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Abstract. In non-central cameras, the complete geometry of a 3D line
is mapped to each corresponding projection, therefore each line can be
theoretically recovered from a single view. However, the solution of this
problem is ill-conditioned due to the lack of effective baseline between
rays. This limitation prevent from a practical implementation of the ap-
proach if lines are not close to the visual system. In this paper, we exploit
additional geometric constraints to improve the results of line reconstruc-
tion from single images in non-central systems. In particular, we obtain
the minimal solution for the case of a pair of intersecting orthogonal lines
and for the case of a pair of parallel lines considering three rays from each
line. The proposal has been evaluated with simulations and tested with
real images.

1 Introduction

In any central camera the projection surface of a 3D line is a plane. Any line
contained in this plane is projected on the same line-image, and therefore two of
the four degrees of freedom (DOF) of the 3D line are lost in the projection. By
contrast, in certain non-central cameras (non-central implies that the projecting
rays do not intersect a common point) the projection surface of a line is a ruled
surface composed by skew rays (except in certain degenerate cases). Through
this surface there exist a unique mapping between a 3D line and its projection
on the image (line-image) which can be exploited to recover the geometry of the
3D line from a single image. In particular, four generic rays' corresponding to
four points on a line projection provide four independent constraints allowing
to compute the complete geometry of the 3D line [1]. In practice, this is an
ill-posed problem and the geometry of the 3D line can be only recovered if the

! Four lines are generic if no two of them are coplanar, no three of them are coconical
or cocylindrical, and the four are not cohyperbolic, i.e. do not lie on the same ruled
quadric surface.
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relative depth of the line with respect to the system dimensions is low enough
for guaranteeing effective baseline between rays.

In this paper we exploit the structure of the scene reducing the number
of DOFs of the sought solution. In central systems with conventional cameras
this idea is usually used for inferring layouts from line projections which only
provide two independent constraints [2, 3] from each line-image. In the case of
non-central systems we propose to solve the four DOFs of each line using the
redundant independent constraints provided by line projections by imposing
geometric constraints between pairs of lines. The proposed geometric constraints
are: orthogonal intersection between lines and parallelism between lines reducing
to six the number of rays needed for a minimal solution of a pair of lines.

1.1 Previous work

The base for computing the geometry of the 3D line from a single line projection
(line-image) is that given four generic lines there exist only two lines intersect-
ing them [4,5]. In [1] this reasoning is introduced for application in computer
graphics. In [6,7] this approach is exploited to compute 3D lines from 4 rays
in non-central systems comparing the linear approach with different computa-
tion methods and considering the degeneracies and singular configurations. In
[8] the approach is used with spherical catadioptric mirrors, and in addition
two non-central systems are used for reconstruction. In [9] extends the approach
to planar curves. To improve the accuracy in reconstruction some simplifica-
tions have been proposed: considering only horizontal lines [10, 11] or exploiting
cross-ratio properties [12]. In [13] the degeneracies caused by the symmetry of
revolution are avoided using an off-axis system. More recently in [14] the ap-
proach is particularized to the case of conical mirrors allowing to compute both
the 3D line and the mirror geometry from a single line projection.

1.2 Contributions

In this paper we present the minimal solution for computing a junction composed
by two orthogonal intersecting lines and for computing two parallel lines in non-
central systems. This allows to obtain the complete geometry of these pairs of
lines from three rays belonging to each line in a calibrated non-central system.
The interest of this result are in robust extraction methods based on minimal
sets like RANSAC or in the improvement of the reconstruction accuracy in line
fitting. The approach has been implemented for spherical catadioptric systems,
using the projection model described in [15]. The proposal has been evaluated
in simulation, and tested with real images.

2 Recovering a 3D line from four skew generic rays

In this section we present the background, geometric concepts and notation used
for computing a 3D line from four generic rays. The description used for lines
are the Pliicker coordinates based on Grassmann algebra.
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2.1 Pliicker Coordinates of a Line

The Pliicker coordinates of a 3D line is a P° representation of a line obtained

from the null space of any pair of points X = (wo,xT)T, and Y = (yo,yT)T
belonging to the line. The description of a Pliicker line from the coordinates of
the defining points are L = (lT,Tr)T where 1 € R3, 1 = 20y — yox and 1 € R3,
1 = x x y (depending on the author the order and the sign of the elements can
differ, here we follow the standard in [16]).

Notice that not all the elements of the P> space correspond to 3D lines. The
points of P° corresponding to lines in P? must hold 11 = 0 which is known
as Pliicker identity. This identity is a quadratic constraint which defines a two
dimensional subspace in P® called the Klein quadric M [16]. Pliicker represen-
tation has a geometric interpretation in Euclidean geometry. Vector 1 represents
the direction of L (see Fig. 1 (a)) and 1 is the moment vector which can be
seen as the normal to a plane passing through the 3D line and the origin of
the reference system. The Pliicker identity expresses the orthogonality of 1 and
1 given that the direction vector must be contained in the plane defined by 1. L
is an homogeneous vector but when normalizing respect to 1, T| is the minimum
distance from the origin to the 3D line. Therefore, when normalizing respect to
1, |1] is the inverse of that distance.

2.2 Intersection of rays with a 3D line

1

d= | <=1

(a) (b)

Fig. 1. (a) Pliicker description for lines and line projection. (b) One dimensional sub-
space in P® and Klein Quadric.

The constraint resulting of the intersection of a 3D line with a projection ray
can be expressed linearly by the side operator which defines the signed distance

between two lines L = (IT,I_F)T and M = (mT, ﬁlT)T. It is described as

side(L,M) =L™WM =1"m +1"'m (1)
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where W = O3x3 T .
I3x3 03x3
If the Pliicker representation of both skew lines is normalized with the direc-

tion vector then this distance is metric in R3. The sign of this distance depends on
the ”side” where a line is located respect to the other (clockwise or counterclock-
wise). The intersection between two lines is given by the constraint LTWM = 0.
Notice that the self-operation (side (L, L) = 0) becomes the Pliicker identity.

A 3D line has four degrees of freedom (DOF), as consequence at least four
independent constraints are needed to solve the corresponding equation system.
In non-central systems, four projection rays provide four independent constraints
when they are generic (Fig 1 (a) ). Notices that in a central system the four
equations are not independent as a result of the four rays are coplanar.

However, due to Pliicker coordinates set (without taking into account the
Pliicker identity) is an over parametrized description of a line, the solution of
a system of four homogeneous equations in P® is a one dimensional subspace
of P?. The solution of these equations system can be expressed as a singular
value decomposition problem in which A is the collection of constraints such

that AL = 0 with A; = (EZT,EI) where A; is the it" row of A, in order that it

can be written as the product of three matrices, U, ¥,V, such that U and V are
orthogonal, ¥ is diagonal and A = UL VT.

The null space of this system is spanned by the last two columns of V (denoted
Lo and L; respectively). The null-space can be parametrized by L = Ly +
L; X (see Fig. 1 (b)) and imposing the Pliicker identity we can compute the
intersection of this subspace with the Klein Quadric obtaining two solutions:
One is the sought line, the other is the axis of revolution of the visual system if
it is axial or an arbitrary line in other cases.

Degeneracies There are some cases where the four rays are not independent
and the system is degenerated. When the camera is axial the defining rays can be
coplanar forming a Planar Viewing Surface (PVS) [7]; these degenerated cases
are: the Axial-PV'S case when the line is coplanar with the axis of symmetry and
the Horizontal-PV'S case when all the projecting rays lies in an horizontal plane.
If the projection surface of the line is a ruled surface defined by only three rays
this surface is called a regulus and the system is also under-determined.

3 Orthogonal junction of two lines

In this section we present the minimal solution for a junction of two orthogonal
intersecting lines in non-central systems. Computing a junction composed by
two orthogonal intersecting lines is a problem with 6 degrees of freedom (DOF).
Four DOF's for one of the 3D lines, other for the depth of the line intersection
and the 6th DOF for the angle defining the direction of the orthogonal line.
Given the lines L = (lT,l—'—)T7 M= (mT, rhT)T and considering three generic
rays E} intersecting the line L and three generic rays ¥}, intersecting M (see
Fig. 2 (a)), the corresponding null spaces of the under determined linear systems
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Fig. 2. (a) Orthogonal junction of two lines. (b) Two dimensional subspaces in P* and
Klein Quadric.

EJWL=0 , w/WM=0 (2)

are two subspaces of dimension 2 in P°. These subspaces are not contained in
the Klein quadric and intersect the Klein quadric in two one-dimensional curves
(see Fig. 2 (b)). A parametrized description of these 2-dimensional subspaces
can be obtained by solving the null space of these systems with a singular value
decomposition algorithm.

_ I\ T
Taking as example the case of L and E} = (ékT,EkT) : the matrix A =

= = =T
El ? é?’] can be written as the product of the three matrices, A = ULV T
18283

and the null space is spanned by the three last columns of matrix V denoted as
Lo, L; and Ly parametrizing it with L : P? — P defined as

L=Lo+ LA\ +Lx)s ~ LA (3)

- o~ o~ A\T
where L, = [Lo Lt L] and A€ P2 A= (R0, 01, 02) ~ (1L, A1,2) "

Analogously, for M we parametrize the null space with

M =My + M\ +Mah ~ My, (4)

where M,,, = [Mo M, Mg] and p € P? n= (/lo,/ll,ﬂg)T ~ (1,u1,u2)T.
To obtain the four parameters A\;, A2, pu1 and pe we need four additional
independent constraints. These constraints are the condition of belonging at
the Klein quadric for both lines, the perpendicularity between them and the
intersection between them. These constraints are explicitly defined by

L'WL=0, MWM=0, I'm=0, LTWM=0 (5)
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becoming a system of 4 quadratic equations in terms of A, A2, 1 and uo with
the form

AT2A=0 where 2, (i,j) = L;' WL, (6)
p Qop =0 where 2 (i,7) = M;"WM; (7)
AN 2pu =0 where 23(i,7) =1,"m; (8)
A2 =0 where 24 (i,5) = L;" WM. (9)

This system can be manipulated to reduce the number of dimensions but
increasing the degree of equations. Given the equations (8) and (9), imagine the
P2 space of A and the lines depending on p.

U=2p , V=ONpu (10)

Solving these equations for A

v

VT] A=0 (11)

we obtain an explicit linear morphism
A=Ca (12)

. o g onT T

where i = ([i, fiofi1, fofiz, B3, finfia, 33) ~ (1, g1, pa, 1, papiz, p13)
Substituting A in equation (6) we have a system of two equations with two

unknowns, the first is a quartic expression and the second a quadratic equation.

a'CTQCa=0 (13)
[,I,T.qu =0 (14)

Substituting (14) in (13) we obtain a single polynomial equation with one
unknown of degree 8 which can be solved for p.

8
Zcmi =0 (15)
i=0

From the fundamental theorem of algebra we know that the number of so-
lutions of this polynomial is eight. Using equation (14) we obtain 2 solutions of
2 from each solution for p;. One solution of (A1, \2) is obtained from each so-
lution (1, p12) (12), therefore the maximum number of solutions is 16. However,
the majority of them are removed considering only the solutions which are real,
compatible with the equations and coherent with the orientation of the defining
rays. Usually only 2 solutions remains.
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4 Two parallel lines

In this section we present the minimal solution for computing the geometry
of two parallel lines in non-central systems. Computing two parallel lines is a
problem with 6 DOFs: in this particular case two DOF's for the common direction
and two additional DOF's for each line. From three generic rays =, intersecting
a line L and three generic rays ¥ intersecting a line M we compute the two
dimensional subspaces (see Fig. 2 (b)),

L=DLo+LiA +Loda ~ LA (16)
M = MO + M1>\1 + MQ)\Q ~ Mm[,b (17)

To obtain the four parameters A;, A2, 1 and pe we need four additional
constraints. First two are the constraint for each line of being in the Klein quadric
or being a line,

L™WL = 0, (18)

M"™WM = 0, (19)

The constraint of being parallels can be expressed as follows,

1= (Io + LA + 1) = K (mg + my g + mops) (20)

which means three equations involving an additional unknown K. From (20)
it is posible to compute p in terms of A obtaining the linear mapping between
poand A

p = (mg,m;, my) " (Ip,1;,12) A. (21)

Substituting g in equation (19) we obtain two quadratic equations (18) and
(19) depending on A ,which can be considered as the intersection between two
conics in P? having four solutions.

5 Simulations

In this section we evaluate the proposed method performing simulations of the
line fitting process. As reference method we take the approach of Teller et al. [1]
which is denoted as unconstrained linear method.

We are considering two different cases: orthogonal junctions and parallel
lines. In both cases, a collection of 100 pair of lines are randomly generated. The
length of the lines is 20m. In the case of a junction, the intersection between
each pair of lines is located in a box of dimensions 4mx4mx4m (see Fig. 3
(a)). In the case of parallel lines, two points are randomly located in a box of
dimensions 4x4x4 and then the orientation on the line is randomly computed
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(see Fig. 3 (a)). These lines are projected on an spherical-mirror based image
[15]. The catadioptric system is composed of a spherical mirror with a radius of
1.2 m and a perspective camera located at 1.8 m from the center of the sphere.
The resolution of the simulated camera is 1024 x 768.

Fig. 3. Lines configuration

20m line length — Minimal Set

example. (a) Junction. (b) Parallel.

20m line length — Minimal Set
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Lin 2-jt
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gaussian error (pixels)

(b)

Lin 2-jt

Lin 2-jt

Fig. 4. Lines estimation using the minimal set of points comparing the linear approach
(Lin) and junction approach (2-jt): (a) Direction error (deg) (b) Distance error (m)

Gaussian noise of a given ¢ is added to the projected points. The value of
o variates from 0.1 to 2. Then 3D lines are computed from its projection in a
single image using the linear Teller approach and using our proposal. For each
value of o we compute 100 pairs of lines. The 100 pairs of lines are the same for

each value of o.



Minimal solution for computing pairs of lines in non-central cameras 9

20m line length — Minimal Set 20m line length — Minimal Set
+ +
60f oo 35] N )
N : + * + + .
50+ * + E + + 3l + o+ . + ]
—_ + + - +
g LR A R | D
T 40t . : I | =25 t o+t + F T % - I
Nt + -+ = + + - |
<) T ! ! 2 + o+ T T
14 [l T | = 2r + I _ | 14
@ 30} T ! A { ® +  t o+ o ! [
c * : ! | [ 3 +  F % Do - -
5 : t | sG] s I N
S 20t + | | 1 o} [ | |
8 N N T IR I S ’
© 10} T+ 7 O* | ] i
fiobeacp U090 o iia0d N
T I T
O+ — i El I__Ll EI Q 1 L 1 1 OfF+ + él Q T T 11 L1 11
0.0 0.1 03 05 1.0 15 2.0 0.0 0.1 03 05 1.0 15 2.0
Lin Par Lin Par Lin Par Lin Par Lin Par Lin Par Lin Par Lin Par Lin Par Lin Par Lin Par Lin Par Lin Par Lin Par
gaussian error (pixels) gaussian error (pixels)
(a) (b)

Fig. 5. Lines estimation using the minimal set of points comparing the linear approach
(Lin) and parallel lines approach (Par): (a) Direction error (deg) (b) Distance error

(m)

The first simulation, is a comparison between the unconstrained linear ap-
proach and our proposals (junction in Fig. 4 and parallel lines in Fig. 5 ) con-
sidering the minimal set of defining points. The length of the lines in this setup
is 20m. The linear approach is computed from 8 points (4 for each line) and the
proposal (junction or parallel) is computed from 6 points (3 for each line). The 6
points used for the proposal is a subset of the 8 points used for the unconstrained
linear approach to avoid biasing. When using orthogonal junctions we take care
of not using the intersection between lines which is a degenerated configuration
with only 5 independent constraints.

The second simulation, is a comparison between the linear approach and
our proposal considering more than the minimal set of points in the fitting.
Considering more points (200 points), we obtain a least square fitting of the null
spaces of dimension two in P° described by L,, and M,,,. In this case the number
of points is the same for both linear and our proposal.

From the results we conclude that there is an improvement in the accuracy
of the extracted lines. As expected, the improvement is more evident in the
direction of the extracted line than in depth.

6 Experiments with real images

A reconstruction has been performed to evaluate the performance of the method
using a spherical catadioptric system composed by a spherical mirror seen by a
conventional camera with resolution 1280 x 1024 pixels.

6.1 Calibration of the non-central system

First, the perspective camera has been independently calibrated. As the spherical
catadioptric system is always axial the extrinsic parameters to calibrate are the
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Fig. 6. Lines estimation using all points comparing the linear approach (Lin) and
junction approach (2-jt) (a) Direction error (deg) in 20 m length lines. (b) Distance
error (m) in 20 m length lines.
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Fig. 7. Lines estimation of parallel lines using all points comparing the linear approach
(Lin) and parallel lines approach (Par)(a) Direction error (deg) in 20 m length lines.
(b) Distance error (m) in 20 m length lines.
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tilt in the orientation of the camera, the radius of the sphere r,,;, and the distance
from the center of the sphere to the perspective camera d.

Notice that in spherical catadioptric systems d and g, are coupled in the
line projection. Therefore, only d,..; = Ts(jyh can be recovered from a single line-
image.

In this case we have computed the tilt in the orientation and the relative
distance d,.; from the contour projection of the sphere which is a conic in the
image plane of the perspective camera and also using the projection of the camera
reflection on the image which is related with the direction of the center of the
sphere. The radius of the sphere has been estimated from a 3D reconstruction
of the mirror obtained from a RGB-D device. This metric can be finally refined
using projections of patterns with a known dimension like in the calibration
method presented in [17].

6.2 3D line reconstruction

We have performed a reconstruction of four lines forming a square. This dispo-
sition allows us to first reconstruct two different junctions and then reconstruct
two different sets of parallel lines.

In Fig. 8 we show the forward projection of these four lines after the fitting
using the junction. In Fig. 9 we show the reconstructions of these lines using 30
points using the Tellers linear method, our junction approach and our parallel
lines approach.

Fig. 8. Lines projection: (a) Linear. (b) junction. (¢) Parallel.

As we can see in Fig. 8, line projections are very similar in the three cases.
However, the reconstructions of the 3D lines are quite different (see Fig. 9). To
measure the quality of the results we use the spanned planes by the pairs of lines.
In the case of junctions we have compared the planes spanned by the two pairs
of intersecting orthogonal lines. Both planes have a deviation of 9.72 degrees.
In the case of parallel lines we compare the planes spanned by the two pairs of
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Fig. 9. Reconstructed lines from 15 points, Left XY-View, Middle YZ-View, Right
Orthographic-View (a) Teller’s method, (b) junction proposal. (¢) Parallel proposal
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parallel lines having a deviation of 15.69 degrees. This test is a way to measure
quality in orientation but not in depth.

7 Conclusion

In this paper we have presented the minimal solution for computing pairs of
intersecting orthogonal lines and parallel lines from single images in non-central
systems. This proposal has been tested in the particular case of spherical cata-
dioptric systems. As expected, adding external geometric constraints improve
the accuracy of the results, however this improvement does not allow recon-
structing lines with lack of effective baseline. Thus, we have not yet solved the
impediments for extensively using these kind of systems. The relation between
the dimensions of the scene to reconstruct and the dimensions of the system
is still too low in practice. Future work inevitably pass through designing new
kind of catadioptric or dioptric systems having a bigger effective baseline by
construction. Additionally, notice that all the techniques proposed in this paper
could be directly used in combination with these systems.
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