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Abstract. In robot odometry and SLAM applications the real trajec-
tory is estimated incrementally. This produces an accumulation of errors
which gives raise to a drift in the trajectory. When revisiting a previous
position this drift becomes observable and thus it can be corrected by ap-
plying loop closing techniques. Ultimately a loop closing process leads to
an optimisation problem where new constraints between poses obtained
from loop detection are applied to the initial incremental estimate of the
trajectory. Typically this optimisation is jointly applied on the position
and orientation of each pose of the robot using the state-of-the-art pose
graph optimisation scheme on the manifold of the rigid body motions.
In this paper we propose to address the loop closure problem using only
the positions and thus removing the orientations from the optimisation
vector. The novelty in our approach is that, instead of treating trajectory
as a set of poses, we look at it as a curve in its pure mathematical mean-
ing. We define an observation function which computes the estimate of
one constraint in a local reference frame using only the robot positions.
Our proposed method is compared against state-of-the-art pose graph
optimisation algorithms in 2 and 3 dimensions. The main advantages of
our method are the elimination of the need of mixing the orientation and
position in the optimisation and the savings in computational cost due
to the reduction of the dimension of the optimisation vector.

1 INTRODUCTION

Given the probabilistic nature of Simultaneous Localisation and Mapping (SLAM)
techniques, and due to the incremental estimation, it is unavoidable an error
build-up giving raise to a drift in the trajectory, which becomes evident when
the sensor platform revisits a previous location. It is expressly in these situations
when the so called loop closing techniques can applied to correct the drift.

The loop closure process can be divided into three steps: loop detection,
computation of the loop closing constraint and the update of the trajectory with
the new constraints. In visual SLAM, the first two steps, loop detection and
loop constraint computation, can be jointly addressed from one of these three
matching approaches [1]: image-to-image, image-to-map and map-to-map.



2

The last step is the one which this work is mainly focused on. Traditionally,
the new loop constraints are enforced by defining a non-linear least squares op-
timisation problem where the final trajectory is the one which minimises the
combined cost of violating the initial odometry constraints from the SLAM es-
timate and the new loop closure constraints.

Following the state-of-the-art pose graph formulation [2], the loop closure
optimisation problem is presented as a graph of nodes where each node represents
one pose and the arcs represent the odometry and loop closure constraints. An
odometric constraint encapsulates the incremental motion estimate between two
consecutive poses i − 1 and i in a reference frame attached to i − 1, in such a
way that an arbitrary space transformation applied to both poses should not
modify the cost of violating this constraint. This applies similarly to the loop
closure constraint between two poses, say, α and β. In this case the loop closure
must constraint the relative motion of pose α with respect to a reference frame
attached to β or vice versa.

In a pose graph formulation, each pose includes a translation and a rotation
and are usually represented as 2D or 3D transformations in the special Euclidean
group which describes the rigid body kinematics in 2 (SE(2)) or 3 (SE(3)) dimen-
sions. Although a space transformation can be described locally using a minimal
parametrisation, globally the rotation part is subject to singularities and then
its representation is usually over-parametrised.

Directly applying a standard optimisation on a Euclidean Space Rn intro-
duces an error in the estimate resulting from the violation of the constraint
induced by the over-parametrisation. For this reason a non-linear optimisation
problem defined over the space of rigid transformations must be adapted such
that the increments are computed using a minimal parametrisation.

In this paper, we propose to reformulate the loop closure optimisation prob-
lem using a state representation where the orientation of the poses is removed.
The novelty in our approach is that, instead of treating trajectory as a set of
poses, we look at it as a curve in its pure mathematical meaning. A curve is
a mathematical entity defined in a Euclidean Space Rn and has a set of local
properties like speed, curvature and torsion, which can be defined point wise
and are invariant to arbitrary rigid transformations. This leads to the idea that
proper odometry and loop closure constraints can be computed using only the
positions and that these constraints are related with the local properties of a
discrete curve.

Resulting from our proposal three main advantages arise:

– The optimisation could be performed in a Euclidean space, with no need to
define an error function and special operators for non-Euclidean manifolds.

– We avoid mixing translation and rotation in the same optimised vector. Al-
though these two magnitudes can be normalised by the information matrix,
in the cases where this matrix is not available, an empirical factor must be
used to normalise the translation.

– The number of degrees from freedom per pose is reduced from 6 to 3 in
the 3D case and from 3 to 2 in the 2D case. This leads to a dimensionality
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reduction of the optimisation problem and since the cost of solving a linear
system is cubic in the number of variables, it may involve important savings
in computational cost.

2 RELATED WORK

We have noted that while there exist a lot of work towards increasing the effi-
ciency and convergence speed of the optimisation algorithms for pose graphs, the
discussion on different representations of the nodes of the graph is less prevalent
and, to the best of our knowledge, all of them assume that the optimisation must
be performed both in the orientation and the position of the poses.

Concerning the optimisation algorithms the main objective is to make it
robust to local minima and lowering the computational needs. Standard ap-
proaches to solve non-linear least squares problems are based on the Gauss-
Newton method, which consists in iteratively linearising the energy function
around the current solution and solving a linear system until convergence. How-
ever this involves a large computational cost and, unless a good initial estimate
is provided, it is likely to stuck on a local minima. Approaches based on this
method like iSAM [3] and g2o [2] tend to exploit the structure of the graph to
reduce the computational cost.

Another family of approaches introduce a relaxation on the problem, i.e., at
each iteration they compute an update only in a subset of the nodes. Although
these updates are only approximate, the robustness to local minima is generally
increased. In this sense Duckett et al. proposed the use of Gauss-Seidel relaxation
[4] and based on this, Frese et al. [5] introduced a multilevel relaxation (MLR).
Olson et al. [6] propose a relaxation based approach using a Stochastic Gradient
Descent algorithm (SGD) and an incremental pose parametrisation. Their results
showed a dramatic reduction in computational cost compared with other existing
approaches at that time. In [7], Grisetti et al. extend Olson’s method including
a novel tree parametrisation for the poses and extending to 3D poses. Grimes
et al. [8] propose to apply a stochastic relaxation while solving the linearised
system around current estimate.

Martinez et al. [9] and Carlone et al. [10] proposed a linear approximation
to compute a first suboptimal solution in 2D pose graphs without requiring an
initial seed for the state of the nodes. This suboptimal solution could then be
refined by non-linear optimisation approaches. Also for 2D graphs, Carlone and
Censi [11] proposed recently a method for orientation estimation which is more
robust to local minima than state-of-the-art approaches.

3 POSE GRAPH OPTIMISATION

Let x = (x1 · · · xN ) be the optimisation state vector which contains the configu-
ration xi of each node in the graph. Let ẑ = (ẑ1 · · · ẑM ) be the vector containing
all the constraints between the nodes in the graph. These constraints can not
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only represent edges joining pairs of nodes but also, more generally, cliques relat-
ing an undetermined number of nodes. Let also fk (x) be an observation function
which computes the estimate of the constraint ẑk given the current state x of
the graph.

3.1 Node parametrisation and constraints in SE(n)

When defining a pose-graph optimisation problem in the context of SLAM, nodes
in the graph represent poses. One pose consists of a location in the space and
an orientation and both can be jointly described in the manifold of rigid body
motions in 2D (SE(2)) or 3D (SE(3)) by using transformation matrices. Then
the configuration of a node xi in the graph is parametrised as xi = WTi.

The observation function for a constraint between two poses is defined as:

fij(x)
.
= fk(x) =

(
WTi

)−1
WTj . (1)

The odometry constraints for the optimisation problem are computed by
applying the observation function to the initial state x̂ = {W T̂1, W T̂2, ..., W T̂N},
while the loop closure contraints is provided by a module in charge of both loop
detection and computation of transforms TLC = {i1T̂j1

LC , ..., iLT̂jL
LC}. That is:

ẑk = iT̂
j =


(
W T̂i

)−1

W T̂j if (i, j) ∈ S

iT̂
j
LC if (i, j) ∈ R

(2)

where S = {(1, 2), ..., (N − 1, N)} is the set of pose pairs for the odometry con-
straints and R = {(i1, j1), ..., (iL, jL)} the set of pose pairs sharing a loop closure
constraint.

3.2 Generalised optimisation on manifolds

The description of elements lying on a manifold usually require more parame-
ters than dimensions has the manifold. Such is the case of elements in SE(n),
described by transformation matrices. For each additional parameter a constraint
is established. To avoid the violation of these constraints during iterative opti-
misation, updates of the estimation must be computed in the tangent space of
the manifold using a minimal parameterisation. For this purpose the operators
� and � are used. Roughly speaking, the operator � computes the difference
between two transformations with a minimal parametrisation, while the opera-
tor � applies a minimally parametrised perturbation to a rigid transformation
(for a more detailed and rigorous explanation we refer the reader to [12]).

Using the � operator, the error ek resulting from violating the constraint
between poses i and j is:

ek(x) = fk(x) � ẑk. (3)
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The uncertainty for a constraint ẑk is represented by the information matrix
Ωk. Assuming that all the constraints are independent, the cost function for pose
graph optimisation is:

x∗ = arg min
x

∑
(i,j)∈S

eTk(x)Ωkek(x) +
∑

(i,j)∈R
eTk(x)Ωkek(x)

= arg min
x

eT(x)Ωe(x),

(4)

where e = (e1 · · · eM ) and Ω = diag (Ω1, ..., ΩM ) and M = (N − 1) + L is the
total number of constraints.

Given the initial guess x̆ = x̂ , (4) can be solved iteratively by computing a
first order Taylor expansion of the error at each iteration :

e(x̆ � δ) = e(x̆) +
∂ (e (x̆ � δ))

∂δ

∣∣∣∣
δ=0

δ = ĕ + Jδ, (5)

where δ = (δ1 · · · δN ) and abusing from notation x̆ � δ = {x̆1 � δ1, ... , x̆N � δN}.
Then solving the resulting linear optimisation problem to obtain the state

incremental update δ which is used to compute the state for next iteration:

x̆← x̆ � δ. (6)

4 PROPOSED APPROACH: GRAPH OPTIMISATION
ON Rn

Instead of jointly estimating the position and orientation of the poses by carrying
on an optimisation in the non Euclidean Group of rigid body motions, we propose
imposing the loop closure constraints by taking only the position part of the
poses. The underlying idea behind this proposal is that a trajectory can be
considered a discrete curve in the Euclidean space where new constraints between
points are imposed modifying as less as possible the local properties of the curve.
This is intuitively shown in the example of Fig. 1. Given a trajectory where no
information about the orientation is shown, one can perceive however how the
trajectory has to be bended so that the point A is at the relative position w.r.t.
B given by the loop closure constraint (dashed line) and the vector vB tangent
to the trajectory at B.

Moreover, the removal of the orientations out of the optimised variables seems
reasonable, since the position and orientation of a body which freely moves in
the space do not have to be coupled generally. In this sense, the inclusion of
the orientation in the optimisation responds primarily to the need of expressing
the odometry and loop constraints in a local reference frame, such that that the
error function is invariant to rigid body motions applied to the whole trajectory.

Thus the main challenge is, given only the set of positions composing the
trajectory, to define an observation function for the constraints which keeps the
error invariant to an arbitrary rigid motion applied to the poses implied in a
constraint.
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Fig. 1. (a) Curve with an open loop where the point A should be at the same position
as ALC and keep a relative orientation w.r.t. the vector tangent to the trajectory at
B. (b) Intuition of how this loop should be closed.

4.1 Curves in 2D and 3D

Generally, a curve r can be defined as a mapping of a scalar t in a given interval
I = [a, b] onto the euclidean space Rn.

r : I → Rn. (7)

A n-dimensional curve is characterised by n properties defined locally at every
point of the curve. For a 2D curve these properties are the metric derivative or
speed ‖r′‖, and the curvature κ(t) which is defined as:

κ(t) =
r′

T
(t)Isr

′′(t)

‖r′(t)‖3 , (8)

with

Is =

(
0 1
−1 0

)
. (9)

For the 3D case we have to consider a new property of the curve: the torsion
τ(t). The torsion of a curve is given by the variation of its osculating plane which
can be defined as the plane which locally contains the curve in the vicinity of
one point of the curve. Note that planar curves have no torsion since they are
contained in the same plane at every point.

Then, for a 3D curve the curvature and torsion are defined by:

κ(t) =
‖r′(t)× r′′(t)‖
‖r′(t)‖3 , (10)

τ(t) =
r′′′

T
(t)(r′(t)× r′′(t))

‖r′(t)× r′′(t)‖2 , (11)

Note that these properties are invariant to rigid transformations applied to
the curve both in the 2D and 3D cases.
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4.2 Vertex parameterisation and constraints

In our approach each node in the graph is parametrised as xi = riW = trans
(
WTi

)
.

Analogously to previous section we define an observation function for the
constraints:

fij(x)
.
= fk(x) = f(FRn(riW ), rjW ), (12)

where FRn(riW ) is a function which extracts from the graph, the minimum num-
ber of poses backwards from riW to define a reference frame for a given number
of spatial dimensions n.

Given the observation function, the initial state of the graph x̂ = {r̂1W , r̂2W , ..., r̂NW },
and the transforms between loop closure poses TLC = {i1T̂j1

LC , ..., iLT̂jL
LC}, the

constraints for the optimisation problem only on the positions are computed as:

ẑk = ∆r̂iji =


f(FRn(r̂iW ), r̂jW ) if (i, j) ∈ S

f
(
FRn(r̂iW ), trans

(
W T̂i

iT̂
j
LC

))
if (i, j) ∈ R

(13)

Then the optimisation is performed analogously to Section 3. Since we are
optimising in Rn, � and � operators are the conventional operator for addition
and substraction.

Since the number of properties of the curve is not the same in 2 and 3
dimensions, the definition of function f(·) and the structure of the optimisation
problem slightly changes from one case to another. For shake of clearness we treat
the two cases separately starting with the easiest 2D case and then stepping up
to the 3D case. For each case we proceed as follows: first we compute a relative
observation function fk(x) and then show that it is related to the properties of
the curve. In next sections we will abuse of notation and merge the definition of
points in the curve and positions (ri

.
= riW ).

4.3 Loop closure in R2

In the 2D case we need two positions to define a reference frame, so we take
FR2(riW ) = {ri−1

W , riW } and define:

∆r0 = riW − ri−1
W , ∆r1 = rjW − riW . (14)

The odometry function f
(
ri−1
W , riW , r

j
W

)
establishes ternary constraints and is

computed as:

f
(
ri−1
W , riW , r

j
W

)
= R∆r1 =

1

‖∆r0‖

 ∆r0
T

∆r0
TIs

∆r1, (15)

and expresses the odometry vector ∆r1 in a reference frame whose unit vector
ex is aligned with ∆r0.
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Now let us see how the observation function f
(
ri−1W , riW , rjW

)
, relates with

the local properties of the curve. In our particular problem, the curve is discre-
tised in a set of points, being the scalar which parametrises the curve the ith

position index. So we need to apply finite differences to compute the first and
second order derivatives:

r′(i) = ri − ri−1 = ∆r0, (16)

r′′(i) = rj − 2ri + ri−1 = ∆r1 −∆r0. (17)

Note that for the first order derivative we have taken the backwards difference
convention. We will hold this convention through the rest of the paper for (2n+
1)th order derivatives.

Applying the definitions of the derivative we can compute the curvature κi
at a curve point ri:

κi =
∆r0

TIs∆r1
‖∆r0‖3

, (18)

and putting it into (15) we get:

f
(
ri−1
W , riW , r

j
W

)
=


‖∆r1‖

√
1− ‖∆r0‖4

‖∆r1‖2
κ2
i

‖∆r0‖2κ2
i

 . (19)

verifying that the odometry constraint encapsulates a preservation of the local
properties of the curve.

Note that when treating the odometry as a curve, distances between adjacent
points must not be zero. Otherwise it is not possible to compute the division
by ∆r0 and the optimisation is likely to fail. Special care must be taken by
eliminating redundant points from the initial odometry estimate. It must be
remarked that the two poses which the loop is closed at, do not have to obey
this restriction since they are never used to compute ∆r0. Intuitively speaking,
a curve must be always “in movement” but it can intersect itself.

4.4 Loop closure in R3

While in a plane we only need one vector to define the reference frame, in the
space we require a plane spanned by two vectors to define it unambiguously. Since
we need an additional point to compute the second vector, we take FR3(riW ) =

{ri−2
W , ri−1

W , riW } and define:

∆r−1 = ri−2
W − ri−3

W . (20)

Thus the odometry function f
(
ri−2
W , ri−1

W , riW , r
j
W

)
will stablish quaternary

constraints between positions. One initial attempt of defining the local odometry
function is to proceed analogously to the 2D case and build a local coordinate
frame such that ex is aligned with ∆r0 and ez is the normal of the plane defined
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Fig. 2. Detail of a discrete 3D curve and the variation of its osculating plane

by ∆r0 and ∆r−1 (see Fig.2). Given that b∆r0c is the antisymmetric matrix
formed with vector ∆r0 , the following rotation matrix yields:

R =


eT
x

eT
y

eT
z

 =


∆rT0
‖∆r0‖

− ∆rT−1b∆r0c2

‖b∆r0c2∆r−1‖

− ∆rT−1b∆r0c
‖b∆r0c∆r−1‖

 , (21)

which results in the following odometry function:

fk
(
riW , r

i−1
W , ri−2

W , ri−3
W

)
= R∆r1 =


∆rT0∆r1
‖∆r0‖

−∆rT−1b∆r0c2∆r1

‖b∆r0c2∆r−1‖

−∆rT−1b∆r0c∆r1

‖b∆r0c∆r−1‖

 . (22)

However this odometry function involves a division by zero when ∆r−1 and
∆r0 are aligned. Unlike the case where ‖∆r0‖ = 0 , this situation is likely to
arise in a curve (concretely in straight parts) and thus we have to find another
function free of them. We propose to use the following vector to express the
curve constraints:

f
(
ri−2
W , ri−1

W , riW , r
j
W

)
=


∆rT0∆r1
‖∆r0‖

−∆rT−1b∆r0c2∆r1

‖∆r0‖2‖∆r−1‖

−∆rT−1b∆r0c∆r1

‖∆r0‖‖∆r−1‖

 . (23)
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where the term ‖b∆r0c∆r−1‖ has been substituted by ‖∆r0‖‖∆r−1‖. Note that,
although the singularity is removed, still remains an ambiguity when ∆r−1 and
∆r0 are aligned. In this case ∆r1 can be rotated arbitrarily around ∆r0 without
varying the result of the observation function.

With this parametrisation, the constraints no longer correspond to the odom-
etry vector expressed in a local coordinate frame. However, all the constraints
are still expressed in the same length units and they encapsulate restrictions on
local properties of the curve (length, curvature κ and torsion τ ).

So, discretising the third derivative,

r′′′(i) = ∆r−1 +∆r1 − 2∆r0, (24)

and taking (16) and (17) for the first and second order derivatives we obtain the
discretised expressions for curvature and torsion:

κi =
‖∆r0 ×∆r1‖
‖∆r0‖3

, (25)

τi =
∆rT−1(∆r0 ×∆r1)

‖∆r0 ×∆r1‖2
. (26)

Recalling (25) and (26) and applying the definitions of the cross and dot
product and some trigonometric properties we get

f
(
ri−2
W , ri−1

W , riW , r
j
W

)
=



‖∆r1‖
√

1− κ2
i
‖∆r0‖4
‖∆r1‖2

‖∆r0‖‖∆r−1‖2κiκi−1

√
1− τi

κ2
i ‖∆r0‖8

κ2
i−1‖∆r−1‖6

τiκ
2
i
‖∆r0‖5
‖∆r−1‖


, (27)

and thus we verify that the new function, though not strictly an dometry func-
tion, still encapsulates a preservation of the local properties of the curve.

5 EXPERIMENTS

In this section we provide experimental validation of our approach using publicly
available data-sets and a comparison with state-of-the art pose graph optimisa-
tion methods. The implementation and comparison of our method has been
performed within the g2o framework [2]. The experiments were performed in an
Intel Core i5-2500 at 3.30 GHz.

For the 2D case we have compared three different approaches: optimisation
on SE(2) with the CSparse solver and the Gauss Newton algorithm, a g2o imple-
mentation of the linear approximation method for 2D pose graphs of Carlone et
al. [10], and our optimisation on R2 with CSparse solver and the Gauss Newton
algorithm. The CSparse solver consists of an efficient implementation of a sparse
Cholesky factorisation algorithm to solve linear systems and was selected among
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other available solvers in g2o due to its accuracy and low computation times in
the tested data-sets.

The experiments (Fig. 3) show that in 2D our approach is comparable in
accuracy to the other methods. In terms of convergence speed, as shown in
Table 1, Gauss-Newton on SE(2) and R2 yield a similar performance. On the
other hand, the linear approximation method seems to outperform them since
it only needs two iterations to converge in all the considered cases, but it is
restricted to 2D graphs.

The 3D case has been tested with the synthetic sphere data-set. We have used
the CSparse solver in the three compared approaches: optimisation on SE(3) with
Gauss-Newton, optimisation on SE(3) with Levenberg-Marquardt and optimisa-
tion in R3 with Levenberg-Marquadt (ours). The Gauss-Newton algorithm could
not be used with our method since it produced a failure in the Cholesky fac-
torisation. We think that this failure may be related with the ambiguity in the
observation function commented in Sec. 4.4. Fig. 4 shows that while by optimis-
ing on SE(3), the correct solution is reached, our approach gets stuck in a local
minima, which however, is still close to a correct spherical shape.

Table 2 shows that, as expected by the reduction of the number of optimised
variables to the half, the time per iteration using our approach is significantly
lower than in the optimisation on SE(3). Note that since the cost Cholesky fac-
torisation algorithm has order O(n3) one may expect a cost per iteration 8 times
lower. However in practice, the cost of the sparse Cholesky factorisation is also
affected by the density of the system matrix. Thus, the increase in density due
to the use of quaternary, instead of binary constraints produces a cost overhead
which yields a real cost reduction by a factor of 5.

This can also be appointed as the cause of the no gain in computation time
in 2D. In this case the reduction of the dimensionality of the optimised vector
yields a theoretical cost reduction by a factor of approximately 3.5, which has
been verified in trials with a dense solver on small data-sets. Using the sparse
solver, the sparsity of the system matrix plays also a role in the final cost of
Cholesky decomposition, and then the ternary constraints of our approach pro-
duce a cost overhead which compensates the cost reduction from the reduced
problem dimension.

Table 1. Convergence speed comparison of different optimisation approaches in 2D
datasets (time in seconds)

Dataset CSparse CSparse Linear 2D
Gauss-Newton R2 Gauss-Newton SE(2)

Manhattan 3500 0.0465 (3 iters) 0.0453 (3 iters) 0.0446 (2 iters)

Manhattan 10000 1.315 (8 iters) 1.559 (8 iters) 0.3648 (2 iters)

Intel 0.0099 (2 iters) 0.0100 (2 iters) 0.0126 (2 iters)

Finally, we have also tested our method in a visual odometry estimate along
a path of 886 m using a wearable omnidirectional camera and a visual SLAM
estimation including a trajectory scaling algorithm [13]. The results shown in
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Input GN R2 GN SE(2) Linear 2D

Fig. 3. Comparison of different pose-graph optimisation methods on the 2D datasets
(from top to down) Manhattan3500, Manhattan10000 and Intel Research Lab.

Fig. 5 show the accuracy of our loop-closure method, performed over the 2D
projection of the initial estimate.

6 CONCLUSION

In this paper we have presented a novel method to solve loop closure problems
by pose graph optimisation. The method consists on optimising on the Euclidean
Space Rn using only the position part of the poses, rather than in SE(n) with
the complete poses. While the results for 2D graphs are similar to the obtained
with state-of-the-art approaches, in 3D the reduction of the state vector leads
to a great reduction of the computation time.

At the moment we have obtained in the 3D case a bit lower accuracy, which
may be due to the ambiguous definition of the observation function in the 3D
case to avoid singularities in straight parts. Although this situation is likely to
occur in vehicles, with humanoid robots or in applications with human wearable
sensors the oscillating nature of walking motion assures a non-straight local
displacement in 3D even if the 2D displacement were aligned. In this case it
is possible to define a unambiguous reference frame, which can improve the
precision of the method.
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Input R3 SE(3)

Fig. 4. Comparison of different optimisation state vector parametrisation the 3D syn-
thetic sphere data-set.

Table 2. Convergence speed comparison of different optimisation approaches in the
synthetic sphere data-set

CSparse CSparse CSparse
Levenberg-Marquardt R3 Gauss-Newton SE(3) Levenberg-Marquardt SE(3)

6 s 30s 30 s
(0.12 s/iter) (0.62 s/iter) (0.62 s/iter)

Input Loop closure on R2

Fig. 5. Evaluation of our approach in a data-set acquired with an omnidirectional
camera. Black dashed line represents the Ground Truth taken from Google Maps. The
loop closure constraints are represented in red.
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