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ABSTRACT

Scene understanding is a widely studied problem in
computer vision. Many works approach this problem
in indoor environments assuming constraints about the
scene, such as the typical Manhattan World assump-
tion. The goal of this work is to design and evaluate
a global descriptor for indoor panoramic images that
encloses information about the 3D structure. This de-
scriptor is based on the detection of representative lines
of the scene, which encode the scene structure. Our
work focuses on omnidirectional imagery, where ob-
served lines are longer than in conventional images and
the whole scene is captured in a single image. Exper-
iments using two public datasets analyze the perfor-
mance of the descriptor for scene categorization. We
also analyze the influence of different parameters and
show sample results for a navigation assistance appli-
cation.

Index Terms— Panoramic image global descrip-
tor; Omnidirectional images; Scene categorization

1. INTRODUCTION

This work is focused on the problem of scene un-
derstanding on indoor environments, where lines are
known to play an important role (see Fig. 1): people
can easily guess the 3D structure of a scene represented
by line sketches. Line and contour cues have been ex-
tensively used to analyze images since they provide
very useful information. Contours occur as boundaries
of objects, helping to detect them, or as frontiers be-
tween surfaces, encoding the structure of the scenes.
Analyzing contours in the images have been shown
useful for tasks such as object recognition [1], 3D
scene reconstruction [2] or image registration [3].

Our proposed line-based scene descriptor is ob-
tained as follows: scene lines are extracted from the
images and classified according to the three scene van-
ishing directions; The descriptor is built as a histogram
that encloses the distribution of these lines in the image
space. The descriptor is intended for omnidirectional
images, where the whole scene can be captured in
just one image. Lines appearing in theses images are
longer than in conventional images and the vanishing
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Fig. 1. Top row shows line sketches representing a
church and a corridor. Bottom row shows panoramic
images corresponding to these environments. The lines
detected in the images are as representative of the kind
of environment as the top row sketches.

points appear in the image, however they present high
distortion, making line detection more complicated.

The designed descriptor is compact and invariant
to rotations around the vertical axis, important require-
ments when working with robots or autonomous sys-
tems. Besides, the proposed descriptor extracts and
processes scene lines in a way that can be used for
other scene analysis techniques, such as the 3D lay-
out recovery. Experimental validation shows a detailed
analysis of the parameters of the descriptor computa-
tion and demonstrates its performance for indoor scene
categorization on a known public dataset [4], showing
promising results.

2. RELATED WORK

Different types of contour based image features
have been used in computer vision applications since
they provide very distinctive information. One of the
applications where line cues have shown great poten-
tial is in 3D scene understanding from a single image.
Lines are present in man made environments. Under
the Manhattan World assumption, lines are aligned
with the dominant directions of the scene. Based on
these cues, authors of [2] present a method to extract
the spatial layout of a room even with cluttered bound-
aries. The approach in [5] achieves great performance
by decomposing the potentials used in previous lit-
erature into more computationally tractable pair-wise
potentials. Specific approach for omnidirectional vi-
sion [6] extracts the spatial layout of indoor scenes
from a single image.
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Fig. 2. Boundaries detection and classification. (a) Edges detected by the Canny algorithm grouped into connected
boundaries. Each color represents a boundary. (b) Boundaries and corresponding to lines of the scene. (c) Lines
classified according to the vanishing points: Vertical lines (red), Horizontal lines (blue and green), and non aligned
lines (purple). (Best seen in color).
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Fig. 3. Sample sets of parallel lines and the correspond-
ing VP directions. li denotes the line i and Πi the nor-
mal of the plane created with O and represented by a
gray surface. The normals of parallel lines are coplanar
and perpendicular to the VP direction. The colored cir-
cles show the plane formed by the normals of parallel
lines. These planes are perpendicular to the VP direc-
tions. Vertical VP, vV P1, (red), Horizontal VP, vV P2

and vV P3, (blue and green).

Lines and boundaries have been also used for shape
and object recognition tasks. The work in [1] present
the shape context, which stores the relation between
contour points. In [7] similarity measures for sets of
connected contours are used for object recognition.
Line sketches work as models for object recognition
in [8]. Other applications include recovering the rota-
tion between frames [9] or the use of lines for image
retrieval [3].

Working with lines presents difficulties to obtain
accurate correspondences between images, usually be-
cause of the low accuracy or robustness of the line de-
tection. However, lines present advantages for tasks
that need to deal with extreme illumination changes
or low textured environments [10], outperforming local
point feature based methods for these settings [11]. We
find approaches that propose to use straight line seg-
ments as local image features. Many of these works
use geometric constraints to obtain more robust match-
ing results, e.g., homographies [12] or epipolar con-
straints [13]. Recent works propose more sophisticated
line-based local descriptors, such as the Line Signa-
ture [10] that outperforms point based features for low
textured images. MDSL descriptor [14] is built for each

detected line segment and it is highly distinctive and
robust to image rotation, illumination and viewpoint
change.

Global descriptors have shown good compromise
between precision and computational cost for general
scene recognition problems. In [15] a global Gist de-
scriptor is presented for scene recognition in real world
scenes. This descriptor has been adapted to omnidirec-
tional images in [16]. Work in [17] presents the His-
togram of Oriented Gradients (HOG) which encodes
the gradient orientations present at different image re-
gions.

Closer to our approach, [9] proposed to encode the
image information with a line-based global descriptor.
Authors proposed the Line Histogram, which repre-
sents angles and lengths of the boundaries of an image
in a histogram. Our approach also creates a line-based
global descriptor, but it captures the distribution of the
scene lines in the omnidirectional image.

3. LINE-BASED IMAGE SIGNATURE
DESCRIPTOR

This section details the steps to obtain the proposed
Line-based Image Signature (LIS) descriptor. First, the
boundaries of the image which correspond to actual
lines of the scene are extracted. Later, these boundaries
are classified using the vanishing points information.
Finally the descriptor is built as a set of histograms of
the distribution of the classified boundaries in the im-
age space.

3.1. Omnidirectional line extraction

In omnidirectional images, lines of the environment
are not projected as straight lines in the image. How-
ever, since the projection model is known, these 3D
lines can be detected. The vision systems studied in
this work are central systems, so the projection of the
scene in the image is performed trough a single point
O known as the camera center. When a straight line l
is projected in the image trough this point, a plane Π is
defined. To extract the lines in an image, the first step
is to detect the boundaries in the image. This is done
using a simple Canny edge detector and grouping the
connected edges into boundaries.
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Fig. 4. Image tessellation used to compute the distribu-
tion of scene lines for (a) panoramic images (n = 4),
and (b) catadioptric images (n = 2).

Equirectangular panoramas. In equirectangular
images, coordinates in the image, relate linearly to pan
and tilt angles in the real world. To extract the lines
from the boundaries, a RANSAC algorithm is used.
Given two edges of a boundary and the camera center,
a plane can be computed. RANSAC algorithm looks
for planes containing the most number of edges. These
planes correspond to lines in the scene.

Catadioptric images. In this kind of systems, the
boundaries corresponding to the projection of 3D lines
are conics. We use the method presented in [18] for
lines extraction in catadioptric images. This method
requires the calibration of the camera and uses just two
points to adjust a conic in the image.

3.2. Line classification according to vanishing points

Once all the lines of the scene have been detected
in the image, we classify them according to the van-
ishing points. The vanishing points (VP) are the image
points where parallel lines intersect. In man made en-
vironments, we find three main vanishing points: one
vertical and two horizontal. The vanishing points lay
in the infinite, so they are defined by a direction, vV P .
As showed in Fig. 3 all the normals of the planes cre-
ated by parallel lines and O are coplanar. They are also
perpendicular to the corresponding direction of the VP
where they intersect, vV Pk.

These properties can be used to group the bound-
aries according to the vanishing points. Each detected
straight line is represented by a plane Π, defined by
the line l and the effective point of the vision system,
O. We use RANSAC again to adjust the vanishing di-
rections and obtain one group of lines corresponding to
each of these directions. Once the groups for the three
VP have been obtained, the remaining boundaries are
grouped as nonAlignedBnds.

The result of this process is useful not only for
globally decribing the image. The information of VP
aligned lines can be used to perform other scene un-
derstanding tasks such as the analysis of the 3D scene
layout.

3.3. Building the descriptor

Once all the detected 3D lines have been classified
according to their VP, we can build the proposed LIS
descriptor. To build the descriptor, the image space is

Fig. 5. Steps to build LIS using a catadioptric image,
from top to bottom: from the raw image (first row),
boundaries are extracted and classified according to the
VP of the scene (second row); third row shows the
example histograms in polar coordinates and last row
shows the final histogram, after the rotation invariance
step has been applied. The process is the same for
panoramic images. (Best seen in color).

discretized. The width of the image is split in 4 × n
sections and each section is split into n height sections.
With this discretization, each histogram will be com-
pound of 4 × n × n bins. Figure 4 shows the image
discretization for panoramic and catadioptric images.

We create histograms for the vertically aligned
lines, hV V P , for the horizontally aligned lines, hHV P

and for the non aligned lines, hnAl. The value of bin i
of each histogram is

hV V P i = 100# Vertically aligned edges in bin i
# Total edges (1)

hHV P i = 100# Horizontally aligned edges in bin i
# Total edges (2)

hnAl i = 100# non aligned edges in bin i
# Total edges (3)

where i ∈ [1..4× n× n].
Histogram hV V P is compound by the boundaries

included in V P1Bnds, hHV P by the boundaries in
V P2Bnds and V P3Bnds, and the hnAl histogram
by nonAlignedBnds. The total number of edges,
# Total edges, correspond to the sum on all the edges
of all the detected boundaries. When grouping the
boundaries of a scene, horizontal VP can be confused
due to a different orientation of the camera in the same
scene. In order to avoid this we join the boundaries
aligned with the horizontal vanishing points, V P2
and V P3, in the same histogram, hHV P . The final
descriptor, hLIS , is composed of the three histograms:

hLIS = [hV V P , hHV P , hnAl]. (4)

When using mobile systems with omnidirectional
cameras, rotation invariance is an important property
to be able to recognize the same scene when facing it



from different travel directions. To achieve rotation in-
variance, we have defined a common reference for all
the images. We set the reference for each image to the
angular segment where most of the vertical line edges
lie. This segment gives us the orientation angle θor.
Fig. 5 represents the described process from top to bot-
tom. Figure shows the process for a polar grid (cata-
dioptric image), however, the same process is used for
the panoramic images with a rectangular grid. Both
systems capture the whole scene (360o).

Comparing images with the LIS descriptor. To
compare the LIS descriptors of two different images
we simple use the L1 norm between the histograms.

4. EXPERIMENTS

This section shows the performance of the LIS
descriptor for scene categorization using a panoramic
dataset and for navigation assistance using images from
a catadioptric vision system.

4.1. Scene Categorization performance

For this scene categorization experiment, we use
the publicly available SUN360 dataset, presented
in [4]. It contains 67, 583 panoramas of 80 categories.
The panoramas are labeled as indoor or outdoor scenes
and further classified into more detailed categories. In
this work just indoor images are used: 3, 889 images
classified into 15 categories (cave, church, corridor,
hotel room, living room, lobby atrium, museum, old
building, restaurant, shop, showroom, subway station,
theater, train interior and workshop).

The goal in scene categorization is to detect the
type of environment where an image was acquired. Our
experiment consists of classifying the test images into
the correct class by comparing them to the reference
set using our proposed descriptor. We randomly split
the dataset into test and reference sets: 70% of the im-
ages are used for test, and the reference set consists of
the remaining 30%. All the images in the test set are
compared to the images in the reference set, and the
class assigned is the class of the closest reference im-
age (Nearest Neighbor classification).

Table 1 shows the Total and Average per class ac-
curacy of the classification for different tessellations,
and the descriptor size. Best total accuracy is achieved
for n = 8, when the descriptor includes 768 compo-
nents. It has to be noticed that the accuracy differ-
ences are small compared with the descriptor size, big-
ger descriptor mean higher resolutions but do not repre-
sent better performance. Best performance correspond
to hotel room (46.79%) and subway station (38.42%),
however, the descriptor accuracy falls for old building
(8.13%) and shop (7.12%).

4.2. LIS for Navigation assistance

The proposed descriptor could also be used for nav-
igation tasks as shown in [19]. In this experiment the

Accuracy Descriptor
Total (%) Average (%) size

n = 2 18.81 16.69 48
n = 4 18.59 16.50 192
n = 8 19.10 16.92 768
n = 16 18.81 17.45 3072

Chance: 6.67%

Table 1. Total and average accuracy of the scene cate-
gorization for different image tessellations.

Fig. 6. Confusion matrix for catadioptric images (n =
8). Each row shows how many tests of that class were
classified as any of the possible classes (1: Corridor,
2: Rooms, 3: Doors or Jambs, 4: Stairs, 5: Elevator).
Only numeric values above 15% are shown. Color goes
from Dark blue for 0% to Dark red for 100%. (Best
seen in color).

LIS descriptor is used as part of a wearable navigation
assistance system, where the images should be classi-
fied into 5 classes: Room, Corridor, Door, Stairs and
Elevator. Fig. 6 shows the confusion matrix of scene
categorization using a public dataset of indoor omni-
directional images (OmniCam dataset [20]). The ac-
curacy values in this experiment are better than in the
previous one, from 40% to 85%, but one should note
that it is a less challenging problem, with less classes
and images acquired in the same environment. So if
we compare with the chance classification in each ex-
periments, results in both cases are equally promising.

5. CONCLUSIONS

In this work we have presented a line-based global
descriptor for omnidirectional and panoramic images
that encloses the structure of the scene observed. The
descriptor is built as a histogram capturing how the
scene lines lay in the image space. A public dataset has
been used to evaluate the descriptor performance for
scene categorization, showing good accuracy for dif-
ferent adjustments. Additional results show the perfor-
mance of the descriptor in a navigation assistance tool.
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[18] J. Bermúdez, L. Puig, and J. J. Guerrero, “Hy-
percatadioptric line images for 3d orientation and
image rectification,” Robotics and Autonomous
Systems, vol. 60, pp. 755–768, 2012.

[19] Alejandro Rituerto, Ana C. Murillo, and J. J.
Guerrero, “Line image signature for scene un-
derstanding with a wearable vision system,” in
International SenseCam Conference, 2013.

[20] Alejandro Rituerto, A. C. Murillo, and J. J. Guer-
rero, “Semantic labeling for indoor topological
mapping using a wearable catadioptric system,”
Robotics and Autonomous Systems, vol. 62, no. 5,
pp. 685–695, 2014, Special Issue Semantic Per-
ception, Mapping and Exploration.


