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Abstract

In this work we present a novel approach to obtain scaled odometry and map estimates when performing monocular SLAM with wearable cameras.
After proving first that the oscillation of the body during walking can be observed in the odometric estimate from a monocular SLAM algorithm,
we develop a method to estimate the walking speed from the frequency of this oscillation. Having the real walking speed, a scale factor can be
dynamically computed to obtain a true scaled estimate of the map and visual odometry, avoiding scale drift on long term trajectories. Although
the algorithm requires the person to be walking in order to estimate the scale, the experiments, carried out in outdoor and indoor environments
and with different types of cameras, show that our method is reliable and robust to challenging situations like stops, changes in pace or stairs, and
provides a significant improvement with respect to the initial unscaled estimate. It also outperforms state-of-the-art solutions to correct the scale
drift in monocular SLAM, giving in addition the absolute scale of the trajectory and the 3D observed scene.

Keywords: Monocular SLAM, wearable vision, egocentric localisation.

1. Introduction

The use of cameras on sensing platforms arouses great in-
terest due to the low cost of this kind of sensors and the high
amount of information which is encoded in one image. In addi-
tion to this, the improvement on CPU performance and the ad-
vances in camera miniaturization and mobile computing have
lead to an emerging interest in the use of wearable cameras
[1], which are now available as consumer products (Memoto,
GoPro). Besides recreational use, wearable cameras can also
provide assistance to impaired people [2], [3].

In the context of a wearable vision system, a precise odo-
metric localisation of the camera and representation of the en-
vironment, can be used as a first step to provide high quality se-
mantic information. The use of cameras to tackle the problem
of Simultaneous Localisation and Mapping (visual SLAM) has
extended over the last years. Traditionally, the visual SLAM
problem has been addressed from a bayesian filtering perspec-
tive for example using an Extended Kalman Filter [4] or particle
filters [5]. On the other hand, structure from motion (SfM) ap-
proaches [6], [7], [8], which address the visual SLAM problem
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from an optimisation perspective, have recently emerged as an
alternative to the probabilistic filters due to their higher preci-
sion and the ability of building denser maps in real-time.

However, due to their purely projective nature, monocular
vision systems are not able to provide depth measurements of
the observed landmarks. One would need two images, provided
that the baseline between the corresponding camera poses is
large enough, to estimate both the camera translation and the
depth of the observed landmarks up to an ambiguity in the scale
factor.

In the context of monocular SLAM, this limitation translates
in two closely related problems. The first one is a chicken-egg
problem during initialisation by which neither camera trans-
lation nor the depth of the landmarks can be estimated until
enough parallax is observed. This can be tackled by provid-
ing some initial landmarks whose 3D position is fully known
[4], by user-aided initialisation [6], or by using an appropriate
parametrisation which allows for an automatic initialisation of
the monocular SLAM [9].

The second one is known as scale drift. During the initialisa-
tion of monocular SLAM, the scale is initially fixed to a real or
an arbitrary value, depending of the used method of the men-
tioned before. However, far from keeping itself constant, the
continuous lost of old landmarks and the initialisation of new
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ones gives raise to a change of the scale of the scene as the
camera moves. This ends up by introducing a deformation in
the final trajectory and map estimates which goes beyond a sim-
ple scale ambiguity. The deformation introduced by the drift in
the scale can even persist after applying state-of-the-art loop
closure techniques.

In this paper we propose a novel approach to compute dy-
namically the true scale from visual odometry estimates ob-
tained with wearable single cameras (Fig. 1), avoiding scale
drift problems in large environments. Our method is specially
suited to be used in wearable systems since it takes advantage
of the characteristic oscillatory movement of human body dur-
ing walking to extract the scale information. The implemen-
tation is done within a state-of-the-art visual SLAM approach
[10]. Nevertheless as it only needs the output corresponding
to the trajectory estimate it can be used in any visual odome-
try system, provided that the accuracy and the time resolution
of the SLAM algorithm are fine enough to capture the camera
oscillation associated to walking. The successful results of our
approach within an EKF-SLAM system means that it should
provide also good results with the more recent and more accu-
rate visual SLAM approaches based on Bundle Adjustment [6],
[11]. Also, to clearly perceive the walking oscillations some re-
strictions must be fulfilled. Firstly, the user must be walking on
a relatively plain terrain, such that its roughness is lower than
the amplitude of the walking oscillations. Secondly, the camera
must be attached to a body part whose motion is mainly due to
the action of walking, i.e., our method is quite likely to fail if
camera is attached to one arm of the user.

The method works as follows (Fig. 2): given an initial un-
scaled section of the trajectory composed by N camera poses,
we extract the signal of the vertical component of the cam-
era position and estimate the step frequency by computing its
Discrete Fourier Transform (DFT). The real walking speed is
computed from the step frequency using a biomedical relation
[12] which is supported by the natural tendency to optimise the
metabolic cost of walking [13, 14]. This speed measurement
is fed into a computationally simple particle filter to compute a
dynamic scale factor to scale each trajectory section.

Additionally, our method is made robust against bad scale
factor estimates in two ways. First, the spectral power of the

Figure 1. Devices used in our experiments. On top, GoPro Hero 2 wide angle
camera. On bottom, our helmet with catadioptric camera consisting on a conic
mirror and a VS-C14U-80-ST catadioptric camera.

Figure 2. Scheme of the basic scaling method.

candidate step frequency is tested to be consistent with the am-
plitude of the walking oscillations. This test makes possible
the detection of non-walking situations, e.g., when the user is
stopped, and then allowing for a different update strategy of the
scale factor. A second compatibility test is performed during
particle filtering to reject big variations of the scale factor.

Part of this work was presented as conference papers in [15]
and [16]. Now in this paper all the previous conference results
obtained by experimentation with a catadioptric camera are in-
tegrated and improved. Also, the paper includes the following
novel contributions:

• A method to scale not only the visual odometry but also
the detected points of the scene.

• New experiments with GoPro-like wearable cameras
showing the suitability of our method also for its use with
more universalised cameras.

• Comparison of our approach to the proposal by Strasdat et
al. [8] for scale drift removal.

• Evaluation of sensitivity of our method to inaccurate fitting
of the user specific parameters of the empirical formula
relating frequency to speed.

• Testing of our method when the camera is worn on the
chest rather than on the head.

The rest of the paper is organised as follows. Section 2 dis-
cusses the related work on wearable vision and on the scale
estimation problem in monocular SLAM. Section 3 describes
the SLAM approach used in this paper. Section 4 describes
how the real walking speed is approximated from the unscaled
odometry estimate. Section 5 explains the computation of the
scale and the subsequent scaling of the trajectory and features.
Section 6 demonstrates the effectiveness of our approach us-
ing both omnidirectional and conventional monocular systems.
Conclusions and final discussion are presented in Section 7.

2. Related work

The main topics for related work in this paper are wearable
vision and the scale problem in monocular SLAM.

2.1. Wearable vision

The research on wearable cameras for personal aiding has
widespread since the pioneering works of Mann [1]. Wearable
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cameras are normally placed in locations like the head, shoul-
ders or chest, which, for a general purpose, allow for a wide
field of view and resilience to body motion [17].

Most works on wearable vision systems have developed to-
wards recognition of human activities, where many approaches
take advantage from a nice feature of chest-wearable cameras:
the prior knowledge of the action or manipulation taking place
at the centre of the image. Recognition problems where wear-
able systems have been applied are segmentation of handled
objects [18, 19], recognition of activities and objects in the
workspace [20], novelty detection in a daily routine [21], clus-
tering of sport activities from video sequences [22], human de-
tection [23] or analysis of human movements to infer social in-
teractions [24].

With respect to the use of wearable vision for localisation,
some works [25, 26] propose appearance based localisation
methods in indoor environments. Concerning odometric lo-
calisation, Mayol-Cuevas et al. [27] presented a wearable ac-
tive vision system which changes its heading direction and uses
monocular SLAM for self-localisation. A similar system is pre-
sented by Castle et al. [28], using monocular SLAM and object
recognition for augmented reality. In [29] Badino and Kanade
propose head-wearable stereo system to estimate structure and
motion. Alcantarilla et al. [30] propose a wearable stereo sys-
tem which computes, together with SLAM, an estimate of the
dense scene flow to segment moving objects in the scene. Also
some works [31, 32] propose wearable platforms for human lo-
calisation and navigation without vision sensors, combining an
Inertial Measurement Unit (IMU) and a laser scanner.

2.2. Monocular SLAM and the scale problem

The problem of estimating the true scale in monocular
SLAM is addressed either by using additional proprioceptive
sensors, like IMUs and odometers, which provide metric in-
formation; or by considering geometric priors or constraints,
mainly in robotic platforms.

Among solutions using additional sensors, Lupton and
Sukkarieh [33] make the true map scale observable by integrat-
ing the visual data and the IMU data within an information fil-
ter. Nützi et al. [34] propose an approach where the scale is
computed by fusing the position and velocity from the visual
odometry estimate with the IMU data in an Extended Kalman
Filter (EKF). In [35], Engel et al. compute the scale factor of a
quadricopter visual odometry estimate from the measurements
of its on-board IMU and altimeter by using an optimisation
scheme.

Cumani et al. [36] use the wheel odometry to provide a prior
estimation of the true scaled motion between two consecutive
frames which is refined by the update from camera measure-
ments. Eude et al. [37], take the odometric measurement of
distance between two camera poses to compute a scale factor
which is applied to the displacement estimated with the cam-
era. Similarly, Scaramuzza et al. [38] use the vehicle speed
measurement to compute the true distance between the last two
frames and recover the 3D structure by triangulation of the com-
mon image points. In [10], Civera et al. also obtain scaled

visual odometry estimates by fusing the wheel odometry and
visual information in a EKF-SLAM framework.

Concerning works not using additional sensors, Lothe et al.
[39] use the prior knowledge of the distance from the camera
to the ground plane, which they obtain from the estimated 3D
points of the scene, to compute the scale factor of the scene.
Song and Chandraker [40] also use the ground plane for scale
estimation, but in addition to 3D points they also use dense
alignment of ground plane templates and cues from detected
objets to estimate the scale factor. Scaramuzza et al. [41] ob-
tain directly the scaled estimate of a vehicle trajectory by track-
ing only the points and using an homoghraphy-based ground
plane navigation. In [42] Scaramuzza et al. exploit non-
holonomic motion constraints of wheeled vehicles to resolve
the scale when the vehicle turns. Botterill et al. [43] propose
a solution to the scale drift problem consisting in identifying
previously learnt object classes of the environment and mea-
suring the size of these objects to improve the scale estimate.
Strasdat et al. [8] propose a loop closure technique in which
camera poses are defined as 7 DoF similarity transformations
(translation, rotation and scale) rather than the habitual 6 DoF
rigid transformations (translation and rotation). This allows to
correct the deformation produced by the scale drift, though it
still remains a scale ambiguity in the final estimate. In [44],
Hansen et al. develop a monocular visual odometry system for
localisation in gas pipes, where the scale is estimated by fixing
patterns of known size in the interior walls of the pipe.

The method proposed in this paper fits in the second category,
since we get the scale only using the visual information and a
prior given by a walking model which depends on the height
and specific user parameters. The strength of our method is that
it is explicitly thought to operate on human wearable systems,
where unlike to ground vehicles, odometric information from
encoders is not available to recover the scale.

On the other hand, faced to scale estimation methods not us-
ing odometric measurements, all of them have their own draw-
backs. Using the IMU, besides involving an additional sensor,
to obtain scale information we need to know the initial speed,
which, if not known a priori, can only be estimated by perform-
ing a joint IMU-camera initialisation. The estimation of the
scale by the identification of the ground plane can be problem-
atic in environments with a poor textured ground and containing
other dominant planes like walls. The identification of known
objects of the scene relies in the detection of a set of previously
learnt object categories which could be affected by false posi-
tives. The correction of the scale drift at loop closures is only
possible when one region of the environment is revisited.

Thus, given that all the approaches have their own limita-
tions, an alternative way to compute the scale as proposed in
this paper has always a beneficial effect.

3. Monocular SLAM

Monocular SLAM algorithms aim to estimate a visual odom-
etry and at the same time build a map of landmarks using only
the measurements from a single camera. The algorithm we use
in this work is based in the monocular EKF-SLAM proposed
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in [10] by Civera et al. and its adaptation to omnidirectional
cameras [45]. The camera state as well as the position of the
landmarks at time step i are encapsulated in a state vector xi

xi = (rC
W,i, qW

C
i , vC

W,i, ω
C
C,i︸                    ︷︷                    ︸

Camera state xC
i

, rC( j)
W,i , θ

( j)
i , φ

( j)
i , ρ

( j)
i , ...︸                     ︷︷                     ︸

3D points (IDP) y( j)
W

), (1)

where rC
W,i is the camera position, qW

C
i is the quaternion of its

orientation and vC
W,i andωC

C,i are its linear and angular velocities,
respectively.

The 3D locations are parametrised in an anchored inverse
depth parametrisation (IDP) [9], where rC( j)

W,i is the anchor cam-
era position where the landmark was first viewed, θ( j)

i , φ( j)
i and

ρ
( j)
i are respectively the elevation angle, the azimuth angle and

the inverse depth with respect to the anchor position.
In an EKF based SLAM a motion and a measurement model

must be provided. The motion model describes the change on
the camera pose from time step i − 1 to i and it is described by
the following equation:

xC
i = f(xC

i−1,ui) + wi, (2)

where f(·) is the state transition function , xC
i−1 is the past camera

pose, ui is the control input and wi is a Gaussian noise with co-
variance Qi. This model is used to propagate the state estimate
xi and its covariance Pi in the EKF prediction step. Internal
measurements from an odometer or an IMU can be integrated
as control inputs ui. Alternatively it is often used a constant
velocity model (ui = 0) where possible changes in velocity are
taken care of by introducing large acceleration noise priors as
the process noise wi.

The measurement model is used to introduce the information
from measurements of external sensors in the EKF update step.
In monocular SLAM it is defined by an observation function
which encapsulates a projectivity transformation. The observa-
tion function depends on the characteristics of the vision sys-
tem. For central projection systems, i.e., planar (conventional),
dioptric or catadioptric systems, it can be divided in these two
steps: one projection onto a unit sphere independent from cam-
era parameters and a non-linear mapping from the sphere to the
image plane which accounts for the camera geometry and cal-
ibration parameters [46]. This is synthesised in the following
equations:

z( j)
i = h

(
xC

i , y
( j)
W

)
= Kc~

ξ, y( j)
C,i∣∣∣∣∣∣y( j)
C,i

∣∣∣∣∣∣
 (3)

y( j)
C,i = RT

(
qW

C
i

) rC( j)
W,i − rC

W,i +
1

ρ
( j)
i

m
(
φ

( j)
i , θ

( j)
i

) , (4)

where ξ is a parameter encapsulating the geometric properties
of the camera, ~ is a non-linear function, Kc is a conventional
camera calibration matrix, and m(·) the function which maps
the elevation and azimuth angles to a unit vector.

With this generalised model, the observations of the tracked
features (those in the EKF state vector) are predicted, and then
putative matches z( j)

i are obtained by active search in the uncer-
tainty region given by the bound of the 95% confidence interval
of the projection S( j)

i of the state covariance:

S( j)
i = H( j)

i PiH( j)
i

T
+ Rn, (5)

where H( j)
i is the jacobian of the measurement function and Rn

the measurement noise in the image.
Spurious matches are rejected by RANSAC, and then correct

matches are used to update the state both of the camera and the
landmarks.

3.1. Map Management
To keep the computational cost low, only a few features, re-

ferred to as tracked features Ti, are kept within the EKF state.
Tracked features are divided in point (low depth uncertainty)
and ray (high depth uncertainty) features. At each step, fea-
tures which failed to be matched in the last frames are removed
from the EKF. The set of removed features at step i is denoted
by Ei =

[
Er

i ,E
p
i

]
The removed point features are added to an independent fixed

mapME,i which is not updated by the EKF:

ME,i =
[
ME,i−1,E

p
i

]
, (6)

being the global map composed by the point tracked features
and the features inME,i

Mi =
[
T

p
i ,ME,i

]
. (7)

3.2. Loop closure
To make possible a fair evaluation of our method using the

ground truth trajectory, we correct the noticeable odometry drift
which inevitably arises in large experiments by closing the loop
at revisited areas. Closing the loops makes also possible the
comparison of our proposal with a state-of-the-art method to
correct the scale drift [8].

To compute the relative pose between loop frames we use
the libraries OpenCV [47] for feature extraction and matching
and OpenGV [48] for geometric algorithms. Given a loop de-
tected between a recent frame j and an older frame i , we must
estimate the rigid body motion between them expressed by the
transformation:

Tj
i =

(
Rj

i ri
j

0 1

)
∈ S E(3). (8)

To do so, first, from 2D-2D correspondences, we robustly
estimate with RANSAC the relative pose between frame j and
a close frame jaux with enough parallax, rescaling the transla-
tional part by taking the norm of the translation between frames
from the visual odometry. Secondly, correct correspondences
between frames j and jaux are triangulated, and finally Tj

i is ob-
tained from 3D-2D correspondences between the triangulated
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Figure 3. Top: Trajectory estimate of Visual SLAM from a head-mounted cata-
dioptric camera including a partial zoom. Bottom: Power spectra of the vertical
component

3D points referenced at frame j and the keypoints extracted in
frame i.

For the comparison with [8] we need to use similarity trans-
forms:

Sj
i =

(
sj

i Rj
i ri

j
0 1

)
∈ S im(3), (9)

where we require an additional parameter sj
i to compute the

loop constraint. To estimate it, first we compute Ti
j in the same

way as with Tj
i by interchanging the roles of i and j. Note

that in presence of scale drift Tj
i Ti

j , I since translation of
each transform has a different scale propagated from the visual
odometry at the frame taken as reference for the triangulated
3D points. However, introducing the extra scale parameter in
the transform we can apply Sj

i Si
j = I and thus we get:

sj
i Rj

ir j
i + ri

j = 0 =⇒ sj
i =

∣∣∣∣∣∣∣∣ri
j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣r j
i

∣∣∣∣∣∣ . (10)

4. Walking speed estimation

Our scheme for the estimation of the real walking speed is
based in two hypotheses. First, the oscillation of the body dur-
ing walking can be observed in the visual odometry (Fig. 3).
The second hypothesis is the existence of a tight correlation be-
tween the step frequency and the stride length which allows to
estimate the walking speed without knowing the later.

4.1. Walking speed - step frequency relation
The estimation of the walking speed is based on its close

correlation with the step frequency, which was shown in the
work by Grieve et al. [12]. This correlation is encapsulated
in a power law where the walking speed (Vwalk ) normalised
with height (H) is presented as a function of the step frequency
( fstep):

Vwalk = α f βstepH, (11)

where Vwalk is in m/s, fstep in Hz, H in m, and α and β are
characteristic parameters which differ from one individual to

Figure 4. Power fitting of the experimental data to compute the relation between
walking speed and step frequency (µerr = 0.018, maxerr = 0.04).

another. The mean values provided in [12] for these parameters
are, after converting to I.S. units, α = 0.2896 and β = 1.7544.
Noting that:

Vwalk = fstepLstride, (12)

and substituting in (11), it can be observed, that though not ex-
plicitly shown, our method in essence is taking the stride length
Lstride as the geometric prior needed to get the absolute scale,
and computes it as a function of the step frequency and specific
user parameters (α, β and height).

By measuring the oxygen consumptions of different subjects
under forced and free gaits for a set of speeds, Zarrugh et
al. [13] showed that the relation in (11) is the result of a hu-
man tendency to choose a step frequency which minimises the
metabolic cost of walking. Kuo [14] proposed a metabolic cost
function modelling the combined actions of pushing off and
swinging the leg, whose minimisation predicts the preferred re-
lationship presented in [12].

Although walking speed can be estimated using the mean
values provided in [12], for higher accuracy we use our own α
and β parameters explicitly computed for the camera operator.
We measured the time ti it took the operator to walk a distance
s = 100 m at the times per step ∆Ti given by a metronome
ranging from 0.45 to 0.80 seconds in intervals of 0.05 seconds.
The metronome emitted a beep at the time intervals it was set
up in order to force the user to synchronise his pace. The height
of the operator is H = 1.88 m. During the experimentation, it
was noticed that measurements above and below the considered
interval of times per step were not possible due to the impos-
sibility to consistently synchronise with the metronome beat.
Thus, we have established a range of feasible step frequencies
between f −st = 1 Hz and f +

st = 3 Hz. Normalised walking speeds
Vi
′ and step frequencies fi were computed from the raw exper-

imental data. Then a power fitting was applied to obtain the
values of α = 0.329 and β = 1.534 (Fig. 4).

4.2. Estimation of the step frequency

Given the previous biomedical relation, the problem of esti-
mating the walking speed, can be translated into estimating the
step frequency.

To correct scale drift, the walking speed must be computed
periodically in sections or windows of N camera poses. If we
let i be the SLAM time step index, each camera pose xC

i can be
equivalently notated as xC

k (n) assigning a section k and an index
n within that section as follows:
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(a) (b)

(c) (d)

Figure 5. Z-component signal segment (top) and corresponding power spectra
in logarithmic scale (bottom) of two instances from the same visual odometry
section: (a,c) without preprocessing the input signal and (b,d) with offset elim-
ination and filtering of the input signal. Note how in (b) the power peak at the
step frequency (2 Hz) is observable and the highest in the interval of feasible
step frequencies. Signal segments have been copied three times to make visible
the difference in the discontinuity between the two instances.

k = Int
(

i − 1
N

)
, (13)

n = i − (k − 1)N. (14)

The world reference frame for the visual odometry is fixed
by the initial camera pose. In the experimental setups for the
different cameras, the camera frame is oriented so that one of
its axis is approximately aligned with the normal to the ground
plane. This is a reasonable assumption for a camera worn on
the head or some part of the trunk. Also, since a fixed trans-
formation known a priori can be applied so that the z-axis of
the world frame is aligned with the ground normal, without loss
of generality we assume that the body oscillation is observed in
the z-component of the trajectory.

The step frequency is estimated by extracting the spectral
composition of the oscillatory component of the trajectory es-
timate using the DFT. When computing the Fourier Transform
of discrete signals, the gap between the first and the last ele-
ments of the signal, the variations or the drift of the ground
plane, and the slight miss-alignment of the reference z-axis with
the ground normal can introduce low frequency harmonics. To
counteract these effects the data sequence is preprocessed by
subtracting the first element zk(1) from all the elements and ap-
plying a second order high pass digital filter with a cut-off fre-
quency of fc = 0.7 Hz, which provides a good attenuation of
the low frequency harmonics, without affecting the harmonics
in the range of feasible step frequencies. (Fig. 5).

After filtering the data the spectral composition is obtained
by the DFT:

Γd,k( fm) =
1

FsN

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=1

zk(n)exp
(
− j

2π fm(n − 1)
Fs

)∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

(15)

fm =
mFs

N
m = −

N
2
, ...,−1, 0, 1, ...,

N
2
, (16)

where Γd power spectral density function, Fs is the sampling
frequency, which in our case is the number of frames per second
(fps) of the camera, and fm are the frequencies for which the
spectrogram is sampled.

The sampling frequency must be high enough to avoid alias-
ing when the maximum feasible step frequency f +

st occurs.
Also, the number of poses taken must be high enough to pro-
vide a good resolution of the spectrogram, with its lower limit
given by the minimum number of samples needed to observe at
least one oscillation in the case of the minimum feasible step
frequency f −st .

For the computation of the DFT N has to be as high as possi-
ble, but from a global point of view, a high N involve a less fre-
quent update of the scale factor and a reduced ability to detect
changes in the walking speed. This can result in a decreasing
accuracy in the scaled trajectory estimate. Moreover, if inter-
ested in real time operation, the time delay to update the scaled
trajectory grows linearly with N, since before scaling one sec-
tion we need to get the new N unscaled camera poses from the
SLAM algorithm. Thus, in summary, for the choice of N we
must reach a trade-off between the accuracy of the DFT and the
frequency with which the scale factor is updated.

Given the spectrogram Γd,k( fm), the step frequency fst,k is es-
timated as:

fst,k = arg max
fm∈[ f−st , f

+
st ]

Γd,k( fm). (17)

4.3. Detection of non-walking situations

At this point the method to estimate the step frequency would
return an estimate regardless of whether the user is walking or
not. To discard erroneous estimates when the user is not walk-
ing we check that the spectral power P̄

(
fst,k

)
of the computed

step frequency to be consistent with a range of feasible oscilla-
tion amplitudes during walking bounded by a A+

z and A−z . Ap-
plying the Parseval’s theorem, which states that the energy of
a signal is preserved in the frequency domain, we can approx-
imate the energy P̄ of the signal corresponding to the body os-
cillation as:

P̄
(
fst,k

)
= 2

Fs

N

m+∑
m=m−

Γd
(
fm,k

)
, (18)

with m− = round
(
N fst−∆ f

Fs

)
, m+ = round

(
N fst+∆ f

Fs

)
, and where fst,k is

the estimated step frequency, Γd is the discretised spectrogram
of the z-component of the camera poses, Fs is the sampling fre-
quency of the camera, N the camera poses in the analysed sec-
tion and ∆ f the frequency interval centred at fst,k along which
the energy is spread along.

Since the power spectral density is computed for the unscaled
z-component of the visual odometry, the computed power must
be scaled by multiplying it by the square of the current mean
scale factor d̄k. Thus, assuming that the body oscillation is si-
nusoidal, the condition for the spectral power consistency of the
step frequency yields:

6
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1
2

A−z
2
≤ d̄2

k P̄
(
fst,k

)
≤

1
2

A+
z

2
. (19)

If this condition is not fullfilled we should choose another
strategy. For example if d2

k P̄
(
fst,k

)
≤ 1

2 A−z
2 we may assume that

the person is stopped and then avoid updating the scale factor.

5. Dynamic scale update

Having a walking speed estimate and assuming that it is af-
fected by Gaussian noise, the maximum likelihood scale fac-
tor for section k could be straightforwardly computed by dk =
Vwalk,k

µV,k
, where µV,k is the average dimensionless speed of the cam-

era poses in section k. However, given the empirical method for
the walking speed estimation and the possible variability of the
SLAM velocity along N frames, we propose to use a probabilis-
tic filter for the computation of the scale factor. The purpose is
to provide robustness against spurious estimations of the walk-
ing speed.

After computing the scale factor, the poses and the features
measured in current section are scaled using a recursive ap-
proach to take care of the scale drift with respect to previous
sections.

5.1. Particle Filter for scale factor tracking

For the design of the probabilistic filter we consider a dy-
namic system whose state sk is composed by the magnitude of
the SLAM velocity VS LAM,k and the decimal logarithm of the
scale factor λk = log10(dk).

sk =

[
VS LAM,k

λk

]
. (20)

Taking the logarithm has the advantage to naturally restrict
the scale factor to positive values allowing to model its uncer-
tainty and noise with additive Gaussian distributions. As a con-
sequence all the non-linearities of the model will be encapsu-
lated in the measurement function.

To track the scale factor, a particle filter with Sampling Im-
portance Resampling is designed [49]. The use of the particle
filter is encouraged over an EKF due to its ability to deal with
high uncertainty priors of the scale factor which would involve
a large linearisation error of the measurement function. Also,
since the system state is composed only by 2 variables, the ma-
jor drawback of the exponential growth of the number of re-
quired particles with the number of state variables is negligible.

Hence the state of the system in each section k is approxi-
mated by a set of particles:

Sk =
{
(s(L)

k , ω(L)
k ) | L = 1, 2, ..., P

}
, (21)

where P is the number of particles and s(L)
k and ω(L)

k are respec-
tively the state vector and the resampling weight of particle L.

The particles are initialised such that the initial values of λ(L)
0

are drawn from a Gaussian distribution λ0 ∼ N(0, σ0), where

σ0 is a parameter related to the orders of magnitude in the scale
being scoped out.

In the predictive part of the particle filter, particles are sam-
pled down by a proposal distribution p(sk |sk−1):

s(L)
k ∼ p(sk |s(L)

k−1). (22)

In our system the sampling of the proposal distribution in-
cludes both the update of the non-dimensional speed, which is
taken as a control input coming from the visual odometry, and
the possible drift in the scale. This is encoded in the following
equations:

V (L)
S LAM,k = µV,k + n(L)

v (23)

λ(L)
k = λ(L)

k−1 + n(L)
λ , (24)

with n(L)
v ∼ N(0, σV,k) and n(L)

λ ∼ N(0, σdri f t), and where µV,k

and σV,k are the averaged speed and the corresponding stan-
dard deviation of the last set of N SLAM camera poses used
for spectral analysis, and σdri f t is the standard deviation prior
of the scale drift between two consecutive sections, which is
modelled as Gaussian noise.

To incorporate the walking speed information into the state
estimate, first we need to define a measurement function
hV (s(L)

k ) which predicts the walking speed measurement for each
particle L.

hV (s(L)
k ) = V (L)

S LAM,k10λ
(L)
k . (25)

To prevent from later accepting spurious estimates of the
walking speed, first we take the 95% confidence interval of
the histogram of the predicted measurements by eliminating the
samples at the tails, thus reducing the number of particles from
P to P′.

The remaining samples are weighted by a probability den-
sity function p(Vwalk,k | s(L)

k ), which captures the statistics of the
speed estimate. Assuming that it is affected by Gaussian noise
of zero mean and a standard deviation σVwalk to be set up em-
pirically, weights are computed as:

ω(L)
k = p(Vwalk,k | s(L)

k ) = φ

Vwalk,k − hV (s(L)
k )

σVwalk

 , (26)

where φ(z) is the probability density function of the standard
normal distribution.

Then a consistency test is carried out to verify that the
weighted particles lie in the 95% confidence interval of the
probability distribution of the measurement model, i.e.:

0.95 = P

−1.96 ≤
Vwalk,k − hV (s(L)

k )
σVwalk

≤ 1.96

 . (27)

If every particle fails this test, the particle filter iteration ends
here. Otherwise the weights of the particles are normalised:
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ω̂(L)
k =

ω(L)
k

P′∑
p=1

ω
(p)
k

, (28)

and the set of particles Sk is resampled by drawing P particles
from a multinomial distribution Mult(P, ω̂(1), ..., ω̂(P′)).

Then for a given section k, the scale factor is obtained by
computing the geometric mean of the scale values in the particle
set Sk. That is:

λ̄k =

P∑
i=1
λ(i)

k

P
(29) d̄k = 10λ̄k . (30)

5.2. Scaling of the trajectory

This scale factor must be applied to the state variables with
length dimensions, position and velocity. These are encapsu-
lated in a vector:

xCd
k (n) =

 rC
W,k(n)

vC
W,k(n)

 . (31)

To ensure the continuity in position and velocity, each vec-
tor xCd

k (n) contained in the current section k is scaled using the
following recursive formula:

x̆Cd
k (n) = x̆Cd

k−1(N) + d̄k

[
xCd

k (n) − xCd
k−1(N)

]
k = 2, 3, ... (32)

x̆Cd
1 (n) = d̄1xCd

1 (n), (33)

where x̆Cd
k (n) contains the scaled camera position and velocity

estimates.

5.3. Scaling of landmarks

The set of landmarks to be updated or initialised in the
scaled map estimate is given by all the point landmarks
marginalised from the EKF during current section and the land-
marks matched in the EKF update of the last pose of the section:

MS,k =
[
E

p
(k−1)N+1, · · · ,E

p
kN ,T

p
kN

]
. (34)

The scale of each landmark is set to the one of its anchor pose
in IDP:

y̆( j)
W = r̆C( j)

W + d̄κ( j)

(
y( j)

W − rC( j)
W

)
(35)

where the function κ : N → N which establishes a surjective
mapping from a landmark index j to the index of the section
containing the anchor pose rC( j)

W of the landmark.

5.4. Real time implementation and reduction of the update de-
lay

The complete scaling algorithm is implemented in a new
thread within the real-time monoSLAM C++ application [50],
working in parallel with the main SLAM thread. After each
EKF iteration, the main thread stores the last camera pose and
the corresponding landmarks in two shared buffers. When the
buffer with the camera poses is fully updated with N poses, the
main thread triggers the scaling thread. After executing the
scaling algorithm, the scaled trajectory is updated by adding
the recently scaled camera poses.

In spite of the real-time operation, the update of the scaled
odometry estimate is delayed due to the time tDFT it takes to fill
the buffer of camera poses with the N states needed to perform
the DFT. One way to reduce this delay is to reduce N, at the
expense of reducing the accuracy of the DFT to compute the
step frequency.

Alternatively we propose to use a sliding window, updating
only one fraction N f of the buffer of camera poses at a time.
Thus the number of camera poses used for the spectral analysis
remains N by reusing poses from previous sections, while the
amount of scaled camera poses per section is reduced to N f .
The time required to update the scaled trajectory with the new
N f poses is notated as tupd. The complete scaling method is
described in Algorithm 1.

Algorithm 1 Complete Visual Odometry Scaling algorithm
Require: xC

k (1..N), Sk−1

Ensure: x̆C
k (1..N f ), Sk

//Notation
xC

k (n) = nth unscaled camera state of section k
x̆C

k (n) = nth scaled camera state of section k
N = # input camera states
N f = # output/new camera states
Sk = Set of particles for the particle filter
//Algorithm
k = 0; [S0] = Initialise particles ()
while Not end of sequence do

k = k + 1
Wait for new x̆C

k (1..N) from monoSLAM[
zk(1..N), µV,k, σV,k

]
= Extract z-comp & mean speed

(
xC

k (1..N)
)

[zk(1..N)] = High Pass Filter (zk(1..N))[
fm, Γd,k

]
= Spectrogram (zk(1..N))[

fst,k, Γd,k
(
fst,k

)]
= Estimate Step Frequency

(
fm, Γd,k

)
if Step freq power is consistent

(
dk−1, Γd,k

(
fst,k

))
then[

Vwalk,k
]

= Walking speed model
(
fst,k

)
[Sk] = Sample Proposal Distribution

(
Sk−1, µV,k, σV,k

)
[Sk] = Weighting and Resampling

(
Sk, Vwalk,k

)
[dk] = Compute mean scale factor (Sk)

else
dk = dk−1 ; Sk = Sk−1

end if
if k=1 then[

x̆C
1 (1..N)

]
= Scale Section

(
d1, xC

1 (1..N)
)

else[
x̆C

k (1..N f )
]

= Scale Section
(
dk, xC

k ((N−N f +1)..N)
)

end if
end while

8
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6. Experiments

For the validation of our proposal we use three different cam-
eras in our experiments, each one with varying geometries, res-
olution and frame rates.

The first experiments have been carried out with a cata-
dioptric omnidirectional camera VS-C14U-80-ST model which
consists on a conic mirror and a Sentech UltraSmall STC-
MC83USB camera with a resolution of 1024x768, at frame rate
of 15 fps, which is mounted on a helmet to be carried by a hu-
man operator.

In the last experiments we used the wearable GoPro Hero
and Sony Action Cam, in order to verify the applicability of
our method also to conventional cameras, whose narrower field
of view is likely to provide less accurate motion estimates than
omnidirectional cameras [51], which could affect the percep-
tion of the body oscillations. Also, their ability to be attached
to several body parts, allows us also to evaluate our method
when the camera is worn on the chest, which, as in the case of
the head, also shows the characteristic oscillatory motion while
walking.

Trajectory estimates in the experiments have been refined by
applying loop closure optimisation when possible, where the
loop constraints were determined as explained in 3.2. Frames
for loop closure were selected manually, since the loop detec-
tion problem is out of the scope of this work. Also this avoids
uncertainties due to possible errors in automatic loop detection,
allowing for a fair comparison of the scale drift removal capa-
bilities between our method and the proposed in [8].

The Ground Truth for the experiments has been obtained
from the Google Maps satellite view using the distance mea-
surement tool. To compare numerically the Ground Truth and
the scaled odometry estimates, we parametrise both curves by
the normalised arc length or accumulated distance ξ which
spans from 0 (start) to 1 (end). Then, given the Ground Truth
trajectory tGT , the error for a given pose is computed as follows:

err(i) =
∣∣∣∣∣∣t(i)

VO − tGT (ξ(t(i)
VO))

∣∣∣∣∣∣ . (36)

6.1. Parameter tuning

Our algorithm presents a series of parameters that have to be
tuned previously. The number of particles used in the particle
filter is set to P = 5000 for all the experiments. The standard
deviation of the distribution for the initial logarithmic scale fac-
tor is set to σ0 = 1, which allows us to cover an uncertainty
interval for the scale factor between 10−2 and 102 with a 95%
of confidence. The setup of the uncertainty parameters for the
scale drift σdri f t and σVwalk is heuristic, trying to reach a trade-
off between robustness and rapid response to sharp scale factor
changes. We use σdri f t = 0.1 and σVwalk = 0.2 m/s. This last
value lies within the interval of standard deviations for the fea-
sible step frequencies range, as it can be proved by computing
the derivative of (11):

σVwalk = αβ f β−1Hσ f , (37)
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Figure 6. Spectral analysis along the same path at the three step frequencies
of 2 (top), 1.67 (centre) and 1.43 Hz (bottom) with different section sizes. A
higher section size implies a more reliable frequency estimate.

with σ f = 1
tDFT

; and taking tDFT = 3 s and evaluating at the lim-
its of the feasible step frequencies. Note that though for larger
tDFT , σVwalk should be theoretically lower, keeping it constant
overcompensates the fact of loosing accuracy due to a lower
robustness to changes in speed when using larger windows.

6.2. Testing the ability to measure the step frequency

For the first experiment we acquired three image sequences
with the catadioptric camera walking along the same path of
230 meters with three different step frequencies. In the same
way as in the process detailed in Section 4.1 the user’s pace was
synchronised with the beep of a metronome with 0.01 seconds
of resolution. The metronome was set up to 0.50, 0.60 and 0.70
seconds per beat for each sequence, which translates in step
frequencies of 2, 1.67 and 1.43 Hz respectively. The purpose of
this experiment is testing the ability of the method described in
Section 4.2 to estimate the step frequency just from the visual
odometry signal.

We select different section dimensions of N = 50, N = 100
and N = 200 camera poses. To compute the DFT we use the
FFTW (Fast Fourier Transform West) C library [52].

In Fig. 6 it is shown that the dominant frequency obtained by
spectral analysis closely approximates the step frequency fixed
by the metronome. Among the considered setups, N = 200
results in better accuracy and less outliers in the estimation of
the step frequency. However, as argued in Section 4.2, a win-
dow of this length might not be the optimal for the performance
of our method as a whole. This issue is addressed in the next
experiments.

9
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Figure 7. Evolution of the step frequency estimate (top) and its corresponding
spectral power (bottom) in the changing pace experiment. Consistency bounds
are violated when estimate does not correspond to a walking step frequency.

6.3. System robustness under changes of pace

The sequence for this experiment was acquired with the cata-
dioptric camera along a path of 886 m containing a variety of
challenging situations like changes of pace, stops, stairs and
walking along a narrow corridor. Transitions between these sit-
uations have been ticked accordingly in the frame when they
take place.

The objective is evaluating the robustness of our method un-
der these conditions, and select the optimal number of poses
to be taken for scaling at each iteration. Instead of using the
number of poses N and N f to define the window sizes in the
experiments, from this point we will take their temporal length
tDFT and tupd, as it generalises better for different frame rates.

In this experiment we evaluate the use of a dynamic win-
dow approach to scale the trajectory sections. We have tested 3
different alternatives. In two alternatives tDFT is set to 12 sec-
onds and tupd is varied to compare the performance of static
(tupd = 12 seconds) and dynamic (tupd = 3 seconds) win-
dows. The third alternative consists in using a static window
with tDFT = tupd = 3 seconds.

Fig. 7 (top) reveals how the step frequency computed from
the raw unscaled visual odometry varies accordingly with the
pace of the walker. Note that for lower tDFT the step frequency
estimate is less accurate and oscillates more, though the global
tendency in the pace is still captured. In Fig. 7 (bottom), dur-
ing the long stop, the spectral power shows a violation of the
consistency condition which leads to ignore the erratic estima-
tion of the step frequency. During the short stop, the violation
of the consistency is not observed with tDFT = 12 s, due to the
masking effect of the poses corresponding to a walking state.
In the case of going upstairs the power peak is noticeable but
not as clear as in the stop to establish a clear upper limit for the
consistency condition.

Fig. 8 (top) shows the dynamic estimation of the scale fac-
tor. It can be noticed that scale drift can occur in two different
ways. On the one hand it can be a gradual drift as occurs at the
start of the sequence or during the corridor. Drift at the start
can be due to the still highly uncertain depth estimate of the
tracked points during initialisation, while on the corridor it is
the gradual substitution of points in spacious areas by points on
the walls of the narrow corridor what causes the drift. On the

Figure 8. Evolution of (top) the scale factor, (middle) the non-dimensional
speed and (bottom) the estimated real walking speed in the changing pace ex-
periment. Ground Truth speed was assumed constant for a given pace and com-
puted from Google Maps Ground Truth and the time difference between frames.

Table 1. Estimation error for combinations of tDFT and tupd for the experiment
with changes in pace.

tDFT tupd Mean Maximum Relative
[s] [s] error[m] error[m] mean error
12 12 12.54 28.83 1.42%
12 3 10.43 18.65 1.18%
3 3 9.26 21.24 1.05%

Table 2. Estimation error for different scaling and optimisation combinations
for the experiment with changes in pace.

Method Mean Maximum Relative
error[m] error[m] mean error

unscaled 30.47 71.10 3.43%
optimSim3 [8] 11.29 30.02 1.27%
dynScale (ours) 5.35 19.34 0.60%

dynScale (ours) + optimSim3 [8] 4.04 9.68 0.46%

other hand drift can occur sharply if landmarks which act as an
anchor for the scale are suddenly lost. This might be caused for
example by occlusions by dynamic elements or sudden camera
accelerations, as occurs when restarting the walk after a stop.

Fig. 9a shows a comparison between the scaled trajectories
obtained for each considered setup. Loops have been closed at
the end and at the middle of the path. Numerical comparison
with the Ground Truth is detailed in Table 1. It is shown that
taking tDFT = 3 s offers an slightly better scaled estimate of
the visual odometry with a mean relative error of 1.05% over
the trajectory length. This demonstrates the convenience of
losing a bit of accuracy in the DFT using short windows (but
large enough to capture the body oscillations), in order to get a
higher update rate of the scale and a faster detection of stops or
changes in pace (Fig. 7).

The great improvement of all the considered cases with re-
spect to the raw odometry estimate shows the ability of our ap-
proach not only to compute the scale but also to remove the
scale drift, which is reflected on the deformation of the raw es-
timate.

6.3.1. Comparison with state-of-the-art scaling approach
Once we pick the configuration with tDFT = tupd = 3 s we

compare our method with the approach described in [8]. This
10
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(a) (b) (c)

Figure 9. Changing pace experiment. (a)Scaled trajectory estimates for different setups of tDFT and tupd . (b) Result of using different approaches for scale drift
removal, with all trajectories rescaled to the Ground Truth’s scale. Estimates of our scaled and raw trajectory estimates prior to loop closure are shown in the small
view, in which the raw estimate has been rescaled for better visualisation. (c) Scaled trajectory and scene points obtained with the most accurate approach.

approach aims to remove the scale drift in the trajectory dur-
ing loop closure optimisation by expressing the camera poses
and both the odometry and loop closure constraints as similar-
ity transforms (Sim(3)) instead of as conventional rigid body
motions (SE(3)). Note that this approach tackles the scale drift
problem but it does not compute the absolute scale of the odo-
metric estimate. Thus, for a fair comparison, each of the fi-
nally obtained trajectories by the different evaluated methods
is rescaled so that its total distance is the same as that of the
Ground Truth. We evaluate 4 different solutions: standard loop
closure optimisation in SE(3) of the raw estimate (unscaled),
scale drift correction with loop closure optimisation in Sim(3)
(optimSim3 [8]), standard loop closure optimisation in SE(3)
of our scaled estimate (dynScale) and loop closure optimisation
in Sim(3) of our scaled estimate (dynScale + optimSim3 [8]).
Qualitative and numerical results shown in Fig. 9b and Table
2 respectively. It can be observed that both our method and [8]
clearly improve the raw estimate, though our method provides
better accuracy. Note also that the combination of both methods
slightly improves our raw proposal providing the most accurate
estimate.

This result is expected since while our approach estimates the
scale every 3 seconds, in [8] it is only possible to observe it at
loop closures. However it can be noted that, as both approaches
obtain scale drift information from different sources, they can
combine well providing a more accurate estimate together than
both alone. A complete view of the best trajectory estimate and
the points of the scene is shown in Fig. 9c.

6.4. Indoor experiment

In the second experiment we test our approach with the cata-
dioptric camera in an indoor environment [53] along a path of
464 m under a freely chosen gait, keeping the tuning used in

previous experiment. Our approach is able to correct a signifi-
cant scale drift of 200% taking place at the start of the trajectory
(Fig. 10b), providing a final odometry estimate (Fig. 11a) with
a mean error of 4.69 m (1.01% over the trajectory length). Note
in Fig. 10a the peak in the spectral power occurring at the two
stair parts in the trajectory.

The comparison with [8] shown in Fig. 11 and Table 3 is
similar to the previous experiment. Our approach alone outper-
forms [8] alone, and both together provide a better estimate.

6.5. GoPro experiment
For this experiment we acquired an image sequence with a

GoPro camera attached to the user’s head. The user walked
at steady pace along a path of 410 m. the camera resolution
and frame rate were set to 1280x720 and 60 fps respectively.
The tuning of our scaling algorithm is the same as the one used
in the previous experiments with the omnidirectional camera,
taking again tDFT = tupd = 3 s.

In Fig.12a it is shown both the evolution of the step frequency
and the spectral power of the head oscillation. Note that there
exists a peak in the spectral power above the higher limit for
oscillation amplitude, which corresponds to the stairs part of
the trajectory. An outlier can be observed in the estimation of
the step frequency, though, as it can be noted in Fig. 12b, the
particle filter successfully rejects this measure and both scale
factor and walking speed estimates are not affected. As in the
previous experiment the scale smoothly drifts as we enter in the
narrow corridor (between frames 2200 and 3200).

The final odometric estimate in Fig. 13a shows once again
the competitiveness of our method, with a mean error of 1.79 m
(0.44% over the total trajectory length). Note that even prior to
loop closure, scale drift correction can be observed in the small
view as the start and end points of the trajectory are almost
coincident. In this experiment the loop was closed at the end of
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Figure 10. Indoor experiment with catadioptric camera. (a) Evolution of the
step frequency estimate (top) and its corresponding spectral power (bottom),
(b) Evolution of (top) the scale factor, (middle) the non-dimensional speed and
(bottom) the estimated real walking speed.

the sequence. As the camera view direction of the scene differs
between the start and the end poses, and a camera with limited
field of view is used, correspondences for loop closure can only
be obtained in a small portion of the matched images, which
result in a loss of precision of the loop constraint.

As it can be observed in Fig. 13b and Table 4, our approach
outperforms alone clearly all the other options. The optimSim3
improves the performance of standard solution, but does not
improve our scaling approach even when combined with our
method, which may be due to the limited common field of view
in the loop closing constraint. The final odometry and map view
obtained with our approach is shown in Fig. 13c.

6.6. Sony Action Cam attached to the chest

In this experiment, we test the ability of our method for per-
forming scale correction when the camera is not worn on the
head. We used a Sony Action Cam with a resolution of 960x540
at 30 fps attached to the user’s chest. The sequence was ac-
quired in an indoor loop with a length of 187 m.

Fig. 14 show that the step frequency and the scale factor can
be successfully estimated when the camera is worn on the chest,
due to showing only a oscillatory motion during locomotion.
The final reconstruction after loop closure (Fig. 15) shows the
correction of a slight drift in the scale and that the estimate with
the absolute scale is indeed computed.

6.7. Analysis of the computational cost

In Fig. 16 we show the computation time to perform the
whole algorithm to scale each section of the visual odometry.
After the initialization cost due to the memory allocation of

Table 3. Estimation error for different scaling and optimisation combinations
for the indoor experiment with the catadioptric camera.

Method Mean Maximum Relative
error[m] error[m] mean error

unscaled 10.82 22.90 2.33%
optimSim3 [8] 6.47 12.82 1.39%
dynScale (ours) 3.77 10.37 0.81%

dynScale (ours) + optimSim3 [8] 3.21 9.37 0.69%

(a) (b)

(c)

Figure 11. Indoor experiment with catadioptric camera. (a)Trajectory estimates
after loop closure in our scaled estimate and the raw estimate. Estimates prior
to loop closure are shown in the small view, in which the raw estimate has
been rescaled for better visualisation. (b) Result of using different approaches
for scale drift removal. Absolute scale of each estimate is fitted to the Ground
Truth’s. (c) Scaled trajectory and scene points obtained with our approach.

variables required to compute the FFT, the computational cost
stabilizes around 0.01 seconds. Given that the data required to
compute the scale is delivered to the scaling thread with an up-
date time tupd not lower than 3 seconds as shown in previous
experiments, our method fits with the real-time requeriments of
a SLAM systems.

6.8. Analysis of the change in the walking model parameters

In this section we analyse how the scaled estimate of some
of the previous experiments is affected by the variation of the
walking model parameters α and β from their nominal values
explicitly fitted for the user. We evaluate the effect both on the
absolute scale and on the scale drift. A prior theoretical analysis
is lead by naively assuming that:

d(t) =
Vwalk(t)

VS LAM(t)
. (38)

The change of the model parameters produce a variation of
the estimated Vwalk, which leads to a change in d. The change
in the absolute scale is expressed by the following ratio:
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Figure 12. GoPro experiment. (a) Evolution of the step frequency estimate
(top) and its corresponding spectral power (bottom), (b) Evolution of (top) the
scale factor, (middle) the non-dimensional speed and (bottom) the estimated
real walking speed.

r(t) =
d(t)

d̂(t)
=

Vwalk(t)
V̂walk(t)

, (39)

while the scale drift with respect to the nominal model is given
by its first order time derivative r′(t).

Let us first analyse how the variation of parameter α affects
both r(t) and r′(t). Recalling (11) we get that:

r(t) =
α

α̂
(40) r′(t) = 0. (41)

which means that a proportional change in the scale is to be
expected if we vary α. Since α is a constant parameter, no drift
is expected with respect to the nominal scaled estimate.

In the case of varying β we have:

r(t) =
f β

f β̂
= f ∆β (42) r′(t) = ∆β f ∆β−1 ∂ f

∂t
, (43)

which means first, that the change in the absolute scale will
be higher with increasing ∆β and higher step frequencies and,
secondly, that if there are changes in the user’s pace, we might
expect a drift in the scale higher for larger ∆β .

For the experimental evaluation we used the changing pace
and GoPro sequences. Each time we run our algorithm, we set
one parameter to the nominal value fitted to our camera oper-
ator, while varying the other between our nominal value and
3 other options computed from average, lower limit and upper
limit values of the parameters for the model proposed in [12].

(a) (b) (c)

Figure 13. GoPro experiment. (a)Trajectory estimates after loop closure in
our scaled estimate and the raw estimate. Estimates prior to loop closure are
shown in the small view, in which the raw estimate has been rescaled for better
visualisation. (b) Result of using different approaches for scale drift removal.
Absolute scale of each estimate is fitted to the Ground Truth’s. (c) Scaled tra-
jectory and scene points obtained with our approach.

Table 4. Estimation error for different scaling and optimisation combinations
for the GoPro sequence.

Method Mean Maximum Relative
error[m] error[m] mean error

unscaled 5.83 11.94 1.42%
optimSim3 [8] 2.81 7.40 0.69%
dynScale (ours) 1.54 4.46 0.37%

dynScale (ours) + optimSim3 [8] 2.53 5.89 0.62%

Results in Fig. 17 show that an ad hoc calibration for each
user is crucial to get the absolute scale of the estimate. How-
ever, for just scale drift correction, which is more important in
practice, it is shown that an accurate calibration of the walk-
ing model parameters is not critical, as long as extreme pace
changes are avoided during walking. Note that the experimental
observations confirm the predicted behaviour by the theoretical
analysis.

7. Conclusions

In this paper we have presented a novel approach to provide
estimates with the absolute scale of wearable odometric locali-
sation systems using a single camera. Our proposal makes these
hypothesis: first, the camera must be attached to a body part
whose motion is mainly caused by the action of walking; sec-
ondly, the initial unscaled visual odometry estimate must be ac-
curate enough to register the oscillations which take place dur-
ing walking, and thirdly the roughness of the terrain on which
the user moves is low enough not to mask the amplitude of the
walking oscillations.

Our method has been thoroughly evaluated in a rich set of
video sequences, combining indoor and outdoor environments
and using many kinds of cameras, attached either the head or to
the chest of the user. In spite of this high variety in the condi-
tions which the system has been tested on, our algorithm shows
a good performance without requiring to be retuned for each
experiment with the same user. Also we show that if the pace
of the user does not change a lot during the path, the calibration
of our system for a specific user is not critical in terms of scale
drift correction.
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Figure 14. Camera-on-chest experiment. (a) Evolution of the step frequency
estimate (top) and its corresponding spectral power (bottom), (b) Evolution of
(top) the scale factor, (middle) the non-dimensional speed and (bottom) the
estimated real walking speed.

(a) (b)

Figure 15. Camera-on-chest experiment. (a)Trajectory estimate after loop clo-
sure with and without our scaling algorithm. Estimates prior to loop closure
are shown in the small view, in which the raw estimate has been rescaled for
better visualisation. (b) Scaled trajectory and scene points obtained with our
approach.

We have compared our algorithm in our most challenging se-
quences against the scale drift correction method proposed in
[8], where ours shows a better performance. This gain in per-
formance is due to the fact that our method corrects the scale
dynamically every few seconds, instead of having to wait for
a loop detection to obtain scale information as done in [8].
Note also, that as both methods extract the scale from differ-
ent sources, they are not mutually exclusive. Indeed we have
shown in the experiments, that he combination of both provides
the better performance. In this sense, we expect also that the
proposal presented in this paper can also combine well not only
with [8], but also some of other present and future methods
for scale computation, in order to get more robust information
about the real camera trajectory and 3D observed scene.
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[15] D. Gutiérrez-Gómez, L. Puig, J. J. Guerrero, Full scaled 3d visual odom-
etry from a single wearable omnidirectional camera, in: IEEE/RSJ Int.
Conf. on Intelligent Robot Systems (IROS), 2012, pp. 4276–4281.
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Figure 17. Variation of (a) the absolute scale with α, (b) the absolute scale with β, (c) the scale drift with α, (d) the scale drift with β. Results for the pace change
sequence are shown in the first row. Results for the GoPro sequence are shown in the second row row. Note that a wrong α has no negative effect on scale drift
correction, while a wrong β is only harmful if there are high changes in pace.
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