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Abstract. Tracking the pose of objects is a relevant topic in computer vision,
which potentially allows to recover meaningful information for other applica-
tions such as task supervision, robot manipulation or activity recognition. In the
last years, RGB-D cameras have been widely adopted for this problem with im-
pressive results. However, there are certain objects whose surface properties or
complex shapes prevents the depth sensor from returning good depth measure-
ments, and only color-based methods can be applied. In this work, we show how
the depth information of the surroundings of the object can still be useful in the
object pose tracking with RGB-D even in this situation. Specifically, we propose
using the depth information to handle occlusions in a state of the art region-based
object pose tracking algorithm. Experiments with recordings of humans naturally
interacting with difficult objects have been performed, showing the advantages of
our contribution in several image sequences.

1 Introduction

Object detection and tracking have always been an important topic in robotics and com-
puter vision. Knowing the 6D pose of an object in real-time can be helpful for many
applications such as robot manipulation, online task supervision or action recognition.
The variability and complexity of the objects and scenes makes this problem hard to
solve with computer vision and, therefore, it remains relevant in the field. Lately, thanks
to the popularization of consumer depth cameras such as Microsoft Kinect, new algo-
rithms have been proposed, including the tracking of articulated objects [24] with the
addition of physical constraints [23]. However, these works rely uniquely on the depth
measurements, which may not be suitable for certain situations when the depth infor-
mation is not reliable. For example, when tracking what we call complex or difficult
objects (e.g. those with thin or intrincate shapes, made of some types reflective surfaces
or glass objects) the depth measurements provided by conventional RGB-D cameras
cannot be used for this purpose. An example of these type of objects is shown in Fig. 1.

In this work, we focus on tracking robustly the 6D pose of difficult objects. The con-
sidered framework is a single RGB-D camera, using the RGB component whenever the
depth camera fails to recover meaningful information. We studied previous approaches
of 6D object tracking using different cues, specially paying attention to those methods
using RGB cameras. We chose as starting point one of these state of the art methods
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Fig. 1: Sample frame extracted from the video sequences used in this work, including
color image (a) and depth image (b). In (b) the tones of grey vary with the depth and
black pixels are pixels with no depth information. Some objects such as the red tube
holder or the circular plates are not visible in the depth image due to the reflective
properties of their materials. These are the type of objects we consider in this work.

[21], which uses region-based object tracking with 3D models. Then, we perform en-
hancements to adapt the method to the particular problem considered here. Specifically,
we explore how the depth image around the object can be used to improve the track-
ing even when the object itself is hardly perceivable. By using depth information, we
show that it is feasible to detect the points in the scene that are visually occluding the
object in its current estimated pose. Taking advantage of knowing the occluding region,
we modify the optimization performed by [21] to improve the object tracking avoiding
failures derived from occlusions.

The motivation of this work is the object tracking during human manipulation. In
our dataset, the humans are performing a laboratory activity, acting unaware that they
are being recorded and producing natural video sequences (a frame of one of these
sequences shown in Fig. 1). The working environment is supposed to be known, so we
have previous CAD models of the objects in the scene. We have used a dataset of such
conditions to perform experiments, showing how our approach outperforms the default
method. We prove how this mutual collaboration between color and depth information
overcomes limitations that pure depth-based methods and pure color-based methods
have by design: color enables complex object tracking for the former and depth helps
handling occlusions for the latter.

2 Related work

There are many different approaches to tackle object pose tracking problem with com-
puter vision [16, 27]. Some methods work better with specific type of objects. For ex-
ample, when the objects are highly textured and the texture is known, a way to retrieve
the pose can be to find correspondences between the template and the image (using, for
instance, point correspondences), and then using geometric methods such as homogra-



phies to compute the pose. These methods work well in “cereal box” type of objects
[10, 14], but are prone to fail in textureless objects, as the features extracted change
with perspective or illumination. Given that we focus on difficult objects that usually
lack prominent textures, these previous methods are considered out of scope for our
problem.

Some other authors consider the problem simultaneously with the segmentation of
the object in the RGB image given a known 3D model [22, 4, 8, 21]. These methods
are called region-based methods. They work with the fact that (usually) objects have
a distinct property that differenciates them from the background, such as the color. A
function is defined so that it returns the likelihood of every pixel to belong to the back-
ground or the foreground (i.e. the object). The pose of the object is optimized so that
its projection in the image leaves foreground pixels inside and background pixels out-
side following an energy minimization problem. These methods have severe limitations.
For instance, this approach is prone to fail when there is no clear distinction between
the foreground and the background (e.g. transparent objects, similar colors), and has
problems handling occlusions. Besides, sometimes the poses that optimize the problem
might not be unique. However, it has the advantage of working with rapidly moving
objects (which may appear blurred in the image).

Alternative approaches are the so-called edge-based methods. They are based in
the extraction of edges in the image, which are usually invariant to illumination, and
appear in both textured and textureless objects even when they are transparent. Essen-
tially, these methods consist in finding the pose of the object that makes its 3D edges (as
projected from the CAD model) match its correspondent edges extracted in the image
by using some contour extraction algorithm. Some examples of this kind of approach
are [9, 26]. For the tracking, Particle Filter has been used in some works such as [3, 7].
Inspired by [17], Imperioli et al. [13] do not only use the location of the edges them-
selves but also the orientation in what is called Directional Chamfer Distance (DCD).
Edge-based methods often have initialization problems, but for tracking applications
with small displacement between frames, they should be robust enough if the edges are
well detected (i.e. no motion blur). However, these methods are usually rather slow for
real-time applications, and it is often hard to match edges correctly in highly cluttered
environments, where wrong matches may occur.

There are some works that specifically focus on the detection of transparent objects.
For instance, [15] use the infrared emitter and sensor from a ToF camera to detect and
reconstruct transparent objects. A RGB-D camera is used in [19] to estimate the object
pose. In [20], they use a stereo camera to look for transparent objects in the observed
inverse perspective mapping discrepancy.

We can also add some physical constraints to guide the retrieval of the 6D pose
to plausible object positions. For instance, two different volumes cannot intersect, in-
cluding the user hands and the working table. This can be done reasoning with the
volumes themselves via TSDF [23] or by using physics engines such as Bullet [11, 25]
or MuJoCo [18]. Gravity can also be included in the system with an appropriate physics
engine.

A combination of methods could be the best approach to tackle this problem, since
every one of them has its own advantages and limitations. Some existing approaches



that combine several cues are the following: Edge-based and color-based approach is
presented in [2]. Keypoints are used in combination with edges [6] or 3D point clouds
[1]. One of the most popular approaches in object detection is the LINE-MOD [12]. It
combines both depth and edge-based cues in a unified framework. Seo et al. [5] uses
region-based knowledge to extract confident searching directions in order to enhance
their edge-based approach.

In this work, we propose a combination of methods, using RGB and depth with
a single RGB-D device. Unlike other proposals, our main interest is to focus in those
objects which reflect depth very badly. Nevertheless, the depth information of the sur-
roundings can still be used to improve the object localization, e.g. segmenting the back-
ground information, estimating the work table plane or tracking the hands of the user.
We propose to add this information extracted from the depth to enhance a color-based
pose tracking algorithm. The idea is to complement existing methods which use depth
cameras in those objects whose depth information cannot be retrieved. As the dataset
we use have some fast movements, we decided to start from [21], which is able to han-
dle this circumstance successfully. Then, we use the depth information to solve one of
its main limitations: the occlusions.

3 Proposed Method

In this work, our goal is to use a RGB-D camera to successfully track objects which
cannot be properly perceived by the depth sensor. This means that the observation of
the object needs to be performed with the color camera instead. However, our proposal
shows that the depth information outside the object can still be helpful in this context.
For this, we choose to start with a state of the art method for object tracking with
color images, the PWP3D [21]. The original method is briefly described in Section 3.1
Then, in Section 3.2 we explain how we have enhanced the method by including depth
information to the algorithm.

3.1 Object tracking with PWP3D

The PWP3D is a method for real-time segmentation and tracking of 3D objects [21].
It assumes a 3D model of the objects to track is available, which is true in restricted
environments such as the one considered in this work (Fig. 2a). The problem consists in
retrieving the pose of the object that makes the projection of the 3D model match pixel
by pixel its image representation along a sequence of images (Fig. 2b). The projection
of the object leaves two different regions divided by the contour around the object C
(Fig. 2c): the foreground Ω f (i.e. the pixels which lie inside the object) and the back-
ground Ωb (i.e. the rest of the image). The contour C is a closed line which evolves
through frames as the object moves in the scene. It is implicitly represented by the zero
level-set of an embedding function Φ(x), i.e. C = {x|Φ(x) = 0}, where x = (x,y) is the
location of a pixel in the image I.

Each region has its own statistical appearance model, P(y|M f ) and P(y|Mb) respec-
tively, being y the pixel value of the image (I(x) = y) and M = {M f ,Mb} the model
parameter of the foreground or background. The appearance models can be obtained by
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Fig. 2: (a) Example of 3D model. (b) Wireframe of the 3D model projected to the im-
age. (c) The projection generates a contour C which separates the image domain in
foreground (Ω f ) and background (Ωb). (d) Proportionally highlighted in green, the
likelihood of the pixels to belong to the foreground. (e) New frame introduced with
the previous contour in blue. (f) After the optimization, the PWP3D algorithm is able
to retrieve the updated pose (in red).

providing an initial bounding box of the object and building a histogram or probability
density function describing the color distribution in the region. In Fig. 2d there is an ex-
ample of the likelihood of every pixel of being foreground: the greener, the more likely
to be foreground.

An energy function can then be formulated to maximize the discrimination between
background and foreground. Instead of using the likelihoods, [4] proposed formulating
this using the posterior in order to perform a pixel-wise marginalization of the model
parameters. From [21], we have the energy function:

E(Φ) =− ∑
x∈Ω

log
(
He(Φ)Pf +(1−He(Φ))Pb

)
(1)

where He(Φ) is the smoothed Heaviside step function, which returns 1 inside the object
and 0 in the outside. The function has been smoothed to provide uncertainty in the
contours [4]. Pf and Pb are defined as:

Pf =
P(y|M f )

η f P(y|M f )+ηbP(y|Mb)
(2a)

Pb =
P(y|Mb)

η f P(y|M f )+ηbP(y|Mb)
(2b)

where η f = ∑x∈Ω He (Φ) and ηb = ∑x∈Ω (1−He (Φ)). The pose parameters are the
parameters we want to optimize, which are correlated with the level-set function Φ . To
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Fig. 3: (a) and (b): The pose of the tracked object is affected by the appearance of the
occluding hand. New optimized pose is in green, and the pose from the previous frame
is in blue. (c) Depth image from the case in (b). (d) As the pose is known from previous
frames, the object can be rendered and merged with the depth image. (e) Occluding re-
gion Ωo in green, i.e. the depth points over the object. (f) Establishing equal likelihoods
in the Ωo the algorithm is able to handle occlusions and obtain the correct pose.

solve this, equation (1) is differentiated with respect to the pose parameters to use stan-
dard gradient-based non-linear minimization techniques. Implementation details are in
[21]. In consecutive frames, the pose from the previous frame is the initial solution to
solve the optimization problem. In Fig. 2e there is the next frame of the example, where
the most likely pixels that belong to the tracked object have been highlighted in green
and the contour of previous iteration is drawn in blue. By solving the energy minimiza-
tion problem we are able to obtain the new pose, as the red contours from Fig. 2f show.

The statistical appearance model needs to be updated online during the execution of
the program. Otherwise, simple but common actions such as projecting shadow over the
object may decrease the likelihood of the affected pixels to be considered as foreground,
and therefore the performance of the algorithm may produce negative results. To do so,
[21] propose the following adaptation equation:

Pt(y|Mi) = (1−αi)Pt−1(y|Mi)+αiPt(y|Mi), i = { f ,b} (3)

where t and t−1 means the current and previous moment in time (frames), and α f and
αb are the learning rate of the foreground and background respectively.

3.2 Handling occlusions with depth information

Certain situations may cause the PWP3D to produce undesirable results. For example,
the algorithm is not able to handle occlusions properly. Until certain extent it does



overcome occluded situations, but often the grade of occlusion is too high or it lasts
too long that the optimization tends to wrongly accommodate the object to maximize
the discrepancy between foreground and background. Usually, when the occlusion is
removed, the pose is corrected. However, for instance, if we want to perform some kind
of online task supervision, those momentarily wrong poses defeat the purpose and are
unacceptable.

Looking at the example in Fig. 3a we can see how when the hand (composed by
likely background pixels) enters the foreground area (the blue contour from previous
iteration) the PWP3D starts changing the pose to compensate for this. The optimized
pose leaves a new contour (in green) which maximizes the discrepancy between fore-
ground and background by leaving some red pixels out but letting some purple pixels
in. This struggle of the PWP3D algorithm intensifies when the level of occlusions rises,
such as a few frames later in Fig. 3b. The problem may be aggravated if the statistical
appearance model of the foreground learns colors coming from the background.

To handle those occlusions is necessary to locate the occluding pixels and give them
special treatment. Specific solutions to perform this operation can be found for every
case: for example, a simple color image segmentation could be used to find the purple
gloves in the scene from Fig. 3. However, we propose to use the information from
the depth camera to serve at this purpose instead in order to provide a more general
solution. The goal of this work is to track difficult objects, objects unable to reflect
depth information, as it can be observed in the absence of depth data from the tube
holder in Fig. 3c (black pixels mean no depth data available). From an initial known
pose, obtained from the PWP3D or provided as input, we can use rendering software to
get the z-buffer and merge it with the depth image if the camera system calibration is
known (which we assume it is). A synthetic depth image with the 3D object seamlessly
integrated can be obtained (Fig. 3d). Most importantly, we are able to retrieve the pixels
from the depth camera which are in front of the object and therefore occluding it. An
example of the detection of the occluding pixels is shown in Fig. 3e. Next, we describe
the proposed algorithm in which this information is used:

We define a third type of region complementary to the background and the fore-
ground: the occluding region Ωo. Conceptually is like the intersection between Ω f and
Ωb, since the pixel color information presents higher likelihood of it being background,
but the 3D information reveals the possibility of part of the object being hidden be-
hind. Thus, if we set the likelihood of the pixels in Ωo to belong to the foreground and
background as equal:

P(I(x)|M f ) = P(I(x)|Mb), ∀x ∈Ωo (4)

from (2) we have Pf = Pb = Po and, therefore, from (1)

E(Φ) =− ∑
x∈Ωo

log(Po) = C, ∀x ∈Ωo (5)

which means that, the pixels in Ωo have no impact in the optimization process as their
energy is constant in those points. That way, whenever an already correctly tracked
object is occluded, the optimized pose is not affected by the occlusion, as we show in
Fig. 3f.



During the optimization, every iteration the pose changes so the occluding region
needs to be computed again. As we cannot ensure that the depth measurements are accu-
rate enough, in a normal execution the occluding region is dilated several pixels to avoid
missing pixels. Furthermore, when the foreground model is updated, those occluding
pixels are removed so no wrong color information harms the model for succesive it-
erations. Although the inclusion of Ωo as described assumes the occluding objects are
observable with depth cameras, the idea can be generalized to any other type of occlud-
ing object detection. For example, if instead of using the depth straightforwardly we
use a more complex type of tracking of the occluding object, such as [24], there would
be less missing pixels and more accuracy in the Ωo. Also, all objects involved can be
considered by doing multi-object tracking with PWP3D itself [21]. In the case of con-
trolled robotics environment, internal sensors may reveal the position of the different
pieces.

4 Experiments

The dataset we use for this work consists of a series of recordings of biology students
doing some procedures in a wet lab. The scenes are not arranged in any way, the people
involved behave in a completely natural way. They have been recorded using three
different RGB-D cameras from different perspectives. However, we only focus on the
camera in front of the student, whose field of view covers the table where the activities
are being performed. The RGB-D camera prototype used has a high resolution 1080p
RGB camera, and a depth camera of 640×480 pixels. It is thought to be included as a
default webcam in laptops, and has the advantage of providing depth measurements in
a rather short range (20cm to 150cm) in contrast to other RGB-D models such as ASUS
Xtion Pro or Microsoft Kinect (0.5m to 5m). Even in this short range the quality of the
depth measurements is not good enough to locate and track some objects present in the
scene, which are intrincate or transparent (e.g. test tubes, tube-holders, jars, flasks). On
the other hand, depth information can still be used in our benefit, e.g. the table is clearly
visible, as well as some other big parts of the scene, such as the body of the student.
The color images have high resolution, which we resize to half their default size in order
to reduce computational cost (960×540 pixels). The models of the objects have been
created manually using open source 3D graphics software, as they were not part of any
known dataset.

As the main goal of this work is to perform tracking and not detection, initially, an
approximate pose of the object in the scene was provided by manually clicking several
correspondences in the image and solving a PnP problem. For the tracking we used the
open source implementation from [21] and made modifications over it, the main one
being the introduction of the occluding region in the optimization problem. We keep the
same learning rates for the foreground and background models (α f = 0.05, αb = 0.02)
as it leads to good results in our experience. However, we observed an improvement in
the accuracy of the pose when the band of pixels around the contour where the energy
function is evaluated is fixed to 4 instead of 16. Due to the nature of the dataset, the
displacements of the object between consecutive frames may be often very big. For
this reason and our interest in accuracy and robustness over efficiency, in the gradient
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Fig. 4: Tracking sequence 1. The previous (blue) and current (green) contours are shown
in each frame. The first two rows present the tracking without using depth information
whereas the bottom rows use depth information, showing clear improvement.

descent optimization we had to keep small steps and increase the number of iterations
up to 20 multi-iteration processes of 8 iterations each. After each multi-iteration, the
occluding region is computed again with the current pose.

In Figures 4-6, we show some results of our method running the described dataset.
In Fig. 4 there are some excerpts from the tracking sequence 1. To compare the perfor-
mance when our enhancements are included, we show 10 frames without depth infor-
mation and other 10 with depth (and therefore computation of the occluding region).
In each frame the previous contour (pre-optimization) in blue and the current contour
(post-optimization) in green are shown. When the hand is detected and removed from
the optimization, it can be seen that the estimated poses are not deviated in the presence
of occlusions. At the end the user moves too fast and gets blurrier and in both cases
leads to inaccurate poses, aggravated when depth is not used. In Fig. 5 there is another
example where the success of our contribution can be clearly observed. However, in
both cases the pose is wrong when part of the object goes out of the image (not shown).
In Fig. 6 we show an example where we can see how the depth points in the object do
not reveal any relevant information. With our method, the depth points can be correctly
computed and we can generate a synthetic 3D image with the tracked objects (Fig. 6),
or insert the 3D model in the point cloud (Fig. 7).

5 Conclusion

In this work, we tackle the problem of object pose tracking with RGB-D sensors from
a different perspective. We focus on those objects whose material or shape properties
prevent the depth sensor to provide meaningful information. Starting from a state of the
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Fig. 5: Tracking sequence 2. The current contours are shown in green in each frame.
The first row presents the tracking without using depth information whereas the bottom
row uses depth information showing clear improvement.

Initial depth image

Depth image with the model of the object included

Fig. 6: Tracking sequence 3. Depth image of the sequence as provided by the system
(first row). The object to track almost have no depth points during the sequence (black
pixels are pixels without depth data). Being able to track the pose with the color camera
we can insert the depth points of the object in the depth map (bottom row).

art color-based object tracking algorithm, we add some enhancements to improve the
performance in our specific problem. Our main contribution is that we use the depth
from the scene around the object to be tracked to detect occlusions. Here, we modify
the optimization problem from the state of the art method to handle occlusions properly.
Working on our own dataset, based on humans naturally manipulating objects in a wet
laboratory, we show how our enhancements improve notably the performance of the
system. The pose of the objects is maintained even under occluding situations, enabling
these results to be used in higher level problems, such as activity recognition, online
task supervision or robot manipulation.

Our method could be used standalone or in combination with other depth-based
tracking algorithms which are unable to work with complex objects. Further enhance-
ments can be done following the concept of using depth from the background when the
objects have no depth information. For example, in a table-top configurations such as
the one in our dataset, interpenetration of objects with the table should lead to detect
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Fig. 7: Point cloud snapshot as provided by the RGB-D sensor (a) and inserting the 3D
model as proposed in this work (b). It can be observed in (a) that the points of the object
(in red) are mostly out of place.

forbidden poses which would help the pose recovery process. Also, adding dynamics to
the system could improve the optimization when, instead of just the information from
the previous frame, a statistical estimation of the object pose is used.
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