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Abstract— In this paper we present a dense visual odometry
system for RGB-D cameras performing both photometric and
geometric error minimisation to estimate the camera motion
between frames. Contrary to most works in the literature, we
parametrise the geometric error by the inverse depth instead of
the depth, which translates into a better fit of the distribution
of the geometric error to the used robust cost functions. We
also provide a unified evaluation under the same framework
of different estimators and ways of computing the scale of
the residuals which can be found spread along the related
literature. For the comparison of our approach with state-
of-the-art approaches we use the popular dataset from the
TUM for RGB-D benchmarking. Our approach shows to be
competitive with state-of-the-art methods in terms of drift in
meters per second, even compared to methods performing
loop closure too. When comparing to approaches performing
pure odometry like ours, our method outperforms them in
the majority of the tested datasets. Additionally we show that
our approach is able to work in real time and we provide a
qualitative evaluation on our own sequences showing a low drift
in the 3D reconstructions.

I. INTRODUCTION

In the robotics community, visual localisation and mapping
has become one of the most active research fields in the last
decade. Traditional monocular vision systems track sparse
features detected in the images, to both estimate the camera
pose and build a map either using filtering [6] or bundle
adjustment techniques [26] [18]. However, due to their purely
projective nature, monocular vision systems do not directly
provide depth measurements of the observed environment.
This implies the existence of an unknown scale parameter for
the camera poses and map estimates. In a SLAM context, this
scale ambiguity results in an increased odometry drift and in
initialisation issues.

One straightforward way to address the scale problem is
to use stereo vision systems [29], [30], [23] in which a fixed
baseline between two cameras allows for depth estimation.
However with respect to monocular systems they are much
more expensive, bigger and more difficult to calibrate, and
also they cannot accurately measure the depth of distant
scene points or poorly textured areas.

For this reason the recent advent of new RGB-D sensors
has aroused great interest in the development of visual odom-
etry and SLAM systems. Their cheapness and their ability
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to provide dense depth measurements of the environment
in contrast to traditional stereo cameras makes them quite
appealing to address not only localisation and mapping but
also many other problems for which monocular systems are
typically used. The main limitation is their use being limited
to indoor environments.

First systems using RGB-D sensors for SLAM [9], [8]
tended to adapt the sparse feature-based alignment meth-
ods from monocular vision, using the depth information to
straightforwardly lift the features to 3D points and occasion-
ally to apply the iterative closest point (ICP) algorithm for
refinement of the pose estimate.

Preference for systems using sparse features for local-
isation might be caused by the fact that in monocular
systems, dense odometry estimation inherently forced to
estimate the dense depth or optical flow map between frames
simultaneously or prior to the camera motion, which lead
to ill posed problems with more unknowns than constraints
and requiring from the use of regularisation and variational
methods for their resolution [28]. In addition to this, dense
methods require high computational power for real time
computation of pixel-wise operations. In this sense, advent
of new generation CPUs and high performance GPUs almost
simultaneously to RGB-D sensors allowed for a significant
cost reduction of dense algorithms due to new programming
paradigms which allowed for high paralellisation of per pixel
operations.

One of the first approaches for direct odometry estimation
from dense RGB-D is KinectFusion [27], which only from
the depth channel, is able to estimate the odometry and a
smoothed 3D dense map by using an ICP algorithm. Almost
alongside with KinectFusion, methods which take advantage
of the dense depth map for direct odometry estimation by
pixel-wise minimisation of the photometric error between
intensity images were presented in [33] and [1]. These works
were followed by [16], where the Student’s t-distribution was
proposed to model the photometric error and [19], proposing
an Efficient Second order Minimisation (ESM) scheme for
the estimation of camera motion. Contrary to vision-only
systems [28], in these works the knowledge of depth directly
allows to solve a, generally, well posed system of equations
with just 6 unknowns for the rigid motion parameters by
least squares minimisation. However these approaches ignore
the geometric error between depth images. Estimation of the
dense visual odometry by joint minimisation of photometric
and geometric error was proposed initially in [35], followed
by [5],[24] and [36], where authors propose to combine the
cost functions from [33] and [27]. However, these works use



Fig. 1. Assuming that the disparity (d) error follows a Gaussian or, more
generally, a symmetric distribution, the depth (Z ∝ 1

d
) error distribution is

not Gaussian, not even symmetric. The asymmetry is more pronounced for
higher Z.

heuristic parameters to weight the contribution of both the
photometric and geometric cost functions. In [15], Kerl et al.
note this issue and propose the computation of an automatic
scaling matrix based on the covariance of the photometric
and geometric pixel residuals.

In all of the described approaches the use of a constant
scaling parameter, either heuristic or automatic, for all the
geometric residuals is prone to be a source of inaccuracies
in the estimation process due to the quadratic grow of the
depth uncertainty in RGB-D sensors [17]. Meilland et al.[25]
take this fact into account, weighting the depth residuals by
the inverse squared depth, but still use additional heuristic
parameters to weight photometric and depth residuals. Also,
since the depth is inversely proportional to the image dispar-
ity, whose error is usually assumed to follow a symmetric
distribution, the depth error distribution is neither symmetric
(Fig. 1), and thus subject to inaccuracies if minimised
with the symmetric cost functions which are typically used,
specially for large depths.

In monocular systems the main gain of using the inverse
depth (measured along camera optical axis) or the inverse
distance (measured along a ray) is the ability to easily deal
with points at long distances [4] which leads to an improve-
ment in performance [32]. In RGB-D systems, though there
is no need to deal with points at distances greater than
the maximum camera range, inverse depth has still some
theoretical benefits. The inverse depth is proportional to the
to the image disparity by a constant factor, which does not
change with depth; and since the disparity error distribution
is symmetric, inverse depth fits better with the symmetric
error distributions implicitly assumed when minimising the
sum of squared errors or any of the robust cost functions
present in the related literature. In spite of this, to the best
of our knowledge, the use of inverse depth for dense visual
odometry with RGB-D cameras has been only proposed in
[22] by Lui et al., by extending the ICP algorithm from
KinectFusion. However its performance is not benchmarked
in large sequences against state-of-the-art methods for dense
RGB-D odometry estimation.

The main contribution of this work is the formulation of
a dense visual odometry algorithm which minimises both
the photometric and the geometric error with the novelty
of using an inverse depth parametrisation for the geometric
error. We experimentally validate in the TUM benchmarking
datasets [34] the better performance of the inverse depth-

based geometric error. As additional contribution, though
equivalent in essence, the problem formulation is slightly
varied with respect to related works, first linearising the flow
equations, obtaining generic linear 3D flow equations and
then applying the assumption of rigid scene motion to get the
linear constraints just on camera motion parameters. We also
compare the performance using different robust cost func-
tions (Huber, Tukey biweight and Student’s t distribution-
based estimator) and also two different methods in the
state of the art to compute the uncertainty-based scaling
parameters of an error distribution: one with the Median
Absolute Deviation (MAD), and one with its Maximum
Likelihood (ML) estimator given the cost function used for
robust optimisation.

II. LINEAR VISUAL ODOMETRY CONSTRAINTS FROM
OPTICAL FLOW

In this section we derive the visual odometry pixel-wise
constraints through the flow equations obtained from the
photometric and geometric constraints between two camera
positions.

A. Optical flow equations

Let us denote two camera frames as A and B, at instants
t and t+ ∆t respectively. Given the intensity images IA and
IB , and inverse depth maps WA and WB defined over the
image domain Ω ⊂ P2, for an image point p = (u v 1)T ∈ Ω

in frame A, the following constraints hold:

IB(p + ∆p) = IA(p) (1)

WB(p + ∆p) =
1

eTz XB
, (2)

where XB is the 3D point lifted from pixel p+∆p in frame
B, ∆p = (∆u ∆v 0)T is the displacement of one point from
frame A to B, and eTz = (0 0 1). The constraint in intensity
assumes constant illumination of one scene point. The second
constraint is the measurement model of the depth sensor at
frame B.

Assuming small pixel displacements between frames we
compute the flow equations from (1) and (2):

∇IA(p)∆p + IB(p) = IA(p) (3)

∇WA(p)∆p +WB(p) =
1

eTz XB
, (4)

where the gradient operators ∇I =
(
∂I
∂u

∂I
∂v 0

)
and ∇W =(

∂W
∂u

∂W
∂v 0

)
.

B. Projection model

A world point X is projected in the image point p by:

p = π (X) = K
X

eTz X
=

 fx 0 cx
0 fy cy
0 0 1

 X

eTz X
, (5)

where K is the conventional calibration matrix, including the
camera intrinsic parameters.



Inverse depth measurements W(p) = 1
eTz X

allow to lift
2D points from the image to 3D coordinates by the inverse
projection function:

X = π−1(p) =
1

W(p)
K
−1
p. (6)

C. 3D flow equations

Flow constraints (3) and (4), can be manipulated to get
constraints on the 3D flow at one pixel, which is denoted as
∆Xp = XB −XA.

First we compute the first order Taylor expansion of the
inverse depth of one point at frame B:

1

eTz XB
=

1

eTz XA
− 1

(eTz XA)2
eTz ∆Xp +O

(∣∣∣∣∣∣eTz ∆Xp

∣∣∣∣∣∣2)
(7)

≈ WA(p)−W2
A(p)eTz ∆Xp. (8)

Using this relation and the camera projection model we
get also:

∆p = K
XB

eTz XB
−K

XA

eTz XA
(9)

(8)
= KXB

(
WA(p)−W2

A(p)eTz ∆Xp

)
−KXAWA(p)

(10)
(5)
=WA(p)

(
K− peTz

)
∆Xp. (11)

And substituting in (3) and (4) we get:

WA(p)∇IA(p)
(
K− peTz

)
∆Xp + IB(p)− IA(p) = 0 (12)

WA(p)
(
∇WA(p)

(
K− peTz

)
+WA(p)eTz

)
∆Xp+

+WB(p)−WA(p) = 0.
(13)

D. Rigid motion

We have obtained general flow equations taking small
pixel displacement as the only assumption. Only (3) presents
a dense optical 2D flow estimation problem [12], while
(12) and (13) involve a dense scene 3D flow problem [10].
Both are ill posed problems which require regularisation and
variational methods to reach a solution.

We focus instead on RGB-D visual odometry estimation.
This implies the assumption of a rigid scene, i.e., the
displacements ∆Xp of each of the WimHim points projected
on the image frame are due only to the motion of the camera,
which has 6 DoF. Assuming a small motion described by the
rotation and translation pair ( RA

B , rAB) ∈ SE(3) we have:

∆Xp = RA
B XA + rAB −XA

=
(
I + [θAB ]×

)
XA + rAB −XA +O

(∣∣∣∣∣∣[θAB ]2×XA

∣∣∣∣∣∣)
≈ rAB − [π−1(p)]×θ

A
B = M(p)ξAB . (14)

where [·]× denotes the antisymmetric matrix from a vector.
Note that ξAB = (rAB ; θAB) is not a twist, i.e., ξAB /∈ se(3),
since rAB is yet the translation part of the rigid motion. Eq.

(14) leads to a well-posed problem with 6 unknowns for
nearly WimHim constraints, excluding pixels without depth
measurements, with the following residuals:

rI(p, ξ) =WA(p)∇IA(p)(K−peTz )M(p)ξ+

+ IB(p)− IA(p) (15)

rW(p, ξ) =WA(p)
(
∇WA(p)(K−peTz )+WA(p)eTz

)
M(p)ξ+

+WB(p)−WA(p), (16)

which can be straightforwardly minimised by standard
Gauss-Newton least squares.

Note that in the monocular RGB case, no depth is provided
and only the constraint (15) would be used. Thus WA(p)

becomes an unknown yielding an ill-posed problem with
WimHim constraints for WimHim + 6 unknowns, which is
solved using optical flow variational methods [28], or by
performing variable baseline stereo matching [7].

III. VISUAL ODOMETRY ESTIMATION BY ITERATIVE
OPTIMISATION

With the proposed residuals, ξAB is computed as the solu-
tion to the following optimisation problem:

ξAB = argmin
ξ

∑
p∈Ω

ρ

(
rI(p, ξ)

σrI

)
+ ρ

(
rW(p, ξ)

σrW

)
, (17)

where ρ(x) is a generic cost function which must be symmet-
ric, definite positive and ρ(0) = 0. σrI and σrW are scaling
parameters which capture the uncertainty in intensity and
inverse depth residuals, and allow for normalisation of resid-
uals in different magnitudes. The choice ρ(x) = x2

2
results

in standard least-squares linear optimisation. Nevertheless to
gain robustness against outliers, e.g., pixels belonging to non-
static elements, robust M-estimators are usually employed.
Optimisation with robust cost functions is addressed by the
Iteratively Reweighted Least Squares algorithm (IRLS) [11],
which results in a linear least-squares problem to be solved
at each iteration:

ξAB = argmin
ξ

∑
p∈Ω

ω

(
r̆I(p)

σrI

)
r2
I(p, ξ)

σ2
rI

+ ω

(
r̆W(p)

σrW

)
r2
W(p, ξ)

σ2
rW

,

(18)

where r̆I(p) and r̆W(p) denote the initial residuals com-
puted after updating the camera motion at previous itera-
tion, and the weighting function ω(x) depends on the used
M-estimator. Cost and weight functions for different M-
estimators can be found in [37].

Rigid motion between frames is computed in a coarse-to-
fine manner using image pyramids, performing a number of
iterations at each pyramid level. Let us have the intensity
and inverse depth image pairs {Ik, Wk} and {Ik+1, Wk+1},
between consecutive frames k and k + 1. At the start and
every time we step down to the next pyramid level, we set
{IA, WA} = {I (pyr)

k , W(pyr)
k }, and compute {∇IA, ∇WA}.



Initial camera motion, expressed by the transform Tk
k+1
(0) is

initialised assuming a constant velocity, i.e., Tk
k+1
(0) = Tk−1

k.
After initialisation, the following steps are performed at

each iteration γ: image warping, scaling parameters compu-
tation, optimisation and pose composition.

A. Image Warping

Image warping is performed at the start of every iteration
in order to reset the incremental motion estimate to ξ

A(γ)
B = 0,

instead of accumulating it. At each iteration, {Ik+1, Wk+1}
are warped towards frame k using the current motion esti-
mate Tk

k+1
(γ) , resulting in the warped images {I (γ)

B , W(γ)
B }.

This is done by reverse warping in the following steps:
• Given a pixel p in the destination warped image,

the corresponding pixel p
(γ)
k+1 in the source image is

obtained as:

p
(γ)
k+1 = p + ∆p(γ) = K

X
(γ)
k+1

eTz X
(γ)
k+1

, (19)

with X
(γ)
k+1 = Rk+1

k
(γ)K

−1
p 1
Wk(p)

+ r
k(γ)
k+1 .

• By using (1) and (2) and resetting X
(γ)
k+1 =

Rk+1
k
(γ)K

−1
p 1

W(γ)
B

(p)
+ r

k(γ)
k+1 , compute the warped inten-

sity and inverse depth maps, I(γ)
B and W(γ)

B as:

I(γ)
B (p) = Ik+1(p

(γ)
k+1), (20)

W(γ)
B (p) =

eTz Rk+1
k
(γ)K

−1
p

1−
eTz r

k(γ)
k+1

Wk+1(p
(γ)
k+1

)

Wk+1(p
(γ)
k+1), (21)

where Ik+1(p
(γ)
k+1) and Wk+1(p

(γ)
k+1) are obtained by bi-

linear interpolation, which is efficiently computed with
CUDA capable NVIDIA GPUs using texture memory.
Warping is performed at the level with highest reso-
lution. Once the warping is done, {I (γ)

B , W(γ)
B } are

downsampled to the pyramid level where current opti-
misation step is taking place.

B. Scaling parameters

We first compute the initial residuals at ξ
A(γ)
B = 0 :

r̆{I,W}(p) = {I (γ)
B (p), W(γ)

B (p)} − {IA(p), WA(p)} . (22)

Scaling parameters σrI and σrW can then be computed by
the Median Absolute Deviation (MAD):

σMAD
r{I,W} = 1.4286 med

p
|r̆{I,W}(p)−med

p

(
r̆{I,W}(p)

)
|, (23)

or alternatively they can be computed by their Maximum
Likelihood (ML) estimator, noticing that for any cost func-
tion ρ( r−µσ ) we can obtain the associated likelihood function
as:

fρ(r|µ, σ) =
Kρ

σ
exp

(
−ρ
(r − µ

σ

))
, (24)

where Kρ is a scaling constant for
∫∞
−∞ fρ(r|µ, σ)dr = 1,

and µ and σ the location and the scaling parameter of
the residuals respectively. The scaling parameters would be
computed by iteratively solving:

[
µML
r{I,W} , σ

ML
r{I,W}

]
= argmin

µ, σ

∑
p∈Ω

log σ + ρ

(
r̆{I,W}(p)− µ

σ

)
,

(25)

taking ρ(x) = x2

2
in the first iteration to compute the

initial seed and then switching to our selected cost function.
Location parameters µML

r{I,W} are also calculated since the
scaling parameters depend on their estimate. To reduce the
computational cost we select a sample of N = 10000 pixels
to compute the scaling parameters.

C. Robust optimisation
We consider for comparison 3 different cost functions

frequently used in the related literature: Huber [14], Tukey
biweight [2] and a Student’s t-distribution-based estimator
[21], which will be denoted as Student in advance. The
constants for Huber and Tukey estimators are set up to 1.345
and 4.685 respectively. The number of degrees of freedom
of the Student estimator is set up to ν = 5 as in [16].

Given an M-estimator, once we have the initial residuals
and the scaling parameters the computation of the weights for
IRLS is straightforward. This is followed by the computation
of ξ

A(γ)
B by solving the linear optimisation in (18).

D. Motion update
After each iteration the motion estimate between frames

k and k + 1 is updated by the current incremental estimate:

Tk
k+1
(γ+1) =

(
exp([θ

A(γ)
B ]×) rAB
0 1

)−1
Tk
k+1
(γ) . (26)

E. Enhancement of the computational performance
Optimisation is performed in a coarse-to-fine scheme at 3

pyramid levels (160x120, 320x240 and 640x480). The naive
approach offers the highest precision performing a fixed
number of 10 iterations at each level. This results in cost per
frame of about 50 ms, which is broke down into the costs of
the different processes in Fig. 2. Alternatively, to improve the
time performance we consider the following optimisations:
• Skip optimisation on the highest resolution level.
• In Fig. 2 it can be observed that one important fraction

of the time is employed in estimating the scale parame-
ters σI and σW . This cost can be completely eliminated
if we fix the scaling parameters for the optimisation.
We propose taking σI = 5, with I(p) ∈ (0, 255) and
σW = 0.0025 m−1. The choice for σI is justified by tests
with static sequences while σW stems from the precision
of the disparity measurements [20].

• Instead of warping at the highest resolution and then
down-sampling at each iteration, a coarser but more effi-
cient alternative would be downsampling {Ik+1, Wk+1}
before optimising and warping on the current pyramid
level.



Fig. 2. Costs of the processes involved in the computation of the RGB-D
visual odometry.

IV. EXPERIMENTS

We first evaluate the precision of our approach with
different configurations comparing it to other works in the
literature using the RGB-D dataset from Technische Univer-
sität München (TUM) [34]. Secondly we study with the same
datasets, how both the precision and the computation speed
are affected when applying the options for enhancement
of computational performance from section III-E. Finally
we show a qualitative evaluation of our visual odometry
method showing the 3D reconstructions obtained in our own
sequences.

The experiments were performed on a desktop computer
with Ubuntu 12.04 32-bits and equipped with an Intel Core
i5-2500 CPU at 3.30 GHz, 8GB and a NVIDIA GeFroce
660GTX GPU with 2GB of memory. The implementation
was done as an extension of the large scale KinectFusion
large scale algorithm [3] from the Point Cloud Library
(PCL) [31], where the original ICP system for odometry
estimation has been completely substituted by our method.
The algorithms for dense volumetric mapping and volume
shifting are kept unchanged. A fork of PCL including the
described approach is available for download1.

A. Precision

We evaluated all the possible combinations of robust
cost functions (Huber, Tukey and Student), geometric error
parametrisation (depth, inverse depth) and residual scale
estimators (MAD, ML). Table I shows the different val-
ues of the RMSE for the translational drift, measured in
m/s, using different approaches. Best results are obtained
with the Student estimator, with little difference between
using MAD or ML estimators for the scaling parameters.
Parametrisation of the geometric error with inverse depth
yields an improvement over the depth parametrisation in
all the datasets except in fr2/desk where the performance
both geometric error parametrisations is almost identical.
The performance of Student estimator is better in general,
and more stable when changing the rest of configurable
parameters. Huber estimator offers in general the lowest
precision. Tukey estimator has a bad performance if we
use the ML estimator for σ. However its performance is
comparable to Student’s if the MAD estimator is used.

With respect to other state-of-the-art RGB-D visual odom-
etry methods, our frame-to-frame approach has the lowest
error in the fr1/desk2 and fr2/desk datasets. In the

1https://github.com/dangut/pcl

TABLE I
TRANSLATIONAL DRIFT RELATIVE ROOT MEAN SQUARE ERROR (RMSE)

IN METERS PER SECOND USING DIFFERENT METHODS FOR RGB-D
VISUAL ODOMETRY ESTIMATION

Estimator Geom. error σ fr1/desk fr1/desk2 fr1/room fr2/desk
Student depth ML 0.0278 0.0425 0.0504 0.0115
Student depth MAD 0.0271 0.0439 0.0490 0.0121
Student invDepth ML 0.0260 0.0387 0.0491 0.0121
Student invDepth MAD 0.0260 0.0396 0.0485 0.0122
Tukey depth ML 0.0292 0.0808 0.0502 0.0143
Tukey depth MAD 0.0271 0.0527 0.0483 0.0142
Tukey invDepth ML 0.0381 0.0720 0.0485 0.0135
Tukey invDepth MAD 0.0287 0.0422 0.0471 0.0131
Huber depth ML 0.0322 0.0495 0.0681 0.0193
Huber depth MAD 0.0322 0.0496 0.0662 0.0233
Huber invDepth ML 0.0289 0.0453 0.0640 0.0209
Huber invDepth MAD 0.0280 0.0435 0.0606 0.0219
FOVIS ([13], comp. in [36]) 0.0604 - 0.0642 0.0136

ICP+RGB-D [36] 0.0393 - 0.0622 0.0208
ESM + Tukey + Aff. Il. [19] 0.0302 0.0526 0.0397 0.0147

VP [24] 0.0259 - 0.0351 0.0147
RGB+D [15] 0.036 0.049 0.058 -

RGB+D+KF [15] 0.030 0.055 0.048 -
RGB+D+KF+Opt [15] 0.024 0.050 0.043 -

TABLE II
TRANSLATIONAL DRIFT RELATIVE ROOT MEAN SQUARE ERROR (RMSE)

IN METERS PER SECOND MINIMISING DIFFERENT TYPES AND

COMBINATIONS OF ERRORS

Geom. error Min. errors fr1/desk fr1/desk2 fr1/room fr2/desk
none phot 0.0312 0.0513 0.0503 0.0119

invDepth phot+geom 0.0261 0.0395 0.0502 0.0120
depth phot+geom 0.0275 0.0434 0.0511 0.0116

invDepth geom 0.0332 0.0454 0.0495 0.0356
depth geom 0.0377 0.0562 0.0555 0.0465

fr1/desk the precision is slightly worse compared to the
method with lowest error, while for fr1/room, [24] shows
the best precission. For the rest of the experiments if not oth-
erwise specified we use the configuration with Student robust
cost function, inverse depth parametrisation for the geometric
error and the ML estimator for the scale parameters.

For a more detailed evaluation of how the combination of
both geometric and photometric errors affect the precision of
the estimate and better assess the gain of using inverse depth
instead of depth for the geometric error, we have performed
another set of tests minimising the photometric error only,
geometric error only and the combination of both photo-
metric and geometric error. For the cases where geometric
error is used we have switched between inverse depth and
depth based errors. It can be observed in Table II that when
considering the geometric error only the superiority of using
inverse depth residuals is clearer.

B. Performance vs precision

We evaluated how the precision and computational perfor-
mance are affected after applying the modifications proposed
in Sec. III-E to decrease the computational cost of our
approach. Following the order in which they are presented,
we denote these as lvl followed by the level index at
which optimisation is stopped, σFix and pyrF irst. Results
of using one or a combination of these modifications are
shown in Table III. It can be observed that either stopping
optimisation at level 1 or using constant scale we achieve a



TABLE III
TRANSLATIONAL DRIFT AND AVERAGE AND MAXIMUM COMPUTATION

TIME PER FRAME FOR DIFFERENT OPTIONS TO ENHANCE THE

COMPUTATIONAL PERFORMANCE

Approach RMSE[m/s] time
fr1/desk fr1/desk2 fr1/room fr2/desk mean[ms] max[ms]

naive 0.0260 0.0388 0.0490 0.0120 47 50
lvl1 0.0268 0.0407 0.0492 0.0120 26 28

pyrFirst 0.0270 0.0401 0.0491 0.0127 40 42
pyrFirst+lvl1 0.0282 0.0416 0.0498 0.0138 18 20

σFix 0.0260 0.0389 0.0498 0.0112 34 35
σFix+lvl1 0.0271 0.0399 0.0500 0.0121 17 17

σFix+pyrFirst 0.0272 0.0397 0.0498 0.0118 26 27
σFix+pyrFirst+lvl1 0.0287 0.0409 0.0500 0.0143 9 10

computation time in the limits of the camera frame rate of
30 Hz with little lost in precision, and even we can reach a
reduction to 9ms applying all the proposed optimisations.

C. 3D reconstruction

Though for volumetric 3D mapping we use the original
functions in KinectFusion, a good quality of the recon-
structed dense 3D volume depends critically on the drift
introduced by the visual odometry algorithm. Thus, we
also present qualitative results of our approach showing the
reconstruction of some of the tested RGB-D datasets from
the TUM, and also two different datasets acquired by us in
one laboratory of approximately 90 m2 and the corridor of
our department with a length of more than 80 m.

Our acquisitions were carried out with an Asus Xtion
Pro RGB-D camera attached to a laptop by an arm-clamp
system. The camera was only calibrated with a linear pinhole
model without distortion parameters for the RGB sensor.
The depth sensor is not calibrated, taking the depth values
directly as provided by the sensor; and we use the hard-coded
stereo pair calibration for depth and RGB registration. All the
reconstructions are obtained just using our modified version
of KinectFusion without performing loop closure.

Qualitative results for the datasets fr1/desk and
fr1/room are shown in Figs. 3 and 4. It can be observed
the great level of detail in fr1/desk, which indicates a low
drift in the reconstruction. In the fr1/room there are some
zones, like the table at right, where the quality of the 3D
reconstruction is poor. This occurs generally when mapping
the same area under large camera motion and when revisiting
a previously mapped place. In these cases new depth maps
integrated into the mapped volume conflict with the stored
map generating artefacts. However for zones which are swept
during less time, as occurs in the rest of the sequence, the
drift during mapping is low and the map reconstruction is
more accurate. Attached to this paper we provide a video
demonstration of our method on the fr2/desk dataset.

Results for our laboratory and the corridor sequences are
shown in the figure 5 and 6 respectively. The precision of the
reconstruction can be assessed from the comparison to RGB
images from similar points of view. Note also that given
that our method is frame-to-frame and does not perform
loop closure, the drift both in the laboratory, reflected in the
discontinuity in the right wall and in the corridor, reflected
in the slight curvature of its side view, are relatively low.

Fig. 3. Dense 3D reconstruction of the fr1/desk dataset.

Fig. 4. Dense 3D reconstruction of the fr1/room dataset. Note how the
shape of the room is accurately captured. Black part on the right top corner
of the fr1/room map corresponds to the ceiling reconstruction viewed
from outside the volume.

V. CONCLUSIONS

In this paper we have presented a new visual odometry
system on GPU based on the alignment between consecutive
frames by minimisation both on the photometric and geo-
metric error. Our system is implemented as an extension of
the KinectFusion implementation Kinfu Large Scale in PCL,
where the original ICP algorithm for frame alignment and vi-
sual odometry computation has been completely substituted
by our method. The main contribution of our proposal is
using the inverse depth instead of the depth to parametrise
the geometric error, as well as allowing to switch between
different robust estimators, residuals’ scale estimators or
geometric error parametrisation for comparative purposes.
Our method shows its competitiveness with other state-of-
the-art methods outperforming them in the majority of the
tested datasets. Also, with the introduction of some changes
to increase the computational performance our system is able
to reach 9 Hz performance with the GPU device NVIDIA
GeForce 660GTX used in the experiments, without hindering
too much the accuracy of the method.
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