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Universidad de Zaragoza

Supervisors: Dr. José Jesús Guerrero Campo
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Resumen

Cada vez más sistemas autónomos, ya sean robots o sistemas de asistencia, están pre-
sentes en nuestro d́ıa a d́ıa. Este tipo de sistemas interactúan y se relacionan con su
entorno y para ello necesitan un modelo de dicho entorno. En función de las tareas que
deben realizar, la información o el detalle necesario del modelo vaŕıa. Desde detallados
modelos 3D para sistemas de navegación autónomos, a modelos semánticos que incluyen
información importante para el usuario como el tipo de área o qué objetos están pre-
sentes. La creación de estos modelos se realiza a través de las lecturas de los sensores
disponibles en el sistema. Actualmente, gracias a su pequeño tamaño, bajo precio y la
gran información que son capaces de capturar, las cámaras son sensores incluidos en to-
dos los sistemas autónomos. El objetivo de esta tesis es el desarrollar y estudiar nuevos
métodos para la creación de modelos del entorno, utilizando sensores de visión, a dis-
tintos niveles semánticos y con distintos niveles de precisión. Dos puntos importantes
caracterizan el trabajo desarrollado en esta tesis:
• El uso de cámaras con punto de vista egocéntrico o en primera persona, ya sea en

un robot o en un sistema portado por el usuario (wearable). En este tipo de sistemas,
las cámaras son solidarias al sistema móvil sobre el que van montadas. En los últimos
años han aparecido muchos sistemas de visión wearables, utilizados para multitud de
aplicaciones, desde ocio hasta asistencia de personas.
• El uso de sistemas de visión omnidireccional, que se distinguen por su gran campo

de visión, incluyendo mucha más información en cada imagen que las cámara conven-
cionales. Sin embargo plantean nuevas dificultades debido a distorsiones y modelos de
proyección más complejos.

Esta tesis estudia distintos tipos de modelos del entorno:
• Modelos métricos: el objetivo de estos modelos es crear representaciones detalladas

del entorno en las que localizar con precisión el sistema autónomo. Esta tesis se centra en
la adaptación de estos modelos al uso de visión omnidireccional, lo que permite capturar
más información en cada imagen y mejorar los resultados en la localización.
• Modelos topológicos: estos modelos estructuran el entorno en nodos conectados por

arcos. Esta representación tiene menos precisión que la métrica, sin embargo presenta
un nivel de abstracción mayor y puede modelar el entorno con más riqueza. Esta tesis
se centra en la creación de modelos topológicos con información adicional sobre el tipo
de área de cada nodo y conexión (pasillo, habitación, puertas, escaleras...).
• Modelos semánticos: este trabajo también contribuye en la creación de nuevos mo-

delos semánticos, más enfocados a la creación de modelos para aplicaciones en las que
el sistema interactúa o asiste a una persona. Este tipo de modelos representan el en-
torno a través de conceptos cercanos a los usados por las personas. En particular, esta
tesis desarrolla técnicas para obtener y propagar información semántica del entorno en
secuencias de imágenes.





Abstract

More and more intelligent systems, such as robots or wearable systems, are present in our
everyday life. This kind of systems interact with the environment so they need suitable
models of their surrounding. Depending on the tasks that they have to perform, the
information or detail required in those models changes: from highly detailed 3D models
for autonomous navigation systems, to semantic models including important information
for the user such as the kind of area being traversed or the presence of objects. These
models are created from the sensory data provided by the system. Cameras are an
important sensor included in any intelligent system, thanks to their small size, cheap
prices and the great amount of information that they provide. This thesis studies and
develops new methods to create models of the environment with different semantic levels
and different precision levels. There are two key-points in the subsequent presented
approaches:
• The use of egocentric vision systems. All the vision systems and image sequences

used in this thesis characterize for a first-person (egocentric) point of view, where the
camera moves with the system they are mounted on. Many wearable vision systems have
appeared in the last years. These systems are used in many applications, from leisure to
human assistance.
• The use of omnidirectional vision. This kind of vision systems provide much more

information that conventional cameras thanks to their wide field of view. However, they
present additional difficulties due to distortions and require more complex projection
models.

This work studies different kinds of models of the environment:
• Metric models: the objective of these models is to create accurate representations

of the environment to localize the system with precision. This thesis focuses on the
adaptation of this kind of models to use omnidirectional cameras, allowing to capture
more information on each image and to improve the localization results.
• Topological models: these models segment the environment in nodes related by links

connecting them. These models have lower precision than metric models, however, they
show higher abstraction and can include additional information about the environment,
e.g., the kind of area of each node, the location of important objects or the kind of con-
nection of each link. This thesis focuses on the creation of topological models including
enhanced information about the kind of area of the different nodes and links (e.g. room,
corridor, door, stairs)
• Semantic models: this thesis also contributes on the creation of semantic models of

the environment and is focused on the creation of models for applications where the au-
tonomous system interacts with a person. This kind of models represent the environment
using concepts close to human concepts. Particularly, this thesis develops techniques to
obtain and propagate semantic information of the environment in sequences of images.
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CHAPTER 1. INTRODUCTION

cal models can be used together, as their information is complementary. Sometimes, an
environment may be too large and complex to represent it with a single highly detailed
model. In these cases, we can consider the use of a topological model. A topological
model can organize the environment in smaller areas or nodes. Then, a metric model,
can be used to create detailed representations of each of these areas. This framework
is usually known as hierarchical modeling, a kind of environment representation where
different modeling techniques work together [Kuipers, 2000,Murillo et al., 2007].

A key feature of topological models is the ability to integrate higher abstraction lev-
els, such as the properties of the different areas of the environment [Friedman et al.,
2007] or the location of important scene elements [Viswanathan et al., 2011]. This makes
topological models suitable representations to design systems for human-computer in-
teraction, where the model of the environment needs to include information useful for
a person. Knowing the kind of area traversed by the system, the presence of objects or
people can be very useful for robotic platforms, but it is mandatory for systems designed
for human-computer interaction or human assistance.

In order to obtain models of the environment better suited for human-computer in-
teraction, researchers work to enrich these models with concepts that can be understood
by people. The use of priors about the environment presents a powerful tool to integrate
higher abstraction concepts in our models. Even the human brain makes assumptions
about the environment based on visual experience. For example, we assume that light
comes from above and that objects are not viewed from below; we recognize faces if we
see them upright and assume that all the borders are convex. Our visual perception is
the result of this kind of unconscious inferences.

Usual priors that can be used for intelligent systems are, for example, assumptions on
the type of environment [Coughlan and Yuille, 1999], restricting the camera position and
motion [Tsai and Kuipers, 2012] or where the different elements of the environment are
and how they are sensed by the system [Yang and Newsam, 2011]. This prior knowledge
about the environment can be added to the process of building the model in such a way
that the resulting models integrate information closer to human concepts.

Intelligent systems relate with their environment trough sensors. Many different sen-
sors have been used for modeling the environment: i.e. laser, cameras, RGB-D cameras,
odometry, different sensors mean different advantages and different challenges. This the-
sis studies and proposes novel ways to model the environment using vision sensors. Lately,
cameras are included as sensor in any platform. Their low price and small size make cam-
eras easy to integrate in any platform. At the same time, the increasing resolution allows
to capture more and more details and useful information in each image.

Computer vision has been shown to be a useful tool to model the environment. From
the creation of high precision models [Davison et al., 2007] or topological models [Cum-
mins and Newman, 2011] to the detection and recognition of particular objects [Tuyte-
laars et al., 2010] and places [Valgren and Lilienthal, 2010], computer vision helped to
improve the creation of many kinds of representations. The rich information provided in
each acquired image, makes cameras a great sensor to create semantic representations
of the environment. Particularly the use of omnidirectional cameras, where the amount
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CHAPTER 1. INTRODUCTION

the next one are usually small, providing multiple measurements of a same scene and
allowing to track scene objects. Integrating this constraints about the scene in the pro-
cess of building a model, the resulting model will better represent the environment with
concepts closer to human understanding as shown in Fig. 1.4.

One possible approach to integrate these restrictions to build a model is to keep track
of important scene elements [Sivic and Zisserman, 2003]. By saving the appearance
and the position of such elements, the system will be able to recognize them later.
The environment can then be described by the occurrences of these scene elements that
represent real objects of the environment. A different approach is to use the environment
constraints to infer information about the environment and create interpretations of the
surrounding scene. With this intuition, we find many papers that infer the spatial layout
of a scene from just one image [Delage et al., 2006]. These approaches rely on assumptions
about man made environments and how this kind of scenes are projected in images.

7



1.2. GOALS AND CONTRIBUTIONS

1.2 Goals and contributions

This thesis studies how computer vision can be used to improve, adapt or design different
models of the environment. To test our proposals, different cameras have been used, both
in robotic and wearable platforms.

Omnidirectional cameras for visual SLAM. The SLAM (Simultaneous Localiza-
tion and Mapping) problem is one of the essential challenges for the current robotics.
Chapter 2 presents our approach to integrate the Spherical Camera Model for catadiop-
tric systems in a Visual-SLAM application. The proposal uses the inverse depth param-
eterization of the measurements and SIFT [Lowe, 2004] points as image key-points. The
Spherical Camera Model is a projection model that unifies the projection of central cata-
dioptric and conventional cameras. To integrate this model into the Extended Kalman
Filter-based SLAM we require to linearize the direct and the inverse projection. The
comparison of the performance of a visual SLAM system using monocular omnidirec-
tional and conventional vision confirms that the latter produces better trajectory and
orientation estimation than the conventional vision system.

Associated publications:

• [Rituerto et al., 2010b] Rituerto, A., Puig, L., and Guerrero, J.J. (2010b). Visual
SLAM with an omnidirectional camera. In International Conference on Pattern
Recognition (ICPR), pages 348–351.

• [Rituerto et al., 2010a] Rituerto, A., Puig, L., and Guerrero, J.J. (2010a). Com-
parison of omnidirectional and conventional monocular systems for visual SLAM.
In 10th Workshop on Omnidirectional Vision, Camera Networks and Non-classical
Cameras (OMNIVIS) (Best paper award).

Semantic labeling for indoor topological mapping using a wearable cata-
dioptric system. Richer semantic representations of the environment may allow au-
tonomous systems to perform higher level tasks and provide better human-robot inter-
action. This issue is analyzed in Section 3. A new omnidirectional vision based scene
labeling approach for augmented indoor topological mapping is presented. Our proposal
includes novel ideas in order to augment the semantic information of a typical indoor
topological map: we pay special attention to the semantic labels of the different types of
transitions between places, and propose a simple way to include this information to build
a topological map, as part of the criteria to segment the environment. This approach
is built on an efficient catadioptric image representation based on the Gist descriptor,
which is used to classify the acquired views into types of indoor regions. The basic types
of indoor regions considered are Place and Transition, farthest divided into more specific
subclasses, e.gTransition into Door, Stairs or Elevator. Besides using the result of this
labeling, the proposed mapping approach includes a probabilistic model to account for
spatio-temporal consistency. All the proposed ideas have been evaluated in a new indoor

8



CHAPTER 1. INTRODUCTION

dataset acquired with our wearable catadioptric vision system, showing promising results
in a realistic prototype.

Associated publications:

• [Rituerto et al., 2014c] Rituerto, A., Murillo, A., and Guerrero, J.J. (2014c).
Semantic labeling for indoor topological mapping using a wearable catadioptric
system. Robotics and Autonomous Systems, Special Issue Semantic Perception,
Mapping and Exploration, 62(5):685–695.

Line Image Signature, global descriptor for Scene Understanding. Pursuing
similar objectives, section 4 proposes a novel line-based image global descriptor that
encloses the structure of the scene observed. This descriptor is designed with omnidi-
rectional imagery in mind, where observed lines are longer than in conventional images.
Experiments using two public datasets analyze the performance of the descriptor for
scene categorization. The descriptor has been tested with two omnidirectional systems:
a catadioptric camera and panoramic images. The different parameters of the descriptor
have been analyzed. Experiments show how the proposed descriptor can be used for
indoor scene recognition with comparable results to state-of-the-art global descriptors.
Additional advantages of particular interest for wearable vision systems are higher ro-
bustness to rotation, compactness, and easier integration with other scene understanding
steps using the observed lines and contours.

Associated publications:

• [Rituerto et al., 2013] Rituerto, A., Murillo, A. C., and Guerrero, J.J. (2013).
Line image signature for scene understanding with a wearable vision system. In
International SenseCam & Pervasive Imaging Conference, pages 16–23.

• [Rituerto et al., 2014e] Rituerto, A., Murillo, A. C., and Guerrero, J.J. (2014e).
Line-based global descriptor for omnidirectional vision. In IEEE International
Conference on Image Processing (ICIP).

Building a hierarchical vocabulary from an image sequence. Vision based
recognition approaches frequently use quantized feature spaces, commonly know as Bag
of Words (BoW) or vocabulary representations. A drawback using standard BoW ap-
proaches is that conceptual or semantic information is not considered as criteria to group
the visual features into words. To solve this challenging task, section 5 studies how to
leverage the standard vocabulary construction process to obtain a more meaningful vi-
sual vocabulary for particular applications using image sequences. We take advantage
of spatio-temporal constraints and prior-knowledge about the position of the camera.
The key contribution of our approach is to define a new method to incorporate track-
ing information to the process of vocabulary construction, and to add geometric cues
to the appearance descriptors. Motivated by long-term indoor robotic applications, we
focus in a robot camera pointing to the ceiling, which facilitates the capture of more
stable regions of the environment, improving long term operation and the discovery of

9



1.2. GOALS AND CONTRIBUTIONS

repetitive and representative elements. The experimental validation shows how our vo-
cabulary models the environment in more detail than standard vocabulary approaches,
while keeping comparable recognition performance. We show different robotic tasks that
could benefit of the use of our visual vocabulary approach, such as place recognition
or object discovery. For this validation we use a publicly available dataset fitting the
requirements of our approach.

Associated publications: This work was mainly developed during my 3 months stay
in Örebro Sweden where I collaborated with Professor Achim Lilienthal and PhD Doctor
Henrik Andreasson from the Mobile Robotics and Olfaction Lab in Örebro University.

• [Rituerto et al., 2014a] Rituerto, A., Andreasson, H., Murillo, A., , Lilienthal,
A.J., and Guerrero, J.J. (2014a). Building a hierarchical vocabulary from an image
sequence. Pattern Recognition (Under review).

3D Spatial layout propagation. Indoor scene understanding from monocular im-
ages has been widely studied, and a common initial step to solve this problem is the
estimation of the layout of the scene, the basic 3D structure. Many previous approaches
obtain the layout of a single image, however, section 6 addresses the problem of scene
layout propagation along a video sequence. Our approach uses a Particle Filter frame-
work to propagate the scene layout obtained using a state-of-the-art technique on the
initial frame. We propose how to generate, evaluate and sample new layout hypotheses
for the scene on each of the frame. The intuition we follow is that we can obtain better
layout estimation at each frame through propagation than running separately at each
image. The experimental validation is run on a publicly available indoor dataset and
shows promising results for the layout computed using our approach, without the need
of estimating accurate 3D maps. Additionally, they demonstrate how this layout infor-
mation can be used to improve detection tasks, in particular sign detection, by easily
rejecting false positives.

Associated publications: An important part of this work was developed during
two stays of 3 and 4 months in Santa Cruz, California, working on the Computer Vision
Lab at UCSC collaborating with Professor Roberto Manduchi.

• [Rituerto et al., 2014b] Rituerto, A., Manduchi, R., Murillo, A.C., and Guerrero,
J.J. (2014b). 3D spatial layout propagation in a video sequence. In International
Conference on Image Analysis and Recognition (ICIAR).

• [Rituerto et al., 2014d] Rituerto, A., Murillo, A. C., and Guerrero, J.J. (2014d). 3D
layout propagation to improve object recognition in egocentric videos. In Assistive
Computer Vision and Robotics (ACVR).

Additionally, I have collaborated with my supervisor in the direction of one under-
graduate thesis project that resulted in the following publication:

• [Gutiérrez et al., 2011] Gutiérrez, D., Rituerto, A., Montiel, J., and Guerrero, J.J.
(2011). Adapting a real-time monocular visual SLAM from conventional to omni-
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directional cameras. In International Conference on Computer Vision Workshops
(ICCVW), pages 343–350.

I have also collaborated with other researchers of our group in the integration of different
modeling methods to work together for next publication:

• [Murillo et al., 2012] Murillo, A. C., Gutiérrez-Gómez, D., Rituerto, A., Puig, L.,
and Guerrero, J.J. (2012). Wearable omnidirectional vision system for personal
localization and guidance. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 8–14.
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Chapter 2

Omnidirectional vision for visual
SLAM

The SLAM (Simultaneous Localization and Mapping) problem is one of the essential
challenges for robotics. This problem can be solved using computer vision, usually by
integrating camera measurements in a Kalman Filter [Davison, 2003]. These solutions
usually utilize conventional cameras with limited Field of View (FoV) as sensor. This
chapter shows how omnidirectional cameras, particularly a catadioptric vision system,
can be used to solve the SLAM problem and how they provide a better solution than
conventional cameras. The projection of scene points in the image in a catadoptric cam-
era can be modeled with the Spherical Camera Model [Geyer and Daniilidis, 2000], a
projection model that unifies central catadioptric and conventional cameras. Section 2.3
details how this projection model can be integrated in a SLAM application based in the
Extended Kalman Filter. Section 2.4 shows how the use of a monocular omnidirectional
system greatly improves the estimation of the camera trajectory.
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2.1. INTRODUCTION AND RELATED WORK

2.1 Introduction and related work

Robotics applications can greatly benefit of using omnidirectional cameras as vision
systems thanks to the wide Field of View (FoV) of this kind of cameras. Many different
types of omnidirectional systems can be found:

• rotating camera, a conventional camera with a rotating mechanic system that
allows to capture images all around the scene;

• multicamera systems, compound of many cameras pointing to different parts of
the surrounding;

• dioptric systems that use special lenses with wide FoV such as fish-eye lens;

• catadioptric cameras, composed by a curved mirror and a conventional camera and
usually found in robotic applications.

This last type of systems has been used in many applications such as surveillance [Scotti
et al., 2005], robot navigation [Chahl and Srinivasan, 2000] and localization [Guerrero
et al., 2008], tele-presence [Nagahara et al., 2006] or 3D reconstruction [Lhuillier, 2007].
This chapter makes use of a hyper-catadioptric monocular system composed by a con-
ventional camera and an hyperbolic mirror.

A requirement for any autonomous system is to be able to navigate in unknown
environments. SLAM [Thrun et al., 2005] techniques try to solve this problem by building
a map of the surrounding and localizing the autonomous robot relative to this map
using partial measurements of the environment. There exist several types of sensors
used to obtain this information from the environment, e.g., radar, laser, sonar or vision.
Among the visual SLAM approaches that use conventional vision we can find Davison
et al. [Davison et al., 2007] where they present a real-time algorithm to recover 3D
trajectory of a camera moving through an unknown scene. Pupilli et al. [Pupilli and
Calway, 2006] describe a particle filtering SLAM extension which provides resilience
to erratic motion. However just a few SLAM approaches use omnidirectional systems.
Gaspar et al. [Gaspar et al., 2000] transform the omnidirectional images into bird’s
eye images and propose two navigation modalities: Topological navigation and Visual
Path following. Huang et al. [Huang and Song, 2008] propose a switching method of
visual reference scans that can reduce the computation complexity of the Extended
Kalman Filter. Kim et al. [Kim and Chung, 2003] present a SLAM algorithm based
on a vision sensor robust to the matching problem with cooperation of structure from
motion and stereo vision. Mičuš́ık et al. [Mičuš́ık and Pajdla, 2006] present a method
for fully automatic and robust estimation of two-view geometry, auto-calibration, and
3D metric reconstruction from point correspondences in images taken by cameras with
wide circular FoV.

When a vision system is used as measurement sensor a projection model is needed.
Through this projection model we can obtain geometric information from the images.
There are different projection models that describe central catadioptric systems [Kang,
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Figure 2.1: Spherical Camera Model Projection

2000], [Svoboda and Pajdla, 2002], [Scaramuzza et al., 2006b], [Toepfer and Ehlgen,
2007], however the most used is the Spherical Camera Model [Geyer and Daniilidis,
2000], [Barreto and Araujo, 2001]. An important property of this model is that models
the projection of any central vision system , which allow us to develop a single application
that works with both omnidirectional and conventional cameras.

The omnidirectional systems can capture in just one image the 360o of a scene. That
makes possible to keep track of image points in all directions, while conventional systems
only keep track of image points inside their narrow FoV. In this chapter we present the
integration of the Spherical Camera Model in an EKF-based SLAM. Besides, we perform
a comparison of omnidirectional and conventional cameras for SLAM that confirms the
advantages of omnidirectional systems over conventional ones.

2.2 The Spherical Camera Model

The work in [Geyer and Daniilidis, 2000] presents a unified projection model for any
catadioptric system with a single viewpoint. Model extended later by Barreto et al.
in [Barreto and Araujo, 2001]. This projection is known as the Spherical Camera Model
and it is widely used to model omnidirectional vision systems.

The projection of a 3D point in the image is divided in three steps (Fig. 2.1). We
assume that the world reference system coincides with the camera reference system. The
first step is the projection of the scene point X onto a unit sphere centered in the origin
O. There are two intersection points, x+ and x−, but just one is physically true. These
points are projected to a virtual projection plane π through the virtual projection center
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CP = (0, 0, −ξ)T into point x′. These two steps are coded in one equation:

x′ = ~(X) =

 x
y

z + ξ
√
x2 + y2 + z2

 . (2.1)

The next step transforms the virtual plane π in the image plane πIM through a homo-
graphic transformation HC .

x′′ = HCx′ (2.2)

HC = KCRMC (2.3)

KC =

 fx sskew u0

0 fy v0

0 0 1

 (2.4)

MC =

 ψ − ξ 0 0
0 ξ − ψ 0
0 0 1

 (2.5)

where KC includes the camera parameters, MC includes the system parameters [Barreto
and Araujo, 2001] and R is the rotation matrix of the camera with respect to the mirror.
Finally, the image coordinates are estimated by the next function:

u =

(
u
v

)
= fu(x′′) =

(
x′′

z′′
y′′

z′′

)
(2.6)

The parameter of the model, ξ, depends only on the system being modeled. For
conventional cameras ξ = 0, ξ = 1 for catadioptric systems with parabolic mirror and
an orthographic camera, and 0 < ξ < 1 with hyperbolic mirror and perspective camera.

To estimate the 3D ray generated by an image point, the inverse projection model
is used. From the point image coordinates, u = (u, v)T, being x′′ = (u, v, 1)T. The
equations of the inverse projection model are:

x′ = HC
−1x′′ (2.7)

x = ~(x′)
−1

=

 x′

y′

z′ − ξ(x′2+y′2+z′2)
ξz′+χ

 (2.8)

where χ =
√

(1− ξ2)(x′2 + y′2) + z′2.

Since the Spherical Camera Model deals with catadioptric systems and conventional
cameras, an SLAM application including this model will be able to consider both vision
systems just modifying the camera calibration parameters.
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2.3 SLAM: Simultaneous Localization and Mapping

By using SLAM techniques a robot can build a map of the environment keeping track
of its pose in the map. In Visual SLAM these measurements are usually characteristic
points in the images.

The most used SLAM algorithms are based on the Kalman Filter, a filter that predicts
the state of linear systems. As the geometry imposes non-linear relations, the Extended
Kalman Filter (EKF) [Thrun et al., 2005] is used. The EKF linearize non-linear functions
by approximating them to its first order Taylor series. The EKF is divided in two phases:

• Prediction, the new state of the system is estimated from the previous time step
state through the motion model.

• Update, uses the measurements of the environment to improve the new state pre-
diction.

In EKF we assume that every state variable has a Gaussian distribution and it is repre-
sented by its mean and its covariance.

The system state in our EKF algorithm is coded in x,

x = ( r, q, V, ω︸ ︷︷ ︸
Camera state

, xi, yi, zi, θi, φi, ρi︸ ︷︷ ︸
3D points

...)T (2.9)

where r(3×1) is the camera pose, q(4×1) is the quaternion of its orientation and V(3×1)

and ω(3×1) are its linear and angular velocities, respectively. The scene points are coded
by inverse depth parameterization [Civera et al., 2008], (xi, yi, zi) is the pose of the
camera the first time it observes the point i, θi and φi are the angles that determine
the corresponding 3D ray, and ρi is the inverse depth of the point. As correlation must
be considered, if x has n dimensions the state covariance matrix C is a squared n × n
matrix.

2.3.1 Image key-points matching

An essential step of the Update phase of the EKF is the measurement matching. We use
SIFT [Lowe, 2004] points to detect and match image features. The SIFT descriptor is
orientation and scale invariant, required properties for multiview matching. The match-
ing is made in two steps for each new image. First, we match these 3D points with the
new image features. The matching only uses the 3D points which were predicted to be
inside the FoV of the current image. An 3D point is matched to a new image feature if
the distance between their descriptors multiplied by a threshold is not greater than the
distance from the 3D point descriptor to all the other new image features descriptor.
The value of this threshold is 1.5. In second step the matched point must be inside the
95% confidence region predicted by the SLAM algorithm to be considered valid.
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2.3.2 The Spherical Camera Model for the EKF

The EKF algorithm requires the first derivative of the measurement equation. In order
to adapt the Spherical Camera Model to the EKF algorithm we have formulated the
model derivatives, for the direct and the inverse projection.

Jacobian of the Spherical Camera Model direct projection

Trough the Jacobian of the model direct projection, we can estimate the covariance of
the image projection of a 3D point given his 3D covariance.

J = JfuHCJ~ (2.10)

Jfu =

(
1
z′′ 0 − x′′

z′′2

0 1
z′′ −

y′′

z′′2

)
(2.11)

J~ =

 1 0 0
0 1 0
ξx
ρ

ξy
ρ 1 + ξz

ρ

 (2.12)

where ρ =
√
x2 + y2 + z2.

Jacobian of the Spherical Camera Model inverse projection

To initialize new features we require a way to estimate the covariance of the new feature
from the covariance of the image point. This estimation can be done through the Jacobian
of the Spherical Camera Model inverse projection.

∂x

∂x′′
=
∂x

∂x′
∂x′

∂x′′
(2.13)

∂x′

∂x′′
= HC

−1 (2.14)

∂x

∂x′
=

 1 0 0
0 1 0
∂z
∂x′

∂z
∂y′

∂z
∂z′

 (2.15)

∂z

∂x′
= −

2ξx′(ξz′ + χ)− (1−ξ2)ξx′ρ2

χ

(ξz′ + χ)2
(2.16)

∂z

∂y′
= −

2ξy′(ξz′ + χ)− (1−ξ2)ξy′ρ2

χ

(ξz′ + χ)2
(2.17)

∂z

∂z′
= −

2ξz′(ξz′ + χ)− (ξ + z′

χ )ξρ2

(ξz′ + χ)2
(2.18)

where χ =
√

(1− ξ2)(x′2 + y′2) + z′2 and ρ2 = x′2 + y′2 + z′2.
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(a) (b)

Figure 2.2: Simulation of the projection of a cloud of 3D points in a omnidirectional
image. The black asterisks are the projection of the 3D central points, and the blue
points are the projection of the cloud points around them. The red ellipses are the 95%
confidence zone of the point according to the linearized model in two cases (a) and (b).

Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4 Trajectory 5

Figure 2.3: Selected trajectories

To verify the developed Jacobians and to show the size and shape of the uncertainty
in the omnidirectional images we perform the next simulation. We simulate central 3D
points and a Gaussian cloud of 500 points around each of them. After that we project
those points through the Spherical Camera Model in a omnidirectional image. Two cases
are considered in Fig. 2.2. In both cases two 3D points situated at the same distance from
the camera are considered. In Fig. 2.2(a) the points have a 3D uncertainty, so the cloud of
points form a sphere. In Fig. 2.2(b) a 2D uncertainty in a horizontal plane perpendicular
to the optical axis is considered, to simulate points extracted from the ground plane. In
both cases the uncertainty near the center of the image is smaller than in the outer part
of the image because of the non-homogeneous resolution of the omnidirectional image.
In the case of the 2D uncertainty the width of the ellipse in the radial direction is smaller
than in tangential direction, specially in the outer part of the image.
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(a) (b)

Figure 2.4: Angular resolution of both the omnidirectional, (a), and the conventional,
(b) cameras.

Table 2.1: Mean of the orientation error in radians for different values of the framerate,
Trajectory 4

Framerate
Omnidirectional Conventional

camera camera

30 FPS − 0.22
15 FPS 0.07 0.63
10 FPS 0.07 0.26
5 FPS 0.10 0.54

2.4 Comparison of omnidirectional and conventional cam-
eras for visual SLAM

2.4.1 Experimental settings

The SLAM approach used for the next experiments is based on a basic visual SLAM1.
This basic code uses the EKF algorithm and inverse depth parametrization [Civera et al.,
2008]. We have integrated the Spherical Camera Model in the measurement equation
and SIFT features are used as image points. A bucketing is also used to allocate features
all over the image. We use two egocentric image sequences provided by The Rawseeds
Project (see Appendix A). They have been acquired by a robot with a hyper-catadioptric
camera and a conventional one. The ground truth of the robot trajectory is given by an
improved odometry. To better analyze the behavior of our approach we have split the
whole trajectory in five partial trajectories (Fig. 2.3) where some particular difficulties
appear. All of these trajectories have been acquired outdoor with natural lighting and
include people and vehicles moving.

The resolution of the images is 640x640 pixels for the omnidirectional camera and

1Code: http://www.robots.ox.ac.uk/~SSS06/Website/Practicals/~SSS06.Prac2.

MonocularSLAM.tar.gz
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(a) (b)

Figure 2.5: Framerate analysis of the trajectory 4 for the omnidirectiona, (a), and con-
ventional, (b), systems.

320x240 pixels for the conventional one. The values of the angular resolution of both
cameras (Fig. 2.4) are 235.05 pixels

rad and 218.26 pixels
rad for the conventional camera in

horizontal and vertical direction respectively, and a mean of 232 pixels
rad in tangential

direction and 188.25 pixels
rad in radial direction for the omnidirectional camera. We consider

both vision sytems equivalent in angular resolution.

The calibration parameters for both systems are also provided by The Rawseeds
Project. For the conventional camera we add the Spherical Camera Model parameter
ξ = 0 to the original calibration. For the hyper-catadioptric system we have performed
a new calibration of the system using the approach in [Bastanlar et al., 2008] for better
results.

Initially we tested the effect of the framerate for both visual systems. An example of
the estimated trajectories are shown in Fig. 2.5. The Mean Absolute Error (MAE) of the
orientation for each experiment is shown in Table 2.1. The best results for both systems
are the ones obtained with the maximum framerate. From now we use a framerate of 15
FPS for omnidirectional camera and 30 FPS for conventional camera in order to obtain
the best results.

2.4.2 Qualitative analysis of the result for each trajectory

Using monocular vision we cannot estimate the real scale of the resulting trajectory. We
decide to use the orientation angle to analyze the SLAM results since camera translation
and 3D coordinates of points are affected by unknown scale. The estimated results are
compared to those given by the odometry. In order to plot the real and the estimated
trajectories in just one figure we compute a scale coefficient for each experiment. Fig. 2.6
shows the trajectory and orientation results for each tested trajectory.

At first sight the results corresponding to the omnidirectional camera are better than
the conventional camera results. The estimation follows the real movement, but it does
not fit the real dimension of the real trajectory. That is clear for the fifth section where
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Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4 Trajectory 5

Figure 2.6: The upper row shows the x-y trajectory results of the experimentation and
the lower row shows the orientation results for the five selected trajectories. The blue and
red line are the estimated data with the omnidirectional camera and the conventional
one, respectively. The black dashed line is the real data given by the odometry.

Table 2.2: Mean of the orientation error in radians

Trajectory
Omnidirectional Conventional

camera camera

1 0.04 0.16
2 0.12 0.26
3 0.11 0.15
4 0.07 0.22
5 0.29 0.62

the omnidirectional estimated trajectory takes all the turns of the real trajectory, but
the distances are not the same. The conventional camera estimation for this case does
not follow the real trajectory, however the estimation of the orientation is similar to the
omnidirectional one.

For the third trajectory the scale drifts along the sequence. The estimated trajectory
with the omnidirectional camera goes up from the start point following the real tra-
jectory, but after the 180o turn the estimation travels a shorter distance than the real
trajectory. The scale coefficient has been computed for the upper point of the trajectory
but it changes after this turn.

The values of the mean absolute error for the orientation are shown in Table 2.2. The
omnidirectional camera gives much better orientation estimation than using conventional
camera, even using double number of frames per second with the conventional camera.
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(a) (b)

Figure 2.7: Features history for the trajectory 4. The cyan line is the number of active
points in the state vector. The red line is the number of features matched and the blue
one the non-matched features. The green line is the number of initialized features and
the black line the number of removed features in each frame. (a) using omnidirectional
camera, and (b) using conventional camera.

2.4.3 Influence of the Field of View in feature history

To study the advantages of the FoV of the omnidirectional cameras over the conventional
cameras we analyze the features history of the SLAM results. Fig. 2.7 shows the features
history over the time corresponding to trajectory 4. We can observe how the number
of active features decreases significantly between the steps 600 and 800. The number of
features removed from the state vector in this interval increases. Our SLAM approach
removes features after 4 consecutive steps of not being matched. If we look at the om-
nidirectional camera feature history we observe that for the correspondent interval, 300
to 400 frame steps, the number of active features does not decrease. To better analyze
what is happening here we study the particular images, Fig. 2.8. In the conventional
images we see how the camera approximates to an untextured wall that hides the fur-
ther houses and trees. The visible floor and sky are also untextured. Previous features
disappear behind the wall, while the untextured scene makes hard to initialize new ones.
The omnidirectional images do not suffer of this problem, it also gets closer to the wall,
but the great FoV allows to keeps track of features behind the robot.

2.4.4 Analysis of the image bucketing

The bucketing is used to initialize features all over the image, avoiding the problem of
having most of the features features concentrated in a small area of the image. We test
two bucketing alternatives for each vision system, a polar bucketing and a rectangular
one. Fig. 2.9 shows the two bucketing alternatives tested for both vision systems. In
Table 2.3 shows the mean and maximum values of features life time for each trajectory
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Table 2.3: Mean (µ) and maximum values of life of the features in seconds

(a) Omnidirectional Camera

Traj. 1 Traj. 2 Traj. 3 Traj. 4 Traj. 5 All
µ max µ max µ max µ max µ max µ

Polar buck. 0.69 10.53 0.70 9.40 0.83 11.47 0.74 16.00 0.80 16.07 0.75
Rect. buck. 0.67 10.73 0.72 12.40 0.85 10.93 0.72 12.00 0.77 12.27 0.75

(b) Conventional Camera

Traj. 1 Traj. 2 Traj. 3 Traj. 4 Traj. 5 All
µ max µ max µ max µ max µ max µ

Polar buck. 1.10 16.80 0.84 14.33 0.96 17.83 0.78 14.73 0.60 8.37 0.86
Rect. buck. 0.69 17.77 0.52 14.10 0.60 17.10 0.55 20.27 0.48 8.00 0.57

using both bucketing systems.
It has been argued that omnidirectional vision can maintain tracked points for a

longer time due to its wide FoV. This happens with the rectangular bucketing where the
mean feature life time is bigger than for the conventional one. However, with the polar
bucketing the mean life for the conventional camera is bigger than for the omnidirectional
system. The reason is that with a circular bucketing for conventional vision there are a
lot of features in the center of the image which remains visible while the camera moves
in the direction of the focal axis. In the fifth trajectory the camera takes many turns so
it does not move in the direction of the focal axis which explains the differences. This
makes hard to the conventional camera to track the features, while the omnidirectional
camera can keep track of the features all over the scene. However we have tested that a
bigger mean life of the features does not make a better SLAM solution.

2.4.5 Scene reconstruction

We do not have ground truth for the 3D structure of the scene. To illustrate these results,
Fig. 2.10 shows the cenital view of the reconstruction of the scenes for the trajectories 3
and 4. The features showed are those with a life bigger than 20 frames. We can observe
how the features form a straight line parallel to the trajectory in its right when the
omnidirectional camera is used. This line corresponds to a wall present in the real scene.
The conventional camera features reconstruction does not form that wall so clearly.
Similar differences can be observed for the fourth trajectory. The 3D reconstruction
using the omnidirectional camera is much better than the other.

2.4.6 Analysis of the vertical drift

Our SLAM approach estimates the 3D motion of the camera, but the camera moves
on a planar ground, so the vertical coordinate should be zero. Both cameras have been
calibrated by the Rawseeds Project to be aligned with the acquisition platform axis. The
MAE of the estimation of z coordinate of the camera motion is shown in Table 2.4. In
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Table 2.4: Mean of the absolute error of the estimation of the vertical coordinate z in
meters

Trajectory
Omnidirectional Conventional

camera camera

1 0.18 0.19
2 0.26 0.34
3 0.18 0.44
4 0.11 0.34
5 0.10 0.38

all the experiments the estimation using the omnidirectional camera is much better than
using the conventional one.

2.5 Conclusions

This section has shown how the Spherical Camera Model can be integrated in an EKF-
based SLAM application. The Spherical Camera Model unifies the projection of vision
central systems. Its integration in a SLAM application allows to use conventional and
omnidirectional central cameras just varying the camera calibration. The different pa-
rameters of the integration have been tested and evaluated with real images.

A comparison of the performance of the SLAM application using a catadioptric sys-
tem and a conventional camera has shown how omnidirectional cameras produce better
estimations of trajectory and orientation than with conventional cameras. As well as
better 3D reconstructions of the scene.
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Conventional Omnidirectional
camera camera

(a) (b)

(c) (d)

Figure 2.8: Frames of interest of the fourth trajectory execution. The cyan ellipses cor-
respond to the confidence zone of not matched features, and the red ones correspond
to the matched features. (a) and (b) correspond to the initial image of the analyzed
zone for the conventional and the omnidirectional system, respectively. The (c) and (d)
images are the last frames for this analyzed zone for both systems.
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(a) (b)

(c) (d)

Figure 2.9: Bucketing systems used for the omnidirectional and the conventional cam-
era. Polar, (a), and rectangular, (b), bucketing for the omnidirectional camera. For the
conventional images (c) and (d) shows the polar and rectangular bucketing, respectively.
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Trajectory 3
Omnidirectional Conventional

camera camera

Trajectory 4
Omnidirectional Conventional

camera camera

Figure 2.10: Cenital view of the 3D reconstruction along trajectories 3 and 4. The blue
line is the estimated trajectory and the gray points are estimated 3D points using the
omnidirectional and conventional cameras.
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Enhanced topological models

Visual topological models segment the environment into nodes
according to their different appearances. Current research on ap-
pearance based modeling goes towards richer semantic representa-
tions of the environment, which may allow autonomous systems
to perform higher level tasks and provide better human-robot in-
teraction. For this purpose, omnidirectional vision systems are of
particular interest because they allow to have more compact and
efficient representation of the environment. Next, we study how to
augment indoor topological modeling using omnidirectional vision.
This chapter studies how to augment indoor topological modeling
using omnidirectional vision. Chapter 3 presents novel ideas to
augment the semantic information of a typical indoor topological
model: we pay special attention to the labels of the different types
of transitions between places, and propose a simple way to include
this semantic information to build a topological map, as part of
the criteria to segment the environment. This proposal is built on
efficient catadioptric image representation based on the Gist de-
scriptor, which is used to classify the acquired views into types of
indoor regions.
Chapter 4 proposes a novel line-based image global descriptor that
encloses the structure of the scene observed. This descriptor is
designed with omnidirectional imagery in mind, where observed
lines are longer than in conventional images. The new descriptor
can handle images acquired with different omnidirectional sensors
(omnidirectional cameras, panoramic images).
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Chapter 3

Place labeling for indoor
topological modeling with
omnidirectional vision

This chapter presents a new omnidirectional vision based scene labeling approach for
augmented indoor topological mapping. Omnidirectional vision systems are of particu-
lar interest because they allow us to have more compact and efficient representation of
the environment. Our proposal includes novel ideas in order to augment the semantic
information of a typical indoor topological map: we pay special attention to the semantic
labels of the different types of transitions between places, and propose a simple way to
include this semantic information to build a topological map, as part of the criteria to
segment the environment. This work is built on efficient catadioptric image representa-
tion based on the Gist descriptor, which is used to classify the acquired views into types
of indoor regions. The basic types of indoor regions considered are Place and Transition,
divided into more specific subclasses, e.g., Transition into Door, Stairs and Elevator.
Besides using the result of this labeling, the proposed mapping approach includes a
probabilistic model to account for spatio-temporal consistency using a Hidden Markov
Model (HMM). All the proposed ideas have been evaluated in a new indoor dataset
developed for this work. This dataset has been acquired with our wearable catadioptric
vision system, showing promising results in a realistic prototype.

3.1 Introduction

For most autonomous tasks, one of the initial steps consist on obtaining a suitable
representation of the environment. In order to obtain it, the system interprets the data
acquired with different sensors on-line or in exploration phases to build different types
of models depending on the tasks to be performed. Focusing on vision sensors, this
modeling consists of arranging the acquired images into a visual memory or reference
map. Data should be organized efficiently but more importantly, in a way as useful as
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possible to be used later. In many cases, big and accurate metric maps are not necessary
or not informative enough, therefore higher abstraction level maps can be built, such as
topological or object-based maps, such as [Tapus and Siegwart, 2005, Vasuvedan et al.,
2007,Zender et al., 2008,Topp and Christensen, 2010].

The general goal of this work is to build a useful semantic-topological map for indoor
environments using a wearable catadioptric vision system for human assistance. We
propose how to include interesting semantic information on indoor topological models.
In particular we design a simple approach to segment the environment into semantically
meaningful clusters using omnidirectional images acquired with our wearable system.
We represent the catadioptric images following the approach described in [Murillo et al.,
2010], which is based on an adaptation of the global Gist descriptor [Oliva and Torralba,
2006] to omnidirectional images. Our long term goal is to merge the presented semantic
model with a set of small metric maps of each topological region, which could be obtained
with standard visual odometry or slam algorithms [Rituerto et al., 2010b]. In this work
we focus on a new scene classification method for topological mapping. Our proposal
includes the following two novel ideas with regard to other related works.

First, an improved criteria to define environment clusters. On-line topological map-
ping approaches usually segment the environment regions by evaluating the similarity
within consecutive images and establishing different criteria to decide when and where
to segment the trajectory. We define how to easily include the labeling from our semantic
indoor region classifier as part of the criteria to organize the topology of the environ-
ment. This classifier is based on a model previously built from a few given examples of
the different classes to be recognized. We find that most of the approaches for semantic
indoor scene labeling try to label types of Places [Stachniss et al., 2005, Saurer et al.,
2010,Pronobis et al., 2010b,Ranganathan, 2010].

Second, additionally to the types of Places, we perform a detailed analysis of the
semantic information included in the types of Transitions (such as door, elevator or
stairs) between these Places. This information can be of great interest for autonomous
systems working indoors, since depending on the transitions we may be or not be able
to traverse from one Place to another. Knowing the type of transition may allow us to
choose a suitable robot team member to go to a particular destination, or give appropiate
instructions in case of human assistance systems.

Two other interesting properties of our method, that are not novel themselves but
their integration is essential in our proposal, are the following: first, the fact of using
only global descriptors, with the corresponding improvement in efficiency with regard
to the use of local features; second, the inclusion of a probabilistic model to keep the
spatio-temporal consistency of the labeling along the trajectory. In spite of the simplicity
of the image representation, the proposal gets to partition the environment into semantic
meaningful areas for humans, as it can be seen later in the experimental validation, using
the presented catadioptric dataset.

Additionally to our approach, this chapter presents a new indoor dataset, used to
evaluate our proposals. This dataset has been acquired indoors with a wearable system
composed by an omnidirectional camera, an IMU and a GPS. The use of wearable sys-

34



CHAPTER 3. PLACE LABELING FOR INDOOR TOPOLOGICAL MODELING

tems is mostly oriented to create human assistance applications, and adds new difficulties
to the work.

3.2 Related work

Topological modeling of the environment is a subject already studied for long [Thrun and
Bucken, 1996,Santos-Victor et al., 1999]. Initially, these models presented huge possibili-
ties due to their lower computational requirements with regard to accurate metric maps.
More recently, these models have gained interest due to the possibilities of augmenting
them with semantic concepts [Nüchter and Hertzberg, 2008], such as information about
places [Tapus and Siegwart, 2005] and/or objects [Vasuvedan et al., 2007]. Topological
maps are many times built on top of a hierarchy of different map levels [Kuipers, 2000],
e.g., a global topological map that connects smaller local metric maps [Tomatis et al.,
2003]. An extensively used solution to achieve different efficiency and accuracy results at
the different levels is to use global and local image features through the different steps
of the hierarchy [Murillo et al., 2007].

Augmenting topological maps with semantic information makes them more suitable
for human-robot interaction [Zender et al., 2008,Topp and Christensen, 2010] and allows
us to achieve more complicated goals [Galindo et al., 2008]. Semantic mapping provides
new opportunities to increase the autonomy and reasoning skills of intelligent systems,
both for outdoor and indoor applications.

In outdoor settings, many of the recent and impressive approaches are achieved by
combining multi-sensor information, typically vision and laser sensors [Cummins and
Newman, 2009,Douillard et al., 2011], to build topological models that include place or
object recognition information. In the work [Cummins and Newman, 2009], which deals
with place recognition, the authors present an approach for appearance based mapping
using extremely large datasets (1000 km) that efficiently recognizes previously visited
places. The work in [Douillard et al., 2011] is focused on objects rather than places,
it recognizes and labels objects in large urban environments proposing a Conditional
Random Field based framework.

Focusing on the framework of this work, indoor environments, we also find proposals
using different types of sensors to interpret semantic information that will be included
in a topological map. Initial proposals were typically achieved using range data, to
learn a room-doorway-hallway structure indoors in [Mart́ınez Mozos and Burgard, 2006]
or [Friedman et al., 2007]. We also find proposals using a combination of range and vision
cues, for example in [Zender et al., 2008] they combine place and object recognition
in exploration and semantic mapping approach. The work in [Pronobis et al., 2010b]
suggests a Support Vector Machine (SVM) scheme that learns how to optimally combine
and weight each cue. In [Rottmann et al., 2005] boosting is used to learn a classifier with
different place labels, using vision and range sensors.

Proposals only based on vision sensors are closer to our approach. Although they
usually provide more detailed labels than only range data approaches, most of these
approaches still include semantic labels only regarding Places (e.g., office, corridor,
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kitchen...) [Pronobis et al., 2010a], considering all transitions as just connections be-
tween places. We find different types of approaches that try to classify types of places,
with multiple proposals of how to learn the labels to be recognized and how to represent
the images.

Regarding how to learn the environment model, some proposals are constantly trained
and, sometimes, simultaneously run with human supervision to achieve a representation
closer to human concepts [Topp and Christensen, 2010,Nieto-Granda et al., 2010]. Others
use weaker human supervision to learn a model from a few initial labeled samples, such as
the work in [Saurer et al., 2010]. This approach learns the representation of problematic
locations (e.g. images showing only zoomed wall areas, without any information about
the actual indoor region) from a few given examples. This helps to detect when those
problematic cases occur and to avoid giving incorrect or noisy labeling.

Our augmented topological mapping approach makes use of human supervision, but
only in the initial training phase, to provide sample labeled images of the types of indoor
scenes of interest. Besides labels for places, our approach includes semantic information
about the types of transitions. This is of particular interest for multiple-floor buildings,
where depending on who is using the map a transition (elevator, stairs, closed door,...)
may be feasible to traverse or not. We find other recent works also paying attention to
transitions [Nieuwenhuisen et al., 2010,Ranganathan, 2010]. The first work only detects
doors, proposing to dynamically model the environment to react if a transition is sud-
denly closed. The second work applies the generic label transition to all areas that are
not detected as being of a known type of place, so no knowledge of the kind of transition
is included.

Besides the described augmented mapping approaches, we find additional closely
related works regarding the more general problem of place or scene recognition in-
doors [Quattoni and Torralba, 2009]. This work also points the idea of plenty of indoor
areas usually not considered in classification approaches. Among the big set of types
they study we can find elevators and stairs. In this work we include all type of indoor
regions that can actually be considered as a transition between places (elevators, stairs
and areas under doors or under jambs). Another common point with that work is the
use of the Gist descriptor [Oliva and Torralba, 2006].

Attending to the image representation, some works propose to work with local fea-
tures, such as the robust vision-based robot localization using combinations of local fea-
tures from [Ramisa et al., 2009], or the work in [Viswanathan et al., 2011] that presents
an integration of object detection, using local features, and global image properties for
place classification. In this work we use global features. Our global image descriptor is
based only on the global Gist descriptor, following the ideas initially presented in [Murillo
and Kosecka, 2009]. The Gist descriptor was initially presented for classifying outdoor
scenes [Oliva and Torralba, 2001] and used in more recent work together with additional
cues for indoor scene recognition [Quattoni and Torralba, 2009]. Global descriptors are
known to be more efficient and compact, but usually less robust and discriminative, than
local features. However, in the current work promising results pointed that this weakness
can be compensated to a certain extent by the powerful scene representation contained
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(a) (b)

Figure 3.1: (a) Raw image acquired with our catadioptric vision system. The green line
shows the mask limits used to avoid the artifacts of the image. The dashed red line
defines the limits of the four image parts. (b) Top row shows these four raw parts, while
bottom row shows the four parts rotated to the canonical orientation.

in omnidirectional images.

The use of omnidirectional images is another key characteristic of our proposal. Some
proposals take advantage of wide field of view cameras to acquire more compact vi-
sual models, e.g., in [Rybski et al., 2003, Puig et al., 2010] panoramic cameras are used
for indoor topological map building and [Goedemé et al., 2007] presents an approach
for topological mapping and navigation using a catadioptric vision system. We use this
second type of images, acquired with a catadioptric vision system, usually smaller and
with lower cost that the panoramic cameras. However, these cameras present additional
issues to deal with, such as big image distortion, noise and parts of the vision system
self-reflected in the views. These issues together with the fact that we are using a wear-
able system, requires a carefully designed image representation detailed in the following
section.

3.3 Image representation and similarity

Visual descriptors that capture image information as a whole are known as global descrip-
tors, while those that capture a specific interest region are called local descriptors. It has
been typically shown that local descriptors are more accurate for visual localization than
global descriptors, but also have much larger memory and processing requirements [De-
selaers et al., 2008]. Therefore, to deal with large quantities of images for tasks where
efficiency is an issue and it is not required a detailed analysis of image content, a global
representation is preferred.

In this work we use the Gist descriptor [Oliva and Torralba, 2001], a holistic image
representation or global image feature. In particular, it is a low dimensional represen-
tation of the scene captured in an image which corresponds to the mean response to
steerable filters at different scales and orientations computed over 4x4 sub-windows.
The descriptor consists of a vector of 320 components for each color band used, so in a
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Figure 3.3: Graphic representation of the circular permutations of the Gist descriptor.

Euclidean distance between the descriptors. We compute the minimum distance that can
be obtained between one image and the four possible permutations of the four sections of
the second image. These permutations correspond with the four possible alignments of
the sectors of the image and will hopefully provide us with the best alignment of the two
evaluated images. Being g and g′ the descriptors of two images, the distance between
them is:

dist(g,g′) = min
m

(de(g, πm(g′flbr)), (3.1)

where πm(g′flbr) is the mth circular permutation of the descriptor g′ component vec-
tors (m = 1, 2, 3, 4) and de the Euclidean distance between the Gist descriptors of two
omnidirectional images. Fig. 3.3 shows the circular permutations in a graphic way.

3.3.1 Rotation invariance analysis

To analyze in detail the rotation invariance issues described above we have performed
two experiments.

With the first experiment we want to prove the rotation invariance achieved with this
image representation. We get 36 images equally distributed along a 360o camera rotation
movement without translation, around the vertical camera axis. Using the Direct parti-
tion we achieve invariance to vertical rotation at angles multiple of 90o and using both
the Direct and the Rotated partition together we get invariance to rotation at angles
multiple of 45o. This rotation invariance is not robust to all kind of movements, but the
Manhattan assumption seems a reasonable one to work with man-made environments,
where the possible directions of travel on a particular location usually fit these restric-
tions. Each image from this test set corresponds to a rotation of 10o with regard to the
previous image. We extract the Gist descriptor of all images with the two partitioning
methods, so for each image we have two descriptors (gDirect and gRotated). We compare
the Gist of the Direct partition (gDirect) of the reference 0o image with both the Direct
(gDirect) and the Rotated (gRotated) Gist descriptors of all the following images. Using
a perfect rotation invariant representation all images would get exactly the same de-
scriptor and the distance (3.1) would be 0. Figure 3.4(a) shows the results of this test.
The red line represents the distance between gDirect in the test images and the initial
reference image. It shows the higher distance values (less similar images according to
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our representation) at rotations of 45o, 135o and 225o; while, as expected, the minimum
distances appear at rotations of 0o, 90o, 180o, 270o and 360o. The blue line represents
the distance between gDirect in the test images and gRotated in the reference image. The
black line represents the minimum value of red and blue line. This merged result confirms
that using both partition methods we achieve better invariance to rotation, in particular
to rotation at angles multiple of 45o.

Second experiment is designed to show the influence of using one or two of the de-
scribed partition methods while moving indoors. We have chosen a subsequence of the
dataset where the camera moves along a corridor and returns the same way but from op-
posite direction (180o rotation). The test consists of comparing the gDirect of all images
against the gDirect and gRotated of the reference image. The image used as reference is the
first image of the sequence. Ideally, we would like to observe how the distance between
images increases as we get the test image farthest from the initial image. Figure 3.4(b)
shows the results of this second experiment. The frames 50 and 240 correspond to frames
where the camera is rotating. Points 190 and 305 correspond to the highest Gist distance,
points of the trajectory that are almost at the farthest location from the reference. This
suggest that the Gist distance variations are bigger due to the translation along the
corridor than due to the rotation. The distance gDirect − gRotated, blue line, is usually
higher than the gDirect − gDirect , red line. Points where Direct versus Rotated distance
is smaller than Direct versus Direct distance correspond to parts of the trajectory where
the camera is rotating.

Therefore, as already mentioned, we can see small improvements using the duplicate
Gist partition while navigating indoors. Even if it is more robust to rotations (to all angles
multiple of 45o instead of only multiples of 90o), the increase in the Gist distance due
to the camera rotation issues is small compared to those that appear due to translation.
Therefore, the experiments in the rest of this work were performed using only the Direct
partition method.

3.4 Augmented topological map with semantic labels of
indoor scenes

All the steps of our augmented topological mapping approach are detailed now. First, we
propose a simple classification to identify basic indoor scene classes of interest (Places
and Transitions) to discover the topology of the environment. Then, we evaluate the
classification into more detailed types of scenes and finally integrate it in a proposal for
augmented topological map building.

3.4.1 Labeling of Places and Transitions

Classification of indoor areas into Places and Transitions is natural and easy for humans
when navigating through a building, and they represent the basis to build a topological
map of the environment. Places are the nodes of the model and Transitions correspond
to the edges between nodes. The main objective in this part of the work is to develop a
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Table 3.1: Classes and subclasses considered in this work.

Classes Subclasses

Places (P )

Corridor (P1)
Big Room (P2)

Medium Room (P3)
Small Room (P4)

Transitions (T )

Door (T1)
Jamb (T2)
Stairs (T3)

Elevator (T4)

the images have been manually classified and grouped in clusters of consecutive images
belonging to the same semantic class/subclass. To build the model in a systematic way
we consider as training data the first ni clusters of each class. The value ni for each class
i is computed as Ci

4 , being Ci the number of clusters of class i in the environment. To
obtain a more homogeneous sampling, the value ni is quantized into the following set
of values: ni ∈ [1, 2, 5, 10]. The model of each class, Mi, initially consists of all gDirect
descriptors of the training images. Note that typically Place clusters would include more
images than Transition clusters, since the time spent traversing a corridor is longer than
the time spent crossing a door, so more images of that type are acquired. To avoid that
this fact leads to unbalanced models towards Place, we use a standard k-means method
to find the k Gist descriptors that better represent each class. Then, all classes have the
same amount of reference data in the model, the k Gist descriptors that correspond to
the centroids of the obtained clusters. More formally, the environment model is:

Mi = {Mi,j |j = 1..m} with Mi,j = {g1,g2, . . . ,gkModel
} (3.2)

where Mi is the model of class i (i ∈ [P, T ]), m is the number of subclasses of class i,
and Mi,j is the model of subclass j from class i that is composed by its k representative
descriptors.

Label new occurrences according to the environment model

To label new images, we use a simple nearest neighbor based classifier. To measure the
likelihood of a new image being of a particular class, we compute the following likelihood
function (3.3) based on the Gist descriptor distance, and assign the maximum likelihood
solution as label for the new image.

p(It|St = i) =
K e

−di
σ2∑

j=P,T K e
−dj
σ2

(3.3)

St = i is the event of being in an area of class i at time t, when the image It is acquired.
Then p(It|St = i) is the likelihood of acquiring image It at time t being in an area of
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class i. Parameters K and σ2 are user defined gain and variance respectively, in this
work we use K = 1 and σ2 = 0.2, adjusted after some initial experiments. di and dj are
computed comparing the current image Gist with the environment model:

dc = min
g′∈Mc

(dist(gt,g
′)) (3.4)

dc is the similarity between image It and the class c. The Gist descriptor gt is the
descriptor of the image It and g′ is one of the representative descriptors of class c in-
cluded in the model (Mc). The distance between these descriptors is computed following
equation (3.1).

3.4.2 Semantic sequence segmentation with temporal consistency

The complete approach for labeling sequential information is based on the image classifier
described in previous subsection. The idea is that this semantic labeling of a sequence can
be of great help to obtain more meaningful topological representations of the environment
captured in that sequence.

Generally, with catadioptric images, if we only pay attention to consecutive image
descriptors distance to decide where to split the topological regions, what we obtain
is far from a semantic segmentation that a human would do, containing for example
lots of small clusters. This is because even consecutive catadioptric images may present
big visual differences, due to big image distortions and image changes. This effect is
specially pronounced when objects and scene elements are close to the camera (as it
usually happens indoors). Our proposal uses semantic labels as basic criteria to obtain
semantic meaningful clusters in the topological model as detailed next.

First, we enclose the classifier described before in a framework that allows us to
include spatio-temporal coherence in the model. We expect this coherence to improve
the classification on sequential data: if the current image is very likely to belong to a
transition area, next image is also likely to be part of it. We model these ideas using a
Hidden Markov Model (HMM) following the approach presented in [Angeli et al., 2008].
A HMM is a dynamic Bayesian network that represents a sequence of variables. At each
instance of time the state is a random variable which can take one of the just two values:
P (Place) or T (Transition). Let St be the random variable that represents the event
of being in Place or Transition area at time t and It the image at this time. Then, the
problem of detecting the kind of area j being crossed can be formulated as the search of
j that satisfies:

j = arg max
i∈{T,P}

p(St = i|It). (3.5)

The posterior probability p(St = i|It) is the probability of the event St = i given the
image It, which can be decomposed using the Bayes rule and the Markov property:

p(St = i|It) =α p(It|St = i)p(St = i|It−1) =

=α p(It|St = i)
∑
j=T,P

p(St = i|St−1 = j)p(St−1 = j|It−1), (3.6)

43



3.4. AUGMENTED TOPOLOGICAL MAP WITH SEMANTIC LABELS

where α is a normalization term, and the conditional probability p(It|St = i) is the
likelihood function (eq. (3.3)) modeling the likelihood of the current image It being of
type i. The term p(St = i|St−1 = j) is the state transition probability for observing the
event St = i given St−1 = j, i.e., having an image of type i when previous image was of
type j. This term models the probability of all possible changes in the state from time
t − 1 to t. We need to model four possible state transitions: p(St = i|St−1 = j), with
i, j ∈ T, P . In practice, we set empirically the value of the probabilities of repeating
the same event occurred at time t − 1 in time t, p(St = i|St−1 = i), so the rest can be
computed as p(St = j|St−1 = i) = 1− p(St = i|St−1 = i), with j 6= i.

Algorithm 1 Semantic sequence segmentation method.

Input: Omnidirectional image sequence and environment model
Output: Semantic sequence segmentation
n = Number of the current cluster
th = Similarity threshold of the minSize filter
Mi = Model of class i, with i ∈ [P, T ]
gn = Gist of the first image of the current cluster n
gt = Gist of the new image It
Pt−1 = Probabilities at previous step
while not end of sequence do

// New image It
gt = OmnidirectionalGist(It)
// Compute similarity with the current cluster
d = dist(gt,gn);
// Compute probability of being transition or place
[pP , pT ] = HMMEnvironmentModel(gt,MP ,MT , Pt−1)
if pP > pT then
state = P

else
state = T

end if
if d > th & state 6= statencluster then

CreateNewCluster(It,n+ 1,state)
n = n+ 1

else
IncludeImageInCluster(It,n)

end if
Pt−1 = [pP , pT ]t−1

end while

Algorithm 1 details the proposed semantic trajectory segmentation method. For each
new image the probability of being Transition or Place is estimated using the HMM.
Consecutive images of the same class are grouped into the same cluster until the criteria
to start a new cluster is fired. This criteria is based on the likelihoods estimated from the
described HMM, but to prevent the appearance of too small clusters a criteria based on
the similarity with the first image of the current cluster (minSize filter) is included. If
this distance is below the similarity threshold (th) established, the new image is included
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in the current cluster, even if classification results according to HMM likelihood would
label it as a different class than current images in the cluster. We will see the differences
of using one or both of this criterion to build the topological map in next section.

This first step just segments the input sequence into clusters of images labeled as
Places or Transitions, the classification into subclasses is performed next. We try to take
advantage of this first level classification as a prior for the more detailed classification
into subclasses. Once an image is labeled as Transition or Place, we look for the subclass
with the reference descriptor most similar to the current image. We already know the
class assigned to the image, so we only evaluate the subclasses of that class.

Note that at the end of the process, we want to assign a unique class and subclass
to all members of each cluster. However, during the process images labeled as different
subclasses may had ended up together. We consider this is noise due to the fact that
descriptors of some subclasses are pretty close to each other and difficult to separate
sometimes (doors and jambs for instance, are hard to distinguish for a human observer
as well). Then, to assign the most likely subclass label to the whole cluster, we compute
the mode of the subclass label assigned to each image in the cluster.

3.5 Experiments

Now we present the new dataset acquired as part of this work and the results of the
experimental validation of our proposed method.

3.5.1 The Wearable OmniCam Dataset

The catadioptric image dataset presented in this work has been acquired with our Wear-
able OmniCam acquisition system. This system includes a small hyper-catadioptric cam-
era mounted on the top of a helmet (Fig. 3.5(a)), a 3-axis IMU (compass, gyroscope and
accelerometer) and a GPS device. The three sensors are synchronized and the camera
has been calibrated using the approach described in [Puig et al., 2011]. However, the
presented data has been acquired indoors, so GPS is deactivated. IMU data is also not
used in this work, that is a purely vision based approach, but could be used for future
works and included in the published data.

The use of wearable sensing is mainly intended for applications of human assistance.
There are a lot of sensors used in different ways to help persons: GPS for localization
and guidance, IMU for movement supervision, cameras for object or place recognition,
range sensors for obstacle avoidance. In this work we have focused in omnidirectional
vision as a wearable system, so we find some problems that do not exist when using
omnidirectional cameras for robots. In our case, placing the camera in a helmet, make
us face the head movements of a person walking. Up to our our knowledge this is the first
dataset published form indoor environments with a wearable omnidirectional camera.

The dataset acquisition has been performed inside one building at our Campus at
the University of Zaragoza, Spain. The building has three floors and includes areas of
different types: corridors, research laboratories, offices, classes, etc. The acquisition has
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(a) (b)

Figure 3.5: (a) Map of the building where the dataset has been acquired, different col-
ors mean different type of area traversed. (b) Acquisition system: an omnidirectional
catadioptric camera mounted on a helmet.

been performed by a person wearing the helmet, so the dataset suffers the typical motion
of a person walking. A long trajectory covering as much areas as possible was performed
(many areas are locked or with restricted access so it was not possible to cover all
regions in the building). Figure 3.5(b) shows the map of the three floors of the building
highlighted with different colors, depending on the type of area traversed during the
acquisition. The gray areas are parts not included in the dataset.

The visual part of the dataset consists of 20905 omnidirectional images at 1024x768
pixels resolution acquired at a frame rate of 10 FPS. The ground truth labeling of
the building areas has been made according to our objective of separating Places and
Transitions. We consider the main spaces of a building, like corridors or rooms, as Places.
Transitions label comprises all the areas joining different Places: doors, stairs, elevators,
etc. The more detailed classification in type of Places or type of Transitions has been
chosen to adequately describe the environment of acquisition. Places are classified as
Big, Medium and Small Rooms and Corridors. Typically small rooms correspond to
offices, medium to classes and big to halls or laboratories, for simplicity we classify them
according to their size despite their different uses. Transitions are classified as Doors,
Jambs, Stairs and Elevators. The areas labeled as Transitions starts about 0.5 meters
before and ends about 0.5 meters after the Transition has been crossed.

All images have been manually labeled with the type of area where acquired and its
position. Consecutive images labeled with the same type of area have been grouped into
clusters. Table 3.2 shows the number of clusters and between parentheses the number of
images of each type.
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Table 3.2: Number of clusters of each class in the dataset. Values between parentheses
are the number of images of that class/subclass.

Places
TOTAL Corridor Big Room Medium Room Small Room

56 (16522) 38 (12577) 7 (1559) 3 (1021) 8 (1365)

Transitions
TOTAL Door Jamb Stairs Elevator

55 (4382 ) 40 (1268) 9 (514) 4 (1933) 2 (667)

Places P

Corridor (P1) Big Room (P2) Medium Room (P3) Small Room (P4)

Transitions T

Door (T1) Jamb (T2) Stairs (T3) Elevator (T4)

Figure 3.6: Examples of images labeled in the ground truth as elements of the different
classes and subclasses.

3.5.2 Image representation evaluation

This first set of experiments is designed to evaluate how suitable and discriminative for
our problem the image representation described is. These experiments evaluate different
environment models and how they work classifying the rest of the images into Places
and Transitions, as well as the detailed classification into subclasses.

As said before a key element of our labeling process is the reference model used.
Then, we have tried to build this model automatically to avoid any bias with hand made
selections. The basic model created from the dataset, let us name it One-Cluster-Model,
includes only the first cluster of each subclass found in the sequence. The second model
evaluated, named n-Cluster-Model, includes a variable amount of clusters considered as
reference for each subclass, depending on the occurrence of each class and subclass.

In practice, the value of ni used for the n-Cluster-Model is 5 for Corridor, 2 for Big
room, 1 for Medium room and 1 for Small room in the case of Places. In the case of
Transitions the value of ni is 10 for Door, 2 for Jamb, 1 for Stairs and 1 for Elevator. 4351
images are used to build this model, while the amount of images used to create the One-
Cluster-Model is about half of that value (2208 images). The amount of representative
descriptors per class k is set to 25 after some initial evaluations of the approach. Then, the
environment model is formed by 200 representative Gists (2 Classes × 4 Subclasses/Class
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× k).
The test images used to evaluate the approach in the following experiments are all

images in the dataset not used to create the model. We run a Naive Bayes Classifier
based on the likelihood function described in eq. (3.3), that assigns a label to each
image independently of the rest of images. It is a simple probabilistic classifier based on
applying Bayes’ theorem under independence assumptions. The formulation of the Naive
Bayes Classifier in our case and following the nomenclature used for the formulation of
the Hidden Markov Model is:

p(St = i|It) = α p(St = i)

n∏
j=1

p(It|St = i), (3.7)

again, p(St = i|It) is the posterior probability of the event St = i given the image It,
p(St = i) is the prior probability of the class i and p(It|St = i) is the likelihood function
(eq. 3.3). We set the same prior probability for each class: p(St = i) = 0.5 with i ∈ [P, T ].

The results of this classification using theOne-Cluster-Model can be seen in Table 3.3a
and Table 3.3b shows the results using the n-Cluster-Model. Each row contains the
percentage of tests corresponding to a label correctly classified or wrong labeled with
the other type. The accuracy is computed as the sum of all the correct classifications
divided by the total number of classifications. The classification using any of the models
works better for Places (P ) than for Transitions (T ) and, as it could be expected, the
simple model is less powerful to represent the environment that the n-Cluster-Model,
with around 5% higher accuracy. There are additional reasons to use the second model:
first, indoor environments use to include more areas of some classes than others, e.g., in
the building of the tests there are more doors than stairs or elevators; second, some areas
of the same subclass can be very different, e.g., the hall of the building and a research
laboratory are both classified as Big Rooms. The n-Cluster-Model is kept for the rest of
the experiments as reference model.

Besides the basic Place/Transition segmentation, we want to test how the proposed
image representation works to classify the images into the considered subclasses. Fol-
lowing a similar approach, using our hand labeled ground truth, we classify all the
images from each class (P or T ) into the corresponding subclasses (P1/P2/P3/P4 or
T1/T2/T3/T4). Tables 3.3c and 3.3d show the results of this experiment. Looking to
the results for Places we can observe acceptable average values for the accuracy in the
labeling, however there are big differences in the results at different subclasses (almost
all corridor images (P1) are well classified, but only 34.05% of small rooms (P4) were la-
beled correctly. The misclassified rooms (about 30% for each room subclass) are usually
classified as corridors. The poor results obtained for the classification among different
rooms means that the descriptor is not discriminative enough to distinguish well be-
tween these subclasses. Table 3.3d shows the results for the classification of Transitions
with also heterogeneous results for different subclasses but acceptable average accuracy
above 80%. Conclusion after these results is that the representation proposed gives ac-
ceptable results to augment topological representations, but there are chances of better
performance if we achieve a more discriminative representation for particular subclasses.
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Table 3.3: Labeling results evaluating each test independently from the rest of the se-
quence with a Naive-Bayes Classifier. Top: results for Place (P ) - Transition (T ) clas-
sification using two different reference models. Bottom: subclasses classification results
using the best performing reference model.

(a) One-Cluster-Model

P T

P 75.02 24.98

T 43.79 56.21

Accuracy: 71.51

(b) n-Cluster-Model

P T

P 80.89 19.11

T 39.89 60.11

Accuracy: 76.82

(c) n-Cluster-Model for Place subclasses

P1 P2 P3 P4

P1 93.04 1.78 0.46 4.72

P2 28.48 61.13 10.31 0.08

P3 32.26 0.98 42.46 24.30

P4 43.90 20.00 2.05 34.05

Places Accuracy: 82.95

(d) n-Cluster-Model for Transition subclasses

T1 T2 T3 T4

T1 69.31 2.01 3.41 25.28

T2 15.42 44.71 25.33 14.54

T3 0.00 0.00 100.00 0.00

T4 0.54 0.00 1.09 98.37

Transitions Accuracy: 82.41

3.5.3 Testing the mapping method

Previous subsection shows the accuracy of the labeling classifier: around 76% when
classifying into Places or Transitions and around 82% when labeling one of the basic
classes into one of its subclasses. This subsection summarizes our experiments to validate
the whole mapping method proposed in Section 3.4.2.

First we evaluate the effect of including temporal consistency on the label assignment
along the sequence. We compare results using the Hidden Markov Model (HMM) to
decide the most likely class/subclass instead of the Naive Bayes Classifier evaluation.
The HMM requires to adjust the probability of a transition to happen. In [Rottmann
et al., 2005] the authors propose a system to automatically adjust the value of this
probability based in the training data. We test this system, what give us values of
p(St = i|St−1 = j) higher than 0.99 when j = i. The effect of this values is a benefit
in the detection of Places to the detriment of the detection of Transistions. We set the
value of p(St = i|St−1 = j) to 0.9 when j = i and p(St = i|St−1 = j) to 0.1 when j 6= i
to obtain results more adequate to our objective. Using the HMM probability evaluation
to assign the labels, Places and Transitions, we can see a slight improvement, as can be
seen in Table 3.4a compared to previous results in Table 3.3b.

Secondly, experiments summarized in table 3.4, compare results including or not the
minSize filter explained in Section 3.4.2, in the tables 3.4a and 3.4b respectively. This
filter compares the Gists distance between the first and the last images on the current
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Table 3.4: Labeling results evaluating the probability of each class according to the
HMM including or not the minSize filter. Top: results for Place (P ) - Transition (T )
classification. Bottom: subclasses classification results.

(a) P/T Classification
without minSize filter

P T

P 82.87 17.13

T 39.86 60.14

Accuracy: 78.42

(b) P/T Classification in-
cluding minSize filter

P T

P 78.07 21.93

T 32.27 67.73

Accuracy: 76.04

(c) Subclasses classification including minSize filter

P1 P2 P3 P4 T1 T2 T3 T4

P1 76.61 0.70 0.09 1.63 7.48 0.56 4.13 8.79
P2 22.18 43.94 0.00 0.00 15.06 18.82 0.00 0.00
P3 47.77 0.00 49.16 0.00 0.56 0.00 2.51 0.00
P4 21.95 16.10 0.00 30.97 20.41 9.74 0.00 0.82

T1 33.30 0.00 10.53 1.71 41.12 1.71 0.00 11.63
T2 60.35 11.01 0.00 8.37 0.00 20.26 0.00 0.00
T3 2.31 0.00 0.00 13.38 0.00 0.00 84.31 0.00
T4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

cluster and check it with a similarity threshold, the distance must be over this threshold
(th) to create a new cluster.

The images are classified with HMM and, as explained, they are grouped into clusters
according to the assigned class: consecutive images fitting the conditions are grouped
together. We can appreciate similar average accuracy in the P/T classification with or
without taking into account the minSize filter. However the fact of avoiding too small
clusters turns into a more meaningful semantic partition of the environment as detailed
later. Detailed results of classification into subclasses are only shown for the complete
approach, including the minSize filter, in table 3.4c. Results without using this filter
were very similar, slightly better for subclasses of Places but slightly worse for subclasses
of Transitions.

Table 3.5 shows the size and number of clusters we generate with the two options
and the cluster arrangement done manually as ground truth when labeling the images.
We have set empirically the minSize threshold to 0.275 for all tests. Note that using
the minSize threshold most of the extremely small clusters are eliminated and the map
obtained is more similar to the manually labeled map. Besides, as described before,
this option provided better accuracy for Transitions, that is the particular labels we are
interested the most.

Another interesting comparison run was to analyze the usefulness of doing jointly
the semantic labeling and the topological clustering. We evaluated the results of the
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Table 3.5: Number of clusters generated with the mapping approach with and without
minSize filter.

HMM HMM + minSize GT

# clusters 267 180 111
Minimum cluster size (# images) 1 7 19

Table 3.6: Map areas automatically detected (of # in the Ground Truth)

Places
P1 P2 P3 P4 TOTAL

30 (of 38) 5 (of 7) 2 (of 3) 4 (of 8) 41 (of 56)

Transitions
T1 T2 T3 T4 TOTAL

22 (of 40) 3 (of 9) 4 (of 4) 2 (of 2) 31 (of 55)

individual location labeling with or without getting a common sub-class label for all
images in each cluster. We obtained improvements in the labeling results running both
steps simultaneously and assigning a common label to all components in a topological
cluster. This is not surprising, since by grouping images we take into account the subclass
of all the images in the cluster as a group, so we filter some misclassification errors.

Finally, summarizing the experimental validation, Fig. 3.7 shows the trajectory of the
sequence with the mapping results. This result is obtained with the whole sequence to
obtain a representation of the whole environment. Then as the images used to estimate
the model are included now, we observe higher accuracy values: 81.83% for the classifica-
tion into Places and Transitions, 71.70% for the classification into Places subclasses and
74.37% for the classification into Transitions subclasses. Fig. 3.7(a) shows the manual
segmentation into clusters and their ground truth class label, and Fig. 3.7(b) shows the
segmentation after running our approach. Comparing both segmentations we can see
where errors occur. Regarding Places detection, as previously observed, corridors are
much clearly recognized than the different types of rooms. In the case of Transitions, the
higher errors occur for Jambs (blue), that are present only in the first floor and are not
detected, so the corridors that should be separated by them are joined in one cluster.
Some errors also occur in the classification of corridors due to the creation of inexistent
transitions. These errors may be happening because of rapid illumination changes that
produce big appearance changes and artifacts in the images.

All previous classification evaluations have been estimated considering the individual
labeling of each image. However, the objective when creating a semantic map is to
correctly detect the different areas of the environment. Despite some mistakes, the map
created captures the distribution of the areas of the building. Table 3.6 shows the number
of areas detected according to their class and subclass. We consider an area detected
by our approach when 50% of the images in that area have been correctly labeled.
Usually the problem is that the generated clusters are still smaller than the ground
truth annotated ones, that is why we consider correct detections even if only a part of
the hand labeled images in the region are correctly classified.
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3.6 Conclusions

We have presented a novel indoor semantic place labeling method that includes informa-
tion of the indoor scenes. The method uses catadioptric images and the adaptation of the
Gist global descriptor to represent these images. The general idea proposed is to simulta-
neously run a topological map building approach and the classifier to label the different
types of indoor scenes as Places or Transitions. The result is a semantic-topological
model, where the nodes are Places and the edges are Transitions between these Places,
including information about different types of Places (Big, Medium or Small room, Cor-
ridors) and Transitions (Door, Jamb, Stairs, Elevator). A detailed semantic analysis of
the types of transitions is not common although could provide important information to
later uses of the map. Our approach is based on this semantic classification of the images,
using a simple environment model, integrated with a Hidden Markov Model framework
to add spatio-temporal consistency.
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Chapter 4

Line Image Signature: a global
descriptor for scene labeling

This section propose a novel line-based image global descriptor that encloses the struc-
ture of the observed scene. This descriptor is designed with omnidirectional imagery in
mind, where observed lines are longer than in conventional images. Experiments show
how the proposed descriptor can be used for indoor scene recognition comparing its re-
sults to state-of-the-art global descriptors and how it can be easily adapted to work with
different omnidirectional camera systems. Besides, we demonstrate additional advantages
of particular interest of the new descriptor: higher robustness to rotation, compactness,
and easier integration with other scene understanding steps.

4.1 Introduction

This section is focused on the problem of scene understanding on indoor environments,
where lines are known to play an important role, see Fig. 4.1. People can easily guess
the 3D structure of a scene represented by line sketches. Line and contour cues have
been extensively used to analyze images since they provide very useful information.
Contours occur as boundaries of objects, helping to detect them, or as frontiers between
surfaces, encoding the structure of the scenes. Analyzing contours in the images has
been shown useful for tasks such as object recognition [Belongie et al., 2002], 3D scene
reconstruction [Hedau et al., 2009] or image registration [Russell et al., 2009].

We propose a novel line-based scene descriptor. This descriptor is obtained as follows:
first, scene lines are extracted from the omnidirectional images and classified in the three
scene dominant directions; then, the descriptor is built as a histogram that encloses
the distribution of these lines at different image regions. The descriptor is intended for
omnidirectional images, where the whole scene can be captured in just one image. Lines
appearing in theses images are longer than in conventional images and the vanishing
points appear in the image. However they present high distortion, making line detection
more complicated.

The designed descriptor is compact and invariant to rotations around the vertical axis,
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Figure 4.1: Line drawings are easily recognized by any person. The lines can be detected
in images. Long lines if we work with omnidirectional images as the ones shown in the
figure.

important requirements when working with robots or autonomous systems. Besides, the
proposed descriptor extracts and processes scene lines in a way that can be used for
other scene analysis techniques, such as 3D layout recovery.

The growing interest and developments on wearable computer vision systems are fa-
cilitating new systems and technologies for human assistance. Our goal is to provide a
wearable indoor navigation assistance system with semantic information about the en-
vironment traversed by the user. The prototype developed consists of a helmet-mounted
omnidirectional camera aimed for indoor navigation assistance. We use a catadioptric
vision system able to capture a 360o field of view, therefore observed lines have the
advantage of being longer that in conventional images.

Our experimental validation shows a detailed analysis of the parameters of the de-
scriptor computation and demonstrate its performance for indoor scene recognition on
realistic datasets. The place recognition capabilities of the proposed descriptor are com-
parable to state of the art global image descriptors for this task, while it is shown to be
more compact and presents higher rotation invariance (to rotation around the vertical
axis of the camera). These additional advantages are important when working with a
wearable system, due to the constant and heterogeneous movements done by a person.
Besides, the proposed description method extracts and processes scene lines which are
also required for following scene analysis steps, such as 3D layout reconstruction.

4.2 Related Work

Different types of contour based image features have been used in many computer vision
applications since they provide very distinctive information.

For example, one of the applications where line cues have shown great potential for
3D scene understanding from a single image. Straight lines are highly present in man
made environments, in particular, parallel lines aligned with the main directions of the
scene (Manhattan World assumption). Based on these cues, authors of [Hedau et al.,
2009] presents a method to extract the spatial layout of a room even with cluttered
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boundaries. The approach from [Schwing et al., 2012] proposes an improvement of the
performance of state-of-the-art methods for spatial layout computation by decomposing
the potentials used in previous literature into more computationally tractable pair-wise
potentials. We also find approaches specific for omnidirectional vision [Omedes et al.,
2013], that extract the spatial layout of indoor scenes from a single image.

Lines and boundaries have been also used for shape and object recognition tasks.
Authors in [Belongie et al., 2002] presented the shape context, which stores the relation
between a contour point and the rest of the contour points of the shape. We also find
works that use similarity measures defined for sets of connected contour segments for
object recognition [Ferrari et al., 2008]. Line sketches were also shown to work well as
models for object recognition in [Eitz et al., 2010]. Other applications of image lines
include recovering the rotation between frames for visual based localization [Kosecká
and Zhang, 2002] or their use for image retrieval [Russell et al., 2009].

Working with lines presents difficulties to obtain correspondences between images,
usually because of the low accuracy or robustness of the line tip detection. However,
lines present advantages for tasks that need to deal with extreme illumination changes or
low textured environments [Wang et al., 2009a], outperforming local point feature based
methods for these settings [Lowe, 2004]. We find approaches that propose to use straight
line segments as local image features, describing them with different statistics around
the edges. Many of these works make use of geometric constraints to obtain more robust
matching results, e.g., homographies [Sagüés et al., 2006] or epipolar constraints [Bay
et al., 2005]. Recent works have proposed more sophisticated line-based local descriptors,
such as the Line Signature [Wang et al., 2009a] that outperforms point based local
features matching low textured images. MDSL descriptor [Wang et al., 2009b] is another
line-based local descriptor, which is built for each detected line segment. It is shown to
be highly distinctive and robust to image rotation, illumination and viewpoint change.

Closer to our work, other approaches try to encode the image information with a
line-based global descriptor [Kosecká and Zhang, 2002]. Here, the authors propose the
Line Histogram, which represents angles and lengths of all the boundaries of an image
in a histogram. Our approach also creates a line-based global descriptor, but it captures
the distribution of the scene lines in the omnidirectional image.

We have chosen global descriptors because they have shown good compromise between
precision and computational cost for general scene recognition problems. In [Oliva and
Torralba, 2001] a global Gist descriptor is presented for scene recognition in real world
scenes. Authors in [Dalal and Triggs, 2005] present the Histogram of Oriented Gradients
(HOG) which encodes the gradient orientations present at different image regions.

As already mentioned, this work is focused on omnidirectional cameras. Due to the
wide FOV of this kind of systems, more lines of the scene appear in the image and they
are longer that in conventional images. However, in the catadioptric vision system used
these lines appear as conics in the image. We find works that have faced the use of lines
in omnidirectional images for rotation estimation [Bazin et al., 2012, Bermúdez-Cameo
et al., 2012]. Both papers propose a method to detect scene lines in omnidirectional
images and compute their vanishing points. Estimating the vanishing points in omni-
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Figure 4.2: Projection of a 3D line and a point X in the line with the Spherical Camera
Model.

directional images is typically robust and accurate, since these points are visible in the
image. In this work we use the second work for line extraction and vanishing point
computation.

4.3 Line-based Image Signature descriptor

This section details the steps to obtain the proposed Line-based Image Signature (LIS)
descriptor. First, the conics of the image, which actually correspond to straight lines
of the scene, are extracted. Later, these conics are classified using the vanishing points
information. Finally the descriptor is built as a set of histograms of the distribution of
the classified contours in the image space.

4.3.1 Line extraction

This section details how straight lines of the scene are detected in the image and then
classified according to their vanishing point. The difference between the different omni-
directional systems is how the scene lines are computed from the boundaries detected in
the images.

Catadioptric images

The method used for the extraction of the scene lines in the catadioptric images was
presented by Bermudez et al. in [Bermúdez-Cameo et al., 2012]. In this work, the authors
describe a system to detect the conics projected in an omnidirectional image correspond-
ing to straight lines of the scene. The method requires the calibration of the camera and
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(a) (b) (c)

Figure 4.3: (a) shows the edges extracted by the Canny algorithm and how they are
grouped. Each color represents a group. (b) shows the conics extracted for certain groups
of edges and (c) represents the edges once all the conics have been classified according
to the vanishing points. Vertical vanishing point (red), Horizontal vanishing points (blue
and green), and Non aligned conics (purple).

uses just two points to adjust a conic in the image.
The Spherical Camera Model [Geyer and Daniilidis, 2000] is used to model the om-

nidirectional camera projection. The projection of a 3D point in the image through this
model is performed in three steps. First, the 3D point, X, in the reference system of
the camera, is projected into a unitary sphere centered in the effective viewpoint O.
The resulting point, x′, is reprojected into the virtual image plane through O′, whose
distance to O is ξ. The relation between the virtual image plane and the real image is a
collineation: Hc. The process is shown in Fig. 4.2.

In central catadioptric cameras, the projection of a 3D straight line results in a conic
in the image. A 3D line, l, defines a plane, Π, together with the effective point of the
omnidirectional camera, O. Given this plane Π, the equation of the conic projected in
the virtual image plane is

Ω̄ =

 n2
x(1− ξ2)− n2

zξ
2 nxny(1− ξ2) nxnz

nxny(1− ξ2) n2
y(1− ξ2)− n2

zξ
2 nynz

nxnz nynz n2
z

 , (4.1)

where nx, ny and nz are the components of the normal of the plane, Π = (nx, ny, nz)
T .

A point, x̄, is part of the conic if x̄T Ω̄x̄ = 0. The relation between the point coordi-
nates and the plane formed by the 3D line is

α = − z̄

1− ξ2
± ξ

1 + ξ2

√
z̄2 + (x̄2 + ȳ2)(1− ξ2) (4.2)

where α =
nxx̄+ny ȳ

nz
.

Given two points in the virtual image plane, x̄1 and x̄2, the image conic including
both being the projection of a 3D line, can be computed solving the next system(

x̄1 ȳ1 −α1

x̄2 ȳ2 −α2

) nx
ny
nz

 =

(
0
0

)
(4.3)
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Vertical VP Horizontal VP

Figure 4.5: Sample sets of parallel lines and the corresponding VP directions. li denotes
the line i and Πi the normal of the plane created with O and represented by a gray
surface. The normals of parallel lines are coplanar and perpendicular to the VP direction.
The colored circles show the plane formed by the normals of parallel lines. These planes
are perpendicular to the VP directions. Vertical VP, vV P1, (red), Horizontal VP, vV P2

and vV P3, (blue and green).

Πi, Πj ad Πm their corresponding planes, then

(Πi ×Πj) ·Πk = 0
(Πi ×Πj) · vV Pk = 1

(4.5)

These properties can be used to group the conics according to the vanishing points.
We start with all the detected conics, each one represented by a (Ωi,Πi) pair. We assume
an approximate vertical position of the camera, so we can predefine prior directions for
the vanishing points: vV P1 is vertical and vV P2 and vV P3 are parallel to the image plane.
We use a robust estimation algorithm (RANSAC) to adjust this estimation and obtain
one group of conics corresponding to each of these main directions. In each RANSAC
iteration two conics are randomly selected to create a group hypothesis. If these conics
are parallel and aligned with the corresponding VP, |(Π1 × Π2) · vV Pk| ≥ 1 − thP ,
we check how many of the rest of the conics are parallel to them and vote for that
hypothesis, (Π1 ×Π2) ·Πj ≤ thC. The most voted hypothesis is chosen as one of the
groups. Once the groups for the three VP have been obtained, the remaining conics are
grouped as nonAlignedConics.

The result of this process is useful not only for globally describe the image. The
information of VP aligned conics can be used to perform other scene understanding
tasks such as 3D analysis of the scene under certain assumptions.

Once all the detected conics have been classified according to their VP, we can build
the proposed LIS descriptor. To build the descriptor, the image space is discretized in
a polar grid. The image is split in 4 × n angular sections and each angular section is
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Train Test

Class 1 61% 70%
Class 2 19% 12%
Class 3 9% 4%
Class 4 9% 10%
Class 5 2% 4%

Table 4.1: Percentage of frames of each class in each sequence.

to set the labels ground truth. The 5 classes used to describe the areas of our indoor
environment are shown in Fig. 4.8 together with some examples of images in the dataset.
The percentage of frames of each class for the training set is shown in Table 4.1. It can
be observed that some classes have many more examples than others, e.g., 61% corridor
images and 2% of elevator images, due to typical configuration of indoor environments,
since any user spends more time traversing corridors than in the elevators, and the whole
sequences have been used.

The experiment consists on assigning a scene class label to each test image, according
to the nearest neighbor found among the training images. We choose a nearest neighbor
based approach due its simplicity and because other standard classification frameworks
such as SVM or boosting based approaches typically require more training data. Proba-
bly the use of more complex learning techniques will raise the performance with any of
the descriptors evaluated. Test images are compared with all the images of the training
set, and the query is labeled with same class of the train image with the lowest de-
scriptor distance, computed as described in (4.8). We run this experiment with different
configurations of our approach.

Analysis of the results

Fig. 4.9 shows the confusion matrices of the classification using different image tessella-
tion: n = 2, 4, 8 and 16. Higher values of n mean larger (descriptor size: 3×4×n×n) and
higher resolution descriptors. Looking at the results we can see how the performance is
not homogeneous for all the classes. Corridors (Class 1) are recognized better in all the
experiments, probably because they have well-defined vanishing points and lines. The
worst performance corresponds to Doors/Jambs (Class 3). When traversing a door or
a jamb, large part of the omnidirectional image contains areas of the environment be-
fore and after that door, so confusion using the description of the whole omnidirectional
image seems reasonable.

Parameter n is directly related with the size and the resolution of the descriptor. In
general, increasing n improves the performance, however, there is a point where higher
n values does not improve the result, even performance is decreased. For our settings the
best value is n = 8. We should note the behavior of the recognition for the Rooms (Class
2). For this class, an increment of n produces, in all the cases, worst results. This class
groups many kind of spaces (halls, laboratories, offices) with different appearance but
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Accuracy Descriptor
Total (%) Average (%) size

n = 2 18.81 16.69 48
n = 4 18.59 16.50 192
n = 8 19.10 16.92 768
n = 16 18.81 17.45 3072

Chance: 6.67%

Table 4.2: Total and average accuracy of the scene categorization for different image
tessellations.

Table 4.2 shows the Total and Average per class accuracy of the classification for
different tessellations, and the descriptor size. Best total accuracy is achieved for n = 8,
when the descriptor includes 768 components. It has to be noticed that the accuracy
differences are small compared with the descriptor size, bigger descriptor mean higher
resolutions but do not represent better performance. Best performance correspond to
hotel room (46.79%) and subway station (38.42%), however, the descriptor accuracy
falls for old building (8.13%) and shop (7.12%).

4.4.4 Integration with spatial layout extraction steps

As already described, our goal is to integrate the proposed place recognition in our
navigation assistance system. This work shows how to use our line based descriptor for
scene recognition, but the same line information can be used for additional tasks such
as 3D layout recovery. Using LIS global descriptor for place recognition, our system is
able to detect when the kind of area traversed has changed and the category of the new
place. The 3D scene analysis, that is computationally expensive, can then be run just
when necessary, i.e., after a change of the type of area visited or for certain types of
places.

As initial example of further exploitation of the lines detected we have run the code
presented in [Omedes et al., 2013] to detect the scene layout in omnidirectional images.
This approach follows a heuristic to iteratively fit the wall-floor boundary, which follows
the same steps and priors for any location. The same lines used to build the LIS descriptor
are used to detect the scene layout. Fig. 4.13 shows the results of both tasks: the LIS
histogram for scene categorization and the spatial layout of the image, where floor and
walls are detected.

4.5 Conclusions

In this section we have presented a new line-based global descriptor for omnidirectional
images that encloses the structure of the scene observed, by encoding the spatial dis-
tribution of the scene lines in the image. The descriptor is built as a histogram that
captures how the different types of scene lines lay in the different parts of the image
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Semantic models of the
environment

The use of assumptions or constraints about the environment,
can be used to facilitate the extraction of semantic information
about a system surrounding areas. For example, by assuming that
the system is working on an indoor environment where the differ-
ent scene planes (floor, walls and ceiling) are aligned with 3 main
directions, we can know how the scene structure will be projected
in a camera. We can also assume where some objects will appear,
i.e. signs and doors appear in the walls at different heights, light
sources in the ceiling and obstacles in the floor. Next chapters de-
scribe different ways of including priors about the environment in
the process of building a model. This allows to add semantic in-
formation to the resulting models.
Chapter 5 studies how to leverage the standard vocabulary con-
struction process to obtain a more meaningful visual vocabulary for
particular applications using image sequences. Vision based recog-
nition approaches frequently use quantized feature spaces, com-
monly know as Bag of Words (BoW) or vocabulary representa-
tions. We take advantage of spatio-temporal constraints and prior-
knowledge about the position of the camera to incorporate tracking
information to the process of vocabulary construction, and to add
geometric cues to the appearance descriptors.
Chapter 6, we study the particular case of indoor scene under-
standing from monocular images. We address the problem of scene
layout propagation along a video sequence. The presented approach
uses a Particle Filter framework to propagate the scene layout ob-
tained using a state-of-the-art technique on the initial frame. We
propose how to generate, evaluate and sample new layout hypothe-
ses for the scene on each frame.
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Chapter 5

Building a hierarchical visual
vocabulary from an image
sequence

Vision based recognition approaches frequently use quantized feature spaces, commonly
know as Bag of Words (BoW) or vocabulary representations. A drawback using standard
BoW approaches is that conceptual or semantic information is not considered as criteria
to group the visual features into words. To solve this challenging task, this section
studies how to leverage the standard vocabulary construction process to obtain a more
meaningful visual vocabulary for particular applications using image sequences. We take
advantage of spatio-temporal constraints and prior-knowledge about the position of the
camera. The key contribution of our approach is to define a new method to incorporate
tracking information to the process of vocabulary construction, and to add geometric
cues to the appearance descriptors. Motivated by long-term indoor robotic applications,
we focus in a robot camera pointing to the ceiling, which facilitates the capture of more
stable regions of the environment, improving long term operation and the discovery
of repetitive and representative elements. The experimental validation shows how our
vocabulary models the environment in more detail than standard vocabulary approaches,
while keeping comparable recognition performance. We show different robotic tasks that
could benefit of the use of our visual vocabulary approach, such as place recognition
or object discovery. For this validation we use a publicly available dataset1 fitting the
requirements of our approach.

5.1 Introduction

Quantized feature spaces have been broadly used in visual recognition problems, such
as object or place recognition and image retrieval [Sivic and Zisserman, 2003,Tuytelaars
et al., 2010,Cummins and Newman, 2011,Philbin et al., 2007,Jégou et al., 2010]. These

1Dataset: http://aass.oru.se/Research/Learning/datasets.html
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techniques create a catalog of image features or words and describe images as a vector
of occurrence counts of these words.

A typical drawback using standard BoW approaches is that semantic information is
usually neglected when grouping the visual features into the clusters or visual words. In
a general setting, including conceptual information is challenging since no assumption
can be made about the type and meaning of the visual features that may appear. How-
ever, many applications could benefit from including semantic content of their working
environment in a visual vocabulary. We study certain reasonable assumptions that are
effective to achieve that goal for one of those applications. The general objective of our
work is to create a vocabulary modeling the working environment of an autonomous sys-
tem. Particularly we focus on mobile robotic platforms performing long-term operations
indoors, in environments such as a warehouse [Everett et al., 1995] or a museum [Burgard
et al., 1999].

The approach presented in this work is built after the following hypotheses. First,
robotic platforms provide sequential information (a sequence of images), therefore, in-
cluding tracking information while building the vocabulary helps to cluster the different
appearances found along the way for the same scene element. Secondly, we can find
spatial restrictions because cameras in robotic platforms have a fixed location respect
to the robot. Reasonable assumptions can be made about the location of elements of
the environment (e.g., the lamps are on the ceiling, the posters on the wall,...). We use
simple geometric information together with the appearance to cluster the environment
elements according to their appearance and scene location.

Following previous robotics applications [Fukuda et al., 1996, Wulf et al., 2006], we
benefit of having a camera pointing to the ceiling. Upper parts of indoor scenes are
typically less dynamic than the rest of the scene and provide a more robust visual model.
In this setting, we expect the environment to include a small number of repeatable
elements (e.g., different kinds of lamps, windows) and few elements which are rather
unique (e.g., exit signs, posters, labels), most of them with fixed locations within the
scene. We assume that these elements are viewpoint dependent and present a restricted
set of appearances from a few points of view that are reachable by our acquisition
platform.

Our proposed approach consists of a novel hierarchical process (summarized in Fig. 5.1)
that obtains a visual vocabulary with richer information about the environment, com-
pared to standard visual word clustering methods. Instead of computing the visual words
directly on the acquired data, we propose to obtain an initial grouping into classes con-
taining similar sets of tracked key-points. Then, standard vocabularies are computed in
each of those classes. This ensures that the vocabulary will include words covering all
the different types of key-points.

The main differences and contributions of our approach with regard to prior work are
the following. We study how to leverage the visual vocabulary for a more meaningful
representation of a given working environment, as opposed to try to build a generic
visual model. This facilitates complex tasks in that particular environment; We propose a
novel way to include spatio-temporal information in the vocabulary construction process:
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approaches are very popular in various recognition tasks due to their good performance
despite the simplified representation. For example, we find many good results on recog-
nition at large scale, achieved partly thanks to BoW image representation, such as ap-
pearance based localization and mapping in large scenarios [Cummins and Newman,
2011] or efficient object retrieval [Philbin et al., 2007]. In the seminal work from Sivic
et al. [Sivic and Zisserman, 2003], authors proposed to use tracked features to build a
visual vocabulary from sequential data because they are more likely to be stable features.
Inspired by these ideas, we use key-point tracking not only to find a set of stable features
but to automatically discover and group the different appearances of the environment
elements depending on the viewpoint.

In parallel with the growing popularity of vocabulary based recognition approaches,
we also find research results analyzing the feature descriptor quantization drawbacks [Philbin
et al., 2008,Boiman et al., 2008], such as the loss of rare but discriminative information
or under-representation of descriptor space regions with low population. Trying to over-
come some of these issues, we find several papers proposing enhanced methods to build
visual vocabularies. Besides avoiding some of the drawbacks listed before, they augment
the model with additional information. For example, in [Yang et al., 2008], the processes
of vocabulary generation and training data classification are unified. Authors of [Jing-
Yan Wang et al., 2013] present Joint-ViVo, a method where words and weights are
learned jointly. In [Fernando et al., 2012] a supervised learning method is presented to
add semantics to the words of the vocabulary. The criteria used are the likelihood of the
training data and the purity of the clusters. The work in [Cao et al., 2010] proposes to
include some geometrical information in the vocabulary obtained from features location
in the scene.

As previously mentioned, one of our intuitions is that geometric and spatial restric-
tions on the scene are important cues to improve our visual model. In our work, spatial
information in the form of the key-points azimuth is included as part of the key-points
descriptor. Closely related to some of our hypothesis are those from the work presented
in [Chum et al., 2009], describing the Geometric min-Hashing. This method uses semi-
local geometric information to create and increase the discriminative power of the hash
keys, and demonstrates advantages of using geometric information to improve their vi-
sual model.

We can also find several results using BoW representations together with spatial infor-
mation. In [Yang and Newsam, 2011] spatial pyramids are used to characterize the spatial
arrangement of words in the image. Following a different approach, papers [Bolovinou
et al., 2013, Penatti et al., 2014] include the relative spatial configuration of the words
to improve the vocabulary. The first work introduces a bag of spatio-visual words rep-
resentation (BoSVW) obtained by clustering of visual words correlogram. The second,
uses spatial arrangement of visual words (WSA) for image retrieval and classification
outperforming spatial pyramids in the retrieval scenario.

Finally, related to our goal of including information in the model about interest
elements discovered in the sequence, it is necessary to consider some interesting recent
related papers on unsupervised learning for object or feature discovery. This kind of
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approaches try to find image elements that appear frequently and are meaningful for
humans. For example, unsupervised learning has been used to discover the distinctive
architecture elements of determined areas [Doersch et al., 2012], representative views of
an object [Berg and Berg, 2009], object models [Fergus et al., 2003] or the appearance
of objects and its image segmentation [Russell et al., 2006]. Closer to our approach, the
work presented in [Singh et al., 2012], finds a set of discriminative and representative
image patches by using an iterative process of clustering and training.

5.3 Enhanced vocabulary construction

This section details our approach to build a semantic vocabulary of the environment
traversed by a mobile camera. Main 3 steps are summarized in Fig. 5.1: 1) feature
detection and tracking, grouping the features into sets of key-points, 2) clustering sets
of similar appearance into classes, 3) obtain the visual words from each class, achieving
a balanced vocabulary which has the words organized into classes (e.g., we have all the
words that describe certain object organized into the same class).

5.3.1 Key-point detection and tracking.

First, we detect interest key-points in the scene and track them using Lucas-Kanade
tracker, which provides the location of the tracked scene points in consecutive frames. For
each frame we compute an image descriptor around each key-point. For both key-point
detection and image descriptor SURF [Bay et al., 2008] is used. Note that the appearance
of key-points is likely to change while they are tracked. We can exploit the knowledge of
these appearance variations being generated by the same entity thanks to the tracking.
Due to the camera configuration, pointing towards the ceiling, the azimuth angle encodes
the change of point of view that produces the appearance change of the scene point.
Therefore, the tracked image descriptors are stored, together with the azimuth angle θ
of the corresponding location, as shown in equation 5.1

At this point, we have identified m sets of tracked key-points, where each set, set i,
contains ni image descriptors and azimuth angles from the same tracked scene point
from different points of view:

set 1

SURF11

...
SURFn1

θ11
...
θn1

...
...

...

set m

SURF1m

...
SURFnm

θ1m
...

θnm


(5.1)

Some of these sets could still contain features that actually belong to the same scene
element, e.g., scene points tracked at different time while revisiting the same location
or points corresponding to repeated objects in the environment. The following step of
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our approach groups sets that are likely to have been produced by the same object or
element.

5.3.2 Clustering of the sets of tracked key-points

The second step of the proposed method clusters sets of tracked key-points that have a
high similarity. First we describe the similarity measure used to compare two sets of key-
points. Then we detail the clustering methods evaluated in our experiments: Hierarchical
Clustering and DBSCAN.

Similarity measure between sets of key-points

As mentioned before, our goal with this clustering step is to merge key-point sets that
are likely to correspond to the same scene elements; we estimate this according to the
following similarity measure.

The azimuth value encodes the relative position of the scene point with respect to
the camera. We assume that the appearance of a scene point from the same viewpoint
is the same, but different scene points can look similar from different positions. We use
the azimuth difference to penalize these cases.

The distance between two features Xi = [desci, θi] and Xj = [descj , θj ], is computed
using:

d(Xi,Xj) = ||desci, descj ||f(||θi, θj ||), (5.2)

where ||desci, descj || is the euclidean distance between the appearance descriptors, ||θi, θj || =
|θi−θj |, and f(x) is the penalization due to the azimuth difference between both features,
shown in Fig. 5.2 and obtained as follows:

f(x) = (1 + a exp(b exp(c x))), (5.3)

where a, b and c are the parameters that define the shape of the penalization.
The penalization grows rapidly and continuously after a small difference of azimuths

(0.1 rad), and the maximum penalization is used for values above 0.8 rad. Parameters
a, b and c have been selected to accomplish these requirements. Other functions with
the same properties are also valid.

Experiments section demonstrates that the inclusion of the azimuth in the descrip-
tor and the similarity measurement improves drastically the object recognition rates,
allowing us to distinguish among similar objects in appearance, but with particular and
discriminative locations in the scene.

To compare two sets of tracked key-points we have to compare all the features of
one set with all the features from the other set. Each feature of set i is compared with
the features of set j, the minimum distance value is selected, and the mean of all these
minimum values is considered as the distance between sets Dset:

Dset(set i, set j) = mean
Xk∈set i

( min
Xl∈set j

(d(Xk,Xl))), (5.4)

where Dset(set i, set j) is the distance between two different sets, set i and set j, and
Xk and Xl are features included in these sets respectively.
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Figure 5.2: Penalization distance (5.3) between two azimuth values, with a = 4, b = −7.5
and c = −10.

Clustering approaches

We have considered the following two common clustering approaches that build on a
similarity measure between the elements to be clustered.

• Hierarchical Clustering.
We have implemented a clustering method based on the agglomerative Hierarchical
Clustering [Ward and Joe, 1963], where each element starts as a cluster and, each
cluster is paired with its most similar cluster as we move up in the hierarchy. Our
hypothesis is that elements in the same cluster are probably observations originated
from the same object or scene point. We define a similarity threshold, thS , to avoid
merging too dissimilar clusters, therefore clusters are not merged if the distance
between their elements is over this threshold. As a result of this modification of the
standard Hierarchical Clustering, key-points sets dissimilar to any other set are not
paired and compose a singleton cluster. In this method, new clusters are created on
every iteration, so new distances have to be computed. We adopt the Unweighted
Pair Group Method with Arithmetic Mean [Sokal and Michener, 1958] approach,
where the distance between two clusters is the mean of the distances between the
sets of tracked key-points included in each cluster.

Hierarchical Clustering is conceptually simple, that means it is easy to implement
and modify, as required in this work. Additionally, it outputs a hierarchy of clusters,
a structure more informative that flat clustering techniques results. The drawback
is its complexity, O(n3) in the general case, what makes it too slow for big datasets.

• DBSCAN (Density-based Spatial Clustering of Applications with Noise).
DBSCAN [Ester et al., 1996] is a density-based clustering algorithm that uses a
estimated density distribution of corresponding nodes to find clusters in the data.
This algorithm is based in the notion of density reachability: Two elements, q
and p, are directly density reachable if their distance is not bigger than ε. q is
called density-reachable from p if there is a sequence of elements, p1 . . . pn with
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p1 = p and pn = q where each pi+1 is directly density-reachable from pi. With this
definitions, a cluster is a subset of elements mutually density-connected. To handle
the noise, this method defines the parameter minPts, the minimum number of
elements required to create a cluster. Subsets of density-connected elements with
less than minPts elements are considered as noise.

DBSCAN is a widely used clustering technique. We use the general DBSCAN
implementation included in ELKI 0.6.0 [Achtert et al., 2013]. The complexity of
this method is lower than the complexity of the Hierarchical Clustering, O(n2)
for the basic form of the algorithm, so it is faster and more appropriate for big
datasets.

The results of this clustering step can be semantically understood as follows:

1. The obtained clusters represent common scene points and include their possible
appearances according to the different viewpoints under which the scene elements
were observed.

2. Non paired or noisy sets are unique scene points. These sets are dissimilar to the
rest of sets but may be highly representative of the locations where they appear.
These unique sets are clustered together after running the clustering step. The
created cluster don’t represent any common scene points, but include unique key-
points representative of a location. Unique sets are clusters with just one set of
tracked key-points when using Hierarchical Clustering. When running DBSCAN
with minPts = 2, these unique sets are considered as noise.

5.3.3 Vocabulary construction

Our last step to obtain the visual model of the environment consists of building a visual
vocabulary for each class resulting from previous steps. This vocabulary is composed by a
fixed number of words K (as done in normal BoW generation). Differently from standard
approaches, we consider how to distribute the visual words across all our feature space.
We compute a number of words, ki, for each class i proportionally to the number of
features included in that class, with a minimum number of words of 1:

ki =

⌈
K

# features ∈ class i
# total features

⌉
(5.5)

A usual k-means clustering algorithm is run with the elements within each class. Note
that, differently from previous steps, now we use only the appearance descriptors of all
the features in that class. This step provides different number of visual words for each
class. Each word has a representative appearance descriptor, and we add an approximate
azimuth value computed as the average azimuth of all features assigned to that word.

In the resulting vocabulary larger classes receive more words than small ones. The
class including non paired sets, which is usually big, will receive a large amount of words,
which guarantee that we actually account for these marginal and unique scene elements.
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Assigning words to a new feature using the created BoW

To classify a new feature, Xquery into the discovered classes, it is compared with the
words included in the vocabulary using the distance described in (5.2). In a similar
manner to standard vocabularies, we assign the corresponding word i according to the
nearest neighbor, but only if that distance is below a threshold, thM .

i = arg min
i∈[1,k]

(d(Xquery,Xi)|d(Xquery,Xi) < thM ), (5.6)

By using this threshold we model the fact that a new feature could not belong to any of
the modeled classes and therefore fall into the non paired sets class.

5.4 Analysis of the performance of the hierarchical vocab-
ulary

This section evaluates all steps of our proposed approach and evaluates the performance
and properties of the obtained visual vocabulary.

5.4.1 Experimental Settings

Datasets

We validate our method with a dataset acquired from a robotic platform at the AASS
laboratories and offices in Örebro University, Sweden. It includes two image sequences of
two different trajectories around the same environment: 158.5m (1879 frames) and 164m
(2142 frames). They were acquired at different days and follow different trajectories but
they present certain overlap to allow place recognition experimental validation. The
acquisition was performed at 30 frames per second, and the images have a resolution
of 768x768 pixels. As explained previously about our assumptions, the camera has been
set pointing to the ceiling. Therefore the objects that appear are mostly light sources,
windows and signs. Fig. 5.13 shows some sample images of this dataset. This dataset is
available on-line 2.

A second dataset is used for additional qualitative evaluation of the method. This
small sequence has been acquired in a trajectory of about 10 m on a different indoor
environment, traversing a corridor. The purpose of this sequence is to further analyze
the correspondence between classes and real objects in a different scenario than the main
dataset used.

Performance measurements

The proposed method is evaluated following three different criteria:

2Dataset: http://aass.oru.se/Research/Learning/datasets.html
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• Accuracy: it evaluates the accuracy of the vocabulary to classify new features into
the discovered classes. Total and average class accuracy of the classification, ATotal
and AAverage are respectively computed as:

ATotal = 100
# correct classification

# test features
(5.7)

AAverage = mean
∀i

(
100

# correct classificationi
# test featuresi

)
(5.8)

the i index represents the classes. AAverage averages the accuracy achieved in the
classification of each class separately.

• Normalized inverse pixel deviation: it evaluates the similarity of the key-points
patches included in each class. This quality measurement is based on the standard
deviation of the image patches of features that have been clustered together. Given
class i, we define the class pixel deviation, Si, as the mean of the standard deviation
of the gray level of every pixel of the features patches included in class i:

Si = mean
∀(x,y)

(std
∀j∈i

(Ij(x, y))), (5.9)

where j ∈ i represents all the patches of the features included in the class i, Ij(x, y)
is the gray level of pixel (x, y) from the patch of feature j, (x, y) values are limited
to the size of the patches (32x32 pixels in our case) and std() is the standard
deviation.

We define the normalized inverse pixel deviation for each class, S′i:

S′i = 1− Si
Smax

(5.10)

where Smax is the maximum pixel deviation. According to (5.9) and (5.10), more
meaningful classes would have higher S′i values. Next section analyzes the evolution
of S′ that is the mean value normalized inverse pixel deviation of all the classes.

• Intra-class distance: it evaluates the similarity between all the sets of key-points
included in each class. Distance between all the sets of key-points is computed
using equation 5.4. The intra-class distance is the mean of these distances. Lower
values of this distance mean more compact clusters, where the sets grouped are
more similar.

Normalized inverse pixel deviation and Intra-class distance both model how similar
are the elements grouped under the same class label. However, the first one computes
distances between key-point patches, just the key-points appearance; while the second
computes distances between sets of key-points using tracking and viewpoint information
together with the SURF descriptors.
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(a) (b) (c) (d)

Figure 5.4: Comparison of the normalized inverse pixel deviation, intra-class distance,
number of created classes and number of non paired classes for both clustering methods:
Hierarchical CLustering (red) and DBSCAN (blue). thS and ε are equivalent parameters
for both clustering methods respectively. (Best seen in color).

difference in this interval is the number of clusters created: DBSCAN creates less clusters
than the Hierarchical Clustering. In DBSCAN two elements can be clustered together
if they are density reachable, even if their distance is high. In contrast, in our modified
version of the Hierarchical Clustering, to pair two elements the distance between these
elements must be lower than thS . The requirement to cluster elements is more relaxed for
DBSCAN than for Hierarchical Clustering, so more sets are clustered together and less
clusters are created. For ε higher that 0.35, very few clusters are created with DBSCAN,
below 50 clusters. Then dissimilar sets are clustered together affecting the quality of the
result as can be seen in the evolution of S′ and the intra-class distance.

5.4.3 Influence of thS, ε and K parameters in the performance of the
resulting vocabulary

These experiments analyze the influence of the clustering method parameters (thS and
ε) and the number of words in the vocabulary (K), in the performance of our approach.
The effect of varying thS and ε in the clustering quality is shown in previous Fig. 5.4.

For this analysis we randomly split one of the sequences and use 70% as training, and
30% as test data. The clustering of sets of tracked key-points into classes is performed
on all the sets included in the whole dataset to set a ground truth class assignment
for all the key-points (training and test ones). The vocabulary is built using only the
training data. The use of just one sequence allows us to have the class ground truth for
the test images. Total and Average per class accuracy of the results of classifying test
data using this vocabulary are shown in Fig. 5.5. Total accuracy is the percentage of
correct classifications respect the total number of key-points classified. The average per
class accuracy is the mean of the accuracy computed for each class.

Figures 5.5(a) and 5.5(b) correspond to the modified Hierarchical Clustering. In this
case for higher values of thS ATotal increases, whileAAverage remains constant. The reason
of this behavior is that when thS increases large classes get even larger by clustering
dissimilar sets of tracked key-points. ATotal increases due to the good performance of
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Hierarchical Clustering DBSCAN

(a) (b) (c) (d)

Figure 5.5: Influence of parameters, thS , ε and K in the performance and quality of the
vocabulary. Plots show the evolution of total (red) and average (blue) accuracies and
normalized inverse pixel deviation (green). Figs. (a) and (c) show the results obtained
for values of thS or ε between 0.05 and 0.55, k = 3000. (b) and (d) shows the accuracy
results for values of k in [500, 5000], with the parameters of each clustering (thS and ε)
equal to 0.2.

large classes that are more common, but AAverage remains constant due to the poor
performance of the small classes. In the same figure we can observe the evolution of S′.
As expected, when thS grows, the quality of the classes, represented by S′, decreases.

Figures 5.5(c) and 5.5(d) correspond to DBSCAN clustering. We can observe how
the ATotal and AAverage grow with ε while the S′ decreases. The high values observed
for the total accuracy, 100% when ε is greater than 0.4, are effect of the low number
of clusters created. The chance of classifying correctly a key-point when most of the
features are part of the same cluster is very high. Values of ATotal and AAverage remain
almost constant when k grows, those values are in all cases higher than the ones for the
modified Hierarchical Clustering. The reason of the better accuracy is that the first class
created by DBSCAN clustering is too big, as we show later in subsection 5.4.5. Most of
the training key-points fall in this first class what makes easy to classify test key-points
under that class. However this class is compound by dissimilar sets of tracked key-points.
High values of K produce large vocabularies that fit better the feature space. However,
one of the goals of using vocabularies is to reduce the number of elements included in
the model, so small K values are preferred.

5.4.4 Influence of the robot motion in the detection of key-point classes

This experiment analyzes the suitability and correctness of our vocabulary to model
the environment. We classify key-points from a test sequence, not used to build the
vocabulary, into the classes discovered by our approach. We can observe how key-points
that were generated by the same scene element but seen from different viewpoints are
correctly identified in most of the cases.

Figure 5.6 shows examples of key-points classified along different test sub-sequences.
First row of the figure shows the trajectory followed by the robot in each sub-sequence,
which include rotation and translation. Each column of the figure shows key-points
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Figure 5.6: Key-point classification into words and classes as the robot moves. The plots
in the first row represent the trajectories followed by the robot while acquiring the
frames. The trajectories include rotation, translation and combinations of both. Each
column shows how the key-points of a set of key-points are individually classified as
being of the same class. All the key-points on a set correspond to the same element of
the scene that has been tracked. (Best seen in color).

detected in those frames, together with the word assigned to that key-point and the
corresponding class. Note that as the key-point appearance and image position varies, it
is assigned to different words but is still classified under the same class. This validation
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Table 5.1: Normalized entropy of the object classification into classes or words.

Words

Object
Our approach Our approach Usual k-means

DBSCAN Hierarchical Clustering

Halogen Lamp 0.598 0.598 0.599
Round Ceiling Lamp 0.454 0.454 0.450

Wall Light 0.434 0.439 0.424
Window 0.441 0.450 0.441

Average 0.482 0.485 0.479

Classes

Object
Our approach Our approach Usual k-means

DBSCAN Hierarchical Clustering

Halogen Lamp 0.460 0.524 −
Round Ceiling Lamp 0.356 0.497 −

Wall Light 0.840 0.266 −
Window 0.112 0.290 −
Average 0.275 0.394 −

a key-point generated by a scene element into words or classes. If the key-points of an
object are always classified in the same word, the entropy will be zero, so the object
key-points and that word are highly related. However, if an object is classified in a lot of
words the entropy value will be high. To compare the entropy of different vocabularies,
we use the Normalized Entropy:

Normalized Entropy =

(
−

n∑
i=1

fi log2(fi)

)
log2(n) (5.11)

where, for each object, fi is the proportion of occurrences of that object in the class or
word i and n is the number of classes or words.

Analyzing the classification at word level, the three vocabularies behaves similarly,
the normalized entropy values are similar. However, looking at the values for the classi-
fication into classes the values are lower. This tendency is clear analyzing the mean of
the normalized entropy for the four objects. We obtain values about 0.48 at words level
and values of 0.275 for our approach with DBSCAN and 0.394 for our approach with
Hierarchical Clustering. Again, for the vocabulary built using usual k-means there are
no classes. Note that the normalized entropy does not inform about which classes are
related with each object, it just informs if an object is related with more or less words
or classes of the model.

Object-class correspondence

Fig. 5.9 shows some examples of the correspondence between the classes created by our
vocabulary and the elements of the environment. For this experiment we have run our
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Figure 5.9: Examples of classes created by our method that correspond to real scene
elements. Most of the classes are detected on various frames, and on different sides of
the images. (Best seen in color).

vocabulary creation method in the small sequence described in the previous section.
Figure shows examples of classes correspondence with objects in different frames of the
sequence. Again, most of the objects detected are lamps, halogen lamps (on and off)
and emergency lights. Ceiling tubes, posters and labels are also detected. For most of
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recall values for the detection of key-points generated by Wall Lights and Windows can
be explained looking Fig. 5.7(b). There we can see how both objects key-points appear
in the same classes. Those objects appear in the same parts of the environment, so the
key-points appear in the same part of the image and share similar azimuth values. Also,
they have similar appearance. This causes that some Window key-points appear in the
representative class of Wall Lights (class 1) and vice-versa.

Inclusion of the Azimuth values

Fig. 5.10(b) shows the same plot that Fig. 5.10(a), but in this case the azimuth has
not been used at all in the process. While the results are similar for Halogen Lamps
and Windows, the accuracy for Wall Lights decreases from around 20% to 2% when
we do not use the azimuth. Even more dramatic is the change to detect Round Ceiling
Lamps: without the azimuth value, no Round Lamps are detected. In our case, the image
descriptors of features around the Round Ceiling Lamps are similar to the descriptors
created by other entities of the environment, so the appearance descriptor is not enough
to distinguish this object.

5.5 Applications using the proposed vocabulary

This section describes two possible applications of the vocabulary presented in this work.
Place recognition and object detection are studied here, however other applications can
benefit of enhanced vocabularies.

5.5.1 Place Recognition

One of the applications where BoW representations have been widely used is place
recognition. We show the performance of our vocabulary in an example of this application
and compare it with the performance of a usual k-means vocabulary. The trajectories
of the two sequences included in our dataset are shown in Fig. 5.11. The available
ground truth is raw odometry, not very accurate, therefore not all the test images can
be automatically evaluated for the place recognition tests. We only use as test the part
of the test sequence where correspondences can be established according to the ground
truth.

According to BoW representations, images of both sequences are represented by a
histogram of the number of occurrences of each word in the image. These histograms
are normalized with the total number of words in the image, and the image similarity
is obtained according to these histograms distance. The localization of a test image is
assigned as the localization of the most similar reference image found. If the training
nearest neighbor is within a similarity distance larger than a threshold (thHistDist =
0.15 in our case), we consider that the location is unknown or uncertain, therefore no
answer is given. The localization will be considered correct, if the match and the test
odometry positions are within 7.5 m (due to the accuracy of the ground truth, lower
acceptance thresholds give wrong evaluation results). Fig. 5.11 shows the results of the
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Figure 5.13: Examples of objects found in the dataset. Green circles mark correct assign-
ments and red crosses show incorrect ones. The colored shapes show the labeled areas:
Round Ceiling Lamps (orange); Halogen Lamps (blue); Wall Lights (magenta); Windows
(white). Matching threshold is set to 0.15. For clarity, some conventional images of the
objects in the environment are shown on the right of the figure. (Best seen in color).

5.5.2 Object Detection

In the previous section we show how the vocabulary represents some of the objects found
in the environment. Fig. 5.13 shows the detection of objects in different frames. Correct
matches are shown as green circles and errors as red crosses, the labels of the images are
also plotted. In those examples we can see how most of the Round Ceiling Lamps are
correctly detected. In the first image of bottom row the red arrow shows points classified
as Round Ceiling Lamp that correspond to a different kind of lamp that newly appears
in this room. We can also see how the areas labeled as windows are very dissimilar due
to the objects seen through these windows and their different shapes.

To perform this experiment we need to relate objects to classes and words. This
step, as explained in section 5.4.5, requires the sequence labeling so the process is not
completely unsupervised.

5.6 Conclusions

We have presented a new method to create an enhanced visual vocabulary from an im-
age sequence that learns semantic relationships between visual words of the working
environment. The key elements of the method are using tracked scene points and includ-
ing information of the key-points azimuth angles when building the visual words. Our
approach is focused on long term robotics applications. With this purpose, we consider
systems where the camera points to the ceiling, which facilitates the acquisition of more
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stable and repetitive scene elements. Comparisons with the usual k-means vocabulary
present our method as a richer alternative for the usual BoW approach to build a vi-
sual vocabulary. Our model provides more representative semantic information of the
environment, including relationships between visual words and environment elements.
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Chapter 6

3D Spatial Layout on video
sequences

Intelligent autonomous systems need complex and detailed models of their environment
to achieve sophisticated tasks. Vision sensors provide rich information and are broadly
used to obtain or improve these models. The particular case of indoor scene understand-
ing from monocular images has been widely studied, and a common initial step to solve
this problem is the estimation of the 3D layout of the scene. Many previous approaches
obtain the layout of a single image, however, this work addresses the problem of scene
layout propagation along a video sequence. Our approach uses a Particle Filter frame-
work to propagate the scene layout obtained using a state-of-the-art technique on the
initial frame. We propose how to generate, evaluate and sample new layout hypothe-
ses for the scene on each frame. The intuition we follow is that we can obtain better
layout estimation at each frame through propagation than running separately at each
image. The experimental validation is run on a publicly available indoor dataset and
shows promising results for the layout computed using our approach, without the need
of estimating accurate 3D maps. Additionally, our experiments demonstrate how this
layout information can be used to improve detection tasks, in particular sign detection,
by easily rejecting false positives.

6.1 Introduction

This section investigates the construction of simple indoor scene models given an image
sequence. The models contain essential information about the environment structure
that may allow us to better understand the image: detect the kind of area traversed
(e.g. a corridor or a room); provide a rough 3D model of the scene for navigation assis-
tance; or help to the detection and recognition of objects. Prior approaches demonstrate
this applications and the fact that obtaining information about the 3D structure of the
scene is a powerful tool to improve the accuracy of other tasks, such as object recog-
nition [Hoiem et al., 2008]. Recent approaches [Hedau et al., 2010, Lee et al., 2010, Bao
et al., 2011] propose to solve together the problem of estimating the layout of the scene
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objects) and describe the scene geometry using these coarse labels. Later, Saxena et
al. [Saxena et al., 2009] used Markov Random Fields to infer plane parameters, such as
3D location and orientation, for homogeneous patches extracted from the image. Both
works are intended to solve the scene structure for general scenes.

We find specific approaches for indoor environments, where certain additional as-
sumptions can be made. Delage et al. [Delage et al., 2006] proposed a dynamic Bayesian
network model to find the ”floor-wall” boundary in the images. They create 3D models
of the scene assuming a Manhattan World [Coughlan and Yuille, 1999]. More recently,
Lee et al. [Lee et al., 2009] presented a method to generate interpretations of a scene from
a set of line segments extracted from an indoor image. Similarly, Hedau et al. [Hedau
et al., 2009] model the scene as a parametric 3D box based on the detected lines. López
et al. [López-Nicolás et al., 2014] solved the spatial layout in omnidirectional images,
where the whole the scene can be modeled with just one image. Extending similar ideas
to outdoor scenes, Gupta et al. [Gupta et al., 2010] propose to create physical represen-
tations of outdoor scenes where objects have volume and mass, and their relationships
describe the 3D structure and mechanical configurations.

The papers described so far analyze the structure of a single image. However, if we
consider images of a video sequence we can propagate the information already obtained
about the scene and get better and more robust results. This is the idea exploited in
this work. Acquiring sequential information is the usual scenario when working with mo-
bile platforms, and the implicit spatio-temporal restrictions between consecutive frames
can provide both efficiency and accuracy advantages by accumulating the information
obtained across consecutive frames.

Most of the works which also take advantage sequential data to obtain better scene
models, are based on SLAM or structure-from-motion techniques. Flint et al. [Flint
et al., 2011] combined geometric and photometric cues to obtain their scene model from
a moving camera. They integrate ideas from semantic reasoning in monocular images
and 3D information obtained with structure-from-motion. Similarly, Furlan et al. [Furlan
et al., 2013] proposed a method to estimate the 3D indoor scene layout from a moving
camera. They pre-process the sequence to obtain the camera motion and 3D map of the
environment. Tsai et al. [Tsai and Kuipers, 2012] described as well a method to create a
model of the environment using images acquired from a mobile robot. Since they focus
on a robot moving indoors they can adopt constraints about the camera motion and
the environment. Also working with multiple images, but not in a sequence, Furukawa
et al. [Furukawa et al., 2009] proposed how to reconstruct indoor environments from
multiple photographs.

Attending how to propagate semantic information in video sequences using probabilis-
tic frameworks. Badriranayanan et al. [Badrinarayanan et al., 2010] used a probabilistic
graphical model. They are able to use pixel-wise correspondences from motion estima-
tion, image patch similarities or semantical consistent hierarchical regions to propagate
the labels. Vazquez et al. [Vazquez-Reina et al., 2010] presented the Multiple Hypothesis
Video Segmentation method for unsupervised segmentation of video sequences. Rituerto
et al. [Rituerto et al., 2011] focused on label propagation indoors using images acquired

99



6.3. 3D SPATIAL LAYOUT PROPAGATION FRAMEWORK

(a) (b) (c) (d)

Figure 6.2: Steps of the method presented in [Lee et al., 2009]: First, straight lines are
detected in the image and grouped according to the scene vanishing directions (a). Then
structure hypotheses are proposed (b), and the orientation map is computed (c). Finally,
the hypotheses are compared against the orientation map. The best hypothesis is shown
in (d).

from a mobile robot. They learn the appearance of the different regions of interest from
some training examples and propagate them trough the sequence using a non-parametric
model. Similarly, Hussain et al. [Raza et al., 2013] estimate the 3D structure of outdoor
video scenes by computing different appearance, location and motion features.

Our work is also proposing a probabilistic framework to propagate semantic informa-
tion in sequences, in particular we aim to propagate the 3D layout of the environment
traversed by the camera. The initial frame layout is obtained using the state-of-the-art
single image technique presented in [Lee et al., 2009], and we then propagate and up-
date this information by making use of spatio-temporal restrictions and the new lines
detected in each consecutive frame. As previously mentioned, SLAM or structure-from-
motion steps are not needed.

6.3 3D Spatial Layout propagation framework

The objective of this work is to compute the 3D layout at every frame of a video sequence.
We exploit the fact that consecutive frames in a video have certain spatio-temporal
restrictions that constrain the possible variations in the scene acquired. Image lines are
very informative, but their detection is noisy. By propagating the possible layouts, we
improve the results and obtain a more robust estimation of the layout on each frame. As
detailed next, we adopt a particle filter based strategy to track the posterior probability
of the layout given all the observations up to the current frame.

Algorithm 2 presents the steps of our algorithm. It is the frame at time t and Xt

is the layout state, compound by n layout hypotheses, Xt = {x1, x2, . . . xn}. For the
first frame, hypotheses are created using a single image algorithm. These hypotheses are
evaluated and ranked as detailed in the following subsections, and the best one is selected
as the solution for that frame. For next frames, new hypotheses (particles) are randomly
generated depending on previous hypotheses and their evaluation score. Again, these
hypotheses are evaluated in a similar manner and the best one is selected as the solution
in each of the following frames.

100



CHAPTER 6. 3D SPATIAL LAYOUT ON VIDEO SEQUENCES

Algorithm 2 Particle Filter algorithm.

Input: Video sequence: It|t = 0 . . .# frames
Output: 3D Scene Structure Layout: bestHypt

X0 = generateHypothesisFromImage(I0)
p0 = evalHypotheses(X0, I0)
for i = 1 . . .# frames do

Xt = sampleNewHypotheses(Xt−1, pt−1)
pt = evalHypotheses(Xt, It)

end for

This propagation method can be used with different single-image techniques. We
study the use of two different approaches.

First, we have integrated the method proposed by Lee et al. [Lee et al., 2009]. This
approach generates interpretations of the scene structure given a set of straight lines de-
tected in a single image. Their approach proposes several physically valid scene structures
that are then validated against an orientation map to find the best fitting model. The
code of this approach is available on-line 1, including a basic model for the environment
with three walls: left, middle and right.

To model more complex environments, we adapt and integrate the single-image tech-
nique proposed by López et al. [López-Nicolás et al., 2014]. This proposal computes
the scene layout from an omnidirectional image. Authors propose to start the process
by looking for a basic scene layout: a rectangular room around the camera. Once this
layout has been detected they proceed to expand it by looking for plausible walls and
corners. The method uses floor points as base to build and expand the hypothesis.

A common point of both single-image techniques is that they are based on line de-
tection. They need to compute lines and vanishing directions of the observed scene in
each image. In each frame, the image lines are detected using a Canny edge detector
(Kovesi [Kovesi, 2000] Matlab toolbox). The vanishing points are detected following the
method presented by Rother [Rother, 2002].

Next sections describe the particularities of both methods. From this point we are
going to consider the method in [Lee et al., 2009] as the Baseline model method, and the
adaptation of the method in [López-Nicolás et al., 2014] as the Complex model method.

6.3.1 Creating and propagating Baseline model hypotheses

The single image algorithm proposed by Lee et al. [Lee et al., 2009] generates interpre-
tations of the scene structure given a set of straight lines detected in a single image.
This approach proposes several physically valid scene structures that are then validated
against an orientation map to find the best fitting model.

1Code: http://www.cs.cmu.edu/~dclee/code/index.html
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distance between layouts, d(xi, xobs), is computed as the mean distance between
the junctions, jk, of both layouts. The score is computed as follows:

Smodel i =
1

1 + d(xi, xobs)
where d(xi, xobs) = mean

k=1...4
(||jk, jk obs||) (6.4)

The three scores are used together as evaluation: Stotal i = mean(Somap i, Slines i, Smodel i).

Sampling new hypotheses

A new set of hypotheses is created by sampling from the hypotheses of the previous frame
and their evaluation score. For each hypothesis, a score has been computed, Stotal i.
The number of new hypothesis sampled from each previous hypothesis depends on this
score. The probability of generating a new hypothesis, x′i, from previous hypothesis xi
is pi = Stotal i. New hypotheses are created randomly, high scores will generate more
new hypotheses since they are more probable, and low scores hypotheses will receive few
samples or even disappear.

The model used parametrizes the layout as four coplanar junction points and the van-
ishing points of the scene. Given the camera motion, a homography relates the projection
of the coplanar junctions between frames and the vanishing points are related by the
rotation matrix. To create a new hypothesis from a previous one, we assume a random
motion of the camera, with zero velocity and random noise in camera translation and
rotation. Random rotation and translation are created, R and t, from 3 random angles
(R = f(roll, pitch, yaw) and 3 random translations (t = [tx, ty, tz]

T ). From hypothesis
xi, sampled hypothesis x′i will be related by the random R and t. The junctions are
related by a homography, H:

j′k = H · jk = (R− t nT

d
)jk (k = 1 . . . 4) (6.5)

where n is the normal of the plane where the junction points lie and d the distance
between the camera and the plane. We assume d distance as unitary so the scale of the
random translation t is defined by the real distance to the plane. The vanishing points
are related by the rotation matrix:

V P ′k = R · V Pk (k = 1 . . . 3) (6.6)

Every time that a hypothesis is sampled, random R and t are created.

6.3.2 Creating and propagating Complex model hypotheses

We adapt now the hierarchical method proposed in [López-Nicolás et al., 2014] to com-
pute the scene layout from an omnidirectional image. This method starts the building
process by looking for a basic scene layout: a rectangular room around the camera. Once
this layout has been detected it is expanded by looking for plausible walls and corners.
The method uses floor points as base to build and expand the hypothesis.
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From hypothesis xi, sampled hypothesis x′i will be related by the random R and t.
Points, pt, of the floor lines are related by a homography:

pt′ = H · pt = (R− t nT

d
)pt (pt ∈ lFi |i = 1 . . . n) (6.11)

and the vanishing points are related by the rotation matrix:

V P ′k = R · V Pk (k = 1 . . . 3) (6.12)

Ceiling points relation. Through the computed homography, we are able to relate
the points on the floor, however we cannot relate the points in the ceiling of the scene,
since they are part of a different plane. To relate the ceiling points, we assume that the
distance between camera and floor remains the same between consecutive frames. We use
the cross ratio to relate the height of the scene between images, Fig. 6.8. Given 4 collinear
points, A, B, C and D, the cross ratio, CR remains invariant for any perspective. The
collinear points in our case are the two intersections defining the height of the room
in the image, b and d, the vertical vanishing point, a, and the intersection between the
vertical line and the line of the horizon, c. Since we consider the camera height to be the
same between consecutive frames, the horizon is the same and the cross ratio remains
constant. So, the cross ratio, CR, is computed in the current image as:

CR =
|ac|
|ad|
|bd|
|bc|

(6.13)

where |ac| is the signed distance between a and c. Therefore, we obtain the ceiling point
from the the floor point in next image as:

|b′d′| = CR
|a′d′||b′c′|
|a′c′|

(6.14)

6.4 Experiments

6.4.1 Analysis of the proposed method parameters

This section shows how the accuracy of our method varies with two important choices:
a) the evaluation measurements used and b) the number of particles used. The results
shown in this section correspond to the Entrance 1 sequence.

Experimental settings

We have tested our method on the 10 sequences included in the dataset presented
in [Furlan et al., 2013]. These sequences have been acquired indoors with two differ-
ent mobile cameras (Fig. 6.9) and include between 203 and 965 images. For all the
sequences, the ground-truth has been manually annotated in one out of ten images.

Figure 6.9 shows example frames of all the dataset sequences. Not all of the envi-
ronments captured in these sequences fit the layout model adopted in this work, some
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Corridor Entrance 1 Entrance 2 Lounge 1 Lounge 2

Room 1 Room 2 Room 3 Room 4 Room 5

Figure 6.9: First image of all the sequences included in the dataset [Furlan et al., 2013].

sequences consist of more than three walls (Corridor and Room 4) or the Manhattan
World assumption cannot be applied (walls are not orthogonal in Room 1).

The accuracy of the solution is computed as the number of pixels where the orientation
defined by the ground-truth and the orientation computed from the layout hypothesis
is the same divided by the total number of pixels of the image

Accuracy = 100

nPix∑
k=0

omap(GT )k = omap(xi)k

nPix
(6.15)

where k is the pixel index, GT denotes the ground-truth layout, xi is the layout hypoth-
esis being analyzed and the number of pixels in the image is nPix = width× height.

Influence of the evaluation measurement

Tables 6.1a and 6.1b show the mean accuracy of the solution hypothesis on all the frames
of the sequence. It analyzes the contribution of the different evaluation measurements
in the accuracy of our method. For the Baseline model, results show clearly that com-
bining the different evaluation measurements we get to choose always a better solution.
However, for the Complex model the combination of both measurements give worse re-
sults than using just the orientation map evaluation, so for the next sections just the
orientation map evaluation will be used for this model.

Influence of the number of particles

Tables 6.1c and 6.1d show the accuracy of the tested methods depending on the number of
hypotheses. The worst results correspond to the minimum number of hypotheses studied
for both models, 25 hypotheses, from that point the resulting values improve. However,
augmenting the number of hypotheses do not represent a big change in the method
accuracy. This allows to reduce the computation time of the algorithm by keeping the
number of hypothese low.
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Table 6.1: Accuracy of the proposal depending on the method paramenters.

(a) Baseline model - Evaluation
methods

µ
Somap 70.58
Slines 75.47
Smodel 59.38
mean(Somap, Slines) 78.70
mean(Somap, Smodel) 84.05
mean(Slines, Smodel) 75.14
Stotal 86.86

(b) Complex model -
Evaluation methods

µ
Somap 79.50
Soverlap 53.40
Stotal 75.88

(c) Baseline model
- Number of Hy-
potheses

µ
25 73, 24
50 86, 80
100 81, 02
250 85, 09
500 83, 63
1000 86, 48

(d) Complex
model - Number of
Hypotheses

µ
25 72, 44
50 75, 88
100 81, 35
250 77, 01
500 75, 54
1000 78, 47

6.4.2 Analysis of the proposed framework with different single-image
techniques

This section compares the performance of the proposed framework to propagate the
scene layout with different models. It also compares this performance with the perfor-
mance obtained running the single image methods studied, the Baseline and the Complex
model, on all the images of a sequence. The experimental settings are the same that for
the previous analysis. We analyze the performance propagating 50 and 100 hypotheses,
all the evaluation measurements have been used for the Baseline model and just the
orientation map evaluation for the Complex model. These results are shown in table 6.2.

We should note the performance differences depending on the model used. We see how
the Complex model performs on average about a 10% better than the Baseline model.
At the same time, the Complex Model represents better environments that do not fit the
3 walls scene modeled by the Baseline modelm such as Corridor or Room 4. However,
when the environment fits that simple layout, the difference between both models is not
so clear and the Baseline model performs good, even better solutions that the Complex
model in some cases, e.g. see results for Entrance 1 and Room 1 in table 6.2.

We also analyze the differences between running a single-image algorithm in all the
frames and using the propagation approach. We see how the best accuracies correspond
to the propagation of 50 hypotheses for the Baseline model and 100 hypotheses for the
Complex model, however, the differences are small. The great advantage of using the
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Table 6.2: Accuracy of the proposed framework and different models.

Baseline Model Complex Model
Single Image Propagation Single Image Propagation

50 Hyp. 100 Hyp. 50 Hyp. 100 Hyp.
Corridor 56.84 42.93 49.66 81.31 67.38 71.07
Entrance 1 80.13 86.80 81.02 81.50 79.50 75.53
Entrance 2 74.27 71.34 65.91 68.98 59.89 66.92
Lounge 1 47.40 56.52 26.42 56.51 50.42 52.58
Lounge 2 36.38 31.78 24.85 62.15 68.02 64.75
Room 1 50.73 60.69 57.30 59.84 54.01 55.30
Room 2 66.79 75.91 67.52 73.15 84.46 75.83
Room 3 36.82 63.42 60.60 59.62 63.35 65.58
Room 4 25.93 20.64 22.95 44.08 54.10 68.36
Room 5 64.70 69.27 85.44 81.99 83.90 88.08
Average 54.00 57.93 54.17 66.91 66.50 68.40

propagation framework is the reduction in the number of hypotheses, reducing the time
needed to process each frame. When the approaches are run in a single image, around
850 hypotheses are generated. However, when the propagation framework is used, the
number of hypotheses can be reduced to 100 or even 50, obtaining better or similar
performances while reducing the running time, that is proportional to the number of
hypotheses.

Finally, Figure 6.10 shows examples of the layout solution obtained for some frames
of the dataset propagating the Complex Model. If we look at the layout for the Corridor
sequence, we can see how this model can represent all the planes of the scene, obtaining
a really good estimation. When lines are occluded, the method performs worse because
the evaluation of the hypotheses is less accurate. For example, in sequences Lounge 1,
Lounge 2 and Rooms 1 and 3 the layout fits the environment, but the method fails in
adjusting hypotheses lines to the structure.

6.4.3 Improving object recognition tasks

This subsection shows results on object recognition tasks, poster detection in this case,
using an egocentric vision dataset.

Experimental settings

The images used in this second experiment are part of the Wearable Computer Vision
Systems dataset, further described in appendix A. It consists of several indoor sequences
acquired with wearable vision sensors. We have selected certain frames along those se-
quences that contain poster or signs, our objects of interest, to be able to demonstrate
how the context information provided by the layout helps to automatically discard wrong
detections.

We analyze how the performance of a sign detector can be improved by using the
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Corridor Entrance 1 Entrance 2 Lounge 1 Lounge 2

Room 1 Room 2 Room 3 Room 4 Room 5

Figure 6.10: Examples of the resulting layout in some frames of all the dataset sequences.
They show how the layout parametrization fits most of the environments of the dataset.
Best seen in color.

layout information as prior information. We run the (rectangular) sign detector presented
in [Cambra and Murillo, 2011]. We use the layout information to filter the rectangles
and detect which ones are actual signs. We compute the Precision and Recall of the
correctly detected signs given the rectangles provided by this detector, i.e., among those
hypothesis given by the detector, which ones are correct or wrong after the filtering
achieved thanks to the layout information.

Poster detection evaluation

Fig. 6.11 shows how the layout information improves the detection of posters in the
images. We run the sign detector presented in [Cambra and Murillo, 2011] on a selection
of images of the dataset. The detector creates detection hypotheses all over the image,
but just some of them are correct. The rectangle hypothesis detected can be easily
filtered using the scene layout and prior knowledge about man made environments to
decide which hypothesis actually correspond to posters/signs or not:

• Scene objects are aligned with the scene vanishing points and with the vanishing
points of the scene plane where they lay.

• Interesting objects, posters in our case, appear in walls, nor in floor or ceiling.

• Posters height is smaller than the wall height, they appear close to the eyes height
(camera height in our case) and do not appear on top or bottom parts of the wall.

Sign detector detects 25 sign candidates per frame on average, and about 18 of these
candidates are rejected (not aligned with the vanishing directions or are part of more
than one layout region). The sign candidates remaining after the filtering are classified
into poster or no poster. The precision of this classification is 95.24% and the recall
is a bit lower 88.19%. The main reason for these high values is the filter step, where
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Chapter 7

Conclusions

This thesis has studied different vision based tools to create models and representations of
the environment. Particular interest has been shown to the use of egocentric systems and
omnidirectional cameras and interesting results have been achieved in the creation of en-
vironment representations at different semantic levels. The main contributions comprise
from methods to create detailed 3D metric models of the environment using omnidirec-
tional vision to techniques to build rough topological models with enhanced information
about the kind of place where images were acquired. An important part of this work
has been focused on augmenting the semantic information of the environment models to
create applications where human-computer interaction is fundamental.
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Creating models of the environment with computer vision

Intelligent systems require a proper representation or model of the environment to be
able to understand his surroundings and perform complex tasks in it. This thesis has
presented different techniques to create these representations.

In the case of metric models of the environment, we have focused on the use of om-
nidirectional cameras for SLAM. We have adapted a SLAM application to work with
omnidirectional vision systems. The adaptation consist in the integration of the Spher-
ical Camera model in a Extended Kalman Filter based visual SLAM. This adaptation
allows to work with all kind of central vision systems (e.g. conventional cameras, cata-
dioptric or dioptric systems) since all of them can be modeled with the Spherical Camera
projection model. Experiments with real data have shown the superiority of omnidirec-
tional systems over conventional cameras for this application. Trajectory and orientation
estimations are better with the omnidirectional camera than with the conventional one,
as well as the 3D reconstruction of the scene.

In the case of topological models, we have presented a new method to classify indoor
omnidirectional images according to the type of area where they were acquired. We have
designed our approach to classify images as Places or Transitions, further classified into
different types of Places (Big, Medium or Small room, Corridors) and Transitions (Door,
Jamb, Stairs, Elevator). The classifier is based on the Gist global descriptor, that we
have adapted to work with omnidirectional images. The general idea to create enhanced
topological models is to simultaneously run a topological map building approach and the
Place-Transition classifier to label the different types of indoor scenes. We have included
a Hidden Markov Model to add spatio-temporal consistency. A detailed semantic analy-
sis of the types of transitions is not common although it provides important information
for later uses of the map. As a result of this approach we get a topological map of the
environment where the nodes correspond to Places and the links to Transitions.

We have also presented a new line-based global descriptor for omnidirectional images.
The descriptor encloses the structure of the scene observed, by encoding the distribu-
tion of lines, and aims to categorize images according to this structure. We compute
the boundaries in the image that correspond to lines of the environment and then we
classify them according to the vanishing points. The descriptor is built as a histogram
that captures how the different types of lines lay in the image space. Experiments for
scene categorization show that the performance of our proposed descriptor is close to
state-of-the-art global descriptors. Besides, our approach has shown interesting advan-
tages: small size, reducing the memory consumption and comparison time, and higher
rotation invariance are interesting properties for person-mounted and robotic cameras.
We have tested our descriptor with two sets acquired with two different omnidirectional
systems, catadioptric and panoramic images. This shows how our proposal can be easily
adapted to any kind omnidirectional image.
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CHAPTER 7. CONCLUSIONS

We have addressed also the creation of visual BoW representations. We have pre-
sented a new method to build an enhanced visual vocabulary from an image sequence
that learns semantic relationships between visual words of the working environment.
The key elements of the method are the use of tracked scene points and the inclusion of
geometric information of the key-points azimuth angles when building the visual words.
Our approach is focused on long term robotics applications. With his purpose, we have
considered systems where the camera points to the ceiling, which facilitates the acqui-
sition of more stable and repetitive scene elements. Exhaustive experimental validation
with indoor sequences, has shown the influence of the different method parameters in its
performance and enhanced semantic properties. A comparison with the usual k-means
vocabulary presented our method as a richer alternative for the usual BoW approach to
build a visual vocabulary. Our method provides more representative semantic informa-
tion of the environment, including relationships between visual words and environment
objects or parts.

Finally, we have presented a framework to estimate the 3D spatial layout of all the
frames of a video sequence. The framework is designed to work indoors and makes use
of a single-image technique to compute the 3D spatial layout in the first frame and
propagate this layout along the video sequence. The single-image technique is integrated
with a Particle Filter to take advantage of the sequential information of video sequences.
We have used two single-image techniques and showed how to integrate them in the
proposed framework. First we have integrated the method proposed in [Lee et al., 2009].
To model more complex environments, we have adapted the method proposed in [López-
Nicolás et al., 2014] for omnidirectional images and integrated it with our framework.
Our experiments have analyzed the different parameters of the method and compared
the performance of the two single-image methods. The integration of single-image meth-
ods with our propagation framework produces lightly better results than running the
single-image techniques on each image of the sequence. Additionally, the use of the
propagation framework allows to reduce the number of hypotheses computed on each
frame, reducing the computation time. Our experiments have also demonstrates how
the 3D layout we obtain provides useful priors for recognition tasks. In particular we
have shown how poster detection can be improved by easily rejecting the numerous false
positive detections.

Future work

A point discussed in this work are the benefits of integrating different models of the
environment working together, however . Different models with different precision for the
localization can complement each other weaknesses and improve the modeling. Also, the
use of different models providing different semantic information about the environment
can improve the performance of other tasks such as object recognition. Our objective for
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the close future is to develop a method integrating the different modeling levels studied:
metric, topological and semantic, in order to create an base application to assist a person
in the navigation on a new environment.

Great part of this thesis focuses on the use of wearable vision systems, usually with
an omnidirectional camera. These systems are getting more and more attention lately
with the appearance of affordable wearable cameras providing top video quality [GoPro,
2014, SONY, 2014, Contour, 2014]. More recently, are appearing new cameras that use
omnidirectional vision [Giroptic, 2014,Geonaute, 2015,CENTRCamera, 2015]. As future
work, I plan to keep researching in the use of wearable camera systems, both conventional
and omnidirectional, to create assistance applications. Wearable cameras can be used as
part of navigation assistance systems, to detect the position of the user and guide him
to its destination or to the different elements of the environment. Additionally, these
cameras have a huge potential as safety devices for cyclists or motorcyclist for example,
to be aware of the surroundings all the time.
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Appendix A

Public Datasets used

Different datasets and vision systems have been used along the different chapters of
this thesis. Some of them are well known and widely used public datasets, such as the
Rawseeds project, while others have been created for this work and released on-line for
public use. All the sequences used have been acquired from an egocentric point of view,
where the camera moves with the acquisition platform, and it points to the area of interest
for the system. An important point of the work here described is the use of wearable sensor
platforms, and most of the datasets used on this thesis have been created with these kind
of platforms. Wearable systems are becoming very popular lately, and they are appropiate
platforms to develop new human assistance applications.
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A.1. THE WEARABLE OMNIDIRECTIONAL VISION SYSTEM DATASET

(a) (b)

Figure A.1: Wearable Omnidirectional System Dataset. (a) Map of the building where
the dataset has been acquired, different colors mean different type of area traversed. (b)
Acquisition system: an omnidirectional catadioptric camera mounted on a helmet.

A.1 The Wearable Omnidirectional Vision System Dataset

The work in section 3 presents a method to create an enhanced topological model of
an indoor environment. The method is designed for omnidirectional vision, particularly
for a wearable omnidirectional system so it has been tested with such platform. The
data used for this test is part of the Wearable OmniDirectional Vision System Dataset 1

acquired for this work and presented in [Rituerto et al., 2014c].

A.1.1 Environment

The dataset acquisition has been performed inside one building at our Campus at the
University of Zaragoza, Spain. The building has three floors and includes areas of differ-
ent types: corridors, research laboratories, offices, classes, etc. The acquisition has been
performed by a person wearing the helmet, so the dataset suffers the typical motion of
a person walking. A long trajectory covering as much areas as possible was performed
(many areas are locked or with restricted access so it was not possible to cover all re-
gions in the building). Figure A.1(a) shows the map of the three floors of the building
highlighted with different colors, depending on the type of area traversed during the
acquisition. The gray areas are parts not included in the dataset.

1http://robots.unizar.es/omnicam/
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APPENDIX A. PUBLIC DATASETS USED

Table A.1: Camera calibration.

Im. size 1024x768

xc 528.13
yc 407.40

fx 379.08
fy 378.25

ξ 1.25

A.1.2 Acquisition platform

The dataset was acquired with our Wearable OmniCam acquisition system. This system
includes a small hyper-catadioptric camera mounted on the top of a helmet (Fig. A.1(b)),
a 3-axis IMU (compass, gyroscope and accelerometer) and a GPS device. The three sen-
sors are synchronized and the camera has been calibrated using the approach described
in [Puig et al., 2011]. However, the presented data has been acquired indoors, so GPS
is deactivated. IMU data is also not used in this work, that is a purely vision based
approach, but could be used for future works and included in the published data. Up to
our our knowledge this is the first dataset published form indoor environments with a
wearable omnidirectional camera.

Camera system

The visual data of the dataset has been acquired with a catadioptric system. It consists
of 20905 omnidirectional images at 1024x768 pixels resolution acquired at a frame rate
of 10 FPS. This catadioptric system has been made by vStone (Model: VS-C14U), it
is compound by an USB camera and a small hyper-catadioptric mirror, it can be seen
inFig. A.1(b).

Camera calibration

A.1.3 Ground truth

The ground truth labeling of the building areas has been made separating Places and
Transitions. We consider the main spaces of a building, like corridors or rooms, as Places.
Transitions label comprises all the areas joining different Places: doors, stairs, elevators,
etc. The more detailed classification in type of Places or type of Transitions has been
chosen to adequately describe the environment of acquisition. Places are classified as
Big, Medium and Small Rooms and Corridors. Typically small rooms correspond to
offices, medium to classes and big to halls or laboratories, for simplicity we classify them
according to their size despite their different uses. Transitions are classified as Doors,
Jambs, Stairs and Elevators. The areas labeled as Transitions starts about 0.5 meters
before and ends about 0.5 meters after the Transition has been crossed.
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A.1. THE WEARABLE OMNIDIRECTIONAL VISION SYSTEM DATASET

Places

Corridor Big Room Medium Room Small Room

Transitions

Door Jamb Stairs Elevator

Figure A.2: Examples of images labeled in the ground truth as elements of the different
classes and subclasses.

Table A.2: Number of clusters of each class in the dataset. Values between parentheses
are the number of images of that class/subclass.

Places
TOTAL Corridor Big Room Medium Room Small Room

56 (16522) 38 (12577) 7 (1559) 3 (1021) 8 (1365)

Transitions
TOTAL Door Jamb Stairs Elevator

55 (4382 ) 40 (1268) 9 (514) 4 (1933) 2 (667)

All images have been manually labeled with the type of area where acquired and
its position. Consecutive images labeled with the same type of area have been grouped
into clusters. Table A.2 shows the number of clusters and the number of images, in
parentheses, of each type.
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Figure A.3: Robotic platform, (a), and trajectories followed during the acquisition of
both sequences: (b) for sequence 1 and (c) for sequence 2.

A.2 Snowwhite robot Dataset

For the work in section 5 a new dataset is created. This work presents a method to
enhance visual bag of words including information about important elements of the
environment in the words. A particular point of the work is that it focus on long term
operation. Pursuing this objective, the camera is set pointing to the ceiling so more
stable regions and elements of the environment are captured. Since this configuration is
not usual, we have acquired a new dataset that has been released for public use 2.

A.2.1 Environment

The dataset was acquired from a robotic platform at the AASS laboratories and offices
in Örebro University, Sweden. The platform includes many sensors but we just used the
wide angle camera. It includes two image sequences of two different trajectories around
the same environment acquired at different days and following different trajectories.
Both trajectories present certain overlapping in some parts of the sequence.

A.2.2 Camera system

The camera used is a uEye camera with a fish-eye lens. It has been set pointing to the
ceiling to capture elements of the environment more stable over time with the objective
of create applications for long term operation.

Camera calibration. To calibrate the camera and as projection system we used The
Omnidirectional camera model presented in [Scaramuzza et al., 2006a].

A.2.3 Ground truth

The dataset includes the ground truth for the robot location and for important objects
of the environment.

2http://aass.oru.se/Research/Learning/datasets.html
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A.3 The Wearable Computer Vision Systems dataset

Section 6 makes use also of a different dataset: The Wearable Computer Vision Systems
dataset 3. This dataset is designed to evaluate different wearable computer vision sys-
tems, cameras that are worn by a person, mounted or attached to a human body, but
not necessarily with the same point of view than the user. This dataset was released
in the context of the ICCV 2013 Workshop on Wearable Computer Vision Systems 4.
During the acquisition of this dataset, several camera systems are worn simultaneously
by 5 different users in 2 different scenarios. The goal is to acquire different perspectives
of typical actions and activities performed indoors by an individual.

A.3.1 Environment

The acquisitions have been performed in two different buildings on Campus Ŕıo Ebro,
in Zaragoza, Spain. And different users have wear the system. Users differ in height and
sex, and the trajectories followed are also different

A.3.2 Acquisition platform

Each trajectory includes recordings from different vision sensors:

• an omnidirectional camera mounted on a helmet (helmet including IMU measure-
ments);

• a RGB-d camera mounted on the head front;

• a mobile phone camera with;

• a wide angle lens mounted on the chest;

• a wide angle camera (GoPro Hero 2) mounted on the head front.

Camera system

For the las experiment performed in section 6, images from this dataset were used.
The objective of this experiment is to show how the information of the scene structure
can improve further tasks such as object recognition. Particularly, it demonstrate how
poster detection can benefit from the inclusion of information about the structure of the
environment traversed. Images from the head mounted camera are used (GoPro Hero 2)
where different posters and signs appear in the images.

A.3.3 Ground truth

The ground truth of this dataset is to be released.

3https://i3a.unizar.es/es/content/wearable-computer-vision-systems-dataset
4https://sites.google.com/site/wwcv2013/home
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A.4. THE RAWSEEDS DATASET

(a) (b) (c)

Figure A.5: Bovisa (outdoor + mixed) dataset. (a) shows the Robocom platform. (b)
and (c) show the aerial view of the environment and the trajectory followed by the robot
split in two consecutive sections: first and second section respectively.

A.4 The Rawseeds Dataset

The Rawseeds Project 5 aims to build benchmarking tools for robotic systems. This is
done through the publication of a comprehensive, high-quality Benchmarking Toolkit
composed of: high-quality multisensor datasets, with associated ground truth; Bench-
mark Problems based on the datasets and Benchmark Solutions for the problems. The
datasets are composed of raw sensor data, and they have been acquired acquired at
different locations.

A.4.1 Environment

This thesis makes use of the data included in the Bovisa (outdoor + mixed) dataset
acquired with the Robocom platform in in the Politecnico di Milano campus located in
via Durando (Milan, Italy) (Fig.A.5). The explored environment include outdoor spaces
among low buildings, narrow outdoor passages between buildings, a ramp connecting
street level with a low terrace and the inside of a University buildings.

A.4.2 Acquisition platform

The sensors mounted on the Robocom platform are the following:

• Odometric system fitted to the Robocom robotic base.

• Binocular vision system, composed of a two-camera Videre Design STH-DCSG-
VAR system.

• Trinocular vision system is realized combining the binocular STH-DCSG-VAR with
an additional Videre Design DCSG camera.

5http://www.rawseeds.org
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A.4. THE RAWSEEDS DATASET

Table A.4: Camera systems calibration

(a) Conventional camera

Im. size 320x240
xc 171.91
yc 127.41
fx 195.72
fy 195.72
kc −0.34

0.15
0.0004

0
−0.034

(b) Omnidirectional camera

Im. size 640x640
Provided New

xc 326.13 325.56
yc 313.86 313.88
fx 274.95 266.23
fy 274.95 266.94
ξ 1 0.93

Angular resolution of the vision systems. Since we are using this data to perform
a comparison between two different vision systems, we need them to be comparable. The
angular resolution of a camera measures how many image pixels represent each degree
captured. For the conventional camera, whose images size is 320x240 pixels, the view
angles are 78o in the horizontal and 63o in the vertical direction. That gives angular
resolutions of 4.10pixelo and 3.80pixelo in horizontal and vertical directions respectively,
Fig. A.6(a). The omnidirectional camera captures the whole scene, 360o, around the
camera axis and 210o in the radial direction of the image. The angular resolutions depend
on where it is computed. It is 3.28pixelo in the radial direction. In the tangential direction,

the angular resolution goes from 2.09pixelo for the inner radius to6.02pixelo for the outer

radius, Fig. A.6(b). The average tangential angular resolution is 4.05pixelo .

The angular resolutions for both systems are similar, 3.80pixelo and 4.10pixelo for the

conventional camera, and 3.28pixelo and 4.05pixelo for the omnidirectional camera, so the
systems can be compared.

Camera calibration. The systems calibrations are included in the dataset. However,
for the omnidirectional system we computed a new calibration. The reason is that the
given calibration estimates ξ = 1 what corresponds to an para-catadioptric system, while
the camera is hyper-catadioptric (0 < ξ < 1). The new calibration estimates ξ = 0.93.

A.4.3 Image sequences used

The whole sequence used 6 is compound by about 32200 omnidirectional images and
64400 conventional images. The frame rate for the omnidirectional images is 15 FPS while
for the conventional camera ims set to 30 FPS. That causes the difference in the number
of images of each type. For the experiments performed in section 2, the Bovisa (outdoor +
mixed) dataset has been split in small challenging trajectories, Fig. A.7. All the selected

6http://www.rawseeds.org/rs/capture_sessions/view/11
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Trajectory 1 Trajectory 2 Trajectory 3

Trajectory 4 Trajectory 5

Figure A.7: Selected trajectories.

trajectories correspond to outdoor sections, the reason is the poor illumination of most
of the indoor images.

• Trajectory 1: The simplest trajectory studied. The robot performs a 90o turn.

• Trajectory 2: Robot perform different turns to both sides.

• Trajectory 3: The robot moves along a corridor and performs a 180o turn to come
back trough the same area.

• Trajectory 4: The robot performs a wide turn of and comes back to the same
position.

• Trajectory 5: The most complex movement studied. The robot performs many
turns, two of them of 270o.

A.4.4 Ground truth

The dataset includes the ground truth for the robot trajectories. This ground truth is
provided in two forms: GPS location and corrected odometry. The GPS location, despite
being more precise than the odometry (maximum error of 2cm), is not available in all the
sequence due to the outdoor indoor changes. Even when we are using just the outdoor
data, recovering the GPS signal takes time and produces the lost of some position data.
That is the reason to use the odometry data as ground truth for the experiments. Fig. A.7
shows the odometry trajectories of the selected sequences.
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A.5. MICHIGAN DATASET

Corridor Entrance 1 Entrance 2 Lounge 1 Lounge 2

Room 1 Room 2 Room 3 Room 4 Room 5

Figure A.8: First image of all the sequences included in the dataset.

A.5 Michigan Dataset

For section 6we have used the dataset presented in [Furlan et al., 2013]. In that work,
authors introduce a new dataset 78 to evaluate the full capabilities of their approach.
Their approach address the problem of estimating the 3D structural layout of complex
and cluttered indoor scenes from monocular video sequences, where the observer can
freely move in the surrounding space. So, contrary to previous similar datasets, the
observer can move freely around to observe the scene.

A.5.1 Environment

The dataset includes 10 sequences in a variety of environments, spanning offices, corri-
dors and large rooms. Most of the sequences frame ground-walls boundaries for short
periods or do not frame them at all, making difficult thier detection. Other sequences
present scenes that cannot be represented by a simple box layout model or relying on
the Manhattan world assumption.

A.5.2 Camera systems

All the sequences were collected with common smartphones, to test the proposed method
in real life scenarios with low-cost sensors. These smartphones correspond to a Samsung
Galaxy S2 used for sequences Corridor, Entrance 1 and 2, Lounge 1 and 2 and Rooms
1 to 3, and a Nokia Lumia 920 used to acquire sequences Room 4 and 5. First image of
all the sequences are shown in Fig. A.8.

Camera calibration

7http://vision.stanford.edu/3Dlayout/
8http://www.ira.disco.unimib.it/free_your_camera
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Im. size 720x480

xc 246.26
yc 364.27

fx 588.51
fy 586.22

(a) Samsung Galaxy S2

Im. size 1280x720

xc 424.14
yc 706.87

fx 1023.02
fy 1040.83

(b) Nokia Lumia 920

A.5.3 Ground truth

Authors designed the dataset to evaluate their 3D structural layout method. For this
purpose they annotated the first frame of all the sequences with the different surfaces
that define the structure of the scene. To evaluate their approach, they processed all the
sequence, but always evaluate comparing with this first frame projecting the solution
to the first frame of the sequence. They can do this because they have run a Structure
from Motion algorithm, so they have the camera translation and rotation of the camera
between frames.

In our case, the work presented in section 6, estimates the 3D structure of the scene
without computing the motion between cameras, so this kind of evaluation cannot be
made. We annotate one of every ten frames of the rest of the sequence, to be able to
evaluate our approach.
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