A Novel Hybrid Camera System with Depth and Fisheye Cameras

Instituto Universitario de Investigación en Ingeniería de Aragón **Universidad** Zaragoza

Alejandro Perez-Yus, Gonzalo Lopez-Nicolas, Jose J. Guerrero {alperez, gonlopez, josechu.guerrero}@unizar.es Instituto de Investigación en Ingeniería de Aragón (I3A) - Universidad de Zaragoza

Motivation

Most consumer **RGB-D cameras** have a field of view (FoV) too small for certain applications.

On the other hand, there are many cameras (such as **fisheye cameras**) which are able to capture color images with a large FoV, but lacking the 3D information.

Proposal

New hybrid system with Fisheye and Depth **cameras** to overcome the limitations, having:

- Depth certainty and scale
- Wide field of view (>180 deg)

1542

Universidad

Zaragoza

This system needs to be calibrated, but the methods from the literature cannot be used for such complex configuration. In this work, we present a new method for depth-fisheye calibration. Experiments show its accuracy with real images.

Type of input images

Camera models

- Scaramuzza's model for the fisheye camera [1].
 - This makes our method valid for all types of perspective and omnidirectional cameras.
- Herrera's model for the depth camera [2].
 - Includes radial and tangential distortion correction and calibrates the conversion to metric measurements.

- The calibration pattern must be visible in the fisheye image and its supporting surface in the depth image.
 - To calibrate the fisheye distortion the camera must be close to the pattern.
 - The depth camera is unable to retrieve depth information in close range.

The fisheye needs to be calibrated offline with its own set of images!

B. Stepwise calibration

Computation of each stage

- Fisheye camera intrinsic calibration A1 B1
 - Solved using the method from [1]
- Depth camera intrinsic calibration B2
 - Standard camera calibration using IR images
- Extrinsic calibration B3
 - Average rotations and translations \rightarrow Minimize reprojection error ${}^{d}\mathbf{R}_{f}^{(I_{i})} = {}^{I_{i}}\mathbf{R}_{f} \cdot {}^{d}\mathbf{R}_{I_{i}}$ $\arg\min \|\hat{\mathbf{p}}_{ij}^f - \mathbf{p}_{ij}^f\| + \|\hat{\mathbf{p}}_{ij}^d - \mathbf{p}_{ij}^d\|$

arg min ${}^{d}\mathbf{t}_{f}^{(I_{i})} = {}^{I_{i}}\mathbf{t}_{f} - {}^{d}\mathbf{R}_{f} \cdot {}^{I_{i}}\mathbf{t}_{d}$ Global optimization and refinement A2 B4

$$J = \beta \frac{\sum RE_{ij}^f}{\sigma_f^2} + \frac{\sum RE_{ik}^d}{\sigma_d^2} \qquad \qquad RE_{ij}^f = \|\hat{\mathbf{p}}_{ij} - \mathbf{p}_{ij}\|_2 \\ RE_{ik}^d = \|\hat{d}_{ik} - d_{ik}\|_2$$

Example of application

We used this hybrid system to perform the **extension of** the depth information to the whole field of view of the **fisheye** in one single shot [3].

Experiments with real images

Calibration was performed and evaluated with two similar sets of images: Set A (25 images) and Set B (28 images). Mean reprojection error shown in the table.

Some examples of depth information mapped to the fisheye image:

	Evaluated Set A		Evaluated Set B	
	Fisheye (px)	Depth (du)	Fisheye (px)	Depth (du)
Joint calib. A	0.185	0.839	0.187	1.477
Step calib. A	0.185	0.806	0.187	1.514
Joint calib. B	0.165	1.322	0.183	0.856
Step calib. B	0.165	1.321	0.182	0.835

2) 3)

References

[1] D. Scaramuzza, A. Martinelli, R. Siegwart: A toolbox for easily calibrating omnidirectional cameras. IEEE/RSJ International Conference on Intelligent Robots and Systems (2006)

- The estimation of the depth in the periphery is done **via layout extraction**, where the solutions have scale and can be merged with the initial depth information.
- Some results with the final 3D reconstruction:

[2] C. Herrera, J. Kannala, J. Heikkilä: Joint depth and color camera calibration with distortion correction. IEEE Transactions on Pattern Analysis and Machine Inteliligence (2012)

[3] A. Perez-Yus, G. Lopez-Nicolas, J.J. Guerrero: Peripheral expansion of depth information via layout estimation with fisheye camera. European Conference on Computer Vision (2016)

Acknowkedgments

This work was supported by Projects DPI2014-61792-EXP and DPI2015-65962-R (MINECO/FEDER, UE), and grant BES-2013-065834 (MINECO).