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Abstract— One open problem in the fields of place recognition
and mapping is to be able to recognise a revisited place when
its appearance and layout have changed between visits. In this
paper, we investigate this problem in the context of RGB-
D mapping in indoor environments. We propose to segment
the scene in juts (neighbourhood of 3D points with normals
that stick out from the surroundings) and look at low-level
features, like textureness or entropy of the normals. These
could differentiate those zones of the scene that change or
move along time from those that are likely to remain static. We
also present a method which improves the matching between
images of the same place taken at different times by pruning
details basing on these features. We evaluate on a number of
communal areas and also on some scenes captured 6 months
apart. Experiments with our approach, show an increase up to
70% in inlier matching ratio at the cost of pruning only less
than 20% of correct matches, without the need of performing
geometric verification.

I. INTRODUCTION

In computer vision, the problem of place recognition
consists in being able to tell if two given images correspond
to the same scenario or not. Place recognition is the key
element to perform topological mapping [20], but also it
is important in the context of geometric localisation and
mapping to relocalise when the system is lost or to be able
to close loops when revisiting previously mapped areas [22].

Robust place recognition is a fundamental step to perform
life long mapping. In [12], Konolige and Bowman give a
concise definition of what a lifelong map implies. A lifelong
map system must carry out an incremental mapping, be able
to operate in dynamic environments and to relocalise and
close loops by recognising revisited places when given the
chance. Focusing on the dynamic environment problem, two
different issues are pointed: ephemeral objects, which move
at the same time a zone is being mapped, and long-term
changes, which involve changes in the scene which take place
between different tracks of the scene. Ephemeral objects are
usually ignored during mapping when using the traditional
approaches such as visual odometry, and this makes such
maps brittle beyond a few moments after being captured. In
some cases, optimisation techniques based on RANSAC [3]
or robust M-estimators [11] could be used to diminish the
effect of ephemeral objects on the localisation and mapping,
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mento de Informática e Ingenierı́a de Sistemas (DIIS) y el Instituto de
Investigación en Ingenierı́a de Aragón (I3A), Universidad de Zaragoza,
Spain. {danielgg,josechu.guerrero}@unizar.es

2Walterio Mayol-Cuevas is with the Department of Computer Science,
University of Bristol, UK. wmayol@cs.bris.ac.uk

Fig. 1. Depth-based detection of zones which moved between mappings.
A simple masking based on the entropy of different zones of the scene
improves the inliers ratio of matched visual features.

but this can only be considered an indirect approach to
address the fundamental nature of scene change.

Naturally occurring long-term scene changes, such as ob-
jects on a common room or bedroom appearing, disappearing
or changing places can affect loop closure detection and
this thus must be dealt with at the place recognition stage.
Standard approaches for place recognition though perhaps
featuring some robustness to scene changes, do not handle
these alterations actively nor identify where potential future
changes may occur.

In this paper we address the issue of place recognition
under long-term changes. Concretely we focus on robust
place recognition with RGB-D cameras in indoor scenes.
From the point cloud and the RGB images we can compute
low-level features of parts of the scene like textureness,
planarity or entropy of normals. This information can be
very valuable to both decide where not to place landmarks
but also to identify moving scene objects.

To define and evaluate our proposed method we perform
two types of experiments. The first experiment is performed
with images taken at fixed poses of different real scenes
over which we have no control of changes and over different
days, and where Ground Truth of static and changing zones
is available. This experiments aims to inform us on which
features are better to discriminate static from changing scene
parts.

In the second experiment, we compute 3D maps of some
of the scenes on different days with KinectFusion method



[13], which is more akin to the case of a system of lifelong
mapping for a personal or robotic device. Here we evaluate
the matching between snapshots from reconstructions on
different days by masking out zones below a given score,
based on the previously studied features. We show how this
masking improves the inlier ratio (Fig. 1).

II. RELATED WORK

The work of Konolige and Bowman [12] is focused
towards efficient storage, keeping a map whose size scales
with the explored area instead of with time. Keyframes
are clustered by appearance similarity, trying to keep the
maximum number of clusters, while fixing the maximum
number of total stored keyframes. However this work does
not address the problem of maintaining matches over long
term changes, but propose the idea of picking up stable
features as a path for improvement of long-term life-long
mapping.

In the context of place recognition with RGB-D cameras
Gee and Mayol-Cuevas [8] pointed out the robustness to
map changes as one important property for place recognition.
They propose a regression of small synthetic views of 80x60,
or even 20x15 pixels, which offers a degree of tolerance to
changes in order to recognise revisited places. Whelan et
al. [21] focus on using optimisation to produce a consistent
map deformation when closing the loop and address the
problem of place recognition by using a visual based bag
of words scheme with SURF descriptors.

Also, when considering RGB-D sensors, many authors
have focused in discovering moving objects in a scene.
This problem is related to lifelong mapping in the sense
that moving objects are precisely what we want to discard
when performing place recognition. Herbst et al. [9] discover
objects in the scene after aligning two 3D maps of the same
scene with different objects. For the alignment they assume
that the moving objects occupy a small fraction of the map.
Finman et al. [7] detect objects from changes in maps and
then train a segmentation method to segment the discovered
objects in future runs.

Karpathy et al. [10] propose a method to discover objects,
which in contrast does not rely in an object displacement to
detect them. Instead they perform a non-semantic segmenta-
tion [6] of the scene based on the map of normals, and then
each segment is ranked with different objectness features. To
avoid ambiguities, in this work we name the 3D segments as
superjuts as the result of extending the concept of superpixel
to 3D points with normals.

However, when dealing with lifelong mapping with RGB-
D, though recognising specific objects can be useful, it would
be desirable to discard anything which can move, no matter
which object it is or if it has been seen or not before.
To do this, we can take advantage of some results and
proposals from works in object discovery, like for example a
non-semantic superjut segmentation. But instead of detecting
objects explicitly, we propose the use of statistics and entropy
of low-level features to identify areas that are good and

Fig. 2. 2D simplified scheme of the segmentation in superjuts and the
entropy of the normals H(F (n)) of each superjut.

those that are likely to be unstable landmarks. This approach
removes the elusive definition of object.

When looking for features which characterise movable
objects, some ideas can also be drawn from supervised
segmentation methods for RGB-D scenes [2],[14],[16],[4].
These methods usually classify the scene into coarse classes
(e.g.walls, floor, furniture, and props). The “props“ class
usually makes reference to objects which can be easily
carried, which corresponds precisely to the kind of objects
we want to remove from place recognition routines. Thus,
features used in these methods as inputs for categorisation
can provide some clues for the task of discarding movable
objects.

III. PROPOSED METHOD

Our proposal for robust place recognition tries to detect
zones which can move no matter which objects are in them,
using the information obtained from both 3D point clouds
and RGB images. Fig. 2 shows an intuition of the proposed
method. With a point cloud segmentation algorithm based
on the similarity of normals between adjacent points [10],
a point cloud is segmented in superjuts, represented with
different colors. Then at each superjut we extract low level
features which allow to discriminate static from moving parts
of the scene. Looking at everyday indoor environments one
can probably note that zones of the environment which are
likely to change often show a high degree of derangement,
which yields a more cluttered map of normals and more
textured areas in the image. In the figure for example, the
entropy H(F (n)) of the histogram of normals is represented,
noting that for superjuts with irregular shape is greater than
in superjuts composed by planar surfaces.

A. Point cloud segmentation

First we use the method proposed in [19] and extended in
[10] to segment a dense 3D point cloud in objects or small
groups of objects. It is based on the segmentation algorithm
by Felzenszwalb and Huttenlocher [6], but applied on a map
of normals instead of a RGB image. A graph G = (V,E) is
constructed, where each vertex in V represents a 3D point
Xi and the edges E represent the neighbouring relations
between points. Having the normals at every point, a weight
wij for the edge joining vertices i and j is computed:



wij =

{
(1− nT

i nj)
2 if nT

j (Xj −Xi) > 0
1− nT

i nj if nT
j (Xj −Xi) ≤ 0

(1)

where the squared weight is applied to convex edges, re-
flecting the fact that convex regions usually contain points
belonging to the same object and concave regions are likely
to arise in frontiers between objects. After computing the
weights, the segmentation algorithm is run and essentially
groups points sharing edges with low weights in the same
segment. A parameter k must be tuned such that the higher k,
the larger segments will be obtained. In this work we always
use k = 0.6 for all the experiments.

Depending on the characteristics of the point cloud we
compute the normals and edges required for segmentation in
two different ways.

Triangular mesh: The first option is to build a triangular
mesh from a given point cloud. This is specially preferable if
we have dense 3D map resulting from mapping as the camera
moves, e.g. with KinectFusion [13] approach. This way, an
edge between two points Xi and Xj is created if they have
any triangle, among the ones they belong to, in common.
The normal for a point is computed as the average of the
normals of the triangles it belongs to. Using this approach
the segmentation algorithm is like the one proposed in [10],
resulting in a set of superjuts.

Image domain: Alternatively the point cloud can be
projected onto an image domain, for example if the point
cloud has been cast from a single depth image and the 3D
map might be so noisy to build a triangular mesh. In this case
the segmentation would be done directly in image projected
superjuts, with the edges being created between adjacent
pixels horizontally, vertically and diagonally. The normal for
a point a 3D point projected in pixel (k, l) is computed as:

nk,l =
(Xk,l+1 −Xk,l)× (Xk+1,l −Xk,l)

||(Xk,l+1 −Xk,l)× (Xk+1,l −Xk,l)||
(2)

B. Computation of superjut low-level features

Once the segmentation is done, we extract the low-level
features to discriminate static from moving parts of the
scene. We take the hypothesis that parts which are likely
to move can be discriminated by their 3D structure and their
textureness.

1) Structure by histogram of normals: To gather infor-
mation about the structure of each superjut we compute its
histogram of normals F (n). Since normals are 3-dimensional
unit vectors, they can be represented as points over the
surface of a unit sphere. Thus, a first attempt would be to
compute a 2-dimensional histogram by binning the angles of
azimuth φ and elevation θ as proposed in [17]. However we
noted that this binning might not be adequate if we want to
obtain a good distribution of the bins on the sphere. This is
graphically shown in Fig. 3a, where it can be noted that the
area covered by each bin greatly changes with the elevation
angle. Also it must be noted that points situated near the
poles would be spread among all the confluent bins. These
two facts can severally affect the quality of the histogram.

(a) (b)
Fig. 3. Two possible binnings of the 3D sphere to compute the histogram
of normals: (a) by discretising azimuth and elevation angles and (b) by
approximate uniform distribution of points in the sphere. The number of
bins is set to M = 80 in both cases.

To overcome these problems we opt instead for the com-
putation of a 1-D histogram with M bins. Each bin is a
Voronoi cell corresponding to one point out of M points
uniformly distributed over the sphere. Since there is no
analytical solution to the problem of evenly distributing M
points on the sphere for any M , we use a simple solution
based on the golden section spiral [1], which results in a
discretisation with bins covering areas of similar size and
avoids the confluence of more than 4 bins in a single corner
(Fig. 3b).

Given the histogram of normals, we extract the following
properties:

• Entropy of the histogram ent(F ) =∑M
i=1F (ni) log(F (ni)).

• Planarity, measured as the relative frequency of the
dominant normal plan(F ) = maxF (n).

• Horizontality, given by hor(F ) = eTynmode, with
nmode = arg maxn F (n), where eTy = (0 1 0).

2) Textureness from the eigen-transform: To obtain tex-
ture information we apply the eigen Transform proposed by
Targui et al. [18] over the grey scale images. This approach
produces a greyscale map, where more textured areas of the
image yield a higher response than less textured ones. Then
for each superjut projected in a superpixel over the intensity
image, we compute the mean eigentransform value over the
region it covers.

IV. EXPERIMENTS

We have performed two experiments. In the first ex-
periment we recorded different scenarios from fixed poses
in order to capture the changes which took place during
time and facilitate a Ground Truth separation of moved and
static zones, on which discriminative power of structural and
texture characteristics can be evaluated.

In the second experiment, we recorded sequences of 3
scenarios on different days with a moving camera and
reconstructed a 3D volume to evaluate the use of structural
information with more accurate depth maps in the context of
place recognition. To demonstrate the performance even with
very long term changes one set of sequences was acquired
more than 6 months after the first one.



Fig. 4. Images taken on 9 different scenes at different locations (2 labs and 1 beedroom).

A. Evaluating features for detection of moved areas

RGB and depth images have been taken on 9 scenes at
different locations: two laboratories at different universities
and one bedroom (Fig. 4). For each scene, images have been
acquired on different days to capture the changes in their
layout. Each day, the camera is carefully positioned at each
of the selected poses so that the same scene is captured as
in the acquisitions of previous days. To diminish the effect
of illumination noise in intensity images, and decrease the
holes in the depth images, we captured frames during some
seconds and computed the average of all. In the averaging
of the depth image, hole pixels are zero-weighted.

The first step is building a Ground Truth to separate static
and moved zones of the different scenes. To do so, first,
images of to the same scene on different days are robustly
aligned to reduce the disparity due to non exact camera
positioning with respect to previous days. To do so we use
a similar scheme as for computing the RGB-D dense visual
odometry [8].

Once we have the aligned images and depth maps, we have
to extract the parts of the scenes which may correspond to
moved objects. This is done by computing the disparity in the
depth maps. Note, however, that the existence of a disparity
does not imply a moved object since it might correspond to
a static area in the background revealed by an object which
was occluding it. For a depth map Di of a scene M , the
parts which have changed are those which show a negative
disparity in any difference with every other of the NM depth
maps of that scene. Matemathically we can express this by:

maskMovedi =

(
NM∑
j=1

1x>th (medFilt(Dj −Di))

)
> 0 (3)

where 1x>th is an indicator function. To eliminate disparity
caused by a non-perfect alignment between frames, all the
disparity maps are median filtered with a window size of
10x10, and the threshold for the indicator function is set
to 50mm. After this step we have NM masks per scene
extracting the changing zones.

Once we have aligned RGB and depth images as well as
computed the masks, we follow the pipeline shown in Fig.
5 to obtain the map of normals, the Eigen-transform and the
segmentation, divided in static and moved superjuts. This
data is used to compute both the structural and textureness
features for the superjuts as described in section III-B.

The final results shown in Fig. 6 support the initial
intuition of moving areas being more likely to present more
anarchic variations on the normals as they tend to concentrate
in zones of higher entropy and lower planarity. It is shown
also a correlation between entropy and planarity, which is

normal 
map

eigen
transform

segmentation

Fig. 5. Starting with the aligned RGB and depth images and the masks for
moved objects, we compute the eigen transform as well as a segmentation
separated in static and moved superjuts. This data is used to compute
superjut features for the first experiment.

not a surprise since the existence of a dominant bin in a
histogram reduces its entropy. Texture information from the
Eigen transform and horizontality seems not to be very useful
to discriminate static from moved areas.

In some scenes however, distinction of moved from static
areas based on the used features is less clear. It must be
noted that in this experiment we lack from some accuracy
due to the restriction of recording scenes from fixed poses.
On the one hand the Ground Truth we take for moved and
static elements is not perfect, due to residual misalignment
of the images corresponding to the same poses and noisy
depth measurements of far away areas of the scene. On the
other hand, the segmentation on the image domain (Fig. 5)
is not as good as computed on smooth 3D meshes as it is
done in the next experiment (see 3th row of Fig. 7).

B. Improving place recognition on 3D meshes

For this experiment, we have selected 3 of the scenes
captured in the previous experiment. These scenes have been
selected due to their availability to record sequences on
them. The idea is to prove that using information about 3D
structure, based on the features proposed and analysed in
previous experiment, to discard zones of the scene can benefit
place recognition algorithms.

First, a point cloud and its corresponding triangular mesh
are constructed for every scene for different days using
the large scale KinectFusion implementation from the PCL
library [15]. Then meshes are segmented using the algorithm
of [10] and for every superjut, a histogram of normals is
computed as explained in section III. Since entropy was
shown to be quite discriminative in previous experiment, we
use it as the only feature to prune moved parts of the scene.
Each segment is scored then by computing its normalised
neg-entropy:

negent(F ) = 1− ent(F )

entmax(F )
= 1− ent(F )

log(M)
(4)
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Fig. 6. Distribution of static and moved superjuts in (a) some of the tested scenes, for (b) entropy-eigen transform, (c) entropy-planarity, (d) horizontality-
eigen transform scores. Superjuts corresponding to moved/static areas are shown in blue/red.

To evaluate our approach we match keypoints between
snapshots selected from the image sequences of the same
scene at different days, using SURF descriptors. During
mapping, the poses of the camera are saved so that the 3D
point cloud can be projected and then obtain the scores and
the segmentation in the corresponding 2D image domain
(Fig. 7). The matching pipeline was set to take keypoints
with a Hessian score greater than 200 and discard matches
with a ratio greater than 0.85 for the distance between the
two best matching hypotheses.

For a given image pair, a Ground Truth set of inliers IGT

is obtained by computing a robust fundamental matrix by
RANSAC to select the geometrically consistent matches. On
the other hand, the set of successful matches Sth for a given
threshold th for the normalised neg-entropy score are those
whose keypoints do not belong to any superjut with a score
below the threshold. Given these definitions we can compute
the precision and the recall for a given threshold

precision(th) =
size(IGT ∩ Sth)

size(Sth)
, (5)

recall(th) =
size(IGT ∩ Sth)

size(IGT )
(6)

For every scene, we have computed the precision-recall
curves on each of the possible combination of image pairs,
by shifting the neg-entropy threshold th to prune likely-to-
move areas. Fig. 8 show how the masking varies for different
values of th. In Fig. 9 it is shown how the matching is
affected only between image pairs corresponding to pairs of
sequences acquired with 6 months of difference, for each
of the 3 considered scenes. Note that for pairs of images
where the zones of high entropy have been masked we
obtain a higher ratio of inliers than matching the raw images.
The neg-entropy threshold established for the masking is in
each image pair, the one which produces the highest peak
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Fig. 8. Masks obtained in one frame of the labDesk scene for different values of the score threshold th of the superjut’s entropy of normals.

Fig. 7. Samples of data used in the experiments with depth map. 1st row
shows the obtained 3D maps, 2nd row represents snapshots selected for
matching, 3rd row is the segmentation of the map of normals computed
on the 3D mesh and 4th row shows the normalised neg-entropy for every
superjut projected on the image.

in the precision-recall curve. It can be observed that the
zones that remain unmasked correspond in their majority
to planar zones like walls, which contain very stable fea-
tures. On the other hand masking can also eliminate zones
which remain static between acqusitions, such as the selves
in the roomBed scenario. Also planar objects which are
likely to change their position, such as laptop screens can
remain unmasked. Howerver, in spite of discarding some
stable zones and accepting unstable ones for matching, the
precission and recall curves indicate that the effect of that
masking is beneficial for some neg-entropy threshold.

In Fig. 10, we show the average precision and recall
curves for each scene, including all the possible combinations
of image pairs from all the sequences acquired for the 3
scenarios. Note that for the first scene (labDesk) we obtain
an increase in precision of more than 75% with a decrease
in recall of only 20% with respect not using any masking.
This is caused by the presence of textured elements on walls
which leads to a great number of matches in a low entropy
zones. However, in the third scene (roomBed), the lack of
highly textured low-entropy areas makes the beneficial effect
less noticeable.

Note that though being evaluated in an image matching
context, our approach computes the masks prior to the

matching process. Considering this fact and also that a
greater inliers rate between two matched images is caused
by a greater appearance similarity between both images,
our approach is likely to be applied within the framework
of efficient image search algorithms [5] increasing their
performance. Though the computational cost of performing
the mesh segmentation and superjut projection and scoring
is relatively high, around the order of 5 seconds, it must
be noted that every time a new keyframe is tested for place
recognition the cost of our approach is constant and does not
grow linearly with the number of frames as it surely would
a computationally costly exhaustive matching and geometric
verification scheme over all the keyframe search space.

V. CONCLUSIONS

This work is concerned with the problem of long-term
indoor mapping with RGB-D cameras. Concretely we fo-
cused on finding and evaluating properties of the elements
of the scene which can allow to discard parts of the scene
which easily change with time and could affect severally to
place recognition algorithms for example when relocalising
or detecting loop closures. In the experiments we have shown
that parts of the scene which move along time tend to present
a more chaotic structure, which is reflected in a high entropy
of the histogram of normals. We have validated this obser-
vation, by matching images of the 3D map built on different
days, with a maximum difference between acquisitions of 6
months apart, for 3 selected scenes. Though the validation
was performed in a standard matching scheme, the results
are promising and can be extended to robustify appearance
based place recognition approaches by allowing to prune
words in high entropy areas. This is important considering
that for large keyframe search databases appearance based
methods are the alternative to the maybe more precise but
also much more computationally expensive matching and
geometric verification schemes.
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Fig. 9. Evaluation of our method in 3 different scenes taken with 6 months of difference in an uncontrolled area (from left to right: labDesk, roomDesk
and roomBed). (1st row) Unmasked raw matches, (2nd row) matches after masking for the score corresponding to the highest peak in the precision-recall
curves in 4th row (masked areas are in magenta), (3rd row) Ground Truth matches by geometric consistency.
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