Dense Labeling with User Interaction: an Example for Depth-Of-Field Simulation

Ana B. Cambra, Adolfo Muñoz, José J. Guerrero, Ana C. Murillo
Instituto de Investigación en Ingeniería de Aragón, DIIS, Universidad de Zaragoza, Spain

INTRODUCTION

Many problems in Computer Vision can be formulated as a dense labeling problem.

Common dense labeling techniques require a high computational cost for interactive applications.

Besides, adding user knowledge in automatic systems can produce better solutions: interactive feedback.

RELATED WORK

Markov Random Fields (MRF):
- discrete labels
- high execution time for interactive applications

Random Walks:
- one linear system per label
- discrete labels with seeds

CONTRIBUTIONS

- Efficient dense labeling approach
- Interactive application for D-o-F simulation

REFERENCES

FORMULATION

Model the image as a graph:
- nodes N Slic superpixels [1]
- edges E relationships between superpixels.

- Continuous set of labels: real numbers in [0,1].
- Linear system of equations:

\[A \cdot x = b \]

where:

\[a_{i,j} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise} \end{cases} \]

Binary equations:

\[a_{i,j} x_i + a_{j,i} x_j + c_{i,j} = 0 \]

Unary equations:

\[f_p = z \]

EVALUATION

AUTOMATIC DENSE INPUT

SPARSE USER INPUT

CONCLUSION

- Our approach is the fastest to obtain a solution while keeping comparable quality in the results.
- The dense labeling pipeline has great flexibility to model this problem and has the advantage of providing an interactive solver.
- We believe that our approach will inspire future research for interactive editing applications based on dense labeling.

MORE INFORMATION

Email: acambra@unizar.es
Web: http://www.cs.unizar.es/~acambra
Code: https://github.com/unizarlab/app_3dunlab

ACKNOWLEDGEMENTS

This work has been funded by Projects DPI2015-63662-R (MINICOG/FISER, UK) and CHRIST-ERA 3D/ID (PCIN-2015-103). The authors would like to thank Diego Gutierrez for his insightful comments and discussions on this research.

REFERENCES