2.4)

and the image of the conic in the catadioptric image is

Ω̂ = H−Tc Ω̄H−1
c . (2.5)

Notice that Ω̄ is a degenerate conic when the 3D line is coplanar with the optical
axis [Barreto and Araujo, 2005].
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2.3 Computation of hypercatadioptric line-images
In this section we present the process used to extract HLIs contained in hypercata-
dioptric images. First we show the analytical process, which requires only two image
points and the mirror parameter. Then we introduce the proposed point-to-conic metric
used to decide if a point lies on a conic. Then the whole extraction process is depicted
as pseudo-code. Finally we show a comparison of the five-point algorithm with our ap-
proach, which distinguishes between conics coming from straight lines and from other
projected conics.

2.3.1 Conic definition using two points

Here we explain the method used to extract the HLIs from two image points. As men-
tioned before, in the case of uncalibrated systems we require five points to compute a
conic. If these points are not well distributed in the whole conic, the estimation is diffi-
cult and usually inaccurate. Another disadvantage of a 5-point approach is the number
of parameters. When a robust technique like RANSAC is used, this is quite important,
because the number of iterations required considerably increases with respect to the
number of parameters of the model. Our approach overcomes these problems requir-
ing only two points and the calibration parameters. First we transform the points to the
normalized plane x̄ = (x̄ ȳ z̄)T using the inverse of matrix Hc

x̄ = H−1
c x̂. (2.6)

Developing (2.3) and after some algebraic manipulation we obtain

(
1−ξ

2)(nxx̄+nyȳ)2 +2nzz̄(nxx̄+nyȳ)+n2
z
(
z̄2−ξ

2 (x̄2 + ȳ2))= 0 (2.7)

simplifying

(1−ξ
2)α2 +2α +

(
z̄2−ξ

2 (x̄2 + ȳ2))= 0 (2.8)

where a change of variable to α =
nxx̄+nyȳ

nz
is performed.

We can compute α by solving the quadratic equation

α =− z̄
1−ξ 2 ±

ξ

1−ξ 2

√
z̄2 +(x̄2 + ȳ2)(1−ξ 2) (2.9)

Once we have solved this quadratic equation we can compute the normal n. Con-
sider two points in the normalized plane x̄1 = (x̄1, ȳ1, z̄1)

T and x̄2 = (x̄2, ȳ2, z̄2)
T lying

on the conic we want to extract. From (2.9) we compute the corresponding α1 and α2.
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Notice that there exist two solutions for α and just one has a physical meaning1. Using
these parameters we obtain the linear system

(
x̄1 ȳ1 −α1
x̄2 ȳ2 −α2

) nx
ny
nz

=

(
0
0

)
(2.10)

Solving for nx, ny and nz we have

nx = ȳ1α2− ȳ2α1 ny = x̄2α1− x̄1α2 and nz = x̄2ȳ1− x̄1ȳ2. (2.11)

Notice that we have analytically obtained the normal n that defines the projection
plane of the 3D line, therefore the conic Ω̄ described in (2.4).

2.3.2 Distance from a point to a conic

In contrast to previous works [Vasseur and Mouaddib, 2004, Ying and Hu, 2004c, Mei
and Malis, 2006,Bazin et al., 2007] that deal with points in the unitary sphere, we work
in the image plane where conics are computed. In order to know if a point x lies on a
conic Ω, represented as a 6-vector c = (c1,c2,c3,c4,c5,c6)

T, we need to compute the
distance from a point to a conic. Two distances are commonly used to this purpose. An
algebraic distance defined by (2.12) which just gives a value without clear geometrical
meaning

dalg = c1x2 + c2xy+ c3y2 + c4x+ c5y+ c6. (2.12)

The other gives the geometric distance from this point to the closest point on the
conic. The geometric distance is calculated by solving a 4th order polynomial. This is
time consuming and does not allow analytical derivation [Sturm and Gargallo, 2007].
We propose an approximation to this distance replacing the point-to-conic distance by
a point-to-point distance.

Given a conic point xc lying on a conic described by the matrix Ω the tangent line
to the conic passing through xc is the polar line of the point xc with respect to the conic
Ω.

s = Ωxc =

 c1
c2
2

c4
2c2

2 c3
c5
2c4

2
c5
2 c6

 xc
yc
1

=

 c1xc +
c2
2 yc +

c4
2c2

2 xc + c3yc +
c5
2c4

2 xc +
c5
2 yc + c6

 (2.13)

The perpendicular line to the conic Ω passing through xc is defined as

1We have observed that the positive solution is the correct one.
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(a) (b) (c) (d)

Figure 2.3: Region defined by a metric threshold of 20 pixels surrounding a conic.
(a) Ellipse case using metric distance. (b) Ellipse case using Sampson distance. (c)
Hyperbola case using metric distance. (d) Hyperbola case using Sampson distance.

l⊥ (xc) =

 s2
−s1

−s2xc + s1yc

 (2.14)

When a point xo does not lie on the conic we can compute an estimation to its cor-
responding perpendicular line using the property that l⊥ (xc) = l⊥ (x0 +∆x)≈ l⊥ (x0).

l⊥ (x0) =

 s2 (x0)
−s1 (x0)

−s2 (x0)x0 + s1 (x0)y0

 (2.15)

With the approximated perpendicular line we compute the intersection between the
line and the conic [Barreto, 2003] using the expression,

p± =
(
±
√
−l′⊥C∗l⊥I3x3 + l×C

)
Isl⊥ (2.16)

where

Is =

 0 0 −1
0 0 −1
1 1 0

 , C∗ = det(C)C−1, l× =

 0 s2x0− s1y0 −s1
s1y0− s2x0 0 −s2

s1 s2 0

 .

The approximated distance is the minor distance from both intersections.
Given a conic, a metric threshold with the proposed distance defines a uniform area

surrounding the conic (Fig. 2.3 (a) and Fig. 2.3 (c)). When using other approaches
like Sampson’s distance this property is not guaranteed. In Fig. 2.3 (b,d) we show the
area defined by a threshold based on Sampson’s distance. We observe that the area
is uniform when the conic is an ellipse; however when the conic is a hyperbola the
thickness of the area using Sampson’s distance is not uniform.
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(a) (b) (c)

Figure 2.4: Extraction of image lines (HLIs). (a) Canny edge detector result, (b) con-
nected components and (c) Extracted HLIs.

2.3.3 Hypercatadioptric line-images extraction

Our line extraction proposal can be explained as follows. First we detect the edges
using the Canny algorithm. Then the connected pixels are stored in components. For
each component we perform a RANSAC approach to detect the conics present into this
component. Two points from the connected component are selected randomly and the
corresponding HLI is computed. The distances from the rest of the points to this conic
are computed. The points with a distance smaller than a threshold vote for this HLI.
The process stops when the number of points that has not voted for any conic and the
number of points in the component are smaller than a threshold. In Fig. 2.4 we can
observe the three main steps to extract HLIs. A pseudo-code version is presented in
Algorithm 1.

Five points vs. two points

For illustration purposes we show in Fig. 2.5 (a-b) the extraction of three conics cor-
responding to vertical lines. We use conic fitting with five points and the extraction of
the same HLIs using our 2-point approach. We also show the VVP which is used as a
measure of quality. All conics corresponding to vertical lines must intersect this point.
When the generic five point approach is used, the shape of the HLIs changes depending
on the points used to compute it. It can be either a hyperbola or an ellipse and it can
easily change from one to the other. The result is a conic which fits the five selected
points but it does not describe the projection of the 3D line. For example, using conics
showed in Fig. 2.5(a) we can not compute the vertical vanishing point by intersection.
In the case of the proposed 2-point algorithm the HLI cover with accuracy the points
used to compute it, and describe the edge from which the points were extracted. There-
fore the three conics intersect in the vanishing point. Another advantage of the 2-point
approach is the number of iterations performed inside voting approach. For instance,
using a probability p = 99% of not failing in the random search and 50% of outliers
(ε) just 17 iterations are needed to get a result using the proposed approach (2-point)



26 2. Hypercatadioptric line-images for 3D orientation and rectification

Algorithm 1 Two-point HLI extraction algorithm
Require: Image
Ensure: Ωarray

edges = Canny(image)
boundaries = extractboundaries(edges)
for k = 1 to nBoundaries do

x = boundaries(k)
j = 0
while remaining points/total points > T do

xnplane = H−1
c x

for i = 1 to nAttemps do
xrandom = rand(xnPlane,2)
Ωimg(i) = twoPoints2Conic(xrandom)
d = dist2conic(Ωimg(i),x)
xvote(i) = inliers(x,d,T hreshold)
votes(i) = size(xinliers(i))

end for
indmax = MaximumVoted(Ωimg,votes)
Ω = Ωimg(indmax)
xinliers = xvote(indmax)
j = j+1
Ωarray( j) = Ω

x =U pdateRemainingBoundary(x,xinliers)
end while

end for
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(a) (b) (c)

Figure 2.5: Computing a HLI with (a) using the five point approach. (b) using our
approach with only two close points. The central blue point corresponds to the vertical
vanishing point. (c) Extraction of HLIs over a circular contour. Blue points give the
connected component. Red points correspond to the HLIs detected by RANSAC. The
corresponding conics to each segment HLI are shown in green.

and 146 using the general five point approach. The number of iterations nr is given by
nr =

log(1−p)
log(1−(1−ε)k)

.

Discrimination of HLIs from other conics
Since lines present in the scene become conics in hypercatadioptric images, one may
think that these conics may represent projections of circles or other conic shapes. Our
approach is able to distinguish between conics which are projections of 3D straight
lines and the rest of the image conics. To illustrate this, we show in Fig. 2.5 (c) the
behavior of our approach extracting HLIs in hypercatadioptric images. We observe a
circular contour whose boundary points are given manually. We apply our extraction
algorithm on this connected component assuming the contour is composed of HLIs.
We can observe how the algorithm is not able to fit the whole circle with a single conic.
With our approach we can directly test if a set of image points corresponds to a HLI.
The definition of a HLI presented in section 2.3.1 is not limited to two points. From
(2.10) we observe that each point gives a row of a linear homogeneous system. For n
points we have

M =


x̄1 ȳ1 −α1
x̄2 ȳ2 −α2
...

...
...

x̄n ȳn −αn

 (2.17)

This situation allows fitting a HLI using more than two points. This is very useful
in practice when we have more than two pixels defining a conic. At the same time it
permits to distinguish HLIs from other conics. The rank of the homogeneous matrix M
is two when it represents a HLI.
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2.4 Influence of calibration and error propagation in
the extraction of HLIs

In this section we present an exhaustive analysis of the influence of the calibration
parameters of a hypercatadioptric system on the extraction of HLIs. First, we present an
analysis of the error propagation from the calibration parameters and the two defining
points of a HLI to the normal n describing the projection plane of the 3D line. Then we
show an empirical study of the influence of calibration parameters on the extraction of
HLIs. Finally we analyze the influence of the length of the observed conic segment.

2.4.1 Analytical study of errors propagation
We have performed an analytical study of the propagation errors in the calibration
parameters to the normal defining the projection of the line. We also propagate the
error in pixels from a pair of defining points of a HLI on the image to its normal in
the space. To deal with this uncertainty we use a first order approximation of the
formulation.

We first analyze the uncertainty from the calibration parameters to the normal n.
For this formulation the calibration parameters of the system are represented in the
vector κ = (u0,v0, fx, fy,sskew,ξ ,ψ)T. The corresponding Jacobian is

dn
dκ

= Ψ(Λϒ+Γ) (2.18)

with

Ψ =
1(

n2
x +n2

y +n2
z
) 3

2

 n2
y +n2

z −nxny −nxnz

−nxny n2
x +n2

z −nynz
−nxnz −nynz n2

x +n2
y

 , (2.19)

Γ =
1

(1−ξ 2)2

 03×5

− y2(λ1−ξ z1)
λ1

+ y1(λ2−ξ z2)
λ2

x2(λ1−ξ z1)
λ1

− x1(λ2−ξ z2)
λ2

0

03×1

 (2.20)

and

ϒ =
1

(ξ −ψ)



ẑ1
fx
− sẑ1

fx fy
fy∆x1−s∆y1

fy f 2
x

− s∆y1
f 2
y fx

∆y1
fy fx

fy∆x1−s∆y1
fy fx(ξ−ψ)
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Figure 2.6: Uncertainty from defining points to normal vector n. Gaussian randomized
points around the defining points are used to compute a cloud of normals (red points).
The 95% confidence region of the normal is represented from this propagation with
an ellipse (in blue). (a) Standard Deviation of 2 pixels. (b) Standard Deviation of 15
pixels.

where ∆x1 = x̂1− ẑ1u0, ∆x2 = x̂2− ẑ2u0, ∆y1 = ŷ1− ẑ1u0 and ∆y2 = ŷ2− ẑ2u0.
We have also obtained the error propagation formulas from the two defining points

on the image to the normal n. Let be χ̂ = (x̂1, ŷ1, ẑ1, x̂2, ŷ2, ẑ2)
T the corresponding

Jacobian is described by the following matrix product

dn
dχ̂

= ΨΛ

(
H−1

c 03×3
03×3 H−1

c

)
(2.22)

in which

Λ =

 −ȳ2 x̄1ξ
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−ȳ2 ȳ1ξ

λ1
+α2
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−ȳ2 x̄2 0 ȳ1 −x̄1 0

 ,

(2.23)

where λi =
√

z̄2
i +
(
x̄2

i + ȳ2
i

)
(1−ξ 2).

This approximation allows propagating the error from the two defining points in
the image plane to the normal n. To evaluate the expressions, in fig. 2.6 we show the
uncertainties of two points defining the HLI. We generated 5000 random values of χ̂ on
the image adding a Gaussian variance of two pixels and fifteen pixels (Fig. 2.6(a) and
2.6(b), respectively). These points have been mapped to normal vectors using (2.11).
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We compare these points with the 95% confidence region we obtain propagating the
covariance matrix of χ̂ .

2.4.2 Empirical study of the influence of calibration
In this experiment we consider the following calibration parameters, focal lengths
( fx, fy), principal point (u0,v0) and mirror parameter ξ . We modify each parameter
independently inside a certain range from which we select 1000 samples. Then, we
compute a specific HLI for each value using its two extreme points. We perform this
experiment for two different types of HLIs, one of which is nearly perpendicular to the
optical axis and the other which is nearly parallel. To illustrate the results two types
of graphics are showed. The first one represents the mean error in pixels of the conic
fitting as a function of the calibration parameter. In the second type the horizontal
axis represents the variation of the calibration parameter and the vertical axis the angle
between the reference normal vector nre f and the normal vector n computed with the
modified calibration.

• Focal length: In Fig. 2.7(a),(b) we show the corresponding conics when the
focal lengths ( fx, fy) are modified. We observe that these parameters affect their
corresponding coordinate of influence x and y. The plot shows that the effect is
the inverse for both axis. However, the magnitude is bigger in the case of fy.
Lines with a more horizontal component are more affected by the change on the
focal length.

• Principal point: In Fig. 2.7(c),(d) we observe the influence of the principal
point (u0,v0) on the computation of the HLIs. When these two parameters are
modified we observe a displacement proportional to the distortion added to the
corresponding parameter on the corresponding axis.

• Mirror parameter: In Fig. 2.7(e) we observe the effect of the mirror parameter
ξ on the computation of HLIs. We observe that both lines approximate a straight
line when the value of ξ approximates to zero. This is explained because ξ = 0
represents the pin-hole model which projects lines to lines. Therefore, the closer
a HLI is to a straight line, the less the mirror parameter ξ has an influence.

We observe that the fitting error is bigger for the perpendicular line than for the
parallel line, except for errors in v0. This is explained since the perpendicular lines are
transformed in conics with a higher curvature than the parallel ones, which are mapped
to straighter lines.

2.4.3 Influence of observed length of the HLI
In the extraction process of the HLIs using RANSAC, two points in a connected com-
ponent are randomly selected and a HLI is computed. Then it is used to obtain all the
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Figure 2.7: Mean error in pixels of the conic fitting varying the calibration parameters.
Angle between reference normal and normal when varying the calibration parameters.
(a,b) Focal length, fx, fy. (c,d) Principal point, u0, v0. (e) Mirror parameter ξ .
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Figure 2.8: Maximum error in pixels as a function of the extension (in degrees) of the
observed HLI for mirror parameters (a) ξ = 0.75 and (b) ξ = 0.95.

points that belong to such HLI. In this experiment we want to observe the influence of
the distance between these two defining points on the accuracy of the extracted HLI. As
in previous experiment we observe that the influence of calibration errors is stronger
in perpendicular lines to the optical axis. In this experiment we perform simulations
using this type of line. We try different line lengths, from a few degrees to the longest
theoretical line which has an observed extension close to 180◦. We also modify the
mirror parameter to observe its behavior. As we expected, we observe that the longer
the line is, the better the extraction of the HLI is. In Fig. 2.8(a) we observe such be-
havior with a mirror parameter of ξ = 0.75. We also observe that when we approach
the maximum observed length of the line the error starts increasing, showing the limit
of the longest line that should be used to extract the corresponding HLI. In Fig. 2.8(b)
we repeat the experiment, this time using a mirror parameter of ξ = 0.95 close to a
parabolic mirror (ξ = 1). We observe that the error increases a lot when we are closer
to both the longest line and the parabolic mirror. The para-catadioptric system case has
been studied in [Barreto and Araujo, 2005] and it is simpler than the hypercatadioptric
analyzed here.

With the information obtained from this experiment we can infer that we should
select the two more distant points to extract their corresponding HLI. However, there
exist an upper limit that depends on the length of the HLI and the mirror parameter. In
practice it is very unlikely to observe a line of such length. Since we use a RANSAC
approach, whose principle is to search in the space of solutions minimizing the error,
this problematic situation is automatically avoided in practice.



2.5. Vanishing points and image rectification 33

2.5 Vanishing points and image rectification

The vanishing points indicate the intersection of image lines corresponding to parallel
lines in the scene. In vertical aligned catadioptric systems, vertical lines are radial
lines in the catadioptric image. Their intersection point, the vertical vanishing point
(VVP), is located close to the image center. When the camera is not vertically aligned,
the vertical lines become conic curves as we explained before. One consequence is
that the VVP displaces from the image center. Its new location contains important
information about the orientation of the camera with respect to the scene.

2.5.1 Intersection of two HLIs using the common self-polar tri-
angle

In a general configuration, two conics intersect in four points (Fig. 2.9 (a) ). The
union of couples of these points define three distinct pair of lines. The intersection of
these lines represent the vertices of the self-polar triangle common to a pair of conics
[Barreto, 2003]. We have studied the particular case where two HLIs intersect, which is
a degenerate configuration, since they intersect in two points. As we observe in Fig. 2.9
(b), there exist a line l that intersects these two points and the origin of the normalized
plane. Our goal is to compute this line and from it to extract the two intersections of
the conics that correspond to the two points P+ and P−.

Let n1 = (nx1 ,ny1 ,nz1)
T and n2 = (nx2 ,ny2 ,nz2)

T be two normal vectors represent-
ing the projection of two lines in the scene and Ω̄1 and Ω̄2 two conics representing the
image lines in the normalized plane. The vertices of the self-polar triangle associated
to the pencil Ω̄(λ ) = Ω̄1 +λ Ω̄2 satisfy the constraint

det(Ω̄1 +λ Ω̄2) = 0. (2.24)

If we develop this constraint we obtain a third order polynomial where just one
of the solutions is real and it corresponds to λ1 = −n2

z1/n2
z2. So, the null-space of

Ω̄(λ1) = Ω̄1 +λ1Ω̄2 is the line l, expressed in a parametric way as

l = µ ·v = µ

(
vx
vy

)
= µ

(
n2

z2
ny1nz1 −n2

z1
ny2nz2

n2
z1

nx2nz2 −n2
z2

nx1nz1

)
. (2.25)

The intersection of this line to both Ω̄1 and Ω̄2 gives the two points P+ and P−. To
obtain them we solve for µ in the following equation

µ
2(c1v2

x + c2vxvy + c3v2
y)+µ(c4vx + c5vy)+ c6 = 0 (2.26)

and substitute in (2.25).
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Figure 2.9: (a) Intersection of two generic conics. (b) Intersection of two conics in the
normalized plane.

2.5.2 Vertical vanishing point (VVP)
We use a classic algorithm to detect the VVP. Let m be the number of putative vertical
HLIs detected in the omnidirectional image and let ni their corresponding represent-
ation in the normalized plane. For every pair of HLIs (there is a total of m(m− 1)/2
pairs), we compute their intersection as explained above. Then for each line ni we com-
pute the distance to these points. If the line is parallel to that pair of HLIs the distance
is smaller than a threshold and then that line votes that possible VVP. The most voted
point is considered the VVP. A refinement of the estimation can be performed using
the p lines that voted for the VVP. This refinement can be performed using singular
value decomposition to solve a linear system, followed by an optimization process to
improve the accuracy. As these steps also increase the computational cost, we decide
to avoid them in our final implementation.

2.5.3 Horizontal vanishing point (HVP)
Once the VVP is extracted we can exploit several properties to compute the hori-
zontal vanishing point (HVP). The VVP x̄VV P =

(
x̄vx , x̄vy

)
defines a separation between

vertical lines and potential horizontal lines. The VVP defines the plane of the hori-
zon,which is projected into the horizon conic, defined as:

Ωv =

 ζ 2x̄2
vx

(
1−ξ 2)− (ζ −ξ )2

ξ 2 ζ 2x̄vx x̄vy

(
1−ξ 2) ζ x̄vx (ζ −ξ )

ζ 2x̄vx x̄vy

(
1−ξ 2) ζ 2x̄2

vy

(
1−ξ 2)− (ζ −ξ )2

ξ 2 ζ x̄vy (ζ −ξ )

ζ x̄vx (ζ −ξ ) ζ x̄vy (ζ −ξ ) (ζ −ξ )2

 , (2.27)
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Figure 2.10: (a) Camera Reference: The VVP location is related with orientation angles
φ and ϕ . (b) Vertical Reference: After rotating the camera around the x-axis an angle
−φ the VVP is in the principal point. In this reference the HVP defines the orientation
angle ω . Each vertical 3D line is projected on a radial straight line.

where ζ =
ξ+

√
1+(1−ξ 2)

(
x̄2

vx+x̄2
vy

)
x̄2

vx+x̄2
vy+1 . Therefore the HVP must lie on this conic.

By introducing these constraints we reduce the search space and we impose the
main directions to be perpendicular. Notice that using a single image without any
assumptions it is impossible to distinguish between the VVP and the HVP. However,
some prior knowledge is easy to have in practice.

2.5.4 Image rectification

Here we explain the relation between the VVP computed in the normalized plane and
the whole orientation of the catadioptric system. Having an absolute reference system
defined by the main directions, the orientation of the camera with respect to this system
is described by three angles (φ ,ϕ ,ω). Two of them are obtained from the VVP. Writing
the VVP in polar coordinates x̄vp = (ρv,θv)

T (Fig. 2.10(a)) we observe that there
exist a relation between the angle θv and the angle ϕ representing the rotation of the
catadioptric system around the z-axis (2.28). The negative angle is produced by the
mirror effect which inverts the catadioptric image.

ϕ =−θv (2.28)

We observe that the component ρv is intrinsically related to the angle φ and the
mirror parameter ξ of the catadioptric system. Since angles φ and ϕ are independent,
we consider the case where ϕ = 0 (Fig. 2.10(b)). Using (2.25) and (2.26) with a pair
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of parallel HLIs in polar coordinates we compute the following relation

ρv =−
sinφ

cosφ ±ξ
, (2.29)

selecting geometrically compatible solutions, φ can be isolated resulting in:

φ = atan2(1,ρv)+ arccos

(
−ρvξ√
ρ2

v +1

)
. (2.30)

With φ and ϕ angles any image can be transformed to a vertical reference in which
VVP lies on the image center. We perform the vertical rectification in two steps. The
first step undoes a horizontal rotation according to angle ϕ (−θv in the image) to an
arbitrary central reference (see Fig. 2.10(b)). The second step consists of translating
the VVP to the image center through a rotation around the vertical axis by the angle
φ , which is computed (2.30) from ρv (in the image) and the mirror parameter ξ . This
procedure is performed by the following equation

x̄′h = h̄
(
rotz (ϕ)rotx (−φ)rotz (−ϕ) h̄−1 (x̄h)

)
(2.31)

Once we have rectified the HVP to this reference we can compute the full ori-
entation and perform the full rectification of the catadioptric image. We compute its
polar coordinates from which we only require the angle component ω . With this angle
we translate it to a central position. Since a horizontal rotation was performed in the
previous step, the position of the HVP has been modified and we have to undo such
transformation. From these angles we construct a rotation matrix R which relates the
absolute reference system with the camera reference system

Xcam = RXabs, where R = rotz(ϕ)rotx(φ)rotz(ω−ϕ) (2.32)

2.6 Experiments
In this section we present experiments focused on testing the accuracy of the proposed
algorithm. We use synthetic and real images as well as image sequences acquired with
a hand-held hypercatadioptric system and a hypercatadioptric system mounted on a
helmet.

2.6.1 Orientation accuracy
This group of experiments is designed to evaluate the accuracy of the orientation of the
camera computed from vanishing points. Initially, we use synthetic images to avoid
setting and calibration errors. We also use real images which are acquired with a hyper-
catadioptric system. We accurately move this system with a precision head composed
of a goniometer, from which we obtain the ground truth orientation of the system.
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(a) (b) (c)

Figure 2.11: Orientation accuracy test with synthetic images: (a) Original Image, (b)
VP extraction, (c) Rectified image using the orientation.

Reference Our Method Bazin’s Method

0◦ 0.45◦ 0.12◦

5◦ 5.27◦ 5.10◦

10◦ 10.11◦ 9.80◦

15◦ 15.07◦ 14.56◦

20◦ 19.90◦ 19.77◦

25◦ 24.58◦ 24.76◦

30◦ 30.09◦ 29.79◦

35◦ 35.54◦ 34.73◦

40◦ 40.41◦ 39.77◦

45◦ 45.35◦ 45.02◦

50◦ 50.06◦ 49.71◦

55◦ 55.01◦ 54.74◦

60◦ 59.97◦ 59.75◦

Table 2.1: φ angle (in degrees) extraction accuracy test on simulated scenario.
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(a) (b) (c)

Figure 2.12: Orientation accuracy test with real images in scenario A: (a) Original
Image, (b) VP extraction, (c) Rectified image.

Synthetic images

The goal of this experiment is to estimate the orientation errors with the proposed
method avoiding the calibration influence. We use a synthetic environment based on a
real scenario composed of elements like doors and columns which define main direc-
tions. The catadioptric system is modelled by a perspective camera and a hyperbolic
mirror. To test the proposed method thirteen images have been generated from 0o to
60o using a ray-tracing software2 introducing a consecutive variation of five degrees in
φ angle. In Table 2.1 we show the results obtained with the proposed method and the
method presented by Bazin et al. in [Bazin et al., 2010]. The obtained errors are in av-
erage smaller than 0.25 degrees. There is no significant difference between our results
and Bazin’s method. Fig. 2.11 shows an example of the vanishing points extraction
and full image rectification from a synthetic image generated from an angle φ = 40o.

Real images

In this experiment we test the accuracy of the algorithm in a real environment. The
camera is attached to a precision head3 which provides the ground truth. Images have
been acquired with a hypercatadioptric system4. To evaluate the influence of the lines
density and quality, the experiment has been repeated in two different scenarios. Scen-
ario A is a corridor where main directions are well defined, the number of vertical lines
is high, floor and walls have different colors and without reflections. Scenario B is a
small hall in which the number of vertical lines is low, the color of the constructive
elements is uniform and there exist reflections on the floor.

2http://www.povray.org
3 UTR 80, Manufactured by Newport with goniometer of 1/60 o resolution
4http://neovision.cz
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Reference Scenario A Scenario A Scenario B Scenario B
mean std. dev. mean std. dev.

0◦ 0.63◦ 0.153◦ −0.32◦ 0.226◦

5◦ 4.76◦ 0.227◦ 5.22◦ 0.162◦

10◦ 10.87◦ 0.417◦ 11.28◦ 0.167◦

15◦ 15.30◦ 0.200◦ 15.83◦ 0.086◦

20◦ 20.15◦ 0.038◦ 21.57◦ 0.300◦

25◦ 25.21◦ 0.021◦ 25.45◦ 0.038◦

30◦ 30.06◦ 0.045◦ 29.75◦ 0.382◦

35◦ 34.88◦ 0.043◦ 35.20◦ 0.468◦

40◦ 39.97◦ 0.132◦ 39.30◦ 0.185◦

45◦ 44.93◦ 0.083◦ 44.38◦ 0.386◦

50◦ 49.93◦ 0.031◦ 49.28◦ 0.345◦

55◦ 54.42◦ 0.036◦ 53.62◦ 0.249◦

60◦ 59.22◦ 0.008◦ 59.13◦ 1.115◦

Table 2.2: φ angle (in degrees) extraction accuracy test on real stages.

We also use thirteen images from 0 to 60 deg which have been acquired introducing
an increment of five degrees in φ angle and the algorithm has been executed five times
for each image. In Table 2.2 we show the result from the different two scenarios. The
first column is the reference angle given by the goniometer. Next columns are the mean
and standard deviation of the orientation calculation for each scenario. Since we have
not a perfectly aligned system with respect to the vertical we assume an offset setup
error for the complete experiment.

Mean errors are 0.31 degrees for well-conditioned scenario A and 0.80 degrees
for scenario B. Maximum errors are 0.87 degrees and 1.57 degrees respectively. These
results are better than maximum error of 2 degrees presented by Magnier et al. in [Mag-
nier et al., 2010]. Results obtained in scenario A, which have more and longer lines,
are considerably more accurate than results from scenario B. Therefore as expected,
the number of HLIs and their quality have influence in angle accuracy. Spurious HLIs
extracted from non-line objects, like people, also introduce uncertainty into the extrac-
tion process. We observe that the inclusion of one parameter radial distortion in the
projection model improve the accuracy. We also observe the high influence of radial
distortion and principal point in angle φ accuracy. The relation between angle φ and
the distance from principal point to the VVP, which can be seen in (2.29), explains this
tendency. In Fig. 2.12 and 2.13 we show an example of the vanishing points extraction
from two real images taken in the two considered scenarios. The system has an inclin-
ation of 40 deg. Full orientation extracted from vertical and horizontal vanishing point
is used to rectify the original image.
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(a) (b) (c)

Figure 2.13: Orientation accuracy test with real images scenario B: (a) Original Image,
(b) VP extraction, (c) Rectified image.

(a) (b) (c)

Figure 2.14: (a) Elevation angle φ of the catadioptric system. Frames 1-150. (b)
Angular deviation of the vertical lines after rectification, in degrees. (c) Number of
vertical lines present in each frame of sequence 1.
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2.6.2 Rectification of image sequences

In order to evaluate the system in real environments the proposed method has been
tested with image sequences. This application consists of a 3D orientation computation
in which the extracted orientation is used to rectify the image sequence. The result is
an oriented image sequence.

As commented in previous sections, it is necessary to introduce additional con-
straints to distinguish between VVP and HVP. When we deal with image sequences
it is possible to track the vanishing points. The vanishing points detected in the first
frame are defined as reference. The tracking is performed with previous VPs inside
a confidence region. This region is described as a covariance matrix which depends
on the hypothesized angular velocity. Three sequences have been acquired using two
different catadioptric systems. Sequences 1 and 2 have been acquired with a hand-held
hypercatadioptric system5. Sequence 3 has been acquired with a hypercatadioptric
system mounted on a helmet (see Fig. 2.17(a)).

Image sequence 1

In this experiment we only perform the vertical rectification of a sequence. In Fig.2.14
(a) we show the φ angle computed for the first 150 frames of sequence 1. To measure
the accuracy of our approach we compute the verticality of the lines present in every
frame. This process consists of building the corresponding panoramic image from the
omnidirectional image. Then all points belonging to a vertical line are used to compute
the line equation. Finally we measure the angle deviation of this computed line with
a true vertical line. The average error computed was 0.72◦ with a maximum error of
1.63◦ and a standard deviation of 0.70◦. In Fig.2.14 (b) we show the average error of
the angle deviation of all the vertical lines present in each frame of sequence 1 after
rectification. We observe that this error is related to the number of vertical HLIs present
in the catadioptric image (Fig. 2.14 (c)). The more the number of vertical HLIs present
in the frame the better the estimation of the vanishing points, and consequently a better
rectification of the image.

Image sequence 2

In this experiment we compute the full rectification of the second sequence. In Fig.
2.15 we can observe how the two vanishing points are computed. Once the rectification
is computed we align the images to the reference system given by the vanishing points,
i.e., the scene reference system. This allows to see that the motion performed in the
sequence is pure translation (Fig. 2.16).

5http://neovision.cz
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(a) (b) (c)

Figure 2.15: Example of full image rectification. (a) Frame 1 of the sequence 2. (b)
Putative vertical and horizontal vanishing points. The yellow circles represent the pu-
tative vertical vanishing points. The blue ones the putative horizontal vanishing points
and the green ones are the intersections points that cannot be consider either vertical
or horizontal vanishing points. The white square is the estimated HVP and the black
one is the VVP. (c) Full-rectified image. The vertical HLIs are shown in white and the
horizontal ones in red.

Frame 107 Frame 242

Figure 2.16: Panoramic representation of several full-rectified frames. Vertical lines are
shown in white and horizontal ones in red. The horizontal vanishing point is aligned to
the image center.
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Figure 2.17: Image sequence acquired with the omni-camera helmet: (a) Acquisition
helmet, (b) Vanishing Point Extraction, (c) Comparison between angle φ given by the
accelerometer and the vision based algorithm.
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Helmet camera and IMU comparison

In this experiment we measure the orientation of a head during a human walk. An
inertial measurement unit (IMU) has been coupled to the helmet to compare the com-
puted angle with the angle given by the IMU. In Fig. 2.17(b) we show an image of
the sequence and many conics lying on the vanishing points. Fig. 2.17(c) shows the
comparison between the angle given by the IMU and the algorithm during the image
sequence.

2.7 Summary
We have presented a new method for the extraction of conics which are projections
of 3D lines in omnidirectional images generated by a calibrated hypercatadioptric sys-
tem. We propose an approach that requires only two points and the calibration of the
system to extract them and use it with a metric distance from point to conic in an extrac-
tion algorithm. We analyze the uncertainty propagation using the proposed approach
showing the influence of each particular calibration parameter and the two defining
points. We develop the common self-polar triangle approach to the particular case of
HLIs intersection. With a voting approach we select the VPs from the intersections of
the HLIs. Orientation of the hypercatadioptric system is estimated relating the loca-
tion of the vanishing points on the image with the orientation angles in an man-made
structured environment. To show the effectiveness of this method we perform experi-
ments with synthetic and real images comparing our proposal to similar approaches. In
particular we test the accuracy of the orientation estimation by using static images, ob-
taining mean orientation errors of less than 1 degree. We also show the behaviour of the
method dealing with image sequences. We compare our algorithm with the orientation
data extracted from an IMU. Using the orientation we perform the vertical rectification
of the sequence in order to create images where applications that require the vertical
constraint can be used.
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Chapter 3

Line extraction in uncalibrated
axial cameras

In this chapter we address a general representation for line-images in central sys-
tems assuming symmetry of revolution. This is a realistic assumption when mod-
elling the majority of catadioptric and dioptric cameras. When extending line
projection from central catadioptric to general central systems line projections are
not conics. Instead, straight lines are projected on curves having more than two
degrees of freedom whose shape strongly depends on the particular camera config-
uration. Therefore, the existing line-extraction methods for this kind of omnidirec-
tional cameras require the camera calibration by contrast with the perspective case
where the calibration is not involved in the shape of the projected line. However,
this drawback can be considered an advantage since the shape of the line-images
can be used for self-calibration. In this chapter we present a novel method to
extract line-images in uncalibrated omnidirectional images, which is valid for ra-
dially symmetric central systems. In this method we propose using the plumb-line
constraint to find closed form solutions for different types of camera systems, di-
optric or catadioptric. The inputs of the proposed method are points belonging to
the line-images and their intensity gradient. The gradient information allows to
reduce the number of points needed in the minimal solution improving the result
and the robustness of the estimation. The scheme is used in a line-image extraction
algorithm to obtain lines from uncalibrated omnidirectional images without any
assumption about the scene. The algorithm is evaluated with synthetic and real
images showing good performance. The results of this work have been implemen-
ted in an open source Matlab toolbox for evaluation and research purposes.
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3.1 Introduction

The projection of a straight line on an image is in general a curve called line-image.
In conventional perspective cameras, a straight line is projected on the image via a
projection plane and the resulting line-image is a 2D straight line which can be re-
covered from 2 image points. Notice that both the line-image and the projection plane
have 2 degrees of freedom (DOF). As a consequence, part of the geometry of the 3D
line, which has 4 DOFs, is lost in the projection. In non perspective central systems
the projection surface of a straight 3D line is also a plane with 2 DOFs, however the
line-image is a curve with more than 2 DOFs due to the non-linearity of the projection
model. The additional DOFs of these curves are deeply related with the calibration
of the system which is needed to define one of these curves from 2 points. Moreover,
the projection plane provides a constraint which can be exploited to estimate the cal-
ibration whenever more than two independent constraints are available [Devernay and
Faugeras, 2001,Alvarez et al., 2009,Brown, 1971]. Consequently, with the appropriate
approach, line-images can be extracted without calibration.

Most approaches to extract lines from omnidirectional central images use camera
calibration to back project the image points to normalized rays lying on a unitary sphere
around the viewpoint [Ying and Hu, 2004c, Bazin et al., 2010]. In this space the rep-
resentation of the line projection becomes linear and classical approaches can be used.
In the particular case of central catadioptric systems the curve defining a line-image is
a conic. Some approaches extract these conics directly on the images. In [Barreto and
Araujo, 2005] conics are computed using classical conic fitting approaches, hence 5
DOFs are required in this fitting which is noise sensitive. In [Ying and Zha, 2005,Cuc-
chiara et al., 2003] a Hough transform approach is used to simultaneously extract lines
and calibration parameters from uncalibrated omnidirectional images.

In the case of non linear projection with unknown calibration, the location of addi-
tional edge points lying on the curve provides additional independent constraints. This
kind of constraint is known as plumb-line constraint [Sturm et al., 2011] and it is one
of the approaches used for self-calibration in central distorted images. Most of the
plumb-line based approaches solve radial distortion models based on a transformation
of the radius of an image point after a linear projection. Some of these models are the
“even order polynomial model” used in [Swaminathan and Nayar, 2000,Devernay and
Faugeras, 2001,Thormählen et al., 2003,Rosten and Loveland, 2011] and the “ division
model” proposed by Fitzgibbon in [Fitzgibbon, 2001] and extensively used in [Strand
and Hayman, 2005, Wang et al., 2009, Bukhari and Dailey, 2013, Melo et al., 2013].
These models are usually used to describe radial distortion on conventional cameras
and they can also be used to fit catadioptric and dioptric systems.

Other kind of projection models try to describe the physical phenomenon and the
behaviour of the system, e.g. the sphere camera model [Baker and Nayar, 1999, Geyer
and Daniilidis, 2000, Geyer and Daniilidis, 2001] for catadioptric systems (model-
ling the reflection of the light on the mirror) or the classical fisheye models: the
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equiangular-fisheye model (also known as equidistant projection), the equisolid-fisheye
model, the stereographic-fisheye model and the orthographic fisheye model [Kingslake,
1989, Stevenson and Fleck, 1996, Ray, 2002]. Actually, fisheye lenses are constructed
in order to satisfy such models [Sturm et al., 2011]. A validation of these geometric
models for real fisheyes is presented in [Schneider et al., 2009]. Assuming symmetry of
revolution, these models are encoded using a function h that relates the elevation angle
φ of the projection ray with the radius of an image point r. The function r = h(φ) can
be an explicit expression [Kingslake, 1989, Ray, 2002] or can be defined as a series-
based expression [Tardif et al., 2006,Kannala and Brandt, 2006,Kannala et al., 2008b].

Apart from the plumb-line approach there exist other methods for calibrating om-
nidirectional central cameras. A survey of these methods can be found in [Puig et al.,
2012]. We want to remark that, in spite of existing a considerable number of methods
for calibrating catadioptric systems [Wu and Hu, 2005,Barreto and Araujo, 2005,Gas-
parini et al., 2009, Puig et al., 2011] there are few methods for fisheye systems. A
general method for central systems that can be also used for fisheyes is presented
in [Scaramuzza et al., 2006]. In [Mei and Rives, 2007] the sphere model is used to
approximate the fisheye model. A calibration method specific for fisheyes is presented
in [Kannala and Brandt, 2006, Kannala et al., 2008a].This multi-view approach uses
a series-based description of the radially symmetric model. The radially symmetric
series-based model is also used in a plumb-line calibration method for central systems
in [Tardif et al., 2006]. More recently, in [Alemán-Flores et al., 2014] line projections
are detected in uncalibrated distorted images using a Hough transform approach.

In this chapter we present an automatic method for line extraction in uncalibrated
images which is valid for central dioptric and catadioptric cameras with symmetry of
revolution. This extraction allows us to segment the collection of edges corresponding
to line-images automatically. For this, we exploit two different line-image constraints:
point’s location (which is the constraint typically used in the plum-line approach) and
point’s gradient constraint, using the gradients of the intensity field. Constraints based
on gradient are particularly useful when the number of DOFs of the curve is high.
From each extracted line-image we obtain the corresponding projecting plane since
main calibration information is implicitly computed. In our method we do not assume
any restriction in the orientation of 3D lines. The input of the method is a single image
containing projections of lines. The output is a set of line-images and their supporting
edges, the corresponding projection planes and the main calibration parameter of the
system. The main contributions of this work are the following:

• An explicit closed form solution of the constraints developed for the cata-
dioptric sphere camera model and for different fisheye projection models.
By contrast with [Tardif et al., 2006] each projection model is treated independ-
ently obtaining a closed solution and reducing the number of parameters to en-
code the distortion.

• A gradient-based method to reduce the minimal solution. The proposed line-
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image constraint is a representation of the plumb-line constraint of the image
space. Working in the image space allows us to exploit the parallelism between
the gradient of the intensity field and the gradient of the curve as additional
independent constraint reducing the number of points needed to define a line
projection when the calibration is unknown.

• A unified parametrization for any central system with revolution symmetry.
We deal with different representations of central projections used for catadioptric
and dioptric systems. Instead of calibrating all the parameters of these models
we focus in a single calibration parameter r̂vl which represents the radius of the
vanishing line and it is common to all these models. Besides, we relate this
parameter with the existing models and explain how to compute this relation
whenever any central projection model can be expressed in the form r = h(φ).

• A practical and robust method for automatic line-image extraction from un-
calibrated omnidirectional images with revolution symmetry . The proposed
method has been implemented in a Matlab toolbox for evaluation and research
purposes. This toolbox allows to extract the lines projections and the calibration
of the system from a single-image.

The rest of the chapter is distributed as follows. In Section 3.2 we describe the
covered catadioptric and fisheye projection models. In Section 3.3 we present the uni-
fied description to represent line-images when the system has revolution symmetry.
In section 3.4 we present the constraints based on point’s location and the constraints
based on brightness gradient. Section 3.5 describes the algorithm to extract line-images
from omnidirectional cameras without calibration. In section 3.6 we show the results
of the experiments used to validate the method. Finally, in section 3.7 we briefly sum-
marize the chapter.

3.2 Projection models for central systems with revolu-
tion symmetry

In this section we introduce the projection models covered by this work. When a pro-
jection system is central the projected rays lie on a common fixed point called view-
point O. Assuming the system has revolution symmetry, the reference system of the
camera has the origin in the viewpoint O and the Z-axis is aligned with the axis of
revolution. Let X be a 3D point in homogeneous coordinates X = (X Y Z 1)T . The
point is projected onto a unitary sphere around the viewpoint O of the system. It is
defined with two spherical coordinates φ and ϕ as, x = (sinφ cosϕ,sinφ sinϕ,cosφ)T

(see Fig. 3.1).
Depending on the projection model this point is mapped on the image using differ-

ent expressions. Notice that any point lying on the revolution axis is projected on an
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Figure 3.1: Catadioptric sphere camera model: The 3D point X is projected onto the
sphere. Then this point is backprojected to a normalized plane through a virtual optic
center located a distance ξ from the effective viewpoint. This point is transformed to
the point x̂ on the centred image plane using the collineation Hc = diag ( f η ,− f η ,1) .

Parabolic Hyperbolic

ξ η

Parabolic: 1 2p

Hyperbolic: cos χ = d√
d2+4p2

sin χ = 2p√
d2+4p2

Planar: 0 1

Figure 3.2: Parameters of the unified sphere model for catadioptric systems.
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image point called principal point. Consider the polar coordinates (r,θ) of an image
point taking as reference the principal point. If the camera is correctly aligned with
the axis of revolution we can observe that the coordinate θ is related with the spherical
coordinate ϕ via the pixel aspect ratio kpar, as tanθ =±kpar tanϕ (the sign in this ex-
pression is used to model reflections in catadioptric systems). Catadioptric and dioptric
systems are projection systems that conserve the revolution symmetry. This means that
the radius of a pixel r̂ can be expressed in terms of the elevation angle φ . Depending
on the device a different expression for r̂ = h(φ) is used.

In the following descriptions we assume that image points are expressed in a ref-
erence centred in the principal point. We also assume that pixel aspect ratio is equal
to one which is valid in digital imagery. A point in this reference system is denom-
inated with the notation x̂. The transformation from this reference to the final image
coordinate system is the following, u

v
1

=

 1 s u0
0 kpar v0
0 0 1

 x̂ . (3.1)

3.2.1 Projection models for catadioptric systems
Under the sphere camera model [Geyer and Daniilidis, 2000, Baker and Nayar, 1999,
Geyer and Daniilidis, 2001] all central catadioptric systems can be modelled by a pro-
jection to the unitary sphere followed by a perspective projection via a virtual viewpoint
located a distance ξ from the effective viewpoint (see Fig. 3.1). Let x̂ = (x̂, ŷ,1)T be a
point on an image referred to the principal point and given the spherical coordinates φ

and ϕ of the corresponding point on the unitary sphere then,

x̂ =
f η sinφ cosϕ

cosφ +ξ
and ŷ =− f η sinφ sinϕ

cosφ +ξ
. (3.2)

In polar coordinates the point is described by θ̂ =−ϕ and

r̂ =
f η sinφ

cosφ +ξ
=

f η tanφ

1+ξ
√

tan2 φ +1
. (3.3)

The geometry of the projection system is described by parameters ξ and η which
have a different definition depending on the system type (see Fig. 3.2).

3.2.2 Fisheye models
Several models are used to describe point projection in dioptric systems depending on
the manufacturing procedure of the lens [Kingslake, 1989, Stevenson and Fleck, 1996,
Ray, 2002]. Assuming square pixel, these models are expressed in polar coordinates
(r̂, θ̂). For all these models θ̂ = ϕ and the radius changes depending on the camera
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Figure 3.3: Fisheye camera models: The radius of the point on the image is distorted
by a function r̂ = h(φ).

Equiangular Stereographic Orthogonal Equisolid
Fisheye Fisheye Fisheye Fisheye

f φ 2 f tan
(

φ

2

)
f sin(φ) 2 f sin

(
φ

2

)
Table 3.1: Function r̂ = h(φ) describing fisheye projection models.

type (see Table 3.1). The parameter f of these models does not represent the focal
distance of the camera like in the case of the parameter f of the sphere camera model
presented in the previous section.

Notice that the stereographic projection is equivalent to the projection in a paracata-
dioptric system. The stereographic projection is also equivalent to the “division model”
model of Fitzgibbon [Fitzgibbon, 2001] when using a single parameter (r′ = k1

r
1−k2

2
).

3.3 Unified description for line projection in central sys-
tems with revolution symmetry

In this section we present a unified description for line-images in dioptric and cata-
dioptric imagery, which is valid for central systems with revolution symmetry.

Let Π = (nx,ny,nz,0)
T be a plane defined by a 3D line and the viewpoint of the

system O. The projected line associated to the 3D line can be represented by n =
(nx,ny,nz)

T. Then, the points X lying in the 3D line are projected to points x. These
points satisfy nTx = 0. Using the spherical representation and assuming that θ̂ = ±ϕ
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Figure 3.4: Representation of α̂ depending on r̂ for different central projection systems
with revolution symmetry. r̂ is normalized with respect to the radius of the projection
of the vanishing line r̂vl .

(square pixel) this equality could be expressed as

sinφ (nxx̂±nyŷ)+nzr̂ cosφ = 0 . (3.4)

With the change of variable α̂ =
nxx̂±nyŷ

nz
we can isolate the model parameters

from the normal describing the line, obtaining the expression,

α̂ =−r̂ cotφ . (3.5)

Notice that α̂ = α̂ (r̂), as a result of φ = h−1 (r̂) when we have symmetry of re-
volution and square pixel. Therefore, the constraint for points on the line projection in
image coordinates for systems with symmetry of revolution is

nxx̂±nyŷ−nzα̂ (r̂) = 0 , (3.6)

where α̂ is a different expression for each camera model depending on the radius and
the model parameters (see Table 3.2).

3.3.1 Line-image curve representation and unified main calibra-
tion parameter

Equation (3.6) is the homogeneous representation of the line projection on the image.
There exist two particular cases common to all the projection models showed above.
First we have the case in which 3D lines are coplanar to the revolution axis. In this case
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α̂ r̂vl polynomial

Perspective f ∞ straight

Para r̂2

4 f p − f p 2 f p conic
catadioptric

Hyper − f+cos χ

√
r̂2+ f 2

sin χ
f tan χ conic

catadioptric

Equiangular- −r̂ cot r̂
f f π

2
non

Fisheye polynomial

Stereographic- r̂2

4 f − f 2 f conic
Fisheye

Orthogonal- −
√

f 2− r̂2 f conic
Fisheye

Equisolid- 2r̂2− f 2

2
√

f 2−r̂2 f
√

2
2

quartic
Fisheye

Table 3.2: Parameters for different central projection systems with revolution sym-
metry.

nz = 0 and the resulting line-image is a radial straight line passing through the principal
point, described as

nxx̂±nyŷ = 0 . (3.7)

The second particular case happens when n = (0,0,1)T. In this case the line-image
is the projection of the vanishing line. This projection is a circle centred at principal
point and with radius r̂vl . This radius depends only on the system geometry (see Table
3.2) and can be used as a main calibration parameter independently of the camera
system. In this case, the line-image equation has the form,

α̂ (r̂vl) = 0 . (3.8)

In Fig. 3.4 we show a comparison among different α̂ (r̂) functions for different
central projection systems. The radius r̂ has been normalized with respect to r̂vl . For
the case of the orthogonal system, α̂ only makes sense when r̂ < r̂vl .

The general form for a line-image is a curve. In most cases, these curves can be
also expressed as polynomials. The catadioptric case has been deeply studied in [Bar-
reto and Araujo, 2005], and it has been proven that the line-image is a conic. The
stereographic case is equivalent to the paracatadioptric projection therefore the corres-
ponding line-image is a conic encoded with the parameters of the sphere model. The
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orthogonal-fisheye line-image is also a conic but it is not encoded with the paramet-
rization of the sphere model. The equisolid line-image is a quartic (see Section 3.3.5).
For other cases in general the curve is not a polynomial.

Each line-image is the projection of any 3D line contained in a projection plane
which is described by the normal vector n. Consider the orientation of the central
system is aligned with the vertical axis Z (see Fig. 3.5 (a)) and the parametrization
of this normal is n = (cosΦcosΘ,cosΦsinΘ,sinΦ)T with the elevation angle Φ, and
the azimuth angle Θ (do not confuse with the angles of the projecting ray of a point φ

and ϕ). Given a fixed value of Φ the relation between two different line-images with
different azimuth angle Θ is a rotation around the principal point. However, given a
fixed value of Θ a variation in the elevation angle Φ implies a change in the curvature
of the line-image. In Fig. 3.5, we show a parametric representation of line-images
for different central projection systems with revolution symmetry. We can imagine the
projected line-image, as the projection of the intersection of the projecting plane with
any sphere centred on the reference system. We represent different line-images with a
fixed value of Θ but increasing the elevation angle Φ from 0 to π

2 . (see Fig. 3.5 (a)).
To compare the different systems each image has been simulated for a different model
but with the same r̂vl . The outside region of this circle corresponds to a FOV greater
than 180 deg and the inside with a FOV lesser than 180 deg. As in the example the
system is oriented from bottom to top the inside of the circle corresponds to points
with Z > 0 and the outside the circle corresponds with points with Z < 0. Notice that
any line-image pass through both regions, as the projection plane intersects the both
regions in the 3D space. This parametric representation corresponds to the projection
plane covering 360 deg around the axis of revolution. An infinity 3D segment only
fulfils a part of the curve covering 180 deg.

3.3.2 The sphere catadioptric model as fisheye model

Some authors have used the catadioptric sphere model to calibrate fisheye models [Ying
and Hu, 2004a, Courbon et al., 2007]. The stereographic projection is equivalent to
the paracatadioptric projection and it can be directly encoded using the sphere model.
From the definition of Table 3.1 and using the half-angle formula,

r̂ = 2 f tan
(

φ

2

)
= 2 f

sinφ

cosφ +1
(3.9)

which is the equation (3.3) with ξ = 1 and η = 2. For other cases [Ying and Hu,
2004a,Courbon et al., 2007] propose to use the sphere model with ξ > 1 (in catadioptric
systems where 0 < ξ < 1).

In Fig. 3.6 we show a comparison of the line-images of an equiangular-fisheye sys-
tem using the equiangular-fisheye projection model and the catadioptric sphere model
showing the limitations of using the catadioptric sphere model for fisheyes. In order to
illustrate these limitations in more detail, in Fig. 3.7 we represent the line projection of
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(a)

(b) Paracatadioptric (c) Hypercatadioptric (d) Equiangular-Fisheye

(e) Stereographic-Fisheye (f) Orthogonal-Fisheye (g) Equisolid-Fisheye

Figure 3.5: Representation of line-images on the image plane depending on the pro-
jection model and with different values of the elevation angle Φ of the normal n rep-
resenting the projection plane. (a) Elevation of the projection plane. (b-g) Line-images
when increasing the elevation angle Φ for different projection models.



56 3. Line extraction in uncalibrated axial cameras

(a) (b)

Figure 3.6: Comparison of line-images on the image plane with an equiangular-fisheye
system using (a) the equiangular-fisheye projection model and (b) the catadioptric
sphere model with ξ > 1. Each line-image corresponds to a different value of the
elevation of the normal n.

(a) (b) (c)

Figure 3.7: (a) Isometric view of two parallel lines. Comparison of line-images of
two parallel lines with an equiangular-fisheye system using the equiangular-fisheye
projection model (b) and using the catadioptric sphere model (c). In green the vanishing
points of direction X .
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two parallel lines. In Fig. 3.7 (b) we show the line projection of these lines using the
equiangular-fisheye projection model. The dotted circle represents the projection of the
vanishing line. The region inside this circle corresponds to a FOV lesser than 180 deg
and the projections of 3D points with Z > 0. The region outside this circle corresponds
to a FOV greater than 180 deg and the projections of 3D points with Z < 0. Consider
the line-image L1. The part of L1 located inside the circle corresponds with the part of
the plane with Z > 0 and the part of L1 located outside the circle corresponds with the
part of the plane with Z < 0. As the 3D lines are parallel the line-images intersects in
two points corresponding with the vanishing points (in green) of the direction of the
lines. One of the points corresponds to the positive direction and the other with the
negative. In Fig. 3.7 (c) we show the projection of these lines using the catadioptric
sphere model with ξ > 1 proposed in [Ying and Hu, 2004a, Courbon et al., 2007].
Consider the line-image L1. The part of the plane with Z > 0 is projected inside the
circle, however the part of the plane with Z < 0 is projected in both regions: inside
and outside the circle. That means that the line-image does not correctly fit the line
projection when the FOV is greater than 180 deg. In addition, the line-images intersect
in four points instead of two giving a sense of non-geometric coherence: two of the
intersections are the vanishing points and two are points without geometric sense.

3.3.3 The homogeneous line-image equation as a measure of dis-
tance

The homogeneous expression of the line-image (3.6) defines a family of curves located
to an algebraic distance from the original curve.

d(x̂, ŷ) = nxx̂±nyŷ−nzα̂ . (3.10)

This algebraic distance is an approximation of the metric distance from a point to
the line-image and is defined in pixels. In Fig. 3.8 we show the region defined by
a fixed threshold of 20 pixels around a given line-image for different systems. The
thickness of this region is homogeneous for catadioptric and stereographic systems but
it is not completely homogeneous for equiangular, orthogonal and equisolid systems.
However, in general this distance can be used to discriminate if a point belongs to a
line-image.

Consider for example the algebraic distance based on polynomials (e.g. for hyper-
catadioptric systems d =

√
xTΩcatax, see Section 3.3.5 ). Given a fixed threshold, the

region around the conic has a different thickness depending on the elevation angle of
the vector n. With our proposal the distance is a good approximation in regions close
to the line-image.

In Fig. 3.9 (a) we show a comparison between the distance of a point to the line-
image (blue dotted) and the proposed algebraic distance (red) for hypercatadioptric
images. The algebraic distance approximates the real distance in regions which are
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(a) Paracatadioptric (b) Hypercatadioptric (c) Equiangular-Fisheye

(d) Stereographic-Fisheye (e) Orthogonal-Fisheye (f) Equisolid-Fisheye

Figure 3.8: Region around a line-image defined by a fixed distance of 20 pixels.

close to the line-image, therefore can be used to discriminate if a point lies on a line-
image or not. In Fig. 3.9 (b) we show the same comparison but using the algebraic
distance defined by the expression of a conic on the image ( d =

√
xTΩcatax). We can

see how this distance does not approximate well the metric distance in regions close to
the curve. We also show that this distance is lower than the metric distance in vertical
lines but higher when the lines are horizontal. In practice that means that the thickness
of a region defined by a threshold varies considerably if elevation of n changes.

3.3.4 Line-image definition from two points

Given at least two points lying on a line-image described by (3.6) we can obtain the
normal n by solving the homogeneous linear system(

x̂i ±ŷi −α̂i
)

n = 0 for i = 1, ...,n with n≥ 2. (3.11)

where α̂ is a different expression for each camera system (see Table 3.2) and the sign
’±’ is positive for dioptric systems and negative for catadioptrics. The system is solved
by using a Singular Value Decomposition. In particular for the minimal case of two
points and solving for n we have

n =

 ŷ1α̂2− ŷ2α̂1
±(x̂2α̂1− x̂1α̂2)

x̂2ŷ1− x̂1ŷ2

 . (3.12)
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Figure 3.9: Comparison between metric distance (blue dotted) and algebraic distances
(red solid): (a) Our proposal (3.10). (b) Conic based algebraic distance.

3.3.5 Polynomials describing line-images
Some of the line-images in central systems with revolution symmetry can be expressed
as polynomials. In this Section we show the description of these line images us-
ing polynomials for Catadioptric systems, Equisolid-fisheye, Stereographic-fisheye,
Orthogonal-fisheye and Equisolid-fisheye systems.

Catadioptric and Stereographic-fisheye(
x̂2 x̂ŷ ŷ2 x̂ ŷ 1

)
Ωcata = 0 (3.13)

where

Ωcata =


n2

x sin χ2−n2
z cos χ2

2nxny sin χ2

n2
y sin χ2−n2

z cos χ2

2 f sin χnxnz
2 f sin χnynz
f 2 sin χ2n2

z

 (3.14)

Ortogonal-Fisheye (
x̂2 x̂ŷ ŷ2 x̂ ŷ 1

)
Ωortho = 0 (3.15)
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where

Ωortho =


−n2

x−n2
z

−2nxny
−n2

y−n2
z

0
0

f 2n2
z

 (3.16)

Equisolid-Fisheye(
x̂4 x̂3ŷ x̂2ŷ2 x̂2 x̂ŷ3 x̂ŷ ŷ4 ŷ2 1

)
Q = 0 (3.17)

where

Q =



−4
(
n2

x +n2
z
)

−8nxny
−4n2

x−4n2
y−8n2

z
4 f 2

(
n2

x +n2
z
)

−8nxny
8 f 2nxny
−4
(
n2

y +n2
z
)

4 f 2
(
n2

y +n2
z
)

− f 4n2
z


(3.18)

3.4 The straight-line constraint on the image
In Section 3.3 we have presented an unified line-image description of the line projection
in systems with revolution symmetry. We have also presented the unified main calibra-
tion parameter r̂vl encoding the calibration of these systems. In this section we use this
description to develop and to particularize the plumb-line constraint for the different
projection models presented in Section 3.2. The goal is computing both, the main cal-
ibration parameter r̂vl and the projecting plane of the line n. The results are two kind of
constraints: location based constraints which allow to compute the line-image and r̂vl
from the coordinates of at least three points and gradient based constraints which allow
to compute the line-image and r̂vl from the coordinates and the gradients of a minimum
of two points.

3.4.1 Location-based line-image constraint
As presented in Section 3.3, the projecting plane Π describing the line projection is
completely defined by two points and the view-point. That implies that the calibration
of the system is embedded in the geometry of this curve. If the calibration of the
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(a) Planar (l1 + l2 + l3) = 0

(b) Paracatadioptric r̂vl =

√
l1 r̂2

1+l2 r̂2
2+l3 r̂2

3
l1+l2+l3)

(c) Hypercatadioptric r̂vl =

√(
l1
√

r̂2
1+ f 2+l2

√
r̂2
2+ f 2+l3

√
r̂2
3+ f 2

l1+l2+l3

)2

− f 2

(d) Equiangular-Fisheye l1r̂1 cot
(

π

2
r̂1
r̂vl

)
+ l2r̂2 cot

(
π

2
r̂2
r̂vl

)
+ l3r̂3 cot

(
π

2
r̂3
r̂vl

)
= 0

(e) Stereographic-Fisheye r̂vl =

√
l1 r̂2

1+l2 r̂2
2+l3 r̂2

3
l1+l2+l3

(f) Orthogonal-Fisheye l1
√

r̂2
vl− r̂2

1 + l2
√

r̂2
vl− r̂2

2 + l3
√

r̂2
vl− r̂2

3 = 0

(g) Equisolid-Fisheye l1
r̂2
1−r̂2

vl√
2r̂2

vl−r̂2
1

+ l2
r̂2
2−r̂2

vl√
2r̂2

vl−r̂2
2

+ l3
r̂2
3−r̂2

vl√
2r̂2

vl−r̂2
3

= 0

Table 3.3: Three points line-image constraint for different central projection systems
with revolution symmetry.

system is known, the projecting plane normal n can be recovered from two image points
(3.11). However, when constraint (3.6) is satisfied the line-image can be recovered
even if camera calibration is unknown. Notice that when the number of equations
defining (3.11) is greater than two we obtain a redundant system. Therefore when
having three points lying on a line-image the rank of the homogeneous matrix must be
two. Imposing this condition we find a constraint using three points of a line image.
The line-image constraint can be written as

l1α̂1 + l2α̂2 + l3α̂3 = 0, (3.19)

where l1 = x̂2ŷ3− x̂3ŷ2, l2 = x̂3ŷ1− x̂1ŷ3 and l3 = x̂1ŷ2− x̂2ŷ1.
Thus, with three points lying on the line-image and equation (3.19) it is possible to

obtain the main calibration parameter r̂vl . Substituting the expression of α̂ in In Table
3.3 we show the corresponding expressions for each system which are computed by
substituting the expression of α̂ in (3.19) and expressing them in terms of r̂vl .

• Computation of r̂vl in perspective systems. It is not possible to extract any
additional information (Table 3.3 (a)).

• Computation of r̂vl in paracatadioptric and stereographic systems systems.
In these cases the radius r̂vl is directly computed (Table 3.3 (b)(e)). Notice that,
as r̂vl must be positive only the positive solution of the root square is a valid
solution.
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• Computation of r̂vl in equiangular-fisheye systems. For equiangular-fisheye
systems the constraint (Table 3.3 (d)) is solved by minimization. To initialize
this minimization the value of r̂vl is computed from a linear approximation of
the constraint

r̂vl ≈
π

2

√
1
3

(
l1r̂2

1 + l2r̂2
2 + l3r̂2

3

)
(l1 + l2 + l3)

. (3.20)

In Fig. 3.10 (a) we show some examples of line-images defined with 3 points in
equiangular-fisheye systems.

• Computation of r̂vl in orthogonal-fisheye systems. The equation in table 3.3
(f) becomes to the bi-quadratic polynomial equation

c1r̂4
vl +2c2r̂2

vl + c3 = 0 (3.21)

where

c1 =
3

∏
i=0

3

∑
j=1

(
(−1)δi, j+1 l j

)
(3.22)

c2 =
3

∑
i=1

l2
i r̂2

i

3

∑
j=1

(
(−1)δi, j l2

j

)
(3.23)

c3 =
3

∏
i=0

3

∑
j=1

(
(−1)δi, j+1 l j r̂ j

)
(3.24)

δi, j being the Kronecker delta.

This equation has direct solution for r̂vl . Notice that despite the bi-quadratic
equation has a priori four solutions, two of them are always negative (r̂vl =

±
√

r̂2
vl) and in practice the wrong one can be discarded using the equation of

Table 3.3 (f) and rejecting the non-real solutions.

• Computation of r̂vl in equisolid-fisheye systems. In equisolid-fisheye systems
the equation in table 3.3 (g) becomes to a bi-eight degree equation which has a
direct solution for r̂vl . The polynomial equation is

8

∑
m=0

ωmr̂2m
vl = 0 (3.25)

where ωm = ωm,123 +ωm,213 +ωm,312 and
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Para- Hyper- Equiangular-
Catadioptric Catadioptric Fisheye

1
2 f p

cot χ√
r̂2+ f 2

1
f

(
1− f

r̂ cot r̂
f + cot2 r̂

f

)
Stereographic- Orthogonal- Equisolid-

Fisheye Fisheye Fisheye

1
2 f

1√
f 2−r̂2

r̂(3 f 2−2r̂2)

2( f 2−r̂2)
3/2

Table 3.4: ∂ α̂

∂ r̂
1
r̂ for different central projection systems with revolution symmetry.

ω0,i jk =−l4
i r̂8

i r̂4
j r̂

4
k +2r̂4

i l2
j l2

k r̂6
j r̂

6
k (3.26)

ω1,i jk = 4
(
r̂2

i
(
r̂2

j + r̂2
k
)
+ r̂2

j r̂
2
k
)(

l4
i r̂6

i r̂2
k −2l2

j l2
k r̂2

i r̂4
j r̂

4
k

)
(3.27)

ω2,i jk =−16l4
i r̂4

i
(
r̂2

i r̂2
j r̂

2
k
(
r̂2

j + r̂2
k
)
+ r̂4

i r̂2
j r̂

2
k
)
+ ...

+32l2
j l2

k r̂2
j r̂

2
k
(
r̂2

i r̂2
j r̂

2
k
(
r̂2

j + r̂2
k
)
+ r̂4

i r̂2
j r̂

2
k
)
+ ...

−2l4
i r̂4

i
(
2r̂4

i
(
r̂4

j + r̂4
k
)
+3r̂4

j r̂
4
k
)
+ ...

+10l2
j l2

k r̂2
j r̂

2
k r̂2

i
(
r̂4

j + r̂4
k
)
+ ...

8l2
j l2

k r̂6
j r̂

6
k (3.28)

ω3,i jk = 16l4
i r̂6

i
(
r̂2

i r̂2
j + r̂2

i r̂2
k + r̂4

j + r̂4
k +4r̂2

j r̂
2
k
)
+ ...

−8l2
i r̂6

i
(
4
(
l2

j r̂4
j + l2

k r̂2
k
)
+5r̂2

j r̂
2
k
(
l2

j + l2
k
))

+ ...

−8r̂2
i r̂4

j r̂
4
k
(
5l2

i
(
l2

j + l2
k
)
+16l2

j l2
j
)
+ ...

+4l4
i
(
6r̂4

i r̂2
j r̂

2
k
(
r̂2

j + r̂2
k
)
+ r̂2

i r̂4
j r̂

4
k
)
+ ...

−4l2
i r̂6

i
(
l2

j r̂4
k + l2

k r̂4
j
)

(3.29)
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ω4,i jk =+128l2
j l2

k r̂4
j r̂

4
k +160r̂4

i l2
i r̂2

j r̂
2
k
(
l2

j + l2
k
)
+ ...

−l4
i

(
r̂4

j r̂
4
k +64r̂6

i
(
r̂2

j + r̂2
k
))

+ ...

−16l4
i
(
r̂8

i + r̂2
i r̂2

j r̂
2
k
(
r̂2

j + r̂2
k
))

+ ...

+4r̂6
i l2

i
(
4
(
l2

j r̂2
k + l2

k r̂2
j
)
+10

(
l2

j r̂ j + l2
k r̂2

k
))

+ ...

r̂4
i l2

j l2
k
(
16
(
r̂2

j + r̂2
k
)
+50r̂2

j r̂
2
k
)
+ ...

−24l4
i r̂4

i
((

r̂4
j + r̂4

k
)
+4r̂2

j r̂
2
k
)

(3.30)

ω5,i jk = 64l2
i r̂2

i
(
l2
i r̂4

i + l2
i r̂2

j r̂
2
k − r̂2

i
(
l2

j r̂2
k + l2

k r̂2
j
))

+ ...

+32l2
i r̂2

i
(
3l2

i r̂2
i
(
r̂2

j + r̂2
k
)
−5r̂2

i
(
l2

j r̂2
j + l2

k r̂2
k
))

+ ...

−200l2
j l2

k r̂2
i r̂2

j r̂
2
k + ...

16l2
i r̂2

i
(
l2
i
(
r̂4

j + r̂4
k
)
− r̂4

i
(
l2

j + l2
k
))

+ ...

+
(
r̂2

j + r̂2
k
)(

4l4
i r̂2

j r̂
2
k −20r̂4

i l2
j l2

k
)

(3.31)

ω6,i jk = 64l2
i r̂2

i
(
−l2

i
(
r̂2

j + r̂2
k
)
+ r̂2

i
(
l2

j + l2
k
))

+ ...

16l2
i r̂2

i
(
−6l2

i r̂2
i +5

(
l2

j r̂2
k + l2

k r̂2
j
))

+ ...

+4
(
50l2

j r̂2
j l

2
k r̂2

k −4l4
i r̂2

j r̂
2
k − l4

i
(
r̂4

j + r̂4
k
)
+2r̂4

i l2
j l2

k
)

(3.32)

ω7,i jk = 16
(
4l4

i r̂2
i + l4

i r̂2
j + l4

i r̂2
k −2r̂2

i l2
j l2

k −5l2
i r̂2

i
(
l2

j + l2
k
))

(3.33)

ω8,i jk = 16
(
−l4

i +2l2
j l2

k
)

(3.34)

• Computation of r̂vl in hypercatadioptric systems .
In hypercatadiopric systems (Table 3.3 (c)) the focal distance of the camera is
needed to compute the main calibration parameter r̂vl . This is because two cal-
ibration parameters ( f and χ) are involved and they cannot be coupled to reduce
a degree of freedom.

When f is known the equation in Table 3.3 (d) is solved for χ and it yields

cos χ =
f (l1 + l2 + l3)

l1
√

r̂2
1 + f 2 + l2

√
r̂2

2 + f 2 + l3
√

r̂2
3 + f 2

. (3.35)
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(a) (b)

Figure 3.10: (a) Extraction of a line-image from three points.(b) Extraction of a line-
image from two points using gradient constraint (in red the direction of ∇I). In this
example, the linear approximation is used for the two points method.

The focal distance f can be directly computed using gradient constraints (see
Section 3.4.4) although the method is quite unstable. In practice it is possible to
complete the extraction of the line-image with a rough approximation of f .

3.4.2 Gradient-based line-image constraint

Here we present the line-image gradients for central systems with revolution symmetry,
which gives additional constraints for line-image fitting. They allow to reduce the
minimum number of points from three to two.

On the one hand, the normal direction to a line image is described by the gradient
of the homogeneous expression (3.10) which is expressed by

∂d
∂ x̂

= nx−nz
∂ α̂

∂ r̂
x̂
r̂

(3.36)

∂d
∂ ŷ

=±ny−nz
∂ α̂

∂ r̂
ŷ
r̂
. (3.37)

where ∂ α̂

∂ r̂ is computed from the definition of α̂ (see Table 3.4).
On the other hand, given an intensity image I (x,y), the gradient ∇I (x,y)= (∇Ix,∇Iy)

of each edge lying on a line-image is aligned with the gradient of the line-image dis-
tance (3.10). The dot product between the analytical gradient (3.37) and the vector
∇I⊥ = (−∇Iy,∇Ix)

T describes the parallelism between both gradients. This expression
can be written as

−∇Iynx±∇Ixny +nz
∂ α̂

∂ r̂
1
r̂
(x̂∇Iy− ŷ∇Ix) = 0, (3.38)
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K0 = α̂(r̂vl) K1 =
∂ α̂(r̂vl)

∂ r̂ K2 =
∂ 2α̂(r̂vl)

∂ r̂2 r̂vl

Para-Catadioptric 0 1 1

Hyper-Catadioptric 0 cos χ cos3 χ

Equiangular-Fisheye 0 π

2 π

Stereographic-Fisheye 0 1 1
Orthogonal-Fisheye 0 ∞ ∞

Equisolid-Fisheye 0 2 6

Table 3.5: Derivatives of function α̂ (r̂) at r̂vl .

and gives an additional constraint when solving a line-image. In particular, knowing
the system calibration and given the location and the gradient of a single point lying on
a line-image , the linear system(

x̂ ±ŷ −α̂

−∇Iy ±∇Ix
∂ α̂

∂ r̂
1
r̂ (x̂∇Iy− ŷ∇Ix)

)
n =

(
0
0

)
(3.39)

can be solved for n resulting

n =

 ∇Ixα̂ + ∂ α̂

∂ r̂
ŷ
r̂ (x̂∇Iy− ŷ∇Ix)

∇Iyα̂− ∂ α̂

∂ r̂
x̂
r̂ (x̂∇Iy− ŷ∇Ix)

ŷ∇Iy + x̂∇Ix

 . (3.40)

3.4.3 Unified computation of main calibration parameter r̂vl

In previous sections, we have solved the plumb-line problem using the exact expres-
sion of α̂ . In this section we explore the alternative of approximating α̂ (r̂) using a
generic description depending on r̂ and the main calibration parameter r̂vl . The goal
of this approach is performing a direct method to exploit the gradient information in
line-image extraction. In practice that means recovering the line-image and the main
calibration parameter r̂vl from two edge points reducing the number of iterations needed
in a RANSAC approach. Important aspects to consider are the degree of the approx-
imation and the approximating point (the point around which the neighbourhood of the
function is approximated).

Linear approximation When approximating α̂ (r̂) by a linear function we consider
the adequate approximating point is r̂vl . In this case (r̂ = r̂vl) implies α̂ = 0 (see Section
3.3 and Fig. 3.4), and simplifying the expression it becomes
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α̂ (r̂) =
∂ α̂ (r̂vl)

∂ r̂
(r̂− r̂vl) . (3.41)

This kind of linear approximation is similar to series description of distortion func-
tion used in [Tardif et al., 2006]. However, notice that in our approach we are approx-
imating α̂ around r̂ = r̂vl instead of approximating α̂ around r̂ = 0. When linearizing
the function α̂ around r̂ = 0 the derivative of the function is equal to 0 (see Fig. 3.4)
for all the systems meaning that the approximation is a constant α̂ (r̂) = α̂ (0) not de-
pending on r̂ which is a worse approximation 1.

In addition, linearising around r̂vl allows computing r̂vl even if the class of the
central system is unknown. Using (3.41) as approximation of α̂ the system (3.39)
becomes (

x̂ ±ŷ −r̂ 1
−∇Iy ±∇Ix

x̂∇Iy−ŷ∇Ix
r̂ 0

)
m =

(
0
0

)
(3.42)

which can be solved from the coordinates and the gradient of two image points obtain-

ing the vector m = λ

(
nx,ny,nz

∂ α̂(r̂vl)
∂ r̂ ,nz

∂ α̂(r̂vl)
∂ r̂ r̂vl

)T
. The main calibration parameter

r̂vl can be computed directly from m as r̂vl =
m3
m4

.

In this vector, nz and ∂ α̂(r̂vl)
∂ r̂ are coupled, therefore n can not be completely re-

covered. However if we know the system kind we can include the value of ∂ α̂(r̂vl)
∂ r̂ in

the equation system (see Table 3.5) and the equations system becomes(
x̂ ±ŷ −K1r̂ K1

−∇Iy ±∇Ix K1
x̂∇Iy−ŷ∇Ix

r̂ 0

)
m =

(
0
0

)
(3.43)

where m = λ (nx,ny,nz,nzr̂vl)
T. In this case both, r̂vl and n are directly computed from

m. Notice that in this case we have 3 DOFs and 4 equations, therefore we still have
margin for using a higher approximation.

Second order approximation If we consider the second order approximation in the
neighbourhood of r̂ = r̂vl

α̂ (r̂) =
∂ α̂ (r̂vl)

∂ r̂
(r̂− r̂vl)+

1
2

∂ 2α̂(r̂vl)

∂ r̂2 (r̂− r̂vl)
2 (3.44)

which, using Table 3.5, can be expressed in terms of constants depending on the system
kind

α̂ (r̂) = K1 (r̂− r̂vl)+
1
2

K2

r̂vl
(r̂− r̂vl)

2 (3.45)

1In the case of an orthogonal system the derivative of the function at r̂ = r̂vl is ∞ meaning that this is not
the proper point for linearisation
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therefore the system (3.39) becomes

mT


x̂ −∇Iy
±ŷ ±∇Ix

−r̂ (K1−K2)
(x̂∇Iy−ŷ∇Ix)(K1−K2)

r̂(
K1− K2

2

)
0

−K2
2 r2 K2 (x̂∇Iy− ŷ∇Ix)

=
(

0 0
)

(3.46)

where m = λ
(
nxr̂vl ,nyr̂vl ,nzr̂vl ,nzr̂2

vl ,nz
)T. Having 4 DOFs this description allows to

construct a system of four equations from two points lying on the line-image.
This result is particularly useful for the case of equiangular fisheye system. As

presented in Section 3.4.1, most of the equations of Table 3.3 have an analytical solu-
tion. However in the case of the equiangular fisheye system the constraint has not a
closed solution and it is solved by minimization.

In addition, in this last proposal for the case of equiangular-fisheye the value of
K1− K2

2 = 0 meaning that the equations system (3.46) simplifies becoming

mT


x̂ −∇Iy
±ŷ ±∇Ix
π

2 r̂ − π

2r̂ (x̂∇Iy− ŷ∇Ix)
−π

2 r2 π (x̂∇Iy− ŷ∇Ix)

=
(

0 0
)

(3.47)

where m = λ (nxr̂vl ,nyr̂vl ,nzr̂vl ,nz)
T and the computing of n and r̂vl is direct.

Finally, we consider the case of the orthogonal fisheye. As the derivative in r̂vl is
∞ it makes sense to use a second order approximation in the neighbourhood of r̂ = 0
obtaining the system(

x̂ ±ŷ 1 − 1
2 r2

−∇Iy ±∇Ix 0 (x̂∇Iy− ŷ∇Ix)

)
m =

(
0
0

)
(3.48)

where m = λ
(
nxr̂vl ,nyr̂vl ,nzr̂2

vl ,nz
)T.

In Fig. 3.10 (b) we show an example of a line-image defined with two points and
the corresponding gradient of the intensity field I at these points. In this example, the
linear approximation is used.

In all these methods we are using as input the coordinates of two points and the
gradient orientation at these points. As gradient information is usually noisy, we pro-
pose low-pass filtering the gradient orientation to increase the precision.

3.4.4 Computing the focal distance in hypercatadioptric systems

In this Section we expand a way for computing the focal length in hypercatadioptic
systems. This allows us to compute both calibration parameters. Instead of using the
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plumb-line constraint or a combination between plum-line and gradient constraints the
normal n can be computed from a pair of points using the gradient constraint (3.38).(

−∇Iy1 ±∇Ix1
∂ α̂1
∂ r̂

1
r̂1
(x̂1∇Iy1− ŷ1∇Ix1)

−∇Iy2 ±∇Ix2
∂ α̂2
∂ r̂

1
r̂2
(x̂2∇Iy2− ŷ2∇Ix2)

)
n =

(
0
0

)
(3.49)

In practice, the solution is noisy and does not imply a real advantage with respect to
the two point’s location approach (3.11). The previous constraint (3.49) using 2 points
and their gradients is enough to define a line-image. Therefore, when adding a third
point with (3.38) in (3.49) one of the equations can be expressed in combination of the
other two. In practice this means that,

ϖ1
∂ α̂1

∂ r̂
1
r̂1

+ϖ2
∂ α̂2

∂ r̂
1
r̂2

+ϖ3
∂ α̂3

∂ r̂
1
r̂3

= 0 (3.50)

where

ϖ1 = (∇Ix2∇Iy3−∇Ix3∇Iy2)(x̂1∇Iy1− ŷ1∇Ix1) (3.51)
ϖ2 = (∇Ix3∇Iy1−∇Ix1∇Iy3)(x̂2∇Iy2− ŷ2∇Ix2) (3.52)
ϖ3 = (∇Ix1∇Iy2−∇Ix2∇Iy1)(x̂3∇Iy3− ŷ3∇Ix3) (3.53)

This constraint is similar to (3.19) but using gradients (notice that location inform-
ation is also used).

As noted before, gradient information is noisier than location information, there-
fore there is no advantage in using this constraint instead of (3.19). However, there is a
case in which this constraint is useful. The constraint (3.19) is solved for each system
in Table 3.3. Most of the devices taken into account have a single calibration para-
meter defining distortion. This is the case of equiangular, stereographic, orthogonal
and equisolid. The parabolic case is defined by two parameters f and p but a coupled
parameter rvl = f p can be used instead. In these cases the constraint involving three
points can be used to estimate the calibration of the system. However, in the hyper-
bolic case the two parameters χ and f can not be coupled and only one of them can be
estimated from this constraint.

By contrast, when simplifying the equation (3.50) for hypercatadioptric systems
we found that mirror parameter χ is not involved:

ϖ1
1√

r̂2
1 + f 2

+ϖ2
1√

r̂2
2 + f 2

+ϖ3
1√

r̂2
3 + f 2

= 0 (3.54)

As a consequence, the focal distance f can be computed from the gradient orienta-
tion and the location of three points lying on a line-image.

Equation (3.54) can be expressed as a polynomial of degree 8 (but bi-quartic),
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4

∑
m=0

βm f 2m = 0 (3.55)

where βm = βm,123 +βm,213 +βm,312 and

β0,i jk =−ϖ
4
i r̂4

j r̂
4
k +2r̂4

i r̂2
j r̂

2
k ϖ

2
j ϖ

2
k (3.56)

β1,i jk = 2
(
2r̂2

i r̂2
j r̂

2
k + r̂4

i
(
ϖ

2
j +ϖ

2
k
))

ϖ
2
j ϖ

2
k −2ϖ

4
i r̂2

j r̂
2
k
(
r̂2

j + r̂2
k
)

(3.57)

β2,i jk = r̂2
j r̂

2
k
(
4ϖ

2 (
ϖ

2
j +ϖ

2
k −ϖ

2
i
)
+2ϖ

2
j ϖ

2
k
)
− r̂4

i
(
ϖ

2
j −ϖ

2
k
)2

(3.58)

β3,i jk = r̂2
i
(
ϖ

2
i
(
ϖ

2
j +ϖ

2
k
)
+2ϖ

2
j ϖ

2
k −
(
ϖ

4
j +ϖ

4
k
))

(3.59)

β4,i jk =−ϖ
4
i +2ϖ

2
j ϖ

2
k (3.60)

This equation has 4 solutions (because the negative values for f have not sense).

3.5 Uncalibrated line-image extraction
In this section we present the algorithm for line-image extraction from uncalibrated
omnidirectional cameras. The algorithm relies on the constraints presented in Section
3.4.1 based on a minimal set of 3 points. The algorithm is also developed for using
gradient constraints (Section 3.4.3), based on a minimal set of 2 points. The proposed
algorithm is described next (see Fig. 3.11).

The inputs of the method are the edges and their gradients obtained from a Canny
detector (see Fig. 3.12 (a)). These edges are stored in connected components called
boundaries and the gradient orientation is low-pass filtered to reduce noise. Then, a
first splitting of the boundaries is done based on the variation of the gradient orienta-
tion. Each split is called a sub-boundary. The threshold of this splitting process has
been chosen to minimize the number of splits. Therefore a sub-boundary can contain
more than one segment. Not all the line-images contain relevant information about
calibration (e.g. vertical lines). For this reason, a heuristic criterion is used to select
a subset of these sub-boundaries containing relevant line-images. This heuristic tech-
nique is explained as follows. We define the descriptor κ = ssize ·∆θ which increases as
the sub-boundary is better for computing r̂vl where ssize is the size of the sub-boundary
and ∆θ is the angle covered by the sub-boundary rounding the principal point. Sub-
boundaries are sorted by κ and then the ones which cover 50% of an accumulated
histogram of κ are chosen (see Fig. 3.12 (b)).
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Agorithm Selector

Figure 3.11: Uncalibrated line-image extraction procedure.
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(a) (b) (c)

Figure 3.12: Steps in the line-image extraction: (a) Canny. (b) Preprocessing. (c)
Line-Extraction

Algorithm 2 RANSAC approach for computing a set of line-images from a boundary
of edge points.

for each boundary do
while boundary contains line-images do

for iAttempt = 1 to nAttempts do
x̂k = randomPoints

(
x̂boundary

)
;

[r̂vl ,n] = computeLineImage(x̂k)
dist = computeDistance

(
n, x̂boundary

)
x̂th = computeT hresholdPoint (n, x̂k,δpx)
threshold = computeDistance(n, x̂th)
votes(iAttempt) = dist < threshold

end for
lineImage.add (getMaxVotedLI (votes))
x̂boundary = removeVotingPoints

(
x̂boundary,votes

)
end while

end for
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Once we have selected boundaries containing line-images well conditioned for
computing r̂vl we use a RANSAC-based approach [Fischler and Bolles, 1981] (see
Algorithm 2). Points of a boundary are selected randomly to generate candidate line-
images which are voted by the other points of the boundary. Two approaches are
provided depending on the constraint considered:

3-points r̂vl estimation: r̂vl is estimated from the location coordinates of a min-
imum of three points of the boundary and the line-image constraint presented in Section
3.4.1.

2-points r̂vl estimation: From the location coordinates of a minimum of two points
and theirs gradients we compute r̂vl using the approximations presented in Section
3.4.3.

From any of these approaches, the normal vector n is computed from the defining
points and r̂vl using the expression (3.11). The distance to determine if a point is
lying on the line-image is the algebraic distance (3.10) which is fast enough for the
intensive evaluation needed in a RANSAC or in a Hough transform approach. In Fig.
3.8 we can see the different thickness for a given threshold depending on the different
kind of systems. The region is not perfectly uniform along the curve but enough to
decide which points belong to the line-image. Given a fixed threshold the thickness
of this region also changes depending on the elevation of the projection plane n. That
means that a threshold being good enough for fitting some lines could not be good
enough for others. To deal with this problem we compute a different threshold for each
attempt of the RANSAC process (see Algorithm 2 ). Given a fixed threshold (δpx in
Algorithm 2) describing the thickness of the region in pixels, we compute the algebraic
threshold corresponding to the line-image computed in the current attempt. As the
algebraic threshold changes with each line-image we call it dynamic threshold (notice
that δpx remains constant). The process to estimate this dynamic threshold from δpx
and the vector n describing the line image is the following: Because of the nature of
the RANSAC process we also have the location of the points defining the line-image
of a given attempt (x̂k in Algorithm 2). As we have computed the line-image passing
though these points we can compute the analytical gradient of the line-image on these
points using equations (3.36-3.37) defining two straight lines passing though the points
x̂k and orthogonal to the line-images (see Fig. 3.13). Along these straight lines we
can define a point from a given distance δpx of the line-image. On these points we
compute the algebraic distance (3.10) and we consider its mean the threshold for the
testing points.

Each point of the boundary whose distance is minor than the dynamic threshold
gives a vote for the candidate. The most voted candidate is selected as best fit. From
the previous procedure we obtain for each line-image: the points lying on it, the corres-
ponding normal vector, and an estimation of the calibration via the r̂vl value. From the
collection of estimations for r̂vl we compute a single value using the median. Thanks to
the pre-selection based on κ most of the line-images return similar values of r̂vl getting
a small number of spurious. In Fig. 3.14 we show a box-plot representing the disper-
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Figure 3.13: Computing the dynamic threshold from the defining points of the line-
image.
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Figure 3.14: Dispersion in values of r̂vl for the different extracted line-images. 3P for
3-points approach, 2P First for 2-points linear approximation approach and 2P Second
for 2-points second order approximation approach.

sion in the values of r̂vl from the line-images extracted in Fig. 3.12. The estimation for
the value of r̂vl is similar in the three approaches. Finally, main calibration parameter
and normals are refined in a non-linear optimization process and then, the line-images
are re-extracted using this value.

3.6 Experiments

We present different experiments to validate the proposal and to compare the two ap-
proaches presented in section 3.5. The accuracy in line extraction and calibration is
measured using synthetic images with known ground-truth. We also evaluate the in-
fluence of the error in the principal point and compare our results with a calibration
method. Finally, we present experiments to show the behaviour of the method with
real images.

3.6.1 Experiments with synthetic data

To evaluate the accuracy of the algorithm we have used synthetic images generated
for the different catadioptric and dioptric models considered in Section 3.2. A useful
measure for comparing calibration estimations among the different systems is the ra-



3.6. Experiments 75

(a) (b) (c)

Figure 3.15: Estimation of r̂vl from uncalibrated line extraction. (a) 3-points approach,
(b) 2-points linear approximation approach, (c) 2-points second order approximation
approach. In all, the horizontal axis corresponds to the actual r̂vl and the vertical axis
to the estimated one.

(a) (b) (c)

Figure 3.16: Angle deviation between obtained normals and ground truth. (a) 3-points
approach, (b) 2-points linear approximation approach, (c) 2-points second order ap-
proximation approach.

Figure 3.17: (a) Top-view of the simulated scenario. (b) Isometric view of the simu-
lated scenario.
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(a) Paracatadioptric (b) Hypercatadioptric

(c) Equiangular-Fisheye (d) Stereographic-Fisheye

(e) Orthogonal-Fisheye (f) Equisolid-Fisheye

Figure 3.18: Extraction example on synthetic images simulating different classes of
central systems.
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dius of the vanishing line r̂vl . This radius depends only on the calibration and it is a
magnitude common to any central system.

First experiment evaluates the deviation of the estimated radius of the vanishing
line r̂vl . The setup of the experiment is the following: Given an scene composed by
segments in a corridor (see Fig. 3.17) we want to characterize the error of estimation
in r̂vl . For each value of r̂vl and for each system we generate 10 different images
with a resolution of 1024×1024 pixels. A randomized perturbation in the orientation
and location of the camera is introduced in each capture. From each image we obtain
a value of r̂vl and a set of line projections described by the normal vector n. The
experiment is repeated for each proposed method.

In Fig. 3.15 we show the deviation of the estimated radius of the vanishing line
r̂vl , which has been normalized to make it independent from the image size. For each
value of r̂vl we have computed 10 estimations of r̂vl using 10 different images; we
represent the mean of these estimations. The normalized value r̄vl = 1 corresponds to
the case of vanishing line projection passing through the corner of the image (e.g. with
a resolution of 1024× 1024, values in pixels of r̄vl =

r̂vl
724 ). When r̄vl < 1 the FOV of

the system is greater than 180 degrees. Otherwise the FOV of the system is smaller
than 180 degrees.

Fig. 3.15 (a) depicts the results using the 3-points-r̂vl estimation. Fig. 3.15 (b-
c) depicts the results using the 2-points-r̂vl estimation when using first and second
approximation. For the case of the hypercatadioptric system we show two curves. The
continuous curve corresponds to the estimation of r̂vl assuming that parameter f is
known. The dashed line corresponds to the the estimation of r̂vl when none of the
parameters are known.

Another measure of the accuracy in estimation is the deviation in the orientation of
the normals n describing the line projections. In Fig. 3.16 we show the error in degrees
between the ground truth normals and the estimated ones depending on r̄vl . From each
image the mean of the deviations of all the line-projections is used. As we have 10
samples for each value of r̄vl we also compute the median of these values.

We observe that, in general, accuracy in r̂vl estimation decreases when the radius is
greater than the image size (values of r̄vl greater than one). That means that the smaller
the FOV of the system the lesser the accuracy of the algorithm. The extreme case is
the perspective camera where r̂vl = ∞ and curvature of lines is independent from the
focal distance. We also note that the hypercatadioptric case is more difficult to solve
than others because of the multiple parameters involved. The accuracy decreases con-
siderably in systems with FOV less than 180 degrees. However if one of the calibration
parameters is known the behaviour is similar to the other systems. In Fig. 3.18 we
show some examples of the simulated images for different catadioptric and dioptric
devices and the corresponding extracted line-images.

Influence of principal point accuracy In the previous experiment we have assumed
that the principal point is known. To evaluate the robustness of the algorithm we eval-
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(a) r̂vl estimation error.
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(b) angle estimation error.

Figure 3.19: Influence of principal point: (a) r̂vl estimation error. (b) angle estimation
error.
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(a) (b) (c)

Figure 3.20: Line extraction on uncalibrated omni-images (3-points algorithm). (a)
Paracatadioptric. (b) Hypercatadioptric. (c) Equiangular-Fisheye
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uate the influence of Gaussian error in the principal point. The ground-truth of calibra-
tion r̂vl is fixed to 750 pixels and the image size is 1024×768 pixel (FOV > 180 deg).
In Fig. 3.19 we represent the error when estimating the main calibration parameter r̂vl
and the error in degrees between the ground-truth normals describing each line projec-
tion and the estimated ones. For the case of the hypercatadioptric system we estimate
r̂vl and the normals n assuming that parameter f is known. We can observe that the
median of the error in the deviation of the normal does not exceed 0.5 degrees.

Calibration method comparison The objective of our proposal is the extraction of
line projections in central system when the calibration is unknown. In addition we
compute the radius of the vanishing line r̂vl which is considered the main calibration
parameter of the system. To illustrate the behaviour of our proposal we have carried
out a “proof of concept” comparison between our approach and the method proposed
in [Barreto and Araujo, 2005]. We use the same imagery as input as in both methods.

Although the results from both methods can be directly compared due to the simil-
arity of the projection models, there are some difference we need to take into account:

• The proposal of [Barreto and Araujo, 2005] is only valid for catadioptric systems,
hence we cannot compare the approaches proposed for fisheye systems.

• In [Barreto and Araujo, 2005] the full calibration is performed in a closed form.
Our proposal does not compute the principal point.

• Although a self-calibration is possible with [Barreto and Araujo, 2005] approach,
in practice it is a hard problem with 5 degrees of freedom hence in the toolbox
the user has to manually select the contours containing the line-images. By con-
trast our toolbox is automatic and the supervision of the user consists of the
parameters tuning.

The input image is a synthetic image of a paracatadioptric system used in the pre-
vious experiments with a ground truth of r̂vl = 500 pixels. The method presented
in [Barreto and Araujo, 2005] gives a result of r̂vl = 485.94 pixels. Our method, re-
turns a value of r̂vl = 500.36 pixels. Notice that, while Barreto’s method is computing
the full calibration, we assume the principal point is known having not skewness. In
Fig. 3.21 (a) we show the output image of the method presented in [Barreto and Araujo,
2005] containing the line-images used for calibrating and in Fig. 3.21 (b) the output
of our proposal showing the extracted line-images. We can see that the parametric
representation of the line-images in both images is similar.

3.6.2 Experiments with real images
In order to show how the method works with real images several tests have been per-
formed with different catadioptric and fisheye cameras. The principal point has been
coarsely estimated. The 3-points algorithm have been used for all these examples. In



3.6. Experiments 81

BusyBusy

1

234

56

7

8

9

10

11

12

1314

15

Busy

1

234

56

7

8

9

10

11

1213

14

15
16

1718

19

20
21

22

23

24

2526

27

28

29

30

31

32

33

34

BusyBusy

(a) (b)

Figure 3.21: Output of the toolboxes showing the line-images: (a) Method of Barreto
& Araujo. (b) Our proposal.

Fig. 3.20 (a) we show the behaviour of the proposal using paracatadioptric images
from the CatPack toolbox [Barreto and Araujo, 2006b]. In Fig. 3.20 (b) we show
our results in hypercatadioptric images with resolution of 1280× 1024 pixels and has
been acquired with a hypercatadioptric system composed of an IDS uEye camera and
an hyperbolic mirror made by Neovision. In Fig. 3.20 (c) a fisheye based camera is
used. The images has been taken with an iPhone 4S camera (3264×2498 pixels) and a
Nexus 4 camera (3264×2448 pixels) with an equiangular fisheye for cell phones made
by Pixeet. Notice that line-images of parallel 3D lines intersect in the vanishing points
of the image because line-images have been well extracted.

In second experiment we have applied the algorithm to an image sequence taken
with a camera in hand. The objective of this experiment is evaluating the robustness
of the proposal when supervision is not available. The sequence has been acquired
with a Nexus 4 camera using an equiangular fisheye with a resolution of 1920×1080
pixels 2. Each frame is independently computed to emphasize the robustness of the
proposal without supervision. The processing has been off-line computed using the
3-points approach. In Fig. 3.22(b) we show the estimation of the main calibration
parameter r̂vl along the sequence. The mean estimation for r̂vl is 568.41 pixels and the
standard deviation is 9 pixels, meaning that the proposal is robust enough to be applied
in a sequence of images (an implementation in real-time must consider aspects not
addressed in this chapter). As this scenario is composed of parallel lines, a qualitative
measure of the quality of the extracted line-images is the location of the vanishing
points on these images. Line-images from video (see Fig. 3.22(a)) intersect at the

2webdiis.unizar.es/%7Ebermudez/suppMat.html
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vanishing points of the image (notice that we do not have imposed this constraint).
The presented approach can be tested with a toolbox for Matlab 3 available on line.

This toolbox allows to obtain the calibration of a fisheye or a catadioptric system just
from a single picture. The setup is very simple because neither specific pattern nor
special movements of the camera are needed.

3.7 Summary
We have presented a method to extract line-images from uncalibrated central images
with revolution symmetry. We consider a general framework which encodes projec-
tion models for dioptric and catadioptric system using a common main calibration
parameter (the radius of the vanishing line r̂vl). We characterize the line projections
for different types of catadioptric and dioptric systems evaluating common properties.
Due to the relation between projection models and curvature of line-images an estim-
ation of the main calibration parameter of the system is obtained simultaneously. We
observed that line-images are correctly extracted and the obtained normals are accur-
ate enough to be used in 3D computations. Nevertheless, in hypercatadioptric systems
the accuracy is lower because two calibration parameters are involved. However, the
accuracy is similar to the other systems if one of the parameters is known or when the
FOV of the system is greater than 180 degrees. Besides characterizing the proposal it
has been tested with real images from catadioptric and dioptric systems. Tests with real
and synthetic images can be replicated with an implementation of the method provided
as open source for research purposes.

3webdiis.unizar.es/%7Ebermudez/toolbox.html



3.7. Summary 83

frame 36 frame 78

frame 141 frame 182

frame 378 frame 449
(a)

0 200 400 600 800
0

200

400

600

frame number

 (
p

ix
e

ls
)

(b)

Figure 3.22: Line extraction on uncalibrated sequence: (a) Extracted line-images in
sequence (b) r̂vl estimation in blue r̂vl mean value in red



84 3. Line extraction in uncalibrated axial cameras



Part II

Line-images in non-central
omnidirectional cameras





Chapter 4

Line-image fitting in
non-central catadioptric systems

Second part of this thesis is dedicated to line projections in non-central systems. By
contrast with central systems, where the projection surface of a line is a plane, in
most non-central systems the projection surface of a line is a ruled surface having
at least four degrees of freedom. The interest of this property is that the result-
ing line-image is a curve which contains the 4 degrees of freedom of the 3D line
allowing to recover the original 3D line from a single projection. However, the
extraction of this curve is also qualitatively harder. In this chapter we investigate
the analytic representation of line-images in different non-central catadioptric sys-
tems. This representation is used in a method for automatic line-image extraction
from non-central catadioptric images. For performing this method we have ana-
lytically solved the metric distance from a point to line-image for different kinds
of non-central catadioptric systems. We also propose a measure we call effective
baseline measuring the quality of the reconstruction of a 3D line from 4 rays. This
measure allows pre-evaluating the random attempts of a robust scheme which is a
key issue for line-image extraction. This allows reducing the number of trials in the
whole process. The proposal is evaluated in intensive simulations and tested with
synthetic and real images. Up to our knowledge, this is the first work successfully
addressing line-image extraction in non-central systems.

4.1 Introduction

In central systems the projection of a 3D line is a plane passing through the viewpoint
of the camera. In this class of projection some of the information of the 3D line is
lost because any line lying on this plane is projected on the same line-image. In other
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words, a 3D line occludes any other line located behind because the projection surface
is a plane.

By contrast, in non-central systems the projecting rays do not intersect a common
viewpoint. The locus of the viewpoint is, in general, tangent to a caustic [Agrawal
et al., 2010] which is an envelope surface of the projecting rays. When the system
has revolution symmetry, the projecting rays coming from a 3D line are skew 3D lines
forming a ruled surface which lies on the axis of symmetry. In [Teller and Hohmeyer,
1999, Kneebone et al., 1998, Griffiths and Harris, 2011] it is proven that four generic
lines induce two incident lines 1. Therefore, when we have a surface defined by at
least four skew and non cohyperbolic rays only two lines intersecting all the rays lie on
this surface. The previous result implies that the projection surface contains the axis
of revolution, the given line and any line intersecting both the axis and the line. No
additional line can belong to this surface, hence in axial non-central projections, it is
not possible to occlude a line with other line.

As a consequence, the complete geometry of a 3D line is mapped on a single non-
central image and it can be completely recovered from at least 4 line-image points or
projecting rays. On the contrary, points do not provide 3D information since points
always occlude other points.

This particularity implies a geometric advantage of lines with respect to points in
non-central cameras and justifies the use of line features. The richer information about
the localization of the line in the space facilitates the tracking of the features even if
the photometric information is not very discriminative. Notice that, from the photo-
metric point of view, points are more discriminative than line projections, however
line features usually represent boundaries of the scene that remain even in texture-less
scenarios.

Some previous approaches have tried to fit 3D lines from a single image in non-
central catadioptric systems. The approach presented by [Teller and Hohmeyer, 1999]
exploits the intersection operator between lines for defining a linear system from 4
rays computing the two incident lines. Since in non-central systems with symmetry
of revolution one of these lines is always the axis of revolution, this approach is used
in [Caglioti and Gasparini, 2005, Caglioti et al., 2007a, Gasparini and Caglioti, 2011]
for estimating 3D lines from line projections of non-central catadioptric images and
studying the degeneracies and singular configurations. In [Lanman et al., 2006] the
same approach is used with spherical catadioptric mirrors, and two additional non-
central systems for reconstruction. Work in [Swaminathan et al., 2008] extends the
approach from lines to planar curves. Some simplifications have been used to im-
prove the reconstructions by reducing the DOFs of the problem: considering horizontal
lines [Pinciroli et al., 2005, Chen et al., 2011], exploiting cross-ratio properties [Per-
digoto and Araujo, 2012] or imposing additional constraints such as parallelism or
perpendicularity [Bermudez-Cameo et al., 2014a].

1Four lines are generic if no two of them are coplanar, no three of them are coconical or cocylindrical,
and the four are not cohyperbolic, i.e. do not lie on the same ruled quadric surface.
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Line projections have been also used to estimate the calibration of non-central sys-
tems in a generalization of the plumb-line approach. For example in [Caglioti et al.,
2007b] they exploit the fact that there exists less ambiguity when the system is off-
axis with impressive results. However, that approach does not allow them to obtain an
analytical expression of the line projection. In [Agrawal and Ramalingam, 2013] they
exploit particular geometric properties of spherical mirrors for computing extrinsic cal-
ibration parameters. As application, the pose of non-central catadioptric systems is es-
timated in an image sequence [Miraldo and Araujo, 2014, Miraldo et al., 2015] using
known 3D lines.

Automatically extracting the projection of a line on non-central images is a challen-
ging task. In omnidirectional central systems the problem has been recently solved for
calibrated [Bazin et al., 2010,Ying and Zha, 2005] and uncalibrated images [Bermudez-
Cameo et al., 2015c,Tardif et al., 2006]. In non-central images difficulty increases due
to the high distortions induced on line-images, the elevated number of degrees of free-
dom involved in the extraction and the lack of effective baseline of current non-central
systems.

In this Chapter we present a method for automatic extraction of line projections or
line-images in non-central catadioptric systems with symmetry of revolution. Up to
our knowledge, this is the first work addressing this problem. The proposal has been
considered for systems with symmetry of revolution and it has been particularized for
conical catadioptric and spherical catadioptric systems. This procedure automatically
segments the collection of edges corresponding to line-images. The complete 3D loc-
alization of a line is also recovered from the extraction in a single image even if the
accuracy of the result is high sensitive to noise. The contributions of this work are the
following:

• A unified framework for describing line-images in non-central systems with re-
volution symmetry.

• Polynomial expressions of the line-images for conical and spherical catadioptric
systems.

• A closed form solution for computing the geometry of the mirror from 5 points
lying on a line-image in conical catadioptric systems.

• Solutions based on polynomial roots for computing the Euclidean distance from
point to line-image for conical and spherical catadioptric systems.

• A feature for measuring effective baseline in a set of rays in non-central systems.

• A proposal for automatic line-image extraction in non-central images.

• A comparison between catadioptric systems of similar sizes in terms of accuracy.
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Figure 4.1: Euclidean interpretation of Plücker coordinates.

In Section 4.2 we introduce the necessary background to understand the proposal.
In Section 4.3 we present a unified framework for describing rays and line projections
in non-central systems with symmetry of revolution. In Section 4.4 we analytically
solve the metric distance from a point to the line-image. In Section 4.5 we present
the proposed description of the line-image for conical catadioptric systems. We par-
ticularize the corresponding metric distance previously presented in Section 4.4 and
we introduce the computing of the mirror geometry parameter from 5 points of the
line-image. In Section 4.6 we show the polynomial description of the line-image for
spherical catadioptric systems and we particularize the corresponding metric distance
for this case. In Section 4.7 we present the algorithm for line-image extraction in non-
central images including the proposed feature for measuring the effective baseline of
a set of rays. In Section 4.8 we evaluate the method with synthetic and real images.
Finally in Section 4.9 we present the discussions.

4.2 Background

In this section we introduce the relevant geometric concepts and notation used in this
Chapter. In particular, we summarize the description used for lines which is based
on Grassmann-Cayley algebra (see Appendix A for more details), the transformations
between systems of references and the side operator between two lines.

4.2.1 Plücker coordinates

The Plücker coordinates of a 3D line is an homogeneous representation of a line L∈ P5

defined by the null space of two P3 points of the line. When correctly arranged, this
representation can be decomposed in two R3 vectors L =

(
lT, l̄T

)T with geometrical
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meaning in Euclidean geometry. l ∈R3 is called the direction vector and represents the
direction of the line. l̄ ∈ R3 is called the moment vector and represents the normal to
a plane passing through the 3D line and the origin of the reference system O. Not all
elements of P5 correspond to 3D lines. Any point of P5 corresponding to a line in P5

must satisfy lT l̄ = 0 which is known as Plücker identity. The Euclidean interpretation
of this identity is the orthogonality between the direction vector l and the projection
plane vector l̄ (see Fig. 4.1). The minimum distance from the origin O to the 3D line is
computed as dl =

‖l̄‖
‖l‖ .

4.2.2 Change of reference of Plücker coordinates
Consider X ∈ P3 the representation of a 3D point in homogeneous coordinates in an
Euclidean reference system and X′ ∈ P3 the representation in another Euclidean refer-
ence system; the transformation describing the Euclidean transformation between both
reference systems is represented by the matrix

T =

(
R t
0T 1

)
such that X = TX′ and X′ = T−1X, (4.1)

where R ∈ SO3 is a rotation matrix and t ∈ E3 a translation vector. The correspond-
ing transformation for changing the reference of a line L ∈ P5 expressed in Plücker
coordinates is

G =

(
R 0

[t]×R R

)
such that L = GL′ and L′ = G−1L, (4.2)

where [t]× =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 is the antisymmetric operator.

4.2.3 The side operator

Given two 3D lines expressed in Plücker coordinates Li =
(
liT, l̄Ti

)T and L j =
(

l j
T, l̄Tj

)T
,

the side operator between them is defined as

side(Li,L j) = liT l̄ j + l j
T l̄i. (4.3)

The operator side(Li,L j) is a signed distance whose sign defines the side of the line
L j with respect the line Li, such that

|side(Li,L j) |= dE‖li‖‖l j‖|sinα| (4.4)

where dE is the metric distance between the closest point of both lines and α the angle
between li and l j (see Fig. 4.2).
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Figure 4.2: Distance dE between two skew rays.

4.3 Line projection in non-central systems

In this section we present a unified framework for describing rays and line projections
in non-central systems with symmetry of revolution.

4.3.1 Projection model in non-central systems with revolution sym-
metry

To exploit the revolution symmetry property we assume that image points x=(x,y,z)T ∈
P2 are homogeneous coordinates expressed in a reference centred in the projection of
the axis of revolution. This coordinate system is normalized with the camera paramet-
ers. The relation between these coordinates and final images coordinates (u,v) is an
affine transformation Kc.

 u
v
1

∼
 fx s u0

0 ± fy v0
0 0 1


︸ ︷︷ ︸

Kc

 x
y
z

 (4.5)

The back projection model. In a general non-central system each ray is defined by
two points [Sturm et al., 2011], e.g. the 3D point and a point in which the ray is tangent
to a surface called caustic. When the system has symmetry of revolution any ray can
be expressed in terms of three parameters: elevation angle φ , azimuth angle θ and
distance to the intersection between the ray and the vertical axis Zr (see Figure 4.3).
The representation of this ray in Plücker coordinates is
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Figure 4.3: Back projection of a point X in non-central catadioptric axial system.

Ξ =

(
ξ

ξ̄

)
=


sinφ cosθ

sinφ sinθ

cosφ

−Zr sinφ sinθ

Zr sinφ cosθ

0

 (4.6)

with ξ = (ξ1,ξ2,ξ3)
T and ξ̄ =

(
ξ̄1, ξ̄2, ξ̄3

)T
.

Notice that, when taking polar coordinates (r =
√

x2 + y2 and θ = atan2(y,x)) in this
reference, θ corresponds to the azimuth angle shown in the ray description. The elev-
ation angle φ and Zr depend on image radius r and the system calibration.

4.3.2 Generic line projection model for non-central systems with
revolution symmetry

Consider an image point x, its corresponding projecting ray Ξ =
(

ξ
T, ξ̄

T
)T

intersects

a 3D line L =
(
lT, l̄T

)T when

side(L,Ξ) = ξ
T l̄+ ξ̄

Tl = 0 . (4.7)
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Having at least four points and their corresponding rays, the intersection of the
projecting rays Ξ1..4 with the line L is described by a linear system. In [Teller and
Hohmeyer, 1999] and [Gasparini and Caglioti, 2011] the solution of this system of
equations is used to compute the Plücker representation of the 3D line. Since Plücker
coordinates is an over-parametrized representation the null space of the solution has
one dimension. However, not all six-elements vector corresponds to a Plücker line. By
imposing the Plücker line constraint (lT l̄ = 0) two solutions are obtained. One is the
axis of symmetry and the other is the sought line.

Notice that there exist some degenerated cases in which projecting surfaces are
planes (called Planar Viewing Surfaces (PVS) in [Gasparini and Caglioti, 2011]) and
the geometry of the 3D line cannot be recovered. These degenerated cases are: the
Axial-PVS case when the line is coplanar with the axis of symmetry and the Horizontal-
PVS case when all the projecting rays lie in an horizontal plane (φ = π

2 ).
A line-image is a curve on a two dimensional projected space which defines the

collection of rays intersecting a 3D line. This curve is obtained by embedding the
back-projection model in equation (4.7). Generalizing the framework proposed in
[Bermudez-Cameo et al., 2012a] to non-central systems, the general expression for
a line-image is

g(x) = Zr (l2x− l1y)+
(
l̄1x+ l̄2y

)
+ l̄3r cotφ = 0 . (4.8)

where r =
√

x2 + y2 (see Fig. 4.3), l1,l2,l3 are the components of l and l̄1,l̄2,l̄3 are the
components of l̄. With at least 4 points of the line-image we can compute the 3D line
in a direct way by solving the linear system

(−Zriyi,Zrixi,xi,yi,ri cotφi) L̃ = 0 , for i = 1, ...,4 , (4.9)

where L̃ =
(
l1, l2, l̄1, l̄2, l̄3

)T. Notice that l3 has disappeared in the equation and we are
obtaining an element of P4 because the system has revolution symmetry and ξ̄3 = 0. As
a consequence, the null space is a single solution instead of the one dimension space
obtained when solving (4.7) in [Teller and Hohmeyer, 1999]. Actually, the Plücker
identity used to reduce this space in [Teller and Hohmeyer, 1999] is used here to com-
pute l3 due to the redundancy in Plücker coordinates representation.

4.4 Algebraic and metric distances
When evaluating if a point belongs to a line-image for fitting the curve is necessary
a function measuring the distance from a point to the line-image. The quality of the
extracted line-image changes depending on this distance. In this Section we present
a qualitative comparison among distances and we propose different approaches for
tackling with this problem.

Having the line-image equation (4.8) a measure of distance is the algebraic distance
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Figure 4.4: Euclidean distance from point x to line-image L.

dalg (x,L) = |Zr (l2x− l1y)+
(
l̄1x+ l̄2y

)
+ l̄3r cotφ | (4.10)

which is measured in pixels when the Plücker coordinates of the line L are normalized
with ‖l̄‖= 1.

The second distance considered is the Euclidean metric distance in E3 which is
the minimum Euclidean distance between two 3D lines (the 3D line and the projecting
ray generated from an image point). The Euclidean metric distance is defined as in
[Pottmann and Wallner, 2001]

dE (Li,L j) =
|liT l̄ j + l j

T l̄i|
‖li× l j‖

(4.11)

which is defined in 3D space units (meters).
Both distances (dalg and dE ) tend to give higher reward to lines which are close to

the origin, conditioning the robust extraction process. Besides, the equidistant region
defined by these distances is not homogeneous on the image plane (see Fig. 4.5),
particularly in the case of conical catadioptric camera.

To avoid this effect the metric distance E2 from point to line-image can be used.
Consider the Euclidean distance between two image points xi, x j satisfying the three
metric conditions: no negativity, symmetry and triangle inequality

de (xi,x j) =

√
(xi−x j)

T (xi−x j) , (4.12)

given a metric space (X ,de) and L ⊂ X a subset of points lying on a line-image, the
metric distance from a point x to the line-image is

de (x,L) = inf{de (x,xl) : xl ∈ L} , (4.13)

which is the minimum distance from x to the line-image. The distance between x and
the closest point of the line-image xc is the minimum distance from point to line-image
de (x,L) = de (x,xc).

Let x̃ = (x̃, ỹ)T ∈R2 be a point of the image plane, computing the point of the line-
image xc which is closer to the given point x (see Fig. 4.4) is equivalent to minimizing
the distance function fd (x̃) = de (x, x̃) subject to the constraint g(x̃) = 0 where g is
the line-image equation as expressed in (4.8) or in any other representation depending
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(a) (b) (c)

Figure 4.5: Behaviour of the different metrics defined to decide if a point lies on a
line-image. The thin lines are the actual line-images. The coloured region around the
lines denotes the points of the region which have a distance minor than a threshold.
Example for conical catadioptric system. (a) dalg. (b) dE . (c) de.

on coordinates of the image. Since argmin
x

de (x,L) = argmin
x

d2
e (x,L) the problem is

stated as

de (x,L) = de (x,xc) such that xc = argmin
x̃

f 2
d (x̃) subject to g(x̃) = 0 . (4.14)

The method of Lagrange multipliers justifies that this statement is equivalent to find
the critical points of the Lagrangian function

L (x̃,λ ) = f 2
d (x̃)+λg(x̃) = ‖x̃−x‖2 +λg(x̃) (4.15)

which are estimated by solving ∇x̃,ỹ,λ L (x̃, ỹ,λ ) = 0.
Eliminating the Lagrange parameter λ we finally obtain the equation system

g(x̃) = 0 , h(x̃) = (x̃− x)
∂g
∂ ỹ
− (ỹ− y)

∂g
∂ x̃

= 0, (4.16)

in such a way that the point x̃ is on the line-image and satisfies that the perpendicular
line passing by this point must intersect x.

In Fig. 4.5 we show the different regions defined by the three distances given a
threshold. We show the case of conical catadioptric system. Fig. 4.5 (a) corresponds
to the regions for the algebraic distance dalg, observing that there exist variations in
the thickness of the region when the projection is close to the center of the image. The
region defined by the 3D Euclidean distance between line and rays dE (see Fig. 4.5 (b))
variates its thickness depending on the distance of the point of the 3D line. Finally, the
Euclidean distance on the image de defines a region with an homogeneous thickness
(see Figure 4.5 (c)).
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Figure 4.6: Conical catadioptric projection of a point X.

In Section 4.5.2 and Section 4.6.2 we solve (4.16) for the two selected cases of
conical catadioptric systems and the spherical catadioptric systems finding analytical
solutions which are roots of a polynomial. This is possible because for these cases the
line-image equation g can be written as a polynomial but in general the solution has to
be solved using iterative methods for minimizing (4.16).

4.5 Conical mirror systems
In conical catadioptric systems with the camera located in the axis of revolution of
the mirror, the locus of viewpoint is a circle of radius Rc centred in the vertical axis
at height Zc [Baker and Nayar, 2001, López-Nicolás and Sagüés, 2010]. The locus of
this circle, which depends on the distance Zm between the camera and the vertex of the
mirror and the aperture angle τ of the mirror, is

Rc = Zm sin2τ , Zc = Zm (1− cos2τ) . (4.17)

The forward projection model. Since the viewpoint locus is a circle and there exist
revolution symmetry the forward projection is unambiguous and direct. Given a 3D
point X = (X1,X2,X3,X4)

T ∈ P3 in the camera reference, the non-central projection
ray lies in a plane containing the axis of revolution of the mirror (See Fig. 4.6). The
intersection of this plane with the circle is a single point C, therefore the projection ray
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is completely defined by X and C. The intersection of this line with the mirror gives
the point xI which is projected in point x ∈ P2 on the normalized plane.

x =
(

sin2τ
(X3−ZmX4)√

X2
1 +X2

2
− cos2τ

)
X1

y =
(

sin2τ
(X3−ZmX4)√

X2
1 +X2

2
− cos2τ

)
X2

z = ZmX4 +(X3−ZmX4)cos2τ +
√

X2
1 +X2

2 sin2τ

(4.18)

This projection is related to the image plane with a perspective camera model involving
a linear transformation and a distortion model. We use the matrix Kc (see (4.5) to
transform the coordinates of the normalized plane (x,y,z)∈P2 to the image coordinates
(u,v) ∈ R2. The principal point (u0,v0) corresponds to the vertex cone projection.

The back projection model. In conical catadioptric systems Zr depends on cotφ

Zr = Zc +Rc cotφ (4.19)

which is related with r by

cotφ =
z+ r tan2τ

z tan2τ− r
. (4.20)

Substituting these expressions in (4.6) the equation of the back projection model
becomes

Ξ =


x(z tan2τ− r)
y(z tan2τ− r)
r (z+ r tan2τ)

−y(Zc (z tan2τ− r)+Rc (z+ r tan2τ))
x(Zc (z tan2τ− r)+Rc (z+ r tan2τ))

0

 . (4.21)

4.5.1 Lines-images in conical catadioptric systems
When particularizing expression (4.8) to the conical catadioptric system, the line im-
age equation results on a polynomial expression of degree 4 (a quartic described by 15
monomials in general). However, when the equation is expressed in polar coordinates
(x = r cosθ , y = r sinθ ) this expression can be written in a compact form with 6 para-
meters encapsulating the Plücker coordinates of the line and the mirror parameters of
the system. The line-image is then written as

(r cosθ ,r sinθ ,r,zcosθ ,zsinθ ,z)ω = 0 (4.22)
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where

ω =


ω1
ω2
ω3
ω4
ω5
ω6

=



1−cos2τ

cos2τ
Zml2− l̄1

− 1−cos2τ

cos2τ
Zml1− l̄2

l̄3 tan2τ

tan2τ
(
l̄1 +Zml2

)
tan2τ

(
l̄2−Zml1

)
l̄3

 . (4.23)

This expression allows us to linearly compute the line-image from five or more points
without knowing neither the aperture angle of the mirror τ nor the distance to the mirror
Zm, by solving (

rixi,riyi,r2
i ,xizi,yizi,rizi

)
ω = 0 for i = 1, ...,5 . (4.24)

Once the line-image ω ∈ P5 is estimated τ is easily computed from tan2τ = ω3/ω6.
Notice that the distance to the mirror Zm is coupled with direction vector l so it is not
possible to separate them. Because of this, we conclude that in conical catadioptric
mirrors, if the distance of the camera to the mirror Zm is unknown, it is not possible to
reconstruct the scale of a scene from line-images in a single image.

Parametric Description and Singularity

Expression (4.22) allows expressing r in terms of θ

r =
−(ω4 cosθ +ω5 sinθ +ω6)

ω1 cosθ +ω2 sinθ +ω3
(4.25)

therefore, the parametric expression of the line-image curve becomes

x(θ) =−(ω4 cosθ +ω5 sinθ +ω6)cosθ (4.26)
y(θ) =−(ω4 cosθ +ω5 sinθ +ω6)sinθ (4.27)

z(θ) = ω1 cosθ +ω2 sinθ +ω3 . (4.28)

In conical catadioptric systems the vertex cone projection (x = 0, y = 0) is a singu-
larity for line-images passing through it. If the line-image lies on this point, equation
(4.25) returns negative values of r for some values of θ . At the singularity, the curve
is continuous but not derivable. Considering the points with negative radius the curve
is derivable on the singularity. Actually, these points are not obtained on the real cata-
dioptric image (dotted points in Figure 4.7 ).

From equation (4.25) we can determine the range of values of θ in which the radius
is negative. The values of θ limiting this range are computed from

ω4 cosθ +ω5 sinθ +ω6 = 0 , (4.29)
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Figure 4.7: Detail of two line projections A and B in a non-central catadioptric image
with conical mirror. Line A (in red) passes through the singularity at the principal point
(dotted points correspond to negative radius).

and solving for tanθ yields:

tanθ =
−ω4ω5±ω6

√
ω2

4 +ω2
5 −ω2

6

ω2
5 −ω2

6
. (4.30)

Notice that it does not exist real solution if the value inside the square root is negative.
In other words, all θ values (4.25) gives r > 0 and the line-image does not belong to
the singularity. So, we can state that a line-image passes through the singularity if and
only if ω2

4 +ω2
5 > ω2

6 .

4.5.2 Algebraic and metric distances in conical catadioptric sys-
tems

The Euclidean distance de (x,L) between the image point x and the line-image L is
obtained estimating the closest point of the line-image xc. In Section 4.4 we have
shown that the point x̃ ∈ E2 of the Euclidean plane, is the closest point of the line-
image xc when satisfying g(x̃) = 0 and h(x̃) = 0. Particularizing equation (4.16) to
conical catadioptric systems we can reach an analytical solution. First we expand the
compact line-image description (4.22) to get a polynomial equation for g(x̃) = 0, in
this case the quartic

g(x̃) = r2 (ω6 +ω1x̃+ω2ỹ)2−
(
ω4x̃+ω5ỹ+ω3r̃2)2

= 0 (4.31)

where r̃2 = x̃2 + ỹ2. The resulting polynomial equation h(x̃) = 0 obtained from this
expression is the quartic

h(x̃) =
(
x̃3, x̃2ỹ, x̃2, x̃ỹ2, x̃ỹ, x̃, ỹ3, ỹ2, ỹ

)
W

(
x̃− x
ỹ− y

)
= 0 (4.32)
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Figure 4.8: Spherical catadioptric projection of a point X.

where

W =



ω1ω2 2ω2
3 −2ω2

1
ω2

1 +ω2
2 −2ω2

3 −3ω1ω2
ω2ω6−ω3ω5 3ω3ω4−3ω1ω6

3ω1ω2 −ω2
1 −ω2

2 +2ω2
3

2ω1ω6−2ω3ω4 2ω3ω5−2ω2ω6
−ω4ω5 ω2

4 −ω2
6

2ω2
2 −2ω2

3 −ω1ω2
3ω2ω6−3ω3ω5 ω3ω4−ω1ω6

ω2
6 −ω2

5 ω4ω5


(4.33)

Computing the resultant between both equations from the variable ỹ we obtain a
single polynomial equation depending on x̃ with degree 12.(

x̃12, x̃11, x̃10, x̃9, x̃8, x̃7, x̃6, x̃5, x̃4, x̃3, x̃2, x̃,1
)

Ωx̂ = 0 (4.34)

where Ω(ω) ∈ R13x15 and x̂ ∈ R15 such that x̂ =(
x4,x3y,x3,x2y2,x2y,x2,xy3,xy2,xy,x,y4,y3,y2,y,1

)T.
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For a given point on the normalized plane (x,y)T , solving (4.34) results in 12
solutions for x̃. The correct solution can be found by checking g and h for each solution.
From the remaining results we choose the one with minimal distance. Notice that Ω

only has to be computed for each line-image ω whereas (4.34) is solved for each point.

4.6 Spherical mirror systems
An spherical catadioptric system is a non-central system composed by an spherical mir-
ror and a perspective camera. Due to the symmetry of the sphere there exist symmetry
of revolution wherever the perspective camera is located. The system is characterized
by the radius of the sphere Rs, the distance from the camera to the center of the sphere
Zs, the intrinsic parameters of the perspective camera and the relative rotation of the
camera with respect to the axis of revolution. This axis is defined by the center of the
sphere and the location of the perspective camera.

Forward projection model. There is no single closed solution for the forward pro-
jection model in an spherical catadioptric system. The problem is tackled in [Agrawal
and Ramalingam, 2013,Agrawal et al., 2011,Gonçalves, 2010,Gonçalves and Nogueira,
2009].

Back projection model. Equation (4.6) can be particularized to the case of the spher-
ical catadioptric system obtaining the back projection model. Consider a projective
point (x,y,z) in the reference of the perspective camera with the axis Zcam aligned with
the axis of revolution. Given r2 = x2+y2 and ρ2 = x2+y2+z2 the Plücker coordinates
of a projection ray expressed on the reference of the spherical mirror X ,Y ,Z (See Fig.
4.8, this reference is chosen for simplicity of the expressions) is

Ξ = (−xδ ,yδ ,−ζ ,εyZs,εxZs,0)
T (4.35)

where

δ = 2r2Z4
Rel−2z

√
γZ2

Rel−3ρ2Z2
Rel +ρ2 ,

ε =
(
−r2 + z2

)
Z2

Rel +2
√

γz+ρ2 ,

ζ = 2r2zZ4
Rel− zρ2Z2

Rel−2
√

γ
(
−r2Z2

Rel +ρ2
)
− zρ2 ,

γ =
(
−r2Z2

Rel +ρ2
)

Z2
Rel and ZRel =

Zs
Rs

.

4.6.1 Line images in spherical mirror systems

Following (4.7) the side operator between a line L =
(
lT, l̄T

)T and the projection ray Ξ

defines the line image equation as
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δ
(
xl̄1− yl̄2

)
+ζ l̄3− εZs (yl1 + xl2) = 0 (4.36)

Considering l̂ = Zsl the expression becomes

δ
(
xl̄1− yl̄2

)
+ζ l̄3− ε

(
yl̂1 + xl̂2

)
= 0 (4.37)

which can be rewritten as

g(x̃) = L̃TNX̃ = 0 (4.38)

where

L̃ =
(
l̂2
1 , l̂1 l̂2, l̂1 l̄1, l̂1 l̄2, l̂1 l̄3, l̂2

2 , l̂2 l̄1, l̂2 l̄2, l̂2 l̄3, l̄2
1 , l̄1 l̄2, l̄1 l̄3, l̄2

2 , l̄2 l̄3, l̄2
3
)T

, (4.39)

X̃ =
(
x̃4, x̃3ỹ, x̃3z̃, x̃2ỹ2, x̃2ỹz̃, x̃2 z̃2, x̃ ỹ3, x̃ ỹ2z̃, x̃ỹz̃2, x̃z̃3, ỹ4, ỹ3z̃, ỹ2z̃2, ỹz̃3, z̃4)T, (4.40)

and

N =



0 0 0 0 0 1 2ν 0 0 ν2 0 0 0 0 ν2 −1
0 2 2ν 0 0 0 0 −2ν 0 0 −2ν2 0 0 0 0
0 0 0 0 0 0 0 0 −2ν 0 0 −2 0 0 0
1 0 0 −2ν 0 1 2ν 0 0 ν2 0 0 ν2 0 2ν2 −2
0 0 0 0 −2ν 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 1 −2 0 0 −2µ 0 0 0 0 −2µ

0 2 2ν 0 0 0 0 −2ν 0 0 −2ν2 0 0 0 0
0 0 0 0 0 0 0 0 −2ν 0 0 −2 0 0 0
0 2 −2 0 0 0 0 2 0 0 2µ 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 −2 0 0 0
1 0 0 −2ν 0 0 0 0 0 0 0 0 ν2 0 ν2 −1
0 0 0 0 −2ν 0 0 0 0 0 0 0 0 2 0
1 0 0 2 0 0 0 0 0 0 0 0 −2µ 0 −2µ

0 0 0 0 2 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



T

(4.41)

with ν = 2Z2
Rel−1 and µ = 2ν +1.

Notice that L has been defined in the reference system of the spherical mirror (see
X ,Y and Z in Fig. 4.8). This reference system has been chosen because of the simpli-
city of the expressions and is different of the camera reference chosen for the conical
catadioptric system. The transformation between both reference systems is

G =


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 Zs 0 1 0 0
Zs 0 0 0 −1 0
0 0 0 0 0 −1

 such that G = G−1 . (4.42)
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Parametric Description

The parametric description of the line-image can be obtained composing the lifted im-
age vector X̃ with the polar representation x = r cosθ , y = r sinθ and z = 1. The result
is a polynomial of degree 4 in r which can be solved when θ is known. Four differ-
ent solutions are obtained but only one of them corresponds to the sought parametric
line-image. Points corresponding to the right solution must also satisfy equation (4.38).

4.6.2 Euclidean distance de in spherical catadioptric systems
The Euclidean distance de (x,L) between the image point x and the line-image L is ob-
tained estimating the closest point of the line-image xc. In Section 4.4 we have shown
that the point x̃ ∈ E2 of the Euclidean plane, is the closest point of the line-image xc
when satisfying the systems of equations (4.16). In particular, when considering an
spherical catadioptric system, the function g(x̃) is defined by the polynomial repres-
entation of the line-image (4.38). The constraint h(x̃) enforces the parallelism between
the gradient of the line-image and the line passing through the closest point of the line-
image and the given point. Substituing the gradients of expression (4.38) in (4.16) we
obtain

h(x̃) = L̃TNJX̃ = 0 (4.43)

where J(x) is

J =



0 −4 4y 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −x −3 3y 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −3 3y 0 0 0 0 0 0 0 0 0
0 2 0 0 −2x 0 −2 2y 0 0 0 0 0 0 0
0 0 1 0 0 −x 0 −2 2y 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 2y 0 0 0 0 0
0 0 0 3 0 0 0 −3x 0 0 −1 y 0 0 0
0 0 0 0 2 0 0 0 −2x 0 0 −1 y 0 0
0 0 0 0 0 1 0 0 0 −x 0 0 −1 y 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 y
0 0 0 0 0 0 4 0 0 0 0 −4x 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 −3x 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 −2x 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 −x
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


. (4.44)

Both expressions g(x̃) = 0 and h(x̃) = 0 constitute a polynomial system of equa-
tions of degree four. Considering z = 1 and the operator

tri(v) =


0 0 0 0 v1
0 0 0 v2 v3
0 0 v4 v5 v6
0 v7 v8 v9 v10

v11 v12 v13 v14 v15


these equations can be rewritten on terms of a bi-quartic expression.

g = x̃TQtri
(
L̃TN

)
ỹQ = 0 (4.45)
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h = x̃TQtri
(
L̃TNJ

)
ỹQ = 0 (4.46)

where x̃Q =
(
x̃4, x̃3, x̃2, x̃,1

)T and ỹQ =
(
ỹ4, ỹ3, ỹ2, ỹ,1

)T.
One of the two variables of the systems of equations can be eliminated computing

the resultant between them. For this, we compute the Sylvester matrix S respect to
ỹ obtaining a 8×8 matrix. The determinant of this matrix is the resultant, that is a
polynomial equation such that

|S|= 0⇔ g = 0 and h = 0. (4.47)

To reduce the difficulty of computing this determinant we exploit the property of
determinants

|S|=
∣∣∣∣ SA SB

SC SD

∣∣∣∣= |SA|
∣∣SD−SCS−1

A SB
∣∣ .

Since |SA| 6= 0 the degree of the resultant decreases, obtaining the determinant of a 4×4
matrix ∣∣SD−SCS−1

A SB
∣∣= 0 (4.48)

which is a polynomial of degree 16 in x̃. The roots of this polynomial are the solutions
of x̃ for the equation system. Using (4.45) we obtain 4 solutions of ỹ for each of the
16 solutions obtained for x̃. Each pair x̃i = (x̃i, ỹi)

T corresponds to a candidate to be
the closer point from the line-image to the original point x. The right solutions must
hold (4.45). From the remaining solutions we choose the one with minimal Euclidean
distance de.

4.7 Robust line extraction in non-central systems
In this Section we present a method for line-image extraction in non-central systems.
Line extraction in non-central systems is an unsolved challenging task due to the diffi-
culties of mapping the 3D of the line on a 2D space, the sensitivity to noise in fitting,
and the elevate number of degrees of freedom involved. Up to our knowledge, this is
the first work addressing this problem.

Assuming the system is calibrated, four points of the line-image are needed to
define a line-image and its corresponding 3D line. When using a robust approach
like RANSAC the number of iterations is considerably greater than in the central case
because the DOFs increase from 2 to 4. To handle this problem we can check the
candidates for minimal subsets before computing the minimal model like in PROSAC
[Chum and Matas, 2005] and USAC [Raguram et al., 2013]. That allows to reduce
the number of hypothesis being computed and evaluated. In particular, we remove
collections of four samples having low effective baseline. The baseline of a set of four
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points is estimated using our proposal for measuring the effective baseline presented in
the following Section. To evaluate if an image point belongs to a particular line-image
hypothesis we use the metric distance presented in Section 4.4.

4.7.1 A feature for measuring effective baseline in a set of rays
To compute a 3D line from a set of points rays (see Section 4.3.2) the rays must not
be coplanar. Consider for example a set of four rays intersecting a line, two of them
being projections in a camera and the other two projections in other camera of a stereo
pair. If we get a ray from a camera and a ray from the other camera they are skew
and there exist a distance between them related with the baseline of the stereo system.
The accuracy of the line reconstruction is strongly related with this distance. Similarly,
when having a non-central system, the accuracy of the reconstruction of a 3D line
from a single projection strongly depends on the distances between the defining rays
which depend on the geometry and the size of the imaging system. In this section we
propose a feature measuring the quality of a set of rays for reconstructing a 3D line.
Establishing a similarity with the stereo pair we call this measure effective baseline.

The proposed feature is based on the 3D Euclidean distances among the defining
rays dE (4.11). Consider the combination of distances among a set of defining rays; a
simple feature is just the mean among all these distances. However, the mean distance
is not a solid choice. For example we can have a high mean distance due to a sole
distant ray but if the other rays are coplanar the configuration is degenerated.

To measure the effective baseline of a set of n rays our proposal is the function zbs
depending on the metric distances dE (Ξi,Ξ j) among the defining rays

zbs =
n!

2(n−2)!

(
n−1

∑
i=1

n

∑
j=i+1

1
dE (Ξi,Ξ j)

)−1

(4.49)

which takes into account the balance among the distances. This function increases
when the distances between rays increase but also assures that not any individual dis-
tance dE (Ξi,Ξ j) turns to zero. The feature is normalized with the number of combina-
tions n!

2(n−2)! in order to have a scaled measure.
To illustrate our reasoning let us first consider a simple case. Let us consider two

points A and B in R2 and we want to evaluate a third point using the distances from this
third point to the other two (dA and dB). The higher the distances the better the result,
but we need to penalize small individual distances.

If we use the mean of the distances we have infinite cases and some of these cases
with values of dA or dB close to zero (see Fig 4.9 (a)) which are degenerated cases.
However, inspired by electrical potentials, we could use the sum of the inverse of the
distance defining a potential surface which is the minimum at the equidistant point (see
Fig 4.9 (b)) which is the best conditioned case. However, this measure tends to infinity
when one of the distances is zero, hence considering the inverse of this (see Fig 4.9 (c))
we have a feature which is maximum when the distances are balanced.
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Figure 4.9: Different proposals for computing a measure of baseline of a set of rays
based on the distances between rays. (a) Mean of the distances. (b) Sum of inverse of
the distances. (c) Our proposal.
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4.7.2 Extraction algorithm

The proposed extraction procedure is the following. First, the image is preprocessed
using a Rolling Guidance Filter [Zhang et al., 2014] to reduce textured patterns but
conserving the edges. Then, the edges of the image are detected using Canny detector
and stored in connected components. Each of these connected components can contain
one or more line-images. A particular line-image can also be distributed along different
connected components. We have considered two different robust strategies for solving
the multi-fitting process required to extract line-images from the edges.

Greedy PROSAC approach. In this approach we check the candidates for minimal
subsets using the effective-baseline measure. From the subsets that achieve this pre-
vious test we compute the line-image models. Then, all the points of the connected
component are tested using the corresponding metric distance. In robust approaches
like RANSAC it is assumed that the input of the algorithm is a collection of points
fitting a single model. The points not supporting the model are discriminated as out-
liers. When having more than one model or line-image, the greedy approach considers
a cascade application of the robust estimation. The model best supporting the collec-
tion of points is extracted. For the other models there are two options: First repeating
the complete extraction on the remaining points until reaching some stop criterion.
Second, removing the inlier points from the original votes matrix of the first extraction
and use these corrected votes for selecting new lines. Second way is faster because
hypothesis and distances are computed only once.

Greedy approach selecting a subset of well conditioned points. In this approach
we compute a subset of well conditioned points from each connected component. The
subset of points is big enough to homogeneously cover the whole connected component
and it is computed using the effective baseline measure to assure that there exist enough
baseline among any collection of four points from this subset. Hypothesis are generated
from this subset of points and then tested using the metric distance. The distance can
be computed from each hypothesis to the whole collection of points of the connected
component or from the subset of points only. In this case, the supporting points are
computed only on the best voted solution. Another option is testing the hypothesis
with points of the whole image. The greedy cascade approach is used for the multi-
fitting process using any of the previously presented methods.

4.8 Experimental evaluation

In this section, we present the experimental evaluation of the proposal. First, we show
simulations to study the behaviour of the proposed method. Then we present selected
examples of line-extraction in synthetic and real images. Experiments with synthetic



4.8. Experimental evaluation 109

number of attempts

(a) (b)

Figure 4.10: Precision and recall when discriminating between two line-images.

images allows testing the complete algorithm knowing the ground truth and with ab-
sence of calibration errors. The extraction method is also tested on images taken with
real catadioptric systems. Finally we present several examples for estimating the cal-
ibration in conical catadioptric systems using real images.

4.8.1 Validation of the proposals using simulated projections
For validating the proposals we have performed intensive simulations of line projec-
tions where the ground truth is known and randomly generated, the noise and calib-
ration error are controlled and it is possible to obtain results with stochastic meaning.
The set-up of the simulation is the following: We have generated 64 random pairs of
10 m length 3D segments passing through a cube 4 meters wide around the visual sys-
tem. For each segment, points are projected on the image using the forward projection
model. The size of all the simulated systems is similar to avoid the bias in effective
baseline. The conical mirror has an angle τ = 45 deg and the distance from the per-
spective camera to the mirror is Zm = 1 m. The spherical mirror has a radius of Rs = 1 m
and the distance from the perspective camera to the center of the sphere is Zs = 2 m (the
distance to the mirror plus the radius). The resolution of the perspective camera used
in both systems is 4096×4096 pixel with a focal distance of 0.625 m and no radial nor
tangential distortion.

Robustness evaluation of line-image extraction

In this section we evaluate the robustness of the extraction process. This is performed
by discriminating between two different line-images. 64 pairs of random segments with
the previous set-up are projected. Points supporting the first line-image are considered
inliers and points supporting the other are considered spurious. We extract the line-
image variating the used attempts in the RANSAC scheme taking as reference the
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Figure 4.11: Comparison of conical and spherical catadioptric systems in terms of dis-
tance of estimated line-images to ground truth points. The vertical red line corresponds
to the theoretical value of kattempts. (a) Without Gaussian noise. (b) With a Gaussian
noise of σ = 0.5 pixels.

theoretical value kattempts =
log(1−P)

log(1−η p) where p is the number of elements defining the
minimal set, P the probability that at least in one random subset p all selected points
are inliers and η = number o f inliers

total number o f points .
In Fig. 4.10 we show the results of precision and recall depending on the used

attempts in robust extraction, where

precision =
true positives

true positives+ f alse positives

and
recall =

true positives
true positives+ true negatives

.

In line-extraction high precision is needed due to a single false positive can distort the
fitting. To evaluate the quality of the extraction we propose using the metric distance
from point to line-image. In particular we measure the median of the distances from
the fitted line-image to the ground truth points projected from the original line.

In Fig. 4.11 we show the mean of this measures for the collection of 64 random
lines when variating the number of attempts kattempts of the RANSAC algorithm. We
can observe how quality depends on the number attempts in both cases.

Accuracy of 3D line from single view

In this section we present an evaluation of the 3D accuracy of the extracted lines from
a single projection. We also compare, in terms of 3D line accuracy, the conical cata-
dioptric system and the spherical catadioptric system. Once image points of the line-
image are projected from segments, we add Gaussian noise with a standard deviation
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Figure 4.12: Comparison between conical and spherical catadioptric systems in terms
of accuracy in lines reconstruction from single projection. (a) Direction error in de-
grees. (b) Distance error in meters. C for conical catadiotpric system and S for spher-
ical catadioptric system.

σ which varies from 0 to 1 pixel. Then the lines are fitted using the points which
maximizes the effective baseline.

In boxplot of Fig. 4.12 we present the estimated accuracy showing the distribution
of two errors:

• the direction error between the estimated 3D line and the ground truth line com-
puted as
εϕ = arccos lTlGT .

• the depth error between the estimated 3D line and the ground truth line computed
as εd =

∣∣‖l̄‖−‖l̄GT‖
∣∣.

We can observe how the accuracy in 3D fitting dramatically decreases with noise.
In terms of accuracy in direction estimation the conical catadioptric system is a little
better than the spherical catadioptric system in spite of having similar sizes.

4.8.2 Line-image extraction
In this section we present the experiments for evaluating the complete extraction al-
gorithm on synthetic and real images.

Synthetic images

Synthetic images have been generated using the raytracing software Pov-Ray [of Vision
Pty. Ltd. (2004), ] modelling the mirrors as geometric forms with perfect reflection.
The scenario is a modification of a publicly available synthetic scenario 1. The original

1http://hof.povray.org/office-13.html The Office - Jaime Vives Piqueres, 2004
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(a) (b)
Conical Catadioptric System

(c) (d)
Spherical Catadioptric System

Figure 4.13: Line-extraction examples from synthetic images. A selection of line-
images correctly extracted are shown. The extracted line-images are shown in green
and the supporting points on red. (a-b) Conical catadioptric system. (c-d) Spherical
catadioptric system.
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(a) Conical Catadioptric System

(b) Spherical Catadioptric System

Figure 4.14: Line-extraction examples from real images. A selection of line-images
correctly extracted are shown. The extracted line-images are shown in green and the
supporting points on red. (a) Conical catadioptric system. (b) Spherical catadioptric
system.

office has been modified to look like a corridor. The synthetic images have a resolution
of 1024×1024 pixels, The conical mirror has a radius Rmax = 30 mm and height hmax =
21.01 mm i.e. of τ = 55 deg. The distance from the mirror to the camera is Zm = 1 m.
The spherical mirror has a radius of Rs = 1.25 m and the distance between the center
of the sphere and the camera is Zs = 2m. In Fig. 4.13 we show some examples of
well extracted lines from synthetic catadioptric images. The extracted line-images are
shown in green and the supporting points on red.

Real Images

The real images have been acquired using two catadioptric systems composed by a con-
ventional camera (uEye UI-148xSE-C) and two mirrors, one conic and other spheric.
The conventional camera has a resolution of 1280×1024 pixels and has been inde-
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(a) (b)

Figure 4.15: Influence of points selection. (a) Good fitting (b) Bad fitting. We can see
the high influence of detected points in line extraction.

pendently calibrated using a standard method. Parameters taken into account are focal
distance, principal point, skew and radial distortion. The conical mirror has an aperture
angle of τ = 55 deg and the system has been fixed manually to assure the alignment
between the camera and the mirror having symmetry of revolution. The spherical mir-
ror has a radius of Rs = 0.37 m. As a spherical catadioptric system is always axial
we do not need to enforce the alignment between camera and mirror but we need to
calibrate the rotation of the camera with respect to the axis of revolution. The calibra-
tion of the system parameters ZRel and the rotation matrix is estimated minimizing the
forward projection error of a chess pattern of known dimensions. In Fig. 4.14 we show
some examples of the line-image extraction for different real images. The extracted
line-images are shown in green and the supporting points on red.

4.8.3 Estimation of geometry of the conical mirror

In this section we show some examples of fitting using five points manually selec-
ted and we present quantitative results in the estimation of the mirror geometry from
lines in real images. Five points from conical catadioptric images (in red) are selected
manually to compute the line-image ω who is painted on the image using the para-
metric description (4.28). From each ω line-image we extract the Plücker coordinates
of the line and the aperture angle of the mirror τ . As explained in Section 4.5.1 the
distance to the mirror Zm is coupled with the Plücker coordinates therefore the metric
in recovered 3D lines are scaled to this distance.

In Figure 4.15 we show the high influence of error and point selection. Depending
on the selected points the line-image fits or not the projected points of the line. Despite
both line-images are fitting the defining points and the rest of the projected point of the
segment, the error in the estimation of the 4DOFs complicates the right extraction of
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(a) (b) (c) (d)

Figure 4.16: Examples of correct fitting. (a) τ = 55.0 deg. (b) τ = 55.5 deg. (c)
τ = 56.1 deg. (d) τ = 54.9 deg.

(a) (b) (c) (d)

Figure 4.17: Examples of incorrect fitting. (a) τ = 50.9 deg. (b) τ = 51.1 deg. (c)
τ = 49.7 deg. (d) τ = 48.4 deg.

the line. In Figure 4.16 we show some examples of line projections correctly fitted in
different images and the obtained value for τ in each one. We can see how this value
is close to the ground truth which is τre f = 55 deg. Finally, in Figure 4.17 we show
more examples of incorrect fittings, due to the sensitivity of line projection and the
large number of degrees of freedom of the curve in non-central systems.

4.9 Summary

In this Chapter we have analyzed the geometry of line projections in non-central cata-
dioptric systems focusing on conical and spherical catadioptric cameras. In both cases
line-images are quartic polynomials although in the conical case it can be simplified
to a compact description of 6 homogeneous parameters. The underlying structure of
line-images has been used for designing a line-image extraction method and to obtain
the geometry of the mirror in the case of the conical catadioptric camera. In non-central
cameras, it is possible to recover the complete geometry of the original projected line
from a single projection. In this context, our proposal has promising applications in
robotics (e.g., robot pose estimation and SLAM) and scene modeling (e.g., 3D re-
construction). From the results it follows that despite the line-image extraction can
be correctly achieved, the lack of effective baseline of non-central catadioptric sys-
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tems encourage to investigate new types of non-central cameras allowing accurate 3D
reconstructions from single projections. Another feasible approach is exploiting the
redundancy along a sequence of images for improving the 3D reconstruction accuracy.



Chapter 5

Line reconstruction in
non-central circular panoramas

As presented in previous chapters, in certain non-central imaging systems, it is
possible to recover the geometry of a 3D line from a single line projection. How-
ever, with classical non-central catadioptric systems there is not enough effect-
ive baseline for a practical implementation of this approach. In this chapter we
propose a multi-camera system configuration resembling the circular panoramic
model which results in a particular non-central projection allowing the stitching
of a non-central panorama. From a single panorama we obtain well-conditioned
3D reconstruction of lines, which are especially interesting in texture-less scen-
arios. No previous information about the direction or arrangement of the lines in
the scene is assumed. The proposed method is evaluated on both synthetic and real
images.

5.1 Introduction

In central imaging systems any projection ray intersects a single point usually known as
optical center. In the last decade, the need of a wider field of view increased the devel-
opment of new imaging systems known as omnidirectional systems allowing complete
panoramic images. For a better understanding of the images most of these systems
were sought to be central (e.g. the paracatadioptric system, the hypercatadioptric sys-
tem [Baker and Nayar, 2001], multicamera systems with common optical center [Kim
et al., 2008]). The advantage of central systems is that they also allow using previous
standard algorithms. However, some of the proposed omnidirectional systems were
non-central by construction (e.g. conical catadioptric systems, spherical catadioptric
systems). In these systems, rays do not intersect in a single optical center, hence they
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can not be defined by a direction vector and require richer descriptions like the gen-
eralized camera model based on Plücker lines [Lee et al., 2015]. Although the higher
complexity is a disadvantage, the properties of line projections in non-central systems
can turn this disadvantage into an advantage.

The projection surface of a 3D line in central systems is a plane. All lines lying
in this plane share the same line-image because only two of the four degrees of free-
dom (DOF) of the 3D line are preserved in the projection. Hence, the only way to
recover the direction of the lines and depth up to scale from a single view is imposing
additional constraints like dominant directions or perpendicularity [Ramalingam and
Brand, 2013]. By contrast, in non-central cameras the projection surface of a line en-
capsulates the four degrees of freedom of the 3D line. Hence, the geometry of a 3D line
can be recovered from a single projection. In particular, four points on a line-projection
(except some degenerate cases) define four projecting rays providing four independent
constraints for computing the complete geometry of the line [Teller and Hohmeyer,
1999]. Unfortunately, this approach is difficult to implement in practice. The quality
of the extracted 3D line depends on a magnitude we call the effective baseline of a
set of rays which is related with the distances between the four defining skew rays.
This effective baseline is too small when using non-central catadioptric systems, so for
exploiting this property in practice the system has to be too big.

In this chapter, we rediscover the circular panoramic imaging system as a non-
central system [Menem and Pajdla, 2004] which has enough effective baseline for 3D
line reconstruction. However, a moving camera introduces constructive and synchron-
ization problems. Therefore, we consider a system for taking a panorama following
the circular panoramic projection model by using a rig of cameras. The motivations of
using line-features in non-central systems are numerous. As in central systems, line-
features are useful for reconstructing texture-less scenarios. Besides, in non-central
systems metric reconstruction of 3D lines can be recovered from a single panoramic
view and no assumption about the direction or the arrange of the 3D lines is needed.
In addition, considering sequences of images, long lines can be seen along large frag-
ments of the sequence reducing the drift in 3D estimation. As drawback the extraction
of the line projection in non-central systems is still an open topic.

The geometry of non-central systems has previously been studied for computer
vision applications. The back projection of different non-central catadioptric systems
is introduced in [Swaminathan et al., 2006]. Contrary to the back projection case,
the forward projection of non-central systems does not necessarily have a closed form
solution. In [Agrawal et al., 2010] Agrawal et al. present a polynomial solution for the
forward projection in axial non-central catadioptric systems based on a quadric mirror
which is extended for the non axial case in [Agrawal et al., 2011]. These approaches
are used in a calibration method for multi-axial non-central systems in [Agrawal and
Ramalingam, 2013]. In [López-Nicolás and Sagüés, 2014] the epipolar geometry of
conical catadioptric systems and its corresponding calibration are presented.

Another way to obtain non-central images are images generated from moving cam-
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eras without common viewpoint. The epipolar geometry is studied for the case of linear
pushbroom camera in [Gupta and Hartley, 1997] and for the case of non-central circu-
lar panorama in [Menem and Pajdla, 2004]. A multi-camera system can be also tackled
as particular case of a non-central system. In [Lee et al., 2015] Lee et al. propose a
new method to solve the pose estimation in a multi-camera system represented by a set
of ray bundles in a non-central description using Plücker coordinates.

As previously said, in a non-central image the geometry of 3D line can be recovered
from a single line projection. The fundamentals of this approach are exposed in [Teller
and Hohmeyer, 1999, Kneebone et al., 1998, Griffiths and Harris, 2011] where it is
shown that two lines are the intersection of four generic lines. In [Caglioti and Gaspar-
ini, 2005, Caglioti et al., 2007a] this approach is exploited to compute 3D lines from
4 rays in non-central catadioptric systems. Different computation methods are con-
sidered and the degeneracies and singular configurations are studied.In [Gasparini and
Caglioti, 2011] these works are compiled and the case of circular panorama is also
addressed. In [Lanman et al., 2006] the approach is used with spherical catadioptric
mirrors, and in addition two non-central systems are used for reconstruction. Work
in [Swaminathan et al., 2008] extends the approach to planar curves. In [Bermudez-
Cameo et al., 2014b] the approach is derived to the case of conical catadioptric systems
obtaining both the 3D line and the mirror geometry. To improve the accuracy in recon-
struction using catadioptric systems some approaches have been proposed: considering
only horizontal lines [Pinciroli et al., 2005, Chen et al., 2011] , exploiting cross-ratio
properties [Perdigoto and Araujo, 2012]. Using off-axis systems [Caglioti et al., 2007b]
allows avoiding the degeneracies caused by the revolution symmetry. As application,
the pose of non-central catadioptric systems is estimated in an image sequence [Mir-
aldo and Araujo, 2014, Miraldo et al., 2015] using known 3D lines.

In this chapter, we propose the circular panorama imaging system and a multi-
camera configuration as a way to have enough effective baseline for a practical applic-
ation of 3D line reconstruction from a single non-central line projection. We present
a new method for automatic line extraction valid for the proposed non-central system.
The result is a metric reconstruction of lines-based scenarios from a single panorama
without making assumptions about the direction or the arrangement of the lines. The
non central circular panoramic system is compared with other catadioptric non-central
systems to evaluate the proposed system advantages. We also propose a multi-camera
architecture for obtaining an approximation of a circular panorama without the dis-
advantages of a moving camera. The extraction method is then particularized to the
multi-camera case. The methods are tested with realistic simulated scenarios and real
images.

5.2 Non-central circular panorama model
In this section, we describe the projection model of non-central circular panoramas.
A circular imaging panoramic projection [Menem and Pajdla, 2004, Gasparini and
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Figure 5.1: Non-central circular imaging projection system. Projecting rays intersect a
circle of radius Rc and the vertical axis. Three rays (Ξ1,Ξ1,Ξ1) are shown as example.

Caglioti, 2011] is a projection model with symmetry of revolution in which any pro-
jecting ray intersects both an axis of revolution and a circle of a given radius Rc (see
Fig. 5.1). A camera configuration fulfilling this constraint is a linear sensor turning
around an axis of revolution. The resulting image of this system is a panoramic im-
age in which the axis of coordinates are a scaled representation of two angles φ , ϕ

which are the spherical coordinates of the direction vector of each projecting ray (see
Fig. 5.2). The forward and back projection model of a circular panoramic system have
analytical solution and its computation is not time consuming.

5.2.1 Back projection model

Consider the angles φ and ϕ , which are related with the image coordinates ( j, i) as
follows,

ϕ = j
ϕend−ϕini

ncolumns
+ϕini, φ = i

φend−φini

mrows
+φini (5.1)

where (mrows,ncolumns) are the dimensions of the panorama and (ϕini,ϕend) and (φini,φend)
are the limits of the field of view of the imaging system.
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(a) (b)

Figure 5.2: (a) Circular panoramic image with Rc = 0.5m (Non-central). (b) Circular
panoramic image with Rc = 0m (A central spherical panoramic image).

The back projection model can be described by the definition of each projecting
ray with Plücker coordinates :

Ξ =

(
ξ

ξ̄

)
=


cosφ cosϕ

cosφ sinϕ

sinφ

Rc sinφ sinϕ

−Rc sinφ cosϕ

0

 (5.2)

5.2.2 Forward projection model

Given a 3D point in homogeneous coordinates X = (x1,x2,x3,x0)
T the forward projec-

tion is computed as follows

ϕ = atan2(x2,x1) , φ = arctan
x3√

x2
1 + x2

2− x0Rc

(5.3)

j = ncolumns
ϕ−ϕini

ϕend−ϕini
, i = mrows

φ −φini

φend−φini
(5.4)

5.3 Line estimation in non-central systems
First we present the procedure for 3D line estimation in non-central systems. Secondly
we present the expression for the line-image in non-central circular panoramas. Using
Plücker coordinates, the intersection between lines is described by the side operator (we
use the notation used in [Pottmann and Wallner, 2001]). A given line L=

(
lT, l̄T

)T ∈P5

(where l ∈ R3 and l̄ ∈ R3) intersects a ray Ξ ∈ P5 if
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side(L,Ξ) = LTWΞ = lTξ̄ + l̄Tξ = 0 (5.5)

where W =

(
03×3 I3×3
I3×3 03×3

)
.

As a 3D line has four degrees of freedom we need at least 4 equations to solve for
L. If four projection rays from a 3D line provide four independent constraints we can
compute the 3D line from the system of equations

AL = 0 (5.6)

where Ai =
(

ξ̄ i ξ i
)

is the Ai row of the matrix A. Except from some degenerate
cases in non-central systems the projection surface of a line is not a plane and four
generic rays induce two incident lines [Teller and Hohmeyer, 1999].

As Plücker coordinates is an over-parametrized representation of a line in P5 the
solution of the equation system (5.6) is a one-dimensional subspace of P5: L = L0 +
L1λ described by two elements of P5, L0 and L1 which can be computed using a Sin-
gular Value Decomposition. Imposing the Plücker identity we obtain the intersection
with the Klein Quadric which results in two solutions. One of them is the sought 3D
line. If the system is axial the other solutions is the axis of revolution.

In some degenerate cases four rays do not provide four independent equations [Gas-
parini and Caglioti, 2011]: when the projection surface is a plane (the line is coplanar
with the axis of revolution or coplanar with the plane containing the circle) or when the
projection surface is a regulus.

5.3.1 Line-Image in non-central circular panorama
Deriving (5.5) for circular panoramic systems the homogeneous expression for the line-
image on the panoramic image becomes

cosφ
(
l̄1 cosϕ + l̄2 sinϕ

)
+ sinφ (1+Rc (l1 sinϕ + l2 cosϕ)) = 0 (5.7)

which allows a parametric representation expressing φ in terms of ϕ .

tanφ =
−
(
l̄1 cosϕ + l̄2 sinϕ

)
1+Rc (l1 sinϕ + l2 cosϕ)

(5.8)

Notice that as we know the location of the 3D line we can also compute their
vanishing points by projecting the direction on the image.

5.4 Distance from points to line-images
In this section we propose a distance measurement to evaluate when an image point
belongs to a line-image. It is also used for improving the line estimation in an optimiz-
ation scheme. Depending on the used distance we will reach different results.
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(a) (b)

Figure 5.3: Distance to a line-image. (a) Distance to a line projection on the image. (b)
Distance between a ray M and a 3D line L.

(a) (b)

Figure 5.4: Region around a line projection defined by a given distance. (a) Metric
distance E3 from ray to line. (b) Our proposal.

The Euclidean metric distance in E3 is the minimum Euclidean distance between
two 3D lines (the 3D line and the projecting ray generated from an image point). This
distance is defined as in [Pottmann and Wallner, 2001] :

dmE3 =
|liT l̄ j + l j

T l̄i|
‖li× l j‖

. (5.9)

When determining if a point lies on a line-image in a RANSAC or in a Hough
transform scheme this distance tends to give higher reward to lines which are close to
the origin. This effect induces errors in the extraction process.

To avoid this effect the metric distance E2 from point to line-image can be used.
This is performed by using the method of Lagrange multipliers to obtain the point of
the line-image xc which is closer to the given point x and computing the Euclidean
distance between them (see Fig. 5.3(a)). However, except from some particular cases
[Bermudez-Cameo et al., 2014b], this approach does not have a closed form solution
and needs to be solved iteratively. The alternative we propose is to compute the points
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on the 3D lines (XL and XM) which have the minimum metric distance dmE3 in E3

(see Fig. 5.3 b). Instead of using distance in E3 we propose to project both points and
compute the metric E2 distance on the image. The advantage is that this computation
has a closed form and can be used in any non-central system in which the forward
projection has a closed solution. Notice that the projection of the closest point in the
3D space XM is not exactly the same as the closest point xc on the image.

To compute these closest points we have to compute a third line passing through
both lines and with direction orthogonal to the directions of both 3D lines (see Fig.
5.3 b). Given a line L =

(
lT, l̄T

)T and other line M =
(
mT,m̄T

)T representing the
projection ray of a given point on the image we want to compute a third line N =(
nT, n̄T

)T which intersects both lines and is orthogonal to L and M. To enforce the
orthogonal constraint we define n = l×m.

The intersections are imposed using the side operator. Finally we obtain a third
equation by imposing N to be a line using the Plücker constraint. The result is a system
of three linear equations

l̄T (l×m)+ lTn̄ = 0 (5.10)
m̄T (l×m)+mTn̄ = 0 (5.11)

n̄T (l×m) = 0 (5.12)

which is solved for n̄ obtaining

n̄ =

 lT
mT

(l×m)T

−1 −l̄T (l×m)
−m̄T (l×m)

0

 (5.13)

Once we have computed the line N, we can compute the intersection between N
and L by using the meet operator obtaining the points

XL =

(
−n̄× l̄

nT l̄

)
, XM =

(
−n̄× m̄

nTm̄

)
(5.14)

that are projected on the image using the forward projection model. Then, the metric
distance E2 between the projections is computed. In Fig. 5.4 we compare the region
defined by a given distance using both approaches.

5.5 Non-central circular panoramas from multi-camera
system

In this section, we consider to model a multi-camera system as a non-central circu-
lar panoramic imaging system and discuss their similarities and differences. We also
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Figure 5.5: Multi-camera system with 6 cameras arranged in a circle.

compare and evaluate the accuracy of different non-central systems in 3D line recon-
struction.

A non-central circular panorama can be obtained using an off-centred rotating cam-
era where only the central column of the image is used to stitch the panoramic image.
However, this set-up has the synchronization difficulties of a moving camera especially
if the whole system is in motion. Instead, it is possible to approximate this configura-
tion with an array of cameras arranged in a circle (see Fig. 5.5). From this configuration
we can represent the azimuth and elevation angle of each projecting ray considering the
non overlapped vertical columns.

Non-central circular panorama and the proposed multi-camera panorama are equi-
valent in the columns corresponding with the azimuth of the cameras focal axis. The
rest of the panorama is equivalent if the scene is at infinity. From a practical point of
view, only the small part of the center columns of the image is extracted for composit-
ing the panorama hence the needed bandwidth reduces considerably. The multi-camera
panorama is finally stitched using alpha blending.

5.5.1 Multi-camera vs. circular panorama

The whole system is a non-central system because the projecting rays do not intersect
in a single view-point. However, the proposed multi-camera system is locally central
and therefore rays from a single camera can only provide two independent equations in
the line fitting. This local centrality must be taken into account when getting random
points lying on a line projection on the panoramic image.

Consider a random picking of four rays from the panoramic image. Three cases cor-
respond to valid configurations: each ray is picked from a different camera ([1+1+1+1]),
two rays are from the same camera and the two other rays are from two different cam-
eras ([2+1+1]), lastly two rays are selected from two different cameras ([2+2]). The
other two cases correspond to non-valid configurations: for rays from a single camera
([4]) and three rays from a camera and one from other ([3+1]).

There is another difference between the multi-camera system and the circular pan-
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Gaussian error (pixels)

(a)

Gaussian error (pixels)

(b)

Figure 5.6: Comparison in accuracy reconstructing lines using different non-central
systems. (a) Direction error in degrees. (b) Distance error in meters. P for circular
panoramic system. M6 for a multi-camera having 6 single fisheye cameras. M24 for a
multi-camera having 24 single fisheye cameras. S for spherical catadioptric system.

oramic imaging system. Notice that, the circular panoramic system is an axial system
meaning that all the projecting rays intersect the same rotation axis. When comput-
ing a 3D line from 4 rays we obtain two solutions, one of them is the sought line and
the other is the axis of revolution. However, a multi-camera system is not axial and
therefore there is not a single line intersecting the projecting rays which would help
to discriminate the correct solution. For the case in which we take 2 rays from two
cameras one of the solutions must intersect the line defined by the two optical centres,
therefore it must lie in the horizontal plane passing through all the optical centres. In
other case, we have to use an additional criterion to distinguish between both solutions.
In particular, we include both solutions as hypothesis in the RANSAC scheme. Only
the correct solution has supporting points on the image, therefore wrong solutions are
directly rejected in the extraction process.

5.5.2 Accuracy of 3D lines in non-central systems

In this section we evaluate the accuracy of the proposed system for single-view 3D
line extraction in comparison to non-central catadioptric systems. Hence, we assume
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the points of the image belong to a given line projection. The geometric limitations of
reconstructing 3D lines from a single line projection in non-central systems are given
by the relation between the size of the system and the depth of the line (assuming
the line is long enough). That means that in most known non-central systems this
limitation prevents the practical using of this method because the estimated 3D lines
are too noisy. However, it depends also on the system type. In this analysis we are
considering random lines with a depth up to 3 meters. The length of the lines is 20m.
Four different systems are compared:

• A spherical catadioptric system composed of a spherical mirror with a radius of
1.2 m and a perspective camera located at 1.8 m from the center of the sphere.
The resolution of the camera is 4096×4096 pixels.

• A circular panoramic imaging system defined by a circle of a radius of 0.3 m.
The image has a resolution of 4000×8000 pixels.

• Two cases of the proposed multicamera system. The first one is composed of 6
fisheye cameras located in a circle of a radius 0.3m. The second one is composed
of 24 fisheye cameras in a circle of radius 0.3 m. In both cases the cameras have
a resolution of 768×1024 pixels.

Once the points of the random lines are projected on the corresponding images, we
add Gaussian noise of a given σ . We variate the value of σ from 0 to 3 pixels. In
Fig. 5.6 we show the results of the comparison. Fig. 5.6 (a) depicts the distribution of
the direction error (degrees) of the estimated 3D lines with respect to the ground truth.
Fig. 5.6 contains the distribution of distance error. Both the circular panoramic system
and multi-cameras clearly outperforms in terms of accuracy the classical catadioptric
non-central systems in spite of having smaller sizes (0.3 m vs 1.2 m).

5.6 Line-extraction in non-central panoramas
The extraction of the line projection in non-central systems is still an open topic. In
this section we present our proposal for extracting lines in the non-central circular
panorama which is also used in the multi-camera panoramas obtained from real images.

To reduce textured patterns but conserving the edges first the panoramic image is
preprocessed using a Rolling Guidance Filter [Zhang et al., 2014]. Then, the edges
of the image are detected using Canny detector. After that, we propose a split and
merge approach. First, edges are stored in connected components. To reduce the com-
plexity of the line extraction we first estimate locally central approximations using a
classical RANSAC approach with two degrees of freedom (see 5.7 (a)). For this, a
greedy multi-model RANSAC is executed on each connected component obtaining a
set of central segments. In the multi-camera approximation the resulting central seg-
ments are constrained in each camera region. The extreme points of each segment are
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(a) (b)

Figure 5.7: Line extraction in non-central circular panorama. (a) Examples of extrac-
ted line-images in green and supporting points in red. (b) 3D reconstruction (in red)
obtained from the back projection of the supporting points of the line-image to the
extracted 3D line.

used to obtain the connectivity of the segments. For this, we back-project the points to
the torus defined by the projection model. The connectivity map is obtained composing
a set of local Delaunay triangulations computed on the tangent map of the manifold.
Then, the connectivity of the central segments are exploited to generate a collection of
hypothesis in a USAC framework [Raguram et al., 2013]. A set of different combin-
ations of three segments are randomly generated. All the combinations not satisfying
the connectivity are removed. Then, the remaining hypothesis are evaluated. Each hy-
pothesis is tested using the distance presented in Section 5.4 and taking into account
the effective baseline of each set of rays. To measure the effective baseline of a set
of n rays we use the function zbs presented in Chapter 4 which depends on the metric
distances dmE3 between the defining rays (unless degenerate cases projecting rays are
skew in circular panoramic systems)

zbs =
n!

2(n−2)!

(
n−1

∑
i=1

n

∑
j=i+1

1
dmE3 (Ξi,Ξ j)

)−1

(5.15)

so that this function increases when the distances between rays increase but also as-
sures that not any individual distance dmE3 turns to zero. The results of the extraction
method are the 3D lines and the corresponding edges supporting the line-images that
are directly related with the 3D points on the 3D line (see Fig. 5.7).

5.7 Experimental evaluation
To evaluate the proposed extraction method we have performed experiments with syn-
thetic and real images. Synthetic images have been generated using a spin-off version
of Pov-Ray called Mega-Pov which allows to define the non-central circular panoramic
camera as a parametric camera. The scenario is a modification of a publicly available
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(a) (b)

Figure 5.8: Line extraction in non-central circular panorama. (a) Examples of extracted
line-images in green and supporting points in red. (b) Obtained 3D reconstruction (in
red).

Scenario angular error (degs) depth error (m)
median σ median σ

Horizontal 0.948 1.180 0.028 0.036
Slanted 0.954 1.105 0.091 0.126

Table 5.1: Error distribution in line-image extraction.

synthetic scenario 1. The synthetic panoramas have a resolutions of 4096×2048 pixels
and the radius of the generation circle is Rc = 0.5m. In Fig. 5.7 (a) we show some
examples of extracted lines from synthetic panoramas. The extracted line-images are
depicted in green and the edge points supporting the line-image in red. The corres-
ponding 3D reconstruction is shown in Fig. 5.7 (b) where the ground truth is coloured
in blue and the reconstructed segments are depicted in red. One of the degenerate
cases is the case in which the line lies in a plane passing through the axis of revolution
of the system (the projected line-image is an straight 2D line). The further a line is
from this degeneration the best conditioned is. Because that horizontal lines used to be
better conditioned than slanted lines. In Fig. 5.8 we show a similar example having
slanted lines after rotating the camera 50 degrees. In Table. 5.1 we show a compar-
ison between the extraction error in both scenarios (horizontal and slanted). Given the
error array ei the standard deviation σ is robustly estimated using the median absolute
deviation (σ = 1.4286 median |ei−median(ei)|). Finally, just to illustrate that we
are not imposing or using Manhattan conditions or dominant directions in Fig. 5.9 we
present a toy example of reconstruction of a non-Manhattan scenario. In this particular
example the defining points of the line-images have been manually selected.

1http://hof.povray.org/office-13.html The Office - Jaime Vives Piqueres, 2004
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(a) (b) (c)

Figure 5.9: Reconstruction of a non-Manhatan scene from a non-central circular pan-
orama. (a) Perspective view of the object. (b) Line-image extraction on panorama. (c)
Obtained 3D reconstruction (in red). The marker denotes the camera location.

5.7.1 Experiments with real images
The real images have been composed using a rotating off-axis fisheye camera (uEye UI-
148xSE-C with lens Lensagon CF5M1414) with a radius of Rc = 0.5m. The panoramic
images have a size of 1570×4096 pixels and the original images have a resolution of
1920×2560 pixels. In Fig.5.10 we show an and example of the extraction in a multi-
camera panorama generated from 180 cameras. Fig.5.11 shows an extraction from a
multi-camera panorama stitched from 20 cameras. For evaluating the reconstruction
we have taken a measure of the environment. The width of the corridor measured with
a laser electronic distance meter (EDM) is 3.20 m. From the circular panorama shown
in Fig. 5.10 we obtain a measure of 3.22m.

5.8 Summary
In this chapter, we propose a non-central system which allows 3D reconstruction of
lines from single panoramas without assumptions (such a Manhattan world) about the
direction or arrangement of the lines. We compare our configuration with other known
non-central cameras concluding that (in contrast with other non-central systems) our
configuration has enough effective baseline to perform a 3D reconstruction of a real
scenario with normal dimensions. This result opens new possibilities for performing
real applications. We also present a new method for automatic extraction of line-images
from non-central circular panoramic images. The proposal has been tested with real-
istic synthetic images and with real images.
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(a)

(b)

Figure 5.10: Line extraction in panor-
amic images from 180 cameras. (a)
Examples of extracted line-images in
green and supporting points in red. (b)
Obtained 3D reconstruction (in red).

(a)

(b)

Figure 5.11: Line extraction in pan-
oramic images from 20 cameras. (a)
Examples of extracted line-images in
green and supporting points in red. (b)
Obtained 3D reconstruction (in red).
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Chapter 6

Minimal solution for pairs of
lines in non-central cameras

In previous chapters we have dealt with line-images in non-central systems and
how to recover the 3D information of the line from a single projection without
assumptions. As presented before, the solution of this problem is ill-conditioned
due to the lack of effective baseline between rays. This limitation is particularity
evident in non-central catadioptric systems where a practical implementation of
the approach is limited to lines in regions which are close to the imaging system.
In this chapter, we exploit additional geometric constraints to improve the results
of line reconstruction from single images in non-central systems. In particular, we
obtain the minimal solution for the case of a pair of intersecting orthogonal lines
and for the case of a pair of parallel lines considering three rays from each line.
The proposal has been evaluated with simulations and tested with real images.

6.1 Introduction

In any central camera the projection surface of a 3D line is a plane. Any line contained
in this plane is projected on the same line-image, and therefore two of the four degrees
of freedom (DOF) of the 3D line are lost in the projection. By contrast, in certain
non-central cameras (non-central implies that the projecting rays do not intersect in a
common point) the projection surface of a line is a ruled surface composed by skew
rays (except in certain degenerate cases). Through this surface there exist a unique
mapping between a 3D line and its projection on the image (line-image) which can be
exploited to recover the geometry of the 3D line from a single image. In particular,
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four generic rays1 corresponding to four points on a line projection provide four inde-
pendent constraints allowing to compute the complete geometry of the 3D line [Teller
and Hohmeyer, 1999]. In practice, this is an ill-posed problem and the geometry of the
3D line can be only recovered if the relative depth of the line with respect to the system
dimensions is low enough for guaranteeing effective baseline between rays.

In this chapter we exploit the structure of the scene reducing the number of DOFs of
the sought solution. In central systems with conventional cameras this idea is used for
inferring layouts from line projections which only provide two independent constraints
[Lee et al., 2009, Ramalingam and Brand, 2013] for each line-image. In the case of
non-central systems we propose to solve the four DOFs of each line using the redundant
independent constraints provided by line projections by imposing geometric constraints
between pairs of lines. The proposed geometric constraints are: orthogonal intersection
between lines and parallelism between lines reducing to six the number of rays needed
for a minimal solution of a pair of lines.

The basis for computing the geometry of the 3D line from a single line projec-
tion (line-image) is that given four generic lines there exist only two lines intersecting
them [Kneebone et al., 1998, Griffiths and Harris, 2011]. In [Teller and Hohmeyer,
1999] this reasoning is introduced for application in computer graphics. In [Caglioti
and Gasparini, 2005, Gasparini and Caglioti, 2011] this approach is exploited to com-
pute 3D lines from 4 rays in non-central systems comparing the linear approach with
different computation methods and considering the degeneracies and singular config-
urations. In [Lanman et al., 2006] the approach is used with spherical catadioptric
mirrors, and in addition two non-central systems are used for reconstruction. Work
in [Swaminathan et al., 2008] extends the approach to planar curves. To improve the
accuracy in reconstruction some simplifications have been proposed: considering only
horizontal lines [Pinciroli et al., 2005,Chen et al., 2011] or exploiting cross-ratio prop-
erties [Perdigoto and Araujo, 2012]. In [Caglioti et al., 2007b] the degeneracies caused
by the revolution symmetry are avoided using an off-axis system.

In this chapter, we also present the minimal solution for computing a junction com-
posed by two orthogonal intersecting lines and for computing two parallel lines in non-
central systems. This allows to obtain the complete geometry of these pairs of lines
from three rays belonging to each line in a calibrated non-central system. The interest
of this result can be in robust extraction methods based on minimal sets like RANSAC
or in the improvement of the reconstruction accuracy in line fitting. The approach has
been implemented for spherical catadioptric systems, using the projection model de-
scribed in [Agrawal et al., 2010]. The proposal has been evaluated in simulation, and
tested with real images.

1Four lines are generic if no two of them are coplanar, no three of them are coconical or cocylindrical,
and the four are not cohyperbolic, i.e. do not lie on the same ruled quadric surface.
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(a) (b)

Figure 6.1: (a) Plücker description for lines and line projection. (b) One dimensional
subspace in P5 and Klein Quadric.

6.2 Recovering a 3D line from four skew generic rays

In this section we present the background, geometric concepts and notation used for
computing a 3D line from four generic rays. The description used for lines are the
Plücker coordinates based on Grassmann algebra.

The Plücker coordinates of a 3D line is a P5 representation of a line obtained from
the null space of any pair of points X =

(
x0,xT

)T, and Y =
(
y0,yT

)T belonging to
the line. The description of a Plücker line from the coordinates of the defining points
are L =

(
lT, l̄T

)T where l ∈ R3, l = x0y− y0x and l̄ ∈ R3, l̄ = x×y (depending on the
author the order and the sign of the elements can differ, here we follow the standard
in [Pottmann and Wallner, 2001]).

Notice that not all the elements of the P5 space correspond to 3D lines. The points
of P5 corresponding to lines in P3 must hold lT l̄= 0 which is known as Plücker identity.
This identity is a quadratic constraint which defines a two dimensional subspace in P5

called the Klein quadric M4
2 [Pottmann and Wallner, 2001]. Plücker representation has

a geometric interpretation in Euclidean geometry. Vector l represents the direction of
L (see Fig. 6.1 (a)) and l̄ is the moment vector which can be seen as the normal to a
plane passing through the 3D line and the origin of the reference system. The Plücker
identity expresses the orthogonality of l and l̄ given that the direction vector must be
contained in the plane defined by l̄. L is an homogeneous vector but when normalizing
respect to l,

∣∣l̄∣∣ is the minimum distance from the origin to the 3D line. Therefore, when
normalizing respect to l̄, |l| is the inverse of that distance.

The constraint resulting of the intersection of a 3D line with a projection ray can be
expressed linearly by the side operator which defines the signed distance between two
lines L =

(
lT, l̄T

)T and M =
(
mT,m̄T

)T. It is described as
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side(L,M) = LTWM = lTm̄+ l̄Tm (6.1)

where W =

(
03×3 I3×3
I3×3 03×3

)
.

If the Plücker representation of both skew lines is normalized with the direction
vector then this distance is metric in R3. The sign of this distance depends on the side
where a line is located with respect to the other (clockwise or counterclockwise). The
intersection between two lines is given by the constraint LTWM = 0. Notice that the
self-operation (side(L,L) = 0) becomes the Plücker identity.

A 3D line has four degrees of freedom (DOF), as consequence at least four inde-
pendent constraints are needed to solve the corresponding equations system. In non-
central systems, four projection rays provide four independent constraints when they
are generic (Fig 6.1 (a) ). Notice that in a central system the four equations are not
independent given that the four rays are coplanar.

However, given that Plücker coordinates set (without taking into account the Plücker
identity) is an over-parametrized description of a line, the solution of a system of four
homogeneous equations in P5 is a one dimensional subspace of P5. The solution of
these equations system can be expressed as a singular value decomposition problem in
which A is the collection of constraints such that AL = 0 with Ai =

(
ξ̄
T

i ,ξ
T
i

)
where

Ai is the ith row of A, in order that it can be written as the product of three matrices, U,
Σ,V, such that U and V are orthogonal, Σ is diagonal and A = UΣVT.

The null space of this system is spanned by the last two columns of V (denoted
L0 and L1 respectively). The null-space can be parametrized by L = L0 +L1λ (see
Fig. 6.1 (b)) and imposing the Plücker identity we can compute the intersection of this
subspace with the Klein Quadric obtaining two solutions: One is the sought line, the
other is the axis of revolution of the visual system if it is axial or an arbitrary line in
other case.

6.2.1 Degeneracies

There are some cases where the four rays are not independent and the system is de-
generated. When the camera is axial the defining rays can be coplanar forming a
Planar Viewing Surface (PVS) [Gasparini and Caglioti, 2011]. These degenerated
cases are: the Axial-PVS case when the line is coplanar with the axis of symmetry
and the Horizontal-PVS case when all the projecting rays lie in an horizontal plane.
If the projection surface of the line is a ruled surface defined by only three rays this
surface is called a regulus and the system is also under-determined.
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(a) (b)

Figure 6.2: (a) Orthogonal junction of two lines. (b) Two dimensional subspaces in P5

and Klein Quadric.

6.3 Orthogonal junction of two lines
In this section we present the minimal solution for a junction of two orthogonal inter-
secting lines in non-central systems. Computing a junction composed by two ortho-
gonal intersecting lines is a problem with 6 degrees of freedom (DOF). Four DOFs for
one of the 3D lines, other for the depth of the line intersection and the 6th DOF for the
angle defining the direction of the orthogonal line.

Given the lines L =
(
lT, l̄T

)T, M =
(
mT,m̄T

)T and considering three generic rays
Ξk intersecting the line L and three generic rays Ψk intersecting M (see Fig. 6.2 (a)),
the corresponding null spaces of the under determined linear systems

Ξ
T
k WL = 0 , Ψ

T
k WM = 0 (6.2)

are two subspaces of dimension 2 in P5. These subspaces are not contained in the Klein
quadric and intersect the Klein quadric in two one-dimensional curves (see Fig. 6.2
(b)). A parametrized description of these 2-dimensional subspaces can be obtained by
solving the null space of these systems with a singular value decomposition algorithm.

Taking as example the case of L and Ξk =
(

ξ k
T, ξ̄ k

T
)T

: the matrix

A =

[
ξ̄ 1 ξ̄ 2 ξ̄ 3
ξ 1 ξ 2 ξ 3

]T
can be written as the product of the three matrices, A = UΣVT

and the null space is spanned by the three last columns of matrix V denoted as L0, L1
and L2 parametrizing it with L : P2 7→ P5 defined as

L = L0 +L1λ1 +L2λ2 ∼ Lmλ (6.3)

where Lm =
[

L0 L1 L2
]

and λ ∈ P2 with λ =
(

λ̃0, λ̃1, λ̃2

)T
∼ (1,λ1,λ2)

T.
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Analogously, for M we parametrize the null space with

M = M0 +M1λ1 +M2λ2 ∼Mmµ (6.4)

where Mm =
[

M0 M1 M2
]

and µ ∈ P2 with µ = (µ̃0, µ̃1, µ̃2)
T ∼ (1,µ1,µ2)

T.
To obtain the four parameters λ1, λ2, µ1 and µ2 we need four additional independ-

ent constraints. These constraints are the condition of belonging at the Klein quadric
for both lines, the perpendicularity between them and the intersection between them.
These constraints are explicitly defined by

LTWL = 0, MTWM = 0, lTm = 0, LTWM = 0 (6.5)

becoming a system of 4 quadratic equations in terms of λ1, λ2, µ1 and µ2 with the form

λ
T

Ω1λ = 0 where Ω1 (i, j) = Li
TWL j (6.6)

µ
T

Ω2µ = 0 where Ω2 (i, j) = Mi
TWM j (6.7)

λ
T

Ω3µ = 0 where Ω3 (i, j) = liTm j (6.8)

λ
T

Ω4µ = 0 where Ω4 (i, j) = Li
TWM j. (6.9)

This system can be manipulated to reduce the number of dimensions but increasing
the degree of equations. Given the equations (6.8) and (6.9), imagine the P2 space of
λ and the lines depending on µ:

U = Ω3µ , V = Ω4µ (6.10)

Solving these equations for λ [
UT

VT

]
λ = 0 (6.11)

we obtain an explicit linear morphism

λ = Cµ̂ (6.12)

where µ̂ =
(
µ̃2

0 , µ̃0µ̃1, µ̃0µ̃2, µ̃
2
1 , µ̃1µ̃2, µ̃

2
2
)T ∼ (1,µ1,µ2,µ

2
1 ,µ1µ2,µ

2
2
)T and C3×6 is

computed analytically.
Substituting λ in equation (6.6) we have a system of two equations with two un-

knowns, the first is a quartic expression and the second a quadratic equation.

µ̂
TCTΩ1Cµ̂ = 0 (6.13)

µ
T

Ω2µ = 0 (6.14)

Substituting (6.14) in (6.13) we obtain a single polynomial equation with one un-
known of degree 8 which can be solved for µ1.
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(a) (b)

Figure 6.3: (a) Two parallel lines. (b) Two dimensional subspaces in P5 and Klein
Quadric.

8

∑
i=0

ciµ
i
1 = 0 (6.15)

From the fundamental theorem of algebra we know that the number of solutions
of this polynomial is 8. Using equation (6.14) we obtain 2 solutions of µ2 from each
solution for µ1. One solution of (λ1,λ2) is obtained from each solution (µ1,µ2) (6.12),
therefore the maximum number of solutions is 16. However, the majority of them are
removed considering only real solutions , compatible with the equations and coherent
with the orientation of the defining rays. Usually only 2 solutions remain.

6.4 Two parallel lines
In this section we present the minimal solution for computing the geometry of two
parallel lines in non-central systems. Computing two parallel lines is a problem with 6
DOFs: in this particular case two DOFs for the common direction and two additional
DOFs for each line. From three generic rays Ξk intersecting a line L and three generic
rays Ψk intersecting a line M we compute the two dimensional subspaces (see Fig. 6.3
(b)),

L = L0 +L1λ1 +L2λ2 ∼ Lmλ (6.16)
M = M0 +M1λ1 +M2λ2 ∼Mmµ (6.17)

To obtain the four parameters λ1, λ2, µ1 and µ2 we need four additional constraints.
First two are the constraint for each line of being in the Klein quadric or being a line,
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LTWL = 0, (6.18)

MTWM = 0 . (6.19)

The constraint of being parallels can be expressed as follows,

l = (l0 + l1λ1 + l2λ2) = K (m0 +m1µ1 +m2µ2) , (6.20)

which means three equations involving an additional unknown K. From (6.20) it is
posible to compute µ in terms of λ obtaining the linear mapping between µ and λ

µ = (m0,m1,m2)
−1 (l0, l1, l2)λ . (6.21)

Substituting µ in equation (6.19) we obtain two quadratic equations (6.18) and
(6.19) depending on λ ,which can be considered as the intersection between two conics
in P2 having four solutions.

6.5 Simulations
In this section we evaluate the proposed method performing simulations of the line
fitting process. As reference method we take the approach of Teller et al. [Teller and
Hohmeyer, 1999] which is denoted as unconstrained linear method.

We consider two different cases: orthogonal junctions and parallel lines. In both
cases, a collection of 100 pairs of lines are randomly generated. The length of the lines
is 20m. In the case of a junction, the intersection between each pair of lines is located
in a cube of side 4 m(see Fig. 6.4 (a)). In the case of parallel lines, two points are
randomly located in a cube of side 4 m and then the orientation on the line is randomly
computed (see Fig. 6.4 (a)). These lines are projected on an spherical-mirror-based
image [Agrawal et al., 2010]. The catadioptric system is composed of a spherical
mirror with radius of 1.2 m and a perspective camera located at 1.8 m from the center
of the sphere. The resolution of the simulated camera is 1024×768.

Gaussian noise of a given σ is added to the projected points. The value of σ variates
from 0.1 to 2. Then 3D lines are computed from its projection in a single image using
the linear Teller approach and using our proposal. For each value of σ we compute 100
pairs of lines. The 100 pairs of lines are the same for each value of σ .

The first simulation, is a comparison between the unconstrained linear approach
and our proposals (junction in Fig. 6.5 and parallel lines in Fig. 6.6 ) considering the
minimal set of defining points. The length of the lines in this setup is 20m. The linear
approach is computed from 8 points (4 for each line) and the proposal (junction or
parallel) is computed from 6 points (3 for each line). The 6 points used for the proposal
is a subset of the 8 points used for the unconstrained linear approach to avoid biasing.
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(a) (b)

Figure 6.4: Lines configuration example. (a) Junction. (b) Parallel.
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Figure 6.5: Lines estimation using the minimal set of points comparing the linear ap-
proach (Lin) and junction approach (2-jt): (a) Direction error (deg) (b) Distance error
(m)
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Figure 6.6: Lines estimation using the minimal set of points comparing the linear ap-
proach (Lin) and parallel lines approach (Par): (a) Direction error (deg) (b) Distance
error (m)

When using orthogonal junctions we take care of not using the intersection between
lines which is a degenerated configuration with only 5 independent constraints.

The second simulation, is a comparison between the linear approach and our pro-
posal considering more than the minimal set of points in the fitting. Considering more
points (200 points), we obtain a least square fitting of the null spaces of dimension two
in P5 described by Lm and Mm. In this case the number of points is the same for both
linear and our proposal.

From the results we conclude that there is an improvement in the accuracy of the
extracted lines. As expected, the improvement is more evident in the direction of the
extracted line than in depth.

6.6 Experiments with real images

A reconstruction has been carried out to evaluate the performance of the method using
a catadioptric system composed by a spherical mirror seen by a conventional camera
with resolution 1280×1024 pixels.

6.6.1 Calibration of the non-central system

First, the perspective camera has been independently calibrated. As the spherical cata-
dioptric system is always axial the extrinsic parameters to calibrate are the tilt in the
orientation of the camera, the radius of the sphere Rs and the distance from the center
of the sphere to the perspective camera Zs. Notice that in spherical catadioptric systems
Zs and Rs are coupled in the line projection. Therefore, only Zrel =

Zs
Rs

can be recovered
from a single line-image.
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Figure 6.7: Lines estimation using all points comparing the linear approach (Lin) and
junction approach (2-jt): (a) Direction error (deg) in 20 m length lines. (b) Distance
error (m) in 20 m length lines.
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Figure 6.8: Lines estimation of parallel lines using all points comparing the linear
approach (Lin) and parallel lines approach (Par): (a) Direction error (deg) in 20 m
length lines. (b) Distance error (m) in 20 m length lines.
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(a) (b) (c)

Figure 6.9: Lines projection after fitting: (a) Linear. (b) junction. (c) Parallel.

In this case we have computed the tilt in the orientation and the relative distance
Zrel from the contour projection of the sphere which is a conic in the image plane of the
perspective camera and also using the projection of the camera reflection on the image
which is related with the direction of the center of the sphere. The radius of the sphere
has been estimated from a 3D reconstruction of the mirror obtained from a RGB-D
device. This metric can be finally refined using projections of patterns with a known di-
mension like in the calibration method presented in [Agrawal and Ramalingam, 2013].

6.6.2 3D line reconstruction

We have performed a reconstruction of four lines forming a rectangle. This disposition
allows us to first reconstruct two different junctions and then reconstruct two different
sets of parallel lines.

In Fig. 6.9 we show the forward projection of these four lines after the fitting using
the junction. In Fig. 6.10 we show the reconstructions of these lines from 15 points
using the Tellers linear method, our junction approach and our parallel lines approach.

As we can see in Fig. 6.9, line projections are very similar in the three cases.
However, the reconstructions of the 3D lines are quite different (see Fig. 6.10). To
measure the quality of the results we use the spanned planes by the pairs of lines.
In the case of junctions we have compared the planes spanned by the two pairs of
intersecting orthogonal lines. Both planes have a deviation of 9.72 degrees. In the
case of parallel lines we compare the planes spanned by the two pairs of parallel lines
having a deviation of 15.69 degrees. Note that this test is a way to measure quality in
orientation but not in depth.
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Figure 6.10: Reconstructed lines from 15 points, from left to right: XY-View, YZ-View,
Orthographic-View (a) Teller’s method, (b) junction proposal. (c) Parallel proposal
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6.7 Summary
In this chapter we have presented the minimal solution for computing pairs of inter-
secting orthogonal lines and parallel lines from single images in non-central systems.
This proposal has been tested in the particular case of spherical catadioptric systems.
As expected, adding external geometric constraints improve the accuracy of the results.
However this improvement does not allow reconstructing lines with lack of effective
baseline. Thus, we have not yet solved the impediments for extensively using this kind
of systems. The relation between the dimensions of the scene to reconstruct and the
dimensions of the system is still too low in practice. Future work inevitably passes
through designing new kind of catadioptric or dioptric systems with a bigger effective
baseline by construction. Additionally, notice that all the techniques proposed in this
chapter could be directly used in combination with these systems.



Chapter 7

Minimal solution for line
parallel to plane in non-central
cameras

Regarding non-central line-images and the method for recovering 3D from a single
projection, in this chapter we continue the previously presented idea of using addi-
tional constraints to improve the reconstruction accuracy. In particular, we present
a method to recover the geometry of the 3D line from three line-image points when
imposing the line is parallel to a given plane. Since we are reducing the number
of points involved in the minimal set which defines the line-image we reduce the
complexity of robust schemes when extracting line-images. The drawback is that
we need additional prior information about the distribution of lines in the scene.
Under the Manhattan assumption horizontal lines are orthogonal to the gravity
direction, that can be obtained from other sensors and used in our proposal. The
formulation based on Plücker lines is integrated in a extraction pipeline which is
tested with synthetic and real non-central circular panoramas. In addition we eval-
uate the accuracy of the proposal in comparison with the unconstrained method
and the performance of the robust extractor.

7.1 Introduction
Line fitting in non-central systems is a challenging open topic with several advantages
and questions to be solved. On one hand, line projections contain more geometric
information because the four degrees of freedom of the line are encapsulated on the
line-image. On the other hand, the 3D reconstruction from a single projection is very
sensitive to noise. Third the complexity of an automatic extraction in a robust scheme



148 7. Minimal solution for line parallel to plane in non-central cameras

is high. The accuracy strongly depends on the effective baseline of current systems
(which is not enough for practical using in most of cases). The complexity of extraction
is related with the minimum required points for fitting, hence reducing the number of
required points to fit lines in non-central systems can be very interesting in terms of
computational time efficiency.

Regarding the algorithms used in central systems, the use of additional prior like
the Manhattan assumption helps to improve the obtained results. In addition, know-
ing prior information from additional sensors like an accelerometer can reduce the
complexity on the extraction of the features. In particular, when having a man-made
scenario with dominant directions, vertical direction should be coincident with grav-
ity direction and horizontal directions are orthogonal to this. Imaging a system in any
position and orientation, this gravity direction can be measured from a IMU (Inertial
Measurement Unit) and defines a plane which is parallel to the whole collection of ho-
rizontal lines. In this chapter we present the minimal solution for fitting a line parallel
to a plane in non-central systems, which can exploit this extra information to fit lines
reducing the minimal number of points from four to three. Notice that this applies for
hard and soft Manhattan assumption because horizontal directions are not enforced to
be orthogonal between them. The main advantage with respect to the central case is
that, when having enough effective baseline, the 3D metric information and the scale
of the scene is also recovered.

There exist some previous works dealing with geometric projection in non-central
systems. Point back projection models for several non-central catadioptric systems
have been studied in [Swaminathan et al., 2006]. In non-central systems, the forward
projection has not to be a closed form solution. The forward projection of axial non-
central catadioptric systems based on quadric mirrors can be obtained as the solution
of a polynomial [Agrawal et al., 2010]. The non axial case is dealt in [Agrawal et al.,
2011] and the calibration of a multi-axial non-central systems is studied in [Agrawal
and Ramalingam, 2013]. The calibration of conical catadioptric systems and the epi-
polar geometry is treated in [López-Nicolás and Sagüés, 2014]. Another example
of non-central images are the ones obtained from moving cameras without common
viewpoint. The case of linear pushbroom camera is extensively studied in [Gupta and
Hartley, 1997] and the non-central circular panorama and its epipolar geometry is dealt
in [Menem and Pajdla, 2004]. The fundamentals for line fitting in non-central sys-
tems are computing the solution for lines intersecting four generic rays [Teller and
Hohmeyer, 1999, Kneebone et al., 1998, Griffiths and Harris, 2011]. This theory is
exploited in several works [Caglioti and Gasparini, 2005, Caglioti et al., 2007a, Gas-
parini and Caglioti, 2011] dealing with non-central catadioptric systems. In [Lanman
et al., 2006] two non-central catadioptric systems are used for lines reconstruction. In
non-central cameras not only lines can recovered from single projections but also other
planar curves [Swaminathan et al., 2008]. Some additional restrictions can be used to
improve the results: only considering lines orthogonal to the axis of revolution of the
system [Pinciroli et al., 2005, Chen et al., 2011]. Cross-ratio properties [Perdigoto and
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Araujo, 2012] or using off-axis systems to avoid degeneracies [Caglioti et al., 2007b]
can be also used for improving the results. The pose of non-central catadioptric sys-
tems is estimated in [Miraldo and Araujo, 2014, Miraldo et al., 2015] using a prior
line-based description of the scenario.

In this chapter we present the minimal solution for fitting a line parallel to a plane
in non-central systems. This proposal allows to use additional prior information of
the vertical direction and exploiting the Manhattan configuration to facilitate the line-
image extraction and increasing the accuracy. We evaluate the proposal in terms of
accuracy and robustness using extensive simulation. The proposal is integrated in a
full extraction pipeline which is tested with synthetic and real images performing 3D
reconstruction from single image.

7.2 Background
In this Section we describe the mathematical concepts and notation used in this Chapter.
First, we introduce the procedure for 3D line estimation in non-central systems. Second,
we present the measure of the effective baseline for a set of four points in a non-central
image.

7.2.1 Line estimation in non-central systems
Using Plücker coordinates, the intersection between lines is described by the side op-
erator (see Appendix A). A given line L =

(
lT, l̄T

)T ∈ P5 (where l ∈ R3 and l̄ ∈ R3)
intersects a ray Ξ ∈ P5 if

side(L,Ξ) = LTWΞ = lTξ̄ + l̄Tξ = 0 (7.1)

where W =

(
03×3 I3×3
I3×3 03×3

)
.

Since a 3D line has four degrees of freedom we need at least 4 equations to solve
for L. If four projection rays from a 3D line provide four independent constraints we
can compute the 3D line (see Section 5.3 in Chapter 5 for more details). In some
degenerated cases four rays do not provide four independent equations [Gasparini and
Caglioti, 2011]: when the projection surface is a plane (the line is coplanar with the axis
of revolution or coplanar with the plane containing the circle) or when the projection
surface is a regulus.

7.2.2 Measuring the effective baseline
When the points defining the line-image have not error (are perfect) the accuracy of
the reconstruction is independent of the chosen points. However, in real situations the
accuracy of the reconstruction is strongly dependent on the effective baseline of the
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Figure 7.1: Two dimensional subspace in P5 and Klein Quadric.

chosen set. In central systems all the rays intersect among them. In non-central at least
some of the defining rays must be skew to provide enough independent equations. The
euclidean distance among rays gives a measure of the quality of the selected set of rays
for computing a 3D line. To measure the effective baseline of a set of n rays we use the
function zbs (4.49) presented in Chapter 4 which depends on the Euclidean distances
between the defining rays.

7.3 Computing a 3D line parallel to a plane

When knowing that a line is parallel to a given plane U =
(
u0,uT

)T the minimal solu-
tion of defining a line projection in non-central camera reduces from 4 degrees of free-
dom(DOFs) to 3 DOFs and consequently it can be computed from three independent
rays intersecting the line.

Given the line L =
(
lT, l̄T

)T and considering three skew rays Ξk =
(

ξ k
T, ξ̄ k

T
)T

intersecting the line, the null space of the under determined linear system

Ξ
T
k WL = 0 ξ̄ k

Tl+ξ k
T l̄ = 0 k = 1 . . .3 (7.2)

is a subspace of dimension 2 in P5. This subspace is not contained a priori in the Klein
quadric and intersects the Klein quadric in a one dimensional curve (see Fig. 7.1).

A parametrized description of this 2-dim subspace can be obtained by solving the
null space with a singular value decomposition algorithm.

Therefore, the matrix A =

[
ξ̄ 1 ξ̄ 2 ξ̄ 3
ξ 1 ξ 2 ξ 3

]T
can be written as the product of the
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three matrices, A = UΣV and taking the three last columns of matrix V denoted as L0,
L1 and L2 we parametrize the null space with L : P2 7→ P5 defined as

L = L0 +L1λ1 +L2λ2 ∼ Lmλ (7.3)

where Lm =
[

L0 L1 L2
]

and λ ∈ P2 λ =
(

λ̃0, λ̃1, λ̃2

)T
∼ (1,λ1,λ2)

T.

To obtain the two parameters λ1 and λ2 we need two independent constraints. First
is the constraint of being in the Klein quadric or being a line,

LTWL = 0, (7.4)

and second constraint is the fact being parallel to the a plane which can be expressed
with the orthogonality between the direction vector of the line l and the vector u.

uTl = uTl0 +uTl1λ1 +uTl2λ2 = 0 (7.5)

From (7.5) λ2 is expressed in terms of λ1

λ2 =−
uTl0 +uTl1λ1

uTl2
(7.6)

and substituting equation (7.6) in equation (7.4) we obtain a quadratic equation (7.7)
with one unknown λ1 having two different solutions.

b1λ
2
1 +2b2λ1 +b3 = 0 (7.7)

where

b1 = β2211−2β1212 +β1122 (7.8)
b2 = β0122−β0212−β1202 +β2201 (7.9)

b3 = β2200−2β0202 +β0022 (7.10)

and βi jkl = Li
TWL juTlkuTll . From each solution of λ1 a solution for L is computed

using

L =
(
uTl2L0−uTl0L2

)
+
(
uTl2L1−uTl1L2

)
λ1 (7.11)

which is obtained by substituting (7.7) in (7.3).
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7.4 Computing a 3D line with known direction
When the complete orientation of a system is known in a Manhattan scenario you
can consider the direction l of the line L is known (it is one of the three dominant
directions). That means that only two of the four degrees of freedom of the line must
be computed and only two projecting rays Ξk for k = 1 . . .2 are needed.

As we known the direction the intersection between the line L and a ray can be
written as

ξ k
T l̄ =−ξ̄ k

Tl k = 1 . . .2 (7.12)

and also including the Plucker constraint lT l̄ = 0 we can compose a linear system of
three equations  ξ 1

T

ξ 2
T

lT

 l̄ =

 −ξ̄ 1
Tl

−ξ̄ 2
Tl

0

 (7.13)

and solving it for l̄ we obtain

l̄ =

 ξ 1
T

ξ 2
T

lT

−1 −ξ̄ 1
Tl

−ξ̄ 2
Tl

0

 . (7.14)

If having more than two rays the pseudo inverse can be used but in this case the solution
does not perfectly fits the Plücker condition.

7.5 Line-extraction
In this section we present a method for line-image extraction in non-central images. We
are assuming the scenario follows a hard-Manhattan (3 orthogonal dominant directions)
structure or a soft-Manhattan structure (1 dominant direction and the rest of the lines
on the plane orthogonal to this direction). In man-made environments the vertical
direction is coincident with the direction of the gravity. We assume that this direction
u is known (e.g. it can be obtained from a IMU system or from other source) but the
system is not aligned with this direction (see Fig. 7.2). Notice that this direction is
the same for all vertical lines and it is orthogonal to the horizontal plane, hence when
we have a line LH which is horizontal (parallel to the horizontal plane) we can use
the 3-points method presented in Section 7.3 and when the line is vertical we can use
the 2-points method presented in Section 7.4. The method is proposed for non-central
circular panoramas [Menem and Pajdla, 2004] but it can be adapted to other non-central
systems.
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Figure 7.2: Euclidean representation of a reference system C with any orientation and
a known direction u in a Manhattan scenario.

For automatic extraction, first we extract edges from the image using Canny de-
tector. To avoid false edges we first filter the image using a Rolling Guidance Fil-
ter [Zhang et al., 2014]. This edges are then stored in connected components. From
each component line-images are extracted using a greedy RANSAC approach. After
that lines are clustered depending on main directions and finally the segments are
merged to improve the extraction results. More in detail:

7.5.1 Extended RANSAC approach

Having a collection of points which are candidates to be supporting points of a line-
image, we generate a set of collections of three points. The size of this set is the
number of iterations kattempts of the algorithm which is estimated from the ratio of
inliers ω = number o f inliers

total number o f points , the number of elements defining the minimal set p and
the probability P that at least in one random subset p all selected points are inliers with

kattempts =
log(1−P)

log(1−ω p)
. (7.15)

We follow the pre-filter scheme described in PROSAC [Chum and Matas, 2005]
and USAC [Raguram et al., 2013] using a measure of the quality of the points, which
in this particular case is the measure of effective baseline (see Section 7.2.2). This
allows generating hypothesis that are more likely to be valid.

Then, from each valid set of 3 points three hypothesis are computed: two assuming
the line is orthogonal to the vertical direction (see Section 7.3) and one assuming the
line is parallel to the vertical direction (see Section 7.4). Only one of these solutions
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(a) (b)

Figure 7.3: (a) Mixture of Gaussians based on vanishing points. (b) Mixture of Gaus-
sians based on direction.

have enough supporting points on the image, hence we can store the three proposal as
hypothesis and use the voting scheme to discriminate among them.

Using the distance presented in Chapter 5 we test each hypothesis obtaining a vot-
ing. The most voted line-projection is selected, obtaining the 3D Plucker coordinates of
the line and the corresponding labelling classifying the line (and the supporting points)
as horizontal or vertical.

7.5.2 Clustering
If the connected components are small they do not contain enough baseline to obtain a
good reconstruction. For improving the results we perform a merging algorithm which
connects different sets of supporting points. If we assume that horizontal lines are
arranged in dominant directions we can first cluster the horizontal lines in two classes.

Considering only the directions of lines which in general are elements of an Euc-
lidean space E3, the direction of horizontal lines are contained in the same horizontal
plane. The goal is clustering them in a unidimensional space defined by the unitary
circle.

For clustering we use an algorithm based on mixture of Gaussians. Consider, the
conditioned probability of the normalized direction vector xi given that the label of the
direction is c and the distribution parameters θc = (µc,σc) is described by a Gaussian
distribution

P(xi|c,θc) =
1√

2πσc
e
− dG(xi,µc)

2

2σ2c (7.16)

where dG (xi,µc) is a function measuring the distance between the direction vector xi
and the mean direction vector µc of the distribution.
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The problem can be dealt from two points of view: First is using one distribution
for each vanishing point meaning that we need to use two Gaussian distributions for
each direction (see Fig. 7.3 (a) ). In this case the conditioned probability using the
normalized direction vectors in E2 is

P(xi|c,θc) =
1√

2πσc
e
− arccos µTxi

2

2σ2c (7.17)

which uses dG (xi,µc) = arccos µTxi as measure of distance between the mean para-
meter of the distribution and each sample.

Instead of this distance, we propose to use the distance to the orthogonal space
dG (xi,µc) = arcsin µTxi defining the distribution

P(xi|c,θc) =
1√

2πσc
e
− arcsin µTxi

2

2σ2c (7.18)

which properly represents the two senses of the direction and both vanishing points
simultaneously (see Fig. 7.3 (b) ). In addition, with this description we only need two
Gaussians for the two dominant directions.

The initial solution is computed from two overlapped histograms. The posterior
probability of each sample is estimated using the Bayes rule:

P(c|xi,θc) =
P(xi|c,θc)P(c)

∑c P(xi|c,θc)P(c)
. (7.19)

For clustering the directions in the two classes we maximize the likelihood de-
scribed as

θ = argmax
θ ′

∏
i

∑
c

P
(
xi|c,θ ′c

)
P(c) . (7.20)

To improve the convexity of the function the logarithm of the likelihood is used in an
iterative scheme

θ = argmax
θ ′

∑
i

log∑
c

P
(
xi|c,θ ′c

)
P(c) (7.21)

for obtaining the parameters θ = (θ1,θ2) of the two dominant directions.
Depending on if the scenario is hard-Manhattan or soft-Manhattan the orthogonal-

ity constraint between the two Gaussians can be imposed on the optimization. After
the clustering the segments supporting horizontal lines are classified in two dominant
directions (see Fig. 7.4).
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(a) (b)

Figure 7.4: Extraction pipeline example on synthetic image: (a) Results of the cluster-
ing on the image (blue for horizontal dominant direction 1 and green for the horizontal
dominant direction 2). (b) Example of extracted line-images on direction 1.

7.5.3 Merging

Once the clustering is performed, we can exploit the connectivity of the extracted seg-
ments to generate hypothesis of connection. The connectivity map is obtaining com-
posing a set of local Delaunay triangulations computed on the tangent map of the torus
defined by the back-projection model.

7.6 Evaluation and experiments
In this Section we present a set of experiments designed for evaluating the performance
of the proposed method. First, we evaluate the accuracy in 3D line fitting. Second, we
test the robustness of the extraction proposal and finally we show examples of line
projections extractions in synthetic and real images.

7.6.1 Accuracy evaluation

In this Section we present a comparison in terms of accuracy among the 4 points al-
gorithm (without constraints), the 3 points algorithm (assuming the line is parallel to a
plane), and the 2 points algorithm (assuming the direction of the line is known). The
used system is a non-central panoramic imaging system with a radius Rc = 0.5 and a
field of view of 180×360 and a resolution of 2048×4096 pixels. For comparing the
accuracy we have simulated the projection of 100 random 3D lines and we have ad-
ded Gaussian noise to the line-image points. Then the lines are fitted using the three
approaches. For the first approach (4pt), 4 points of the line-image are used to fit the
line (these points are selected for maximizing the effective baseline). For the second
approach (3pt), 3 points of the line-image and the orientation of a plane parallel to the
line are used for fitting the line. In this case we also add Gaussian noise to the orienta-
tion of the plane and the points of the line-image are selected to maximize the effective
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(a) (b)

Figure 7.5: Comparison in terms of the accuracy of line fitting. Gaussian noise in
defining points without error in prior information. (a) Direction Error (degrees). (b)
Distance error (m).

(a) (b)

Figure 7.6: Comparison in terms of the accuracy of line fitting. Gaussian noise in
orientation of prior information with σ from 0 to 1 degrees and a Gaussian noise in
image points with σ = 0.5 pixels (degrees). (a) Direction Error. (b) Distance error (m).

baseline. For the third approach (2pt) the solution is computed from two points of the
line-image but assuming that the direction of the line is known and having a Gaussian
noise on the orientation of the direction.

In Fig. 7.5 and Fig. 7.6, we represent the estimated accuracy according to two
errors:

• the direction error between the estimated 3D line and the ground truth line com-
puted as εϕ = arccos lTlGT .

• the depth error between the estimated 3D line and the ground truth line computed
as εd =

∣∣‖l̄‖−‖l̄GT‖
∣∣.

Fig. 7.5 shows the influence of points error in accuracy when the prior has no noise.
The abscissa axis corresponds to a variation in the Gaussian noise added to the defining
points from σ = 0 pixels to σ = 1 pixel. As expected, the error is always bigger for the
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unconstrained method (4pt). Notice that when the direction is known (2pt) the direction
is not really estimated and the plotted error in Fig. 7.5 (a) is always zero.

In Fig. 7.6 a Gaussian fixed error of σ = 0.5 pixels is added to the defining points
and we introduce a variation in the Gaussian error added to the prior information: the
prior known plane for the 3-points case and the prior known direction for the 2-points
case. The abscissa axis corresponds to a variation in the Gaussian noise added to the
prior information from σ = 0 degrees to σ = 1 degree. Notice that in this case the error
when using the 4-points approach is constant because we are introducing a variation in
the prior noise which does not affect the unconstrained method. As expected the worst
results are for the 2-points method which is the one using more prior information.

7.6.2 Robustness evaluation

In this Section we present the robustness of the robust method presented in Section
7.5.1. We simulate the projection of 100 random lines with two different kind of
noise. The projected points have a Gaussian noise with σ = 0.5pixels representing
the projection error. In addition we have added spurious points following a uniform
distribution. We denote the original points as inliers and the spurious points as out-
liers. The rate between the generated inliers and outliers is denoted as ω and its fixed
to 0.6. Not all the inlier points have the same influence when fitting the model be-
cause we first pre-filter de hypothesis with the baseline criterion. In Fig. 7.7 we
show the results of precision and recall, where precision = true positives

true positives+ f alse positives

and recall = true positives
true positives+true negatives . The vertical lines represent the value for the

number of attempts estimated with equation 7.15 with a probability of being successful
P = 0.99.

Due to the nature of robust extraction, where a single false positive can condition
the whole fitting we are interested on having a high precision to the detriment of the
recall. As expected, the number of attempts needed for an acceptable precision is
inferior for the constrained methods although a little higher than the theoretical value.

7.6.3 Line extraction with synthetic images and real images

In this section we present the results of the pipeline presented in Section 7.5 obtained
from synthetic and real images of a Manhattan scenario. The synthetic images have
been generated with the raytracing software MegaPov 1 which allows defining para-
metric non-central cameras. The scenario is a modification of a publicly available
synthetic scenario 2. The synthetic panoramas have a resolutions of 4096×2048 pixels
and the radius of the generation circle is Rc = 0.5m. In Fig. 7.8 we show the results
of extracted line-images of the first horizontal dominant direction. The line projections

1megapov.inetart.net
2http://hof.povray.org/office-13.html The Office - Jaime Vives Piqueres, 2004
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(a) (b)

Figure 7.7: Precision and recall of the robust approach depending on the number of
attempts for a ratio of inliers ω = 0.6. Red for the 4-pt method, green for the 3-pt
method and blue for the 2-pt method. (a) Precision, (b) Recall.

(a) (b)

Figure 7.8: Extraction example on synthetic image: (a) Extracted lines following the
main direction over a non-central panorama (green for the parametric line and red for
supporting points). (b) 3D view of the ground truth (in blue) and the reconstruction of
the supporting points (in red)

are depicted in green and the supporting points in red (see Fig. 7.8 (a) ). In the 3D view
Fig. 7.8 (b) the ground truth is shown in blue and the supporting 3D points in red.

The real images have been generated using the multi-camera approximation presen-
ted in Chapter 5. The panorama has been composed using a rotating off-axis fisheye
camera (uEye UI-148xSE-C with lens Lensagon CF5M1414) with a radius of Rc =
0.5m. The panoramic images have a size of 1570×4096 pixels and the original images
have a resolution of 1920×2560 pixels. In Fig.7.9 we show an and example of the ex-
traction in a multi-camera panorama generated from 180 cameras. The line projections
are depicted in green and the supporting points in red (see Fig. 7.9 (a) ). In Fig.7.9
(b-c) we show the extracted 3D segments in red.
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(a)

(b) (c)

Figure 7.9: Extraction example on real image: (a) Extracted lines following the main
direction over a non-central panorama (green for the parametric line and red for sup-
porting points). (b) Top view of reconstructed supporting points. (c) Perspective view
of reconstructed supporting points.
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7.7 Summary
In this Chapter, we present the minimal solution to compute a line which is parallel
to a given plane in non-central images. This approach exploits the configuration of
Manhattan scenarios in combination with the prior knowledge of the vertical direction,
obtained for example from an accelerometer. The accuracy and robustness of the ap-
proach has been evaluated with simulated experiments. Depending on the quality of
the prior information the accuracy of the 3D estimation from single projection can be
improved despite the lack of effective baseline. The proposal has been integrated in a
robust extraction scheme and tested with synthetic and real images.



162 7. Minimal solution for line parallel to plane in non-central cameras



Part III

Conclusions and appendix





Chapter 8

Conclusions and future work

In this thesis we study the geometry behind line projections in different classes of om-
nidirectional cameras. First part of the thesis is dedicated to central systems where we
focus on line-image extraction and calibration. In particular, we present a method for
line-image extraction in hypercatadioptric systems when the calibration is known. We
also analyze the uncertainty propagation of the method and particularize the vanish-
ing point computation on hypercatadioptric images developing the self-polar triangle
approach. From this, we generalize the line-image description to different classes of
catadioptric and dioptric systems. Using the proposed unified framework we exploit the
plumbline constraint obtaining closed solutions that allow us to simultaneously extract
line-images and a calibration parameter which is common to all the different central
systems. The plumbline constraint allows computing the main calibration parameter
and the projection plane of the line from three points. This constraint is integrated
in a RANSAC scheme for automatic line-image extraction while obtaining the main
calibration parameter. Plumbline constraints are then reformulated using gradients as
additional input information reducing the number of required points.

Second part of the thesis is devoted to line projections in non-central systems. Line
projections have a special interest in non-central systems because it is possible to re-
cover the complete 3D information of the line from a single projection. In particular,
4 points on the line-image directly define the line-image, the 3D line and the projec-
tion surface. Regarding this idea, we generalize the description used in central systems
developing a representation of line-image for non-central systems with revolution sym-
metry. This representation is particularized for the cases of conical and spherical cata-
dioptric systems obtaining quartic polynomial expressions and, in the case of the con-
ical catadioptric line-image, a simpler expression which allows fitting the line-image
from 5 points recovering the 3D line and the geometry of the mirror. Main problem
when recovering a 3D line from a single projection is that results are very noise sens-
itive. This prevents using this technique in real applications because in practice, it is
only possible to reconstruct lines in regions which are close to the imaging system. The
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uncertainty in fitting edges into the 4 dof curves makes the extraction of line-images a
challenging task. To deal with this problem we have explored different approaches. To
measure the quality of a set of points as a function of the non-centrality of the rays we
introduce the concept of effective baseline which strongly depends on the suitability of
the selected points and the class of non-central system. This measure allows making
a comparison among different kind of systems. It also permits to determine if a par-
ticular selection is adequate allowing a pre-evaluation step in the extraction process.
To achieve the line-image extraction we also use a measure of distance determining
if a point belongs to a line-image or not. Up to our knowledge this thesis is the first
work where automatic line-extraction without prior information about the orientation
or location of the 3D lines is achieved in non-central systems.

Besides non-central catadioptric systems we study the non-central circular panor-
ama showing different ways of implementing it. Our conclusion is that this kind of
system provides greater effective baseline than non-central catadioptric systems ob-
taining better accuracy and better performance in line-image extraction. Another way
for increasing the accuracy in 3D line reconstruction is exploiting geometric constraints
for improving the accuracy and stability in line reconstruction. We develop minimal
solutions when computing pairs of lines for non-central systems. In particular, we de-
velop the cases of intersecting orthogonal lines and pair of parallel lines. Finally we
present the minimal solution for computing a line which is parallel to a given plane
which can be exploited using the prior information of the vertical direction in a Man-
hattan scenario.

Regarding minimal solutions and the number of points needed for fitting the pro-
posed models, we use robust approaches based on RANSAC for fitting these models.
Notice that there is an increasing difficulty in the models and their fitting in the different
approaches presented along this thesis. In Chapter 2 we are fitting models defined by 2
elements. In Chapter 3 the number of elements is 3 if using the closed form solutions
for the plumbline constraint or 2 if using also the gradient approaches (2 points location
and 2 gradients on these points). In Chapters 4 and 5 we need at least 4 elements since
we are computing the 4 DOFs of the 3D line from a single projection. Because of the
elevate number of attempts needed, we use the pre-filtering step based on the effective-
baseline measure to previously remove bad-conditioned attempts. Finally, in Chapters
6 and 7 we use additional information in the fitting and we only have to use 3 elements.
In Chapters 2, 3 and 4 we propose a calculus which is clearly focused on the image
representation. In fact, the line-image model presented in Chapter 4 is a generalization
of the previous models used in Chapters 2 and 3. By contrast, in Chapters 5, 6 and 7
the fitting is done in the P5 space dealing with projecting rays instead of points. This
is a more general approach because the back projection model is encapsulated in the
definition of the projecting rays. This approach also allows exploiting the properties of
Plücker coordinates and fitting lines in non-central systems when the system has not
symmetry of revolution. Nevertheless, working directly on the image allows us to per-
form the calibration estimations presented in Chapters 3 and 4 because the calibration
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parameters are involved in the expression of the line-image.

In conclusion, increasing the field of view of the cameras has a main drawback con-
sisting of inducing high distortions on the images. As a result of these distortions line
projections become curves which are more difficult to deal with. However, during the
development of this thesis we state that these drawbacks can be converted in advant-
ages. On the one hand, the distortion of the projected curve encodes the geometry of
the system allowing the estimation of the calibration of the system. On the other hand,
the non-central case is even more interesting because the complete 3D line is mapped
on the line-image and it is possible to perform 3D reconstructions from single images
without imposing constraints. The second part of the thesis is conducted around this
idea which supposes an important advantage with respect to conventional cameras.

In the past, despite the theory behind reconstructing lines from single projections
in non-central systems was very promising, the approach was not yet integrated in a
real system and the issue is still open because of the extraction difficulties and the lack
of accuracy. In this thesis we study the underlying problems with new proposals. As
result of our work we propose a magnitude we call effective-baseline. This effective-
baseline is related with the accuracy, which has been insufficient in current non-central
systems and, depends on the size and the design of the non-central system. We have
found that the best configuration among current non-central systems is the non-central
circular panoramic system. In fact, up to our knowledge, our proposal is the first work
achieving 3D reconstruction of a real scenario using as input a single non-central image
and not assuming restrictions about the structure of the scene. In particular, we have
reconstructed a corridor using a system whose dimensions are in the typical order of
a mobile robot dimensions. Notice that for obtaining the same accuracy from a single
image with the non-central catadioptric systems the dimension of the mirrors must
be similar or even greater than the size of the corridor being not practical for a real
application.

The immediate future work is a direct consequence of these conclusions. First of
all, any effort in designing new non-central systems with more effective baseline dir-
ectly will improve the results of our proposals which are adaptable to new systems.
Considering the current technology, the non-central circular panorama is a feasible
system for 3D reconstruction. There can be different ways of achieving this config-
uration. In particular, a rotating camera is the easiest configuration for validating the
theoretical approaches and methods we propose, however in practice this system is not
capable of acquiring coherent non-central panoramas when the system is moving. A
feasible solution to solve this problem is manufacturing the multi-camera system pro-
posed in Chapter 5. This configuration can be achieved for example by installing an
array of line-cameras (camera with only a column of pixels) around a circular robot.
The advantage of this configuration is that the non-central panorama can be acquired
in a single shot but also that we conserve free space inside the defining circle that can
be used for storing the rest of the parts of the robot. The synchronization problems
can be easily solved using a trigger signal for the simultaneous acquisition. Notice
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that each camera only has to acquire a single column. The stitching of the non-central
panorama can be addressed by using parallel computing with field programmable gate
arrays (FPGAs).

Of course this configuration directly suggests a question about the feasibility of the
system: Why rejecting most of the information of the array of cameras for stitching a
panorama? Why not directly using the information of the whole collection of cameras
for performing a reconstruction? Our answers to these questions are the following:
First of all, our proposal only has to manage a small of amount of information from
each camera reducing the needed memory for storing it. But the main reason is that
with our proposal we avoid the costly and prone to error matching step in the 3D
reconstruction pipeline. In conventional cameras, the geometric discipline about 3D
multi-view reconstruction is practically closed and solved, and the big effort is focused
on the artificial intelligence part where the system has to identify features which have
to be invariant to transformations. Our proposal is changing the paradigm by avoiding
this matching step and solving the 3D reconstruction with a pure geometrical solution.

With such a multi-camera device, and once that it is possible to acquire non-central
panoramic sequences in a moving system, next step is developing the uncertainty
propagation of the estimated 3D lines for performing a Simultaneous Localization and
Mapping (SLAM) system. Notice that our proposal can take advantage of the metric
reconstruction of lines for avoiding the scale drift. On the other hand, some of the
horizontal line features can be shown during long parts of the sequence improving the
reconstruction.

Some research line of future work taking into account the work presented in this
thesis are discussed next. Notice that we are estimating 3D information in non-central
systems by imposing some structure prior information about the scene. In particular,
we are imposing that the edges of the scene are arranged in straight lines. It is possible
to consider other arranges like circles, or planar curves and if the projection surface
conserves the degrees of freedom of the original curve the problem could be addressed
in a similar way. Besides, we can explore additional geometric constraints between
lines for improving the 3D reconstruction like corners formed by three orthogonal in-
cident lines.



Appendix A

Homogeneous space and
Grassmann-Cayley algebra

Consider a projective coordinate system in P3 which is equivalent to choosing a basis
e0,e1,e2,e3 in R4, we define the point x

x =
3

∑
i=0

xiei = x0e0 +[e1,e2,e3]x = [e1,e2,e3,e0]

(
x
x0

)
(A.1)

with coordinates X =
(
xT,x0

)T and basis [e1,e2,e3,e0].
The coordinates of the same point in a different basis e′0,e′1,e′2,e′3 in R4

x = [e1,e2,e3,e0]X =
[
e′1,e

′
2,e
′
3,e
′
0
]

X′ (A.2)

can be expressed by the endomorphism X = HX′. If H is a Euclidean transformation it
can be written as

X =

(
R t
0T 1

)
X′ (A.3)

A.1 Exterior product of homogeneous vectors

The exterior (or outer) product [Kanatani, 2015,Pottmann and Wallner, 2001] between
two homogeneous vectors assigns to two vectors x and y of R4 a new bivector, which
is contained in a new vector space, denoted by Λ2R4. The operation has the following
properties,
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antisymmetry: x∧y =−y∧x. In particular x∧x = 0.
bi-linearity: x∧ (λ y+µz) = λ x∧+µx∧ z ,
associativity: x∧ (y∧ z) = (x∧y)∧ z
scalar operation: λ ∧µ = λ µ λ ∧x = λx

In particular for the basis e0,e1,e2,e3

ei∧ e j =−e j ∧ ei i, j = 0,1,2,3 (A.4)

ei∧ ei = 0 i = 0,1,2,3 (A.5)

A.2 Plücker coordinates of lines
A straight 3D line is a geometric arrange of 3D points having four degrees of free-
dom (DOFs) which is defined by the span of two 3D points or the intersection of two
planes. Considering projective geometry for describing the geometry of an scene, the
set of straight 3D lines forms a four-dimensional manifold induced by the underlying
geometry of the projective space P3.

The Plücker description of a 3D line is a P5 representation of a line obtained from
the null space of any pair of points x and y(

x0 x1 x2 x3
y0 y1 y2 y3

)
(A.6)

that can be computed using the exterior product

L = x∧y =
3

∑
i=1

3

∑
j=1

xiy jei∧ e j (A.7)

applying the definition (A.4) and (A.5) the exterior product becomes

L = x∧y = ∑
i, j∈I

(xiy j− x jyi)ei∧ e j (A.8)

obtaining the homogeneous vector the L ∈ R6 defined in a basis e0 ∧ e1,e0 ∧ e2,e0 ∧
e3,e2∧ e3,e3∧ e1,e1∧ e2

L = x∧y = [e0∧ e1,e0∧ e2,e0∧ e3,e2∧ e3,e3∧ e1,e1∧ e2]L (A.9)

defined by L = (l01, l02, l03, l23, l31, l12)
T where li j = xiy j− x jyi.

The vector L is decomposed in two vectors of R3, l=(l01, l02, l03)
T and l̄=(l23, l31, l12)

T

such that L =
(
lT, l̄T

)T 1. Instead of using the tensor li j the definition can be expressed
in terms of the cross product and matrix operations

1Notation detail: The vectors l and l̄ are defined by the tensor li j however in some parts of this thesis we

refer to the components of this vectors using this notation; l = (l1, l2, l3)
T and l̄ =

(
l̄1, l̄2, l̄3

)T.
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L = x∧y = (x0e0 +[e1,e2,e3]x)∧ (y0e0 +[e1,e2,e3]y)
= x0e0∧ [e1,e2,e3]y+[e1,e2,e3]x∧ y0e0 +[e1,e2,e3]x∧ [e1,e2,e3]y

= e0∧ [e1,e2,e3] (x0y− y0x)+ [e2∧ e3,e3∧ e1,e1∧ e2]x×y (A.10)

defining the span operation in terms of the coordinates as

L =

(
l
l̄

)
=

(
x0y− y0x

x×y

)
(A.11)

Notice that not all the elements of the P5 space correspond to 3D lines. The points
of P5 corresponding to lines in P3 must hold lT l̄= 0 which is known as Plücker identity.
This identity is a quadratic constraint which defines a two dimensional subspace in P5

called the Klein quadric M4
2 . Plücker representation has a geometric interpretation in

Euclidean geometry. Vector l represents the direction of L and l̄ is the moment vector
which can be seen as the normal to a plane passing through the 3D line and the origin of
the reference system. The Plücker identity expresses the orthogonality of l and l̄ given
that the direction vector must be contained in the plane defined by l̄. The minimum
distance from the origin O to the 3D line can be computed as dl =

‖l̄‖
‖l‖ . The Euclidean

vector from the origin O to the point of the 3D line with minimum distance is xl =
l×l̄
‖l‖ .

Notice that
[
xl , l, l̄

]
defines an orthogonal basis on the Euclidean space. When xl is

known the line can be defined as

L =

(
l

xl× l

)
(A.12)

A.2.1 Line equation
A point x ∈ P3 is contained in the line L = y∧ z if and only if x∧ y∧ z = 0 ,namely

x∧L = 0 (A.13)

which represents the equation of the line L.
Consider the matrix E = [e1,e2,e3] representing the basis of the original Euclidean

space and the the matrix Ē= [e2∧ e3,e3∧ e1,e1∧ e2] representing the momentum space,
then

L = e0∧ [e1,e2,e3] l+[e2∧ e3,e3∧ e1,e1∧ e2] l̄ = e0∧El+ Ēl̄ = e0∧ l− l̄∗ (A.14)

where l = El = [e1,e2,e3] l is the direction vector in the euclidean space and l̄∗ =−Ēl̄ =
− [e2∧ e3,e3∧ e1,e1∧ e2] l̄ is the moment vector in the ”dual” space, such that
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l̄∗ = −̄le1∧ e2∧ e3 (A.15)

where Π∞ = e1∧e2∧e3 is a trivector representing the volume element and l̄= [e1,e2,e3] l̄
is the moment vector in the Euclidean space. Therefore, the equation of the line is

x∧L = (x0e0 +[e1,e2,e3]x)∧
(
e0∧ [e1,e2,e3] l+[e2∧ e3,e3∧ e1,e1∧ e2] l̄

)
(A.16)

x∧L = (x0e0 +Ex)∧
(
e0∧ l− l̄∗

)
=−x0e0∧ l̄∗+Ex∧ x0e0∧ l−Ex∧ l̄∗

=−x0e0∧
(
Ex∧ l+ l̄∗

)
−Ex∧ l̄∗ (A.17)

so the equation x∧L = 0 is equivalent to

Ex∧ l+ l̄∗ = 0, Ex∧ l̄∗ = 0 (A.18)

which expressed in terms of the cross product and matrix operations is

x× l− x0 l̄ = 0, xT l̄ = 0 . (A.19)

The line equation defines an Euclidean distance from point to line such that

d =
‖x× l− x0 l̄‖

x0‖l‖
. (A.20)

A.2.2 Change of reference

Consider a projective transformation H =

(
A t
oT s

)
with A = [a1,a2,a3] such that

X = HX′. The equivalent transformation for Plucker lines is the matrix G such that

L = GL′ (A.21)

where G =

(
G11 G12
G21 G2

)
with

G11 = sA− toT (A.22)
G12 = A[o]×

T (A.23)
G21 = [t]×A (A.24)

G22 = (a2×a3,a3×a1,a1×a2) (A.25)

If H is a Euclidean transformation then

G =

(
R 0

[t]×R R

)
(A.26)
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A.2.3 The side operator

Given two 3D lines expressed in homogeneous Plücker coordinates L =
(
lT, l̄T

)T and
M =

(
mT,m̄T

)T the side operator between them is defined as

Ω(L,M) = lTm̄+mT l̄ (A.27)

The operator Ω is a signed distance whom sign defines the side of the line M with
respect the line L. Consider a plane Π defined by the two direction vectors l and m but
passing by line L and splitting the space in two regions, then sign(Ω(L,M)) determines
if the line M is passing through the right side or the left side of this plane Π.

The norm of the side operator is ‖Ω(L,M)‖= d‖l‖‖m‖|sinα| where α the angle
between l and m and d is the Euclidean distance between the closest point of both lines
which can defined using the side operator as

d =
|lTm̄+mT l̄|
‖l×m‖

. (A.28)

A.3 Representation of planes

Consider three points at x, y, z, the corresponding plane defined by these points Π is
the exterior product of the three homogeneous points

Π = x∧y∧ z . (A.29)

The result of the product of three vectors of R4 is an element of ΛR4 with the basis

e1∧ e2∧ e3, e0∧ e2∧ e3, e0∧ e3∧ e1, e0∧ e1∧ e2 (A.30)

and described with the homogeneous vector U ∈ P3 such that U =
(
uT,u0

)T by

Π = e0∧ [e2∧ e3,e3∧ e1,e1∧ e2]u− [e1∧ e2∧ e3]u0 =
[
e0∧ Ē,−Π∞

]
U (A.31)

where

u = x0y× z+ y0z×x+ z0x×y (A.32)
u0 =−|x,y,z| . (A.33)
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A.3.1 Equation of a plane
A point x is on the plane Π = p1∧p2∧p3 if and only if x∧p1∧p2∧p3 = 0, namely

x∧Π = 0 . (A.34)

Consider u = [e1,e2,e3]u and the dual u∗ =−ue1∧e2∧e3 =−uΠ∞, then equation
(A.31) can be written as

Π =−e0∧u∗−u0Π∞ (A.35)

and the exterior product of four points can be expanded

x∧Π = (x0e0 +Ex)∧ (−e0∧u∗−u0Π∞) =−Ex∧ x0e0∧u∗− x0u0e0∧Π∞

= e0∧ (Ex∧u∗− x0u0Π∞) =−
(
x0u0 +uTx

)
e0∧Π∞ (A.36)

such that equation (A.34) becomes

u0x0 +uTx = UTX = 0 . (A.37)

The plane equation allows defining an Euclidean distance between point and plane
such that

d =
‖uTx+u0x0‖

x0‖u‖
. (A.38)

A.4 Dual representation: span and intersection
The dual representation of a line L = e0∧ l− l̄∗ is the expression L∗ =−e0∧ l̄+ l∗ with
where the corresponding coordinates are

L∗ =
(

l∗
l̄∗

)
. (A.39)

The line L spanned by points x and y, L = x∪y = x∧y is given by

L =

(
l
l̄

)
=

(
x0y− y0x

x×y

)
(A.40)

Dual to (A.40), the dual Plücker coordinates of the line L contained on planes Π

and ϒ and represented by vectors U and V is L∗T =
(
(u0v− v0u)T,(u×v)T

)T
. The

intersection L = Π∩ϒ between the planes Π and ϒ represented by vectors U and V is

L =

(
l
l̄

)
=

(
u×v

u0v− v0u

)
. (A.41)
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The span of a line L and a point x non incident to the line is a plane Π , such that
Π = x∪L = x∧L. The coordinates U of plane Π are given by

U =

(
u
u0

)
=

(
−x0 l̄+x× l

xT l̄

)
(A.42)

The dual operation computes the intersection point x with coordinates X between
the plane Π and the line L such that x = Π∩L obtaining

X =

(
x
x0

)
=

(
−u0l+u× l̄

uTl

)
(A.43)

If two lines L and M intersect such that Ω(L,M) = 0 the spanned plane Π with
coordinates U such that Π = L∪M is

U =

(
u
u0

)
=

(
−l×m

l̄Tm

)
(A.44)

The dual version of this expression computes the intersection point such that x =
L∩M by

X =

(
x
x0

)
=

(
−l̄× m̄

lTm̄

)
(A.45)

when Ω(L,M) = 0.

A.5 Plücker matrices
The antisymmetric rules of the exterior product operation (see Section A.1) can be
explicitly imposed defining the antisymmetric matrix

N = abT−baT . (A.46)

Consider two points of euclidean space x,y ∈ R3 and the cross-product z = x×y.
The exterior product of x and y is related with the cross product by

x∧y = [e1,e2,e3]x∧ [e1,e2,e3]y∧= [e2∧ e3,e3∧ e1,e1∧ e2]z (A.47)

Notice that cross product and exterior production are not exactly the same because
the exterior product is a bivector and the cross product is a vector of the Euclidean
space but the computing of the components is equivalent. The antisymmetric matrix
defined by equation (A.46)

N = xyT−yxT =

 0 z3 −z2
−z3 0 z1
z2 −z1 0

 (A.48)
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contains the coordinates of the exterior product (or cross-product).
Consider two points in P3 with homogeneous coordinates X ∈R4 and Y ∈R4. The

result of imposing the antisymmetric rules (equations (A.4) and (A.5)) of the exterior
product using (A.46) is known as Plücker matrix and its relation with plucker coordin-
ates is

L = XYT−YXT =


0 l12 −l31 −l01
−l12 0 l23 −l02
l31 −l23 0 −l03
l01 l02 l03 0

=

(
−
[
l̄
]
× −l

lT 0

)
(A.49)

where [x]× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 is the antisymmetric operator (do not confuse

with (A.48)). Notice that in general equation (A.46) is a way of computing the exterior
product between two vectors using matrix operations but the result is a matrix instead
of a bivector.

The advantage of this description is that allows easily computing the meet operation
between a line and plane. Given a line L represented by the Plücker matrix L and the
plane Π represented by the vector U the point x with homogeneous coordinates X
resulting from the intersection between line and plane x = L∩π is the pole of L and it
is computed by

X = LU . (A.50)

The duality between points and planes allows using (A.46) with the vectors U and
V, which represent the planes Π and ϒ, obtaining the dual Plücker matrix

L∗ = UVT−VUT =


0 l03 −l02 −l23
−l03 0 l01 −l31
l02 −l03 0 −l12
l23 l31 l12 0

=

(
− [l]× −l̄

l̄T 0

)
. (A.51)

With the dual Plücker matrix it is easy to define the span operation. Given a line
L represented by the dual Plücker matrix L∗ and the point x represented by the vector
X the plane Π with homogeneous coordinates U resulting from the span between line
and plane x = L∩π is the polar plane of L and it is computed by

U = L∗X . (A.52)
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A.6 Quadrics, polarities, null-polarities and complexes
In the Cayley homogeneous space polarities are described by symmetric matrices and
represent quadrics. Null polarities are described by anti-symmetric matrices and rep-
resent complexes.

A.6.1 Quadrics
If Q is a symmetric matrix then the endomorphism defined by U = QX is called a
polarity. In particular, given a matrix Q∈R4×4 such that QT = Q and an homogeneous
point of the projective Cayley-Grassmann space X ∈ P3 the equation

XTQX = 0 (A.53)

represents a quadric in P3. A quadric defines a polarity between a point and a plane.
The plane U = QX is the polar plane of X with respect to Q.

The dual of a non-degenerate quadric represented by the full rank matrix, Q is
another quadric Q∗ = adjoint(Q) = det(Q)Q−T which defining the equation of the
tangent planes U to the quadric Q such that

UTQ∗U = 0 . (A.54)

The point X = Q∗U is the pole plane of U with respect to Q. Notice that, since
QT = Q, then Q−T = Q−1 and due to X is up to scale then X = Q−1U.

Under the point transformation X = HX′ between two reference systems a quadric
transforms as

Q = H−TQ′H−1 . (A.55)

A.6.2 Intersection of a line with a quadric
Consider two points X0 and X1 , the corresponding parametric line definition

X(λ ) = X0 +λX1 (A.56)

and the corresponding Plücker matrix such that L = X0X1
T−X1X0

T.
The plane U0 =QX0 is the plane polar to the quadric Q respect to the pole X0 which

is a plane intersecting the quadric such that any tangent plane to the quadric passing
through a point of this intersection contains the pole X0. Consider the point Xu which
is the intersection between the line with the polar plane U0. It is called the conjugate
point of X0 and it can be computed as

Xu = LU0 = LQX0 , (A.57)

and we can express the line in terms of X0 and Xu
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X(λ ) = Xu +λX0 . (A.58)

The line intersects the quadric in two points X+
I and X−I which are two different

real points if the ray intersects the quadric, one double point if the ray is tangent to the
quadric and two complex points if not.

Consider the polar plane U of a generic point X(λ ) of the line

U = QX(λ ) = QXu +λ QX0 (A.59)

If the point X(λ ) is in the quadric its corresponding polar plane U is tangent to the
quadric and passing through the pole.

Imposing the point X(λ ) lying on plane U we can solve the intersection.

XT (λ )U = Xu
TQXu +λ

(
Xu

TQX0 +X0
TQXu

)
+λ

2X0
TQX0 = 0 (A.60)

Since X0 and Xu are conjugate points Xu
TQX0 = 0 and X0

TQXu = 0 and the last
equation remains

XT (λ )U = Xu
TQXu +λ

2X0
TQX0 = 0 (A.61)

From these we obtain the parameter λ and the corresponding expressions for the
intersections and for the polar planes in these points (which are tangent to these).

λ
2 =− Xu

TQPu

X0
TQX0

=−X0
TQLTQLQX0

X0
TQX0

(A.62)

X±I = (LQ+λ I)X0 (A.63)

U±I = (QL+λ I)QX0 (A.64)

A.6.3 Null-Polarities and Complexes

If N is a antisymmetric matrix then the endomorphism defined by U = NX is called
a null-polarity. In particular, given a matrix N ∈ R4×4 such that NT = −N and an
homogeneous point of the projective Cayley-Grassmann space X ∈ P3 the equation

XTNX = 0 (A.65)

means that X is contained in the plane NX and N represents a complex. If following a
notation similar to the one used in Plücker matrices
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N =


0 n03 −n02 −n23
−n03 0 n01 −n31
n02 −n03 0 −n12
n23 n31 n12 0

=

(
− [n̄]× −n

nT 0

)
(A.66)

where n̄ = (n01,n02,n03)
T and n = (n23,n31,n12)

T, if the relation nT n̄ = 0 is satisfied
the complex is called a singular complex.
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camera calibration. Wiley Encyclopedia of Computer Science and Engineering.

[Kim et al., 2008] Kim, J.-H., Li, H., and Hartley, R. (2008). Motion estimation for
multi-camera systems using global optimization. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2008), pages 1–8.

[Kingslake, 1989] Kingslake, R. (1989). A history of the photographic lens. Academic
Press.

[Klein and Murray, 2007] Klein, G. and Murray, D. (2007). Parallel tracking and map-
ping for small ar workspaces. In 6th IEEE and ACM International Symposium on
Mixed and Augmented Reality (ISMAR 2007), pages 225–234.

[Kneebone et al., 1998] Kneebone, G. et al. (1998). Algebraic projective geometry.
Oxford University Press, USA.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.
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torus model for conical mirror based catadioptric system. Computer Vision and
Image Understanding, 126:67–79.

[Lowe, 2004] Lowe, D. (2004). Distinctive image features from scale-invariant key-
points. In International Journal of Computer Vision, volume 20, pages 91–110.

[Lumsdaine and Georgiev, 2009] Lumsdaine, A. and Georgiev, T. (2009). The fo-
cused plenoptic camera. In IEEE International Conference on Computational Pho-
tography (ICCP 2009), pages 1–8.

[Magnier et al., 2010] Magnier, B., Comby, F., Strauss, O., Triboulet, J., and Demon-
ceaux, C. (2010). Highly specific pose estimation with a catadioptric omnidirec-
tional camera. In In IEEE Int. Conf. on Imaging Systems and Techniques (IST’10),
Thessaloniki, Grece.

[Mahony et al., 2012] Mahony, R., Kumar, V., and Corke, P. (2012). Multirotor aerial
vehicles: Modeling, estimation, and control of quadrotor. IEEE Robotics & amp
amp Automation Magazine, (19):20–32.

[Mei and Malis, 2006] Mei, C. and Malis, E. (2006). Fast central catadioptric line ex-
traction, estimation, tracking and structure from motion. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2006), pages 4774–4779.

[Mei and Rives, 2007] Mei, C. and Rives, P. (2007). Single viewpoint omnidirectional
camera calibration from planar grids. In IEEE International Conference on Robotics
and Automation (ICRA 2007), pages 3945–3950.

[Meier et al., 2012] Meier, L., Tanskanen, P., Heng, L., Lee, G. H., Fraundorfer, F.,
and Pollefeys, M. (2012). Pixhawk: A micro aerial vehicle design for autonomous
flight using onboard computer vision. Autonomous Robots, 33(1-2):21–39.

[Melo et al., 2013] Melo, R., Antunes, M., Barreto, J., Falco, G., and Gonalves, N.
(2013). Unsupervised intrinsic calibration from a single frame using a “plumb-line”
approach. In IEEE 14th International Conference on Computer Vision (ICCV 2013),
pages 1–6.



188 Bibliography

[Menem and Pajdla, 2004] Menem, M. and Pajdla, T. (2004). Constraints on per-
spective images and circular panoramas. In 5th British Machine Vision Conference
(BMVC 2004), pages 1–10.

[Mezouar et al., 2004] Mezouar, Y., Abdelkader, H., Martinet, P., and Chaumette, F.
(2004). Central catadioptric visual servoing from 3D straight lines. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2004), volume 1,
pages 343–348.

[Miraldo and Araujo, 2014] Miraldo, P. and Araujo, H. (2014). Planar pose estimation
for general cameras using known 3d lines. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2014), pages 4234–4240.

[Miraldo et al., 2015] Miraldo, P., Araujo, H., and Goncalves, N. (2015). Pose estim-
ation for general cameras using lines. IEEE Transactions on Cybernetics, (99):1–1.

[Newcombe et al., 2011] Newcombe, R. A., Lovegrove, S. J., and Davison, A. J.
(2011). Dtam: Dense tracking and mapping in real-time. In IEEE International
Conference on Computer Vision (ICCV 2011), pages 2320–2327.

[Ng et al., 2005] Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., and Hanra-
han, P. (2005). Light field photography with a hand-held plenoptic camera. Com-
puter Science Technical Report CSTR, 2(11).

[of Vision Pty. Ltd. (2004), ] of Vision Pty. Ltd. (2004), P. Persistence of vision
raytracer (version 3.6).

[Perdigoto and Araujo, 2012] Perdigoto, L. and Araujo, H. (2012). Reconstruction of
3D lines from a single axial catadioptric image using cross-ratio. In 21th Interna-
tional Conference on Pattern Recognition (ICPR 2012), pages 857–860.

[Pinciroli et al., 2005] Pinciroli, C., Bonarini, A., and Matteucci, M. (2005). Robust
detection of 3D scene horizontal and vertical lines in conical catadioptric sensors.
In Proc. 6th Workshop on Omnidirectional Vision.

[Pottmann and Wallner, 2001] Pottmann, H. and Wallner, J. (2001). Computational
line geometry. Springer.

[Puig et al., 2011] Puig, L., Bastanlar, Y., Sturm, P., Guerrero, J. J., and Barreto, J.
(2011). Calibration of central catadioptric cameras using a dlt-like approach. Inter-
national Journal of Computer Vision, 93(1):101–114.

[Puig et al., 2010] Puig, L., Bermudez, J., and Guerrero, J. J. (2010). Self-orientation
of a hand-held catadioptric system in man-made environments. IEEE International
Conference on Robotics and Automation (ICRA 2010) pp:2549-2555, Anchorage,
Alaska May.



Bibliography 189

[Puig et al., 2012] Puig, L., Bermudez-Cameo, J., Sturm, P., and Guerrero, J. J. (2012).
Calibration of omnidirectional cameras in practice. a comparison of methods. Com-
puter Vision and Image Understanding, 116:120–137.

[Raguram et al., 2013] Raguram, R., Chum, O., Pollefeys, M., Matas, J., and Frahm,
J. (2013). Usac: a universal framework for random sample consensus. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 35(8):2022–2038.

[Ramalingam and Brand, 2013] Ramalingam, S. and Brand, M. (2013). Lifting 3D
manhattan lines from a single image. In IEEE International Conference on Com-
puter Vision (ICCV 2013), pages 497–504.

[Ray, 2002] Ray, S. (2002). Applied photographic optics: Lenses and optical systems
for photography, film, video, electronic and digital imaging. Focal Press.

[Ros et al., 2015] Ros, G., Ramos, S., Granados, M., Bakhtiary, A., Vazquez, D., and
Lopez, A. M. (2015). Vision-based offline-online perception paradigm for autonom-
ous driving. In IEEE Winter Conference on Applications of Computer Vision (WACV
2015), pages 231–238.

[Rosten and Loveland, 2011] Rosten, E. and Loveland, R. (2011). Camera distortion
self-calibration using the plumb-line constraint and minimal hough entropy. Ma-
chine Vision and Applications, 22(1):77–85.

[Rublee et al., 2011] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011).
Orb: an efficient alternative to sift or surf. In IEEE International Conference on
Computer Vision (ICCV 2011), pages 2564–2571.

[Scaramuzza et al., 2006] Scaramuzza, D., Martinelli, A., and Siegwart, R. (2006). A
toolbox for easily calibrating omnidirectional cameras. In International Conference
on Ingelligent Robots and Systems (IROS 2006).

[Scaramuzza et al., 2009] Scaramuzza, D., Martinelli, A., and Siegwart, R. (2009). A
robust descriptor for tracking vertical lines in omnidirectional images and its use
in mobile robotics. International Journal of Robotics Research, 28(2):149–171.
Special Issue on Field and Service Robotics.

[Schneider et al., 2009] Schneider, D., Schwalbe, E., and Maas, H.-G. (2009). Valida-
tion of geometric models for fisheye lenses. Journal of Photogrammetry and Remote
Sensing, 64(3):259 – 266.

[Serrano-Gotarredona et al., 2009] Serrano-Gotarredona, R., Oster, M., Lichtsteiner,
P., Linares-Barranco, A., Paz-Vicente, R., Gómez-Rodrı́guez, F., Camuñas-Mesa,
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