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Abstract 

 
This paper focuses on the creation of a human 

navigation assistance prototype. The system uses a 
conventional RGB-D camera and a laptop to  analyze 
the environment surrounding the user and provides 
him with enough information for a safe navigation. The 
system is designed to work indoors and performs two 
main tasks: floor and obstacle detection and staircase 
detection. Both tasks make use of the range and visual 
information captured by the sensor. The camera points 
downwards, allowing to acquire relevant navigation 
information without invading the privacy of other 
people. The system has been tested in real 
environments showing good results in the detection of 
obstacles and staircase. 

 
Resumen 

 
Este trabajo se centra en el diseño de un prototipo 

de asistencia a la navegación para personas. El 
sistema se basa en un sensor RGB-D portable 
conectado a un PC para analizar el entorno alrededor 
del usuario y facilitarle información para la 
navegación en este entorno. El sistema está diseñado 
para trabajar en interiores y realiza dos tareas 
principales: detección del suelo y obstáculos cercanos 
y detección de segmentos de escalera. Ambas tareas 
utilizan la información, tanto de profundidad como 
visual capturada por el sensor. La cámara está 
dispuesta mirando hacia abajo para capturar 
información relevante para la navegación sin interferir 
en la privacidad de otras personas. El prototipo ha 
sido probado en entornos reales mostrando buenos 
resultados en la detección de obstáculos y escaleras. 
 
1. Introduction 
 

The ability of navigating effectively in the 
environment is natural for people, but not easy to 
complete under certain circumstances, such as the case 
of visually impaired people or when moving at 

unknown and intricate environments. Wearable 
intelligent systems are great platforms for navigation 
assistance. Those systems can be very useful for 
improving or complementing the human abilities in 
order to better interact with the environment. In this 
context, project VINEA (Wearable computer VIsion 
for human Navigation and Enhanced Assistance) aims 
for the consecution of a personal assistance system 
based on visual information. This system will help 
people to navigate in unknown environments and it 
will complement the human abilities. Possible users of 
this system will range from visually impaired people to 
users performing specific tasks that complicate the 
visibility or accessing to poor visibility environments. 

A personal guidance system must keep the subject 
away from hazards, but it should also point out specific 
features of the environment the user might want to 
interact with. In this paper, we present a system that 
benefits of the use of new and affordable RGB-D 
cameras to assist the user navigation. Two navigation 
problems are faced and solved: floor and obstacle 
detection and staircase detection. 

The system uses chest mounted RGB-D camera. 
The camera points to the floor, capturing the 
traversable area in front of the user. This configuration 
allows to capture information important for the 
navigation (e.g. floor plane, close objects and 
obstacles) while sensitive information and privacy of 
other people is out of the field of view of the sensor.  

RGB-D sensors provide range and color 
information. Range information is used to detect and 
classify the main structural elements of the scene. Due 
to the limitations of the range sensor, the color 
information is jointly used with the range information 
to extend the floor segmentation to the entire scene. In 
particular, we use range information for closer 
distances and color information is used for larger 
distances. This is a key issue not only to detect near 
obstacles but also to allow high level planning of the 
navigational task thanks to the longer-range 
segmentation our method provides. Once we have 
detected the floor of the scene, we solve the detection 
and modeling of one common obstacle that a person 
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can come across while moving around: the stairs. 
Finding stairs along the path has the double benefit of 
preventing falls and advertising the possibility of 
reaching another floor in the building. Additionally, we 
have developed a user interface that sends navigation 
commands via sound map information and voice 
commands. 

The proposed system has been tested with a user 
wearing the prototype on a wide variety of scenarios 
and datasets. The experimental results show that the 
system is robust and works correctly in challenging 
indoor environments. 

This work is a step forward towards the creation of 
a human navigation assistance tool. The technical 
details and evaluations of the detection approaches 
used here have been individually presented in papers 
[1] and [2]. 
 
2. Related Work 
 

Many different navigation assistance systems for 
visually impaired have been proposed in the literature 
[3]. In general, they do not use visual information and 
they need complex hardware systems, such as wireless 
communication technology,  or ultrasonic and GPS 
sensors [4]. Other approaches propose the use of 
colored navigation lines set on the floor and RFID 
technology to create map information, [5]. Or the 
creation of a previous floor map of a building to define 
a semantic plan for a wearable navigation system by 
means of augmented reality, [6]. 

Vision sensors play a key role in perception 
systems because of their low cost and versatility. The 
work in [7] presents a system for indoor human 
localization based on global features that does not need 
3D reconstruction. A disadvantage of monocular 
systems is that global scale is not observable from a 
single image. A way to overcome this problem is using 
stereo vision such as in [8]. 

In recent years, RGB-D cameras  have gained 
importance on the fields of computer vision and 
robotics thanks to their low price and the combination 
of range and color sensors. They capture color and 
depth information of the scene simultaneously. The 
depth information can help to perceive the shape of the 
scene and it is independent of textures and lightning 
conditions, however, it is usually limited to about 5 
meters. Color information complements this limit, and 
can include surface details not present in the range 
data. This is the only sensor used in this work, which 
benefits from both the range and visual information to 
obtain a robust and efficient system. 

These kind of sensors has been used to find and 
identify objects in the scene [9, 10]. One step ahead is 
to integrate range systems in the navigation task. Some 
examples are [11], where a Kinect sensor is used, [12] 

where range information is used to distinguish solid 
obstacles from wild terrain, or [13], where FAST 
corner detector and depth information for path 
planning tasks are used. RGB-D cameras can be also 
used to estimate the motion and the 3D structure of the 
scene [14] 

Regarding the problems faced in our approach, we 
see how computer vision has been used before for floor 
and path-segmentation. The work in [15] presents a 
system that solves floor-segmentation using hue and 
light information of the images. In [16], authors use a 
histogram-based road classifier. In [17], a method to 
find the drivable surface with appearance models is 
presented, and [18] shows how the fusion of 
information, in particular color and geometry 
information, improves the segmentation of the scene. 
We exploit this idea by extending the structure 
estimated from the depth data with the information 
from the color image. 

Stairs detection has also been faced using 
conventional cameras [19], stereo vision [20] and even 
laser scanning [21]. We find also approaches using 
RGB-D as main sensor and machine learning 
algorithms to perform the staircase detection [22, 23]. 
Papers [24, 25] use also RGB-D cameras and 
geometric reasoning to detect the stairs. This is the 
approach we have consider in our method for stair 
detection. We start from the traversable area detected 
with our floor detection approach and detect and model 
staircase with one or more steps. 

 
3. Prototype setup 
 

There are many options to locate a camera or a 
RGB-D sensor for a wearable navigation system [26]. 
The RGB-D device provides range information from 
active sensing by means of infrared sensor and 

 
Fig. 1 Wearable  camera  pos ition: the  RGB-D sensor is  
chest mounted and it looks downwards 45º; the laptop 
where all the computation is carried on is on the 
backpack. The image shows the field of view of the 
sensor (green) and the axis of the scene (X’-Y’-Z’) and 
the sensor (X-Y-Z). 

 



intensity images from a standard camera. We have 
chosen a chest-mounted system so the sensor remains 
fixed to the body comfortably for the user that can 
move freely. The sensor points to the front of the user 
at all the times being able to detect dangers along the 
path. We set the camera pointing slightly downwards, 
45º down, this way the captured details are mainly the 
floor plane and obstacles in front of the user. The set 
up can be seen in Fig. 1. 

This camera setup can be classified as 
sousveillance, opposed to surveillance (where the 
camera is fixed to an outside object of the 
environment). Our configuration shows a great 
potential to be used for personal safety and security, 
improved eyesight or augmented reality. 

Currently, the RGB-D sensor is connected to a 
laptop carried in a backpack and performing all the 
computations. The algorithms are implemented in C++ 
language for ROS (Robot Operating System), OpenCV 
library for image processing and PCL (Point-Cloud 
Library) to process the range data. 

 
4. Floor and obstacle detection 
 

 Our approach to detect the floor plane and the 
obstacles in it is performed in two main steps. First, 
using the range data, we detect the floor and the 
objects close to the user. In a second step, the floor 
plane detected is extended using the image data. 

 
4.1 Floor segmentation 
 

Given the range data, we segment it in planes using 
the plane model and RANSAC algorithm. Once the 
planes have been detected, we identify the most 
important scene planes analyzing the normal vector of 
each plane and considering that the scene follows the 

Manhattan World [27] model that assumes that the 
environment has three main directions which are 
orthogonal between them. We are able to assign the 
labels obstacles or floor to the data. Fig. 2  shows 
images of the steps of this process. 

 
4.2 Floor expansion using image information 
 

The maximum reliable distance of the acquired 
range data is around 3,5 m, enough for obstacle 
avoidance but not enough for path planning in the 
guiding assistance. To extend the floor detected and 
obtain the whole surface of the traversable ground we 
include the color information. Range data and the RGB 
data are calibrated, so the detected floor can be 
projected in the image. We refer to the image 
projection of the detected floor plane as floor-seed. 
Starting from this floor-seed region, we will segment 
the image surface to expand the floor detected in the 
range data. Two image segmentations will be used 
depending on the image: Polygonal floor segmentation 
and Watershed segmentation. 

 
4.2.1 Polygonal floor segmentation. This method uses 
the lighting, hue and image geometry to segment the 
image. First, the image is filtered using the shift mean 
algorithm over a pyramid of images. The result of this 
step is a smoothed image, where the floor surface is 
more homogeneous than in the original image while 
the boundaries with the obstacles are preserved. Next, 

 
Fig. 2 Process  of the  segmenta tion methods  used. 

 

 
Fig. 3 Process  of the  floor segmenta tion in the  range 
da ta . (Top-le ft) RGB image . (Top-right) Range  da ta  
point cloud. (Bottom-le ft) Filte red range  da ta  point 
cloud. (Bottom-right) Floor segmenta tion (green) and 
obs tacles  (blue  and red). 

 



we compare the lighting of the filtered image with the 
lighting of the floor-seed. This is done by comparing 
the lighting histograms. Pixels satisfying the lighting 
criteria are then evaluated using a hue criteria. This 
criteria uses Back Projection to check how well the 
checked pixels fit the distribution of the hue histogram 
of the floor-seed. These two criteria allow to select the 
image pixels with high probability of being part of the 
floor plane given its lighting and hue values. The final 
step of this method is a polygonal segmentation. Lines 
in the image are computed using the Canny edge 
detector and Hough line transform. Detected lines are 
extended to image borders and the image is segmented 
using the polygons defined by these lines. The whole 
process is shown in the first column of Fig. 3. 
 
4.2.2 Watershed segmentation. When the number of 
detected lines is too low, too high or the line 
distribution in the image is too heterogeneous, 
Watershed segmentation [28] is used. This algorithm 
takes the binary image resulting from the Canny edge 
detector as input and produces an image segmentation 
based in this information. Second column in Fig. 3 
shows the process of this method. 
 

Once the image has been segmented with one of the 
two methods, we use the reference floor-seed area to 
determine which regions belong to the floor. Segments 
overlapping with the floor-seed and not overlapping 
with any obstacle are labeled as floor. 

Our method is able to select between both 
segmentation methods automatically by evaluating if 

the detected lines are enough to run the polygonal 
segmentation. 
 
5. Stairs detection 
 

The stairs detection is performed in the range data 
provided by the sensor. The whole sensor reading is 
reoriented using the floor plane detected using the 
process described in Section 4. The origin of 
coordinates is defined in this plane: y-axis is defined in 
the plane normal direction, and height 0 is set on the 
plane surface. 

 
5.1 Segmentation of the scene 

 
A region growing strategy is used to segment the 

range data. regions are afterwards classified as planar 
and non-planar using RANSAC. Following this 
process the planes found are closed regions 
corresponding to one single element, not a set of 
uncorrelated points in the scene [24]. The segmentation 
is performed following the next steps: 

Normal estimation (Fig. 4a): For each point and a 
group of K neighbors, the third component obtained 
from Principal Component Analysis corresponds to the 
normal direction. In this step the curvature of the 
surfaces is also computed. 

Region-growing (Fig. 4b): This algorithm starts 
from a seed, which is the point with minimum 
curvature, and then expands the region towards the 
neighboring points that have small angle between the 
normal and similar curvature value. Points that satisfy 
the normal and curvature threshold became the new 
seeds and repeats until the region cannot expand 
anymore. 

Planar test (Fig. 4c): Region-growing produces 
regions that have a high degree of flatness, but they 
can also be a curved surface with smooth transitions. 
RANSAC algorithm seeks for the biggest plane in each 
region: if most of the points are inliers, it will be 
considered a planar surface with the plane equation 
obtained; otherwise, the regions will be considered 
obstacles. 

 
Fig. 5 Connectivity between step candidates: ascending 
and descending staircases (a), and more than one 
region per level (b). 

 

 
Fig. 4 Planes segmentation and classification for stair 
detection. 

 



Planes extension (Fig. 4d): Points not belonging to 
any region are included in a planar region if the angle 
between their normal and the planar region normal and 
their distance to the plane are small. 

Euclidean cluster extraction (Fig. 4e): The points 
not belonging to any region go through a cluster 
extraction algorithm which establishes connections and 
forms separate entities, considered obstacles. 

Plane classification (Fig. 4f): Once the 
segmentation stage has succeeded the planes are 
classified among different classes according to the 
orientation and relative position of the planes. Planes’ 
normal are compared to the floor normal to detect 
horizontal and vertical surfaces (walls). Any plane not 
considered as vertical or horizontal is classified as 
obstacle. 

Horizontal planar regions can be floor, steps or 
other obstacles. Planar regions with height close to 
zero are considered floor. Regions with positive or 
negative height that satisfy the Technical Edification 
Code1 (13 cm ≤ height ≤ 18.5 cm) are considered as 
step candidates. The existence of at least one step 
candidate activates the stair detection algorithm. 

 
5.2 Stair detection algorithm 
 

The detection algorithm establishes connections 
between the step candidates to group the stair planes in 
levels and discard the candidates that do not belong to 
the staircase. Step candidates are analyzed one by one 
starting from a first step: step candidates whose 
centroid distance to the floor is below a threshold are 
considered first step candidates. Starting from these 
first step candidates, the connectivity with other step 
candidates is checked using neighbor search and Kd-
trees. The first step must be connected to the floor. If 
no first step candidate is detected, the algorithm 
concludes that there is no staircase. 

                                                           
1 Ministerio de Fomento. Gobierno de España - Código Técnico de 
la Edificación, Documento Básico de Seguridad de Utilización y 
Accesibilidad (DB-SUA, Sección 4.2) 

A special case occurs when there is just one step. In 
this case, strict area and shape conditions need to be 
verified.  

As a result of the stair detection algorithm, a set of 
connected regions corresponding to different levels is 
obtained (Fig. 5). When all the candidates have been 
checked, if the number of stair levels is greater than 
one, we proceed to model the staircase. 
 
5.3 Stair modeling 
 

Our staircase model uses the next parameters: step 
width, tread length, riser height and number of steps. 
We apply Principal Component Analysis (PCA) to 
each set of points corresponding to the tread of the step 
in each level of the staircase to compute the width, 
length and height of each step (Fig. 6(a)) and define 
the bounding box of the step. As the height is small it 
can be considered negligible, considering the step as a 
two-dimensional rectangular bounding box (Fig. 6(b)).  

We define extent as the ratio of the area of the 
concave hull including the points and the area of the 
rectangle. The extent is used to measure the quality of 
the detected step as it relates the area occupied by the 
points with respect to the area they are supposed to 
occupy. 

The analysis is repeated for all the stair levels, 
considering the addition of different regions at the 
same level  to form a unique step. Each step has 
different dimensions and orientations depending on the 
quality of the measurements, the position of the steps 
with respect to the camera or the filters performance. 
At each level, we will choose the best step as the one 
with higher extent value among the steps within a valid 
width range. 

Once all the levels have been analyzed, the 
staircase is modeled. Steps are then modeled as 
parallelograms whose width is the width of the best 
step, the height is the average vertical distance between 

 
Fig. 7 Estimated model staircase. Top images show the 
parallelograms corresponding to the found steps. 
Bottom images show all the steps. 

 

 
Fig. 6 (a) Principal components of the steps (blue-
green-red) and the bounding rectangles (white). (b) 
diagram representing the components. 

 



consecutive steps and the length the mean horizontal 
distance between the edge of every two consecutive 
steps. Once we have all the parameters, we can use 
them to validate the staircase detection or discard it, 
and in case of positive results we can trace the model 
and even extend the information to non-detected steps 
(Fig. 7). 

 
6. User interface 
 

Finally, we propose a simple interface that gives 
information to the user according to the results 
provided by the presented algorithms. This interface 
provides audio instructions and sound map 
information. Audio instructions will be used only for 
high level commands, available free path information, 
or in dangerous situations, where the user could collide 
with an obstacle. In this case, the system will warn 
about the situation and will give the necessary 
instructions. In the rest of cases, the sound map will 
send stereo beeps whose frequency depends on the 
distance from the obstacle to the person. We have 

defined the safety area from the user to any obstacle as 
two meters. A known drawback of audio systems is 
that they may block other natural sounds. However, 
our system does not provide constantly audio 
instructions or beeps so the possible blocking of 
natural sounds will only appear sporadically. The user 
may also regulate the volume of the system so he could 
hear natural sounds and audio instructions at the same 
time.  

The interface will produce beep sounds depending 
on the distance from the user to the obstacle. For 
example, if the left wall is closer to the user than the 
right one, the user will hear a high frequency beep in 
his left ear and a low frequency beep in the right ear. If 
the wall is placed in front of the person, the beep will 
be Heard in both ears. These beeps allow the user to 
understand the environment. With this user interface, 
the user will be able to navigate through an unknown 
scenario as well as being able to avoid obstacles with 
no risk of collision. 
 

 
Fig. 8 Results of the floor detection and expansion. Each row shows a different example. First column shows the 
original RGB image. Second column shows the floor detected in the range data. Third column shows the image 
segmentation used that is chosen automatically for each image. Finally, fourth column, shows the complete 
detected floor which is the traversable area to be used to guide the user. 

 



7. Experiments 
 

Next sections detail the experiments performed to 
test the different methods proposed in this work. The 
methods have been evaluated in real scenarios 
exhibiting a wide variety of visual characteristics and 
lighting conditions. 

 
7.1 Datasets used for the experiments 
 

We have tested the algorithm in public and private 
buildings. The public ones are placed in University of 
Zaragoza (Spain) and they are: Ada Byron building, 
Torres Quevedo building and I+D building where 
Institute of Engineering Investigation of Aragón (I3A) 
is placed. The private buildings are examples of houses 
and a garage. Since the number of datasets to test 
approaches for navigation assistance is almost non-
existent we have released our dataset2, which collects 
data used in our experiment to be available to the 
research community. Additionally, scenarios including 

                                                           
2 http://webdiis.unizar.es/%7Eglopez/dataset.html 

stairs were also recorded to conduct specific 
experiments. We have also evaluated our system using 
the dataset of the Technische Universität München 
(TUM)3 and the dataset compiled by Tang et al. 
compiled in [24]. 
 
7.2 Floor and obstacle detection testing 
 

Fig. 8 presents results of our floor detection 
algorithm on some typical corridor images available in 
our dataset, and the TUM dataset. Even in the presence 
of hard conditions (i.e. brightness, reflections), we 
obtain good results.  

A quantitative analysis is shown in Table 1. This 
table shows the performance of floor detection 
obtained just with range data and when the whole 
system is used. For these results, the floor of 150 
images has been manually labeled. Table shows 
precision, recall and F1 statistic values. The recall 
confidence interval is also computed in the last column 
at the 95% confidence level.  

The precision obtained with range data is 100% in 
all scenarios. These perfect precisions are caused 
because of short-range hardware limitations and 
because the range sensor is unable to obtain range data 
of regions which are closed to an object’s boundary, 
producing conservative results. On the other hand, 
recall has low values due to these limitations. 

The best recall results using just the range data 
correspond to sequences where there is no sun light 
(Garage and Ada Byron bldg.). However, for the rest 
of sequences the results are weak. Is in those sequences 
where the use of both range and image data advantages 
are shown.  Range segmentation is limited due to solar 
light so recall is lower than 80% (55% for the TUM 
dataset). Adding the color information improves the 
recall to 95%. 

                                                           
3 http://vision.in.tum.de/data/datasets/rgbd-dataset 

Table 1 Results of the floor detection evaluated with the 
annotated ground truth. 

 

 
Fig. 9 Results  of the  s ta ir de tection. Las t column shows  results  obta ined in da rk environments . 

 



Table 2 shows the contribution of each part of the 
algorithm, range segmentation and color segmentation, 
to the final floor result. In order to obtain a fair 
comparison in metric units, we need to project the 
image’s floor without projective distortion to have a 
top view of it in real magnitude. Otherwise, the farther 
the segmented region is in the projective image, the 
less number of pixels it contains (despite representing 
similar metric area tan closer regions). We have 
calculated the homography from the image to the floor 
and we have obtained the number of squared meters 
segmented by range and color algorithms. Table 2 
shows that the expansion of the range segmentation 
with color segmentation is important in all scenarios. 
Scenarios where there is no solar light have the highest 
contribution of range segmentation. Scenarios with 
medium-low solar light incidence we obtain a 
contribution of 50% approximately with both kind of 
segmentations. Those scenarios where the presence of 
solar light is really high, the color segmentation has the 
highest contribution, more than 70% of the detected 
floor is obtained with this part of our algorithm, 
reducing drastically the limitations of the range data.  
 
7.3 Stair detection experiments 
 

To test the stair detection algorithm we use the 
Tang dataset. The results with this dataset were 
successful even in total darkness (Fig. 9). We tested for 
false positives and false negatives using this dataset 
and compared our results with methods in [24] and 
[25] (Fig. 10). We achieve better results with no false 
negatives as in [25] but also without false positives. 

If we look at the step detection rate according to the 
position of the step in the staircase (Fig. 11) we see 
how behavior changes when facing ascending staircase 

or descending steps. When the user faces a descending 
staircase the whole staircase can be seen by the sensor, 
but self occlusion of consecutive steps and quality of 
the measurements decreases with the distance so the 
rate detection of further steps decreases. In the case of 
ascending staircases the steps remain close and visible 
for the sensor as they rise, although visual angle 
decreases. In general, steps higher than the seventh 
position are out of the field of view of the camera. 

We have quantitatively analyzed the resemblance 
of the model to the real staircase. We have excluded 
the width from the analysis as the view of the stairs 
may be partial and it is not as relevant as the other 
measurements. After computing the height and length 
of staircases, in both ascending and descending 
perspectives, from different viewing angles, the results 
were compared to the real measurements. Real stairs 
have a length of 30cm and a height of 15cm. The mean 
values for the computed length and height where 29 
cm and 15.4 cm respectively. Half of the experiments 
were conducted with real people going up and down 
the stairs. Obstructing the view of the staircase 
partially does not adversely affect the quality of the 
model, length and height were 29.39 cm and 15.56 cm 
respectively in these cases. Some pictures of the 
experiments with people climbing up/down the 

Table 2 Contribution to the final result of the range and 
color segmentation. 

 

 
Fig. 10 Comparison of fa lse  nega tives  and fa lse  
pos itives  be tween our work and the  approaches  
presented by [24, 25]. 

 

 
Fig. 10 Step de tection ra te  with the  s tep pos ition in the  
s ta ircase . 

 



staircase can be seen in Fig. 12.  
 

7.4 Computation time 
 
One important point of a navigation system is that 

it has to be able to run on real time, while the user 
moves. We have tested the computation times of the 
method proposed. The whole floor and obstacle 
detection algorithm (Range data processing, RGB 
image processing and user interface generation) runs 
approximately at 0.3 frames/s.  The stair detection 
iteration time ranges from 50 to 150ms. The variation 
depends on the scene itself: close up captures provides 
good quality clouds and the segmentation algorithm 
provides less regions and as a consequence, faster 
results. 

We consider this timing fast enough for indoor 
navigation assuming walking speeds around 1-1:5m/s. 
This rate could be improved adding some 
optimizations to the algorithm or using multi-core 
processing. 
 
8. Conclusions 
 

In this work we have presented a navigation 
assistance prototype able to guide a person through an 
unknown indoor environment avoiding obstacles and 
detecting staircases. The system uses a chest mounted 
RGB-D camera that captured the relevant information 
of the scene without intruding the privacy of nearby 
people. 

The prototype uses the data captured by the sensor 
to detect the floor plane and close obstacles, and the 
staircases visible. Floor and obstacles are detected in 

the range data, allowing to navigate safely in the area 
close to the user. The floor detected in the range data is 
extended later in image using the color information. 
Additionally, the environment is analyzed in the search 
of staircases close to the user. This analysis is 
performed also on the range data. 

The system has been tested in different real 
environments showing good better performance than 
other state-of-the-art techniques and the computations 
can be run on real time.  
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