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Abstract. Intelligent systems need complex and detailed models of their
environment to achieve more sophisticated tasks, such as assistance to
the user. Vision sensors provide rich information and are broadly used
to obtain these models, for example, indoor scene modeling from monoc-
ular images has been widely studied. A common initial step in those
settings is the estimation of the 3D layout of the scene. While most of
the previous approaches obtain the scene layout from a single image,
this work presents a novel approach to estimate the initial layout and
addresses the problem of how to propagate it on a video. We propose to
use a particle filter framework for this propagation process and describe
how to generate and sample new layout hypotheses for the scene on each
of the following frames. We present different ways to evaluate and rank
these hypotheses. The experimental validation is run on two recent and
publicly available datasets and shows promising results on the estima-
tion of a basic 3D layout. Our experiments demonstrate how this layout
information can be used to improve detection tasks useful for a human
user, in particular sign detection, by easily rejecting false positives.
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1 Introduction

Vision systems have become an essential perception component in all kinds of au-
tonomous and intelligent systems, including assistance oriented systems such as
household robots or wearable visual assistance devices [5,29]. There is a growing
interest on applications using wearable cameras for vision assistive approaches,
frequently towards assistance for impaired people [25,4].

These applications are based on visual recognition systems, and it has been
shown many times that context information is essential to achieve better recog-
nition performance in real world problems [26]. Even a basic 3D model of the
scene provides useful information about the environment structure that facili-
tates automatic scene understanding. For example, it can help us identify the
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Fig. 1. Our goal is to process video acquired from a wearable camera to obtain the
3D layout of the scene in each frame (Red: floor and ceiling; Green and Blue: walls
from different orientations). This layout information is a strong prior to facilitate the
detection of other scene details: persons, signs, doors or the traversable area.

type of area traversed (e.g., a corridor or a room) or provide strong priors for
detection and recognition of objects [14].

This work extends the work presented in [20]. Our goal is to provide a ba-
sic 3D model of the environment traversed while recording a video (Fig. 1) to
enhance the performance of more complex tasks. We aim to achieve this goal
without computing accurate camera motion or 3D maps of the environment.

2 Related Work

The estimation of the 3D layout of a scene from an image is a widely studied
problem, as well as the advantages on using this layout information to facilitate
further tasks. Prior work demonstrates the advantages of using scene layout
information to improve recognition tasks. A simple 3D model of the scene or
3D spatial relationships between elements of the environment allows to better
understand the content of the scene and provide strong priors for detection
and recognition of objects [14,24]. Recent approaches [12,16,2] propose to solve
simultaneously the problems of estimating the layout of the scene and detecting
the objects that appear in it.

Earlier approaches to estimate the layout for general scenes include the work
by Hoiem et al. [13], that proposed to learn appearance-based models of the
scene parts (sky, floor, vertical objects) and described the scene geometry using
these coarse labels. Later, Saxena et al. [23] used Markov Random Fields to infer
plane parameters, such as 3D location and orientation, for homogeneous patches
extracted from the image. For indoor environments, where certain additional
assumptions can be made, we find the work proposed by Delage et al. [7], where
a dynamic Bayesian network model is used to find the ”floor-wall” boundary in
the images assuming a Manhattan World [6]. Lee et al. [17] presented a method
to generate interpretations of a scene from a set of line segments extracted from
an indoor image. Similarly, Hedau et al. [11] proposed how to model the scene
as a parametric 3D box. Gupta et al. [10] extended this idea to outdoor scenes
and proposed how to create physical representations of outdoor scenes where
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objects have volume and mass, and their relationships describe the 3D structure
and mechanical configurations.

Papers described so far analyze the structure of a single image. However,
if we consider images that belong to a video sequence, we could propagate the
information already obtained about the scene and obtain a better, more efficient
or more robust result. Spatio-temporal restrictions between consecutive frames
can provide both efficiency and accuracy improvements by accumulating the
information obtained in each of them. This is one of the key ideas exploited in
this work.

Most of the recent approaches taking advantage of sequential information, are
based on SLAM or structure-from-motion techniques. For example, Flint et al. [8]
combined geometric and photometric cues to obtain their scene model from a
moving camera. They applied ideas from semantic reasoning in monocular images
and 3D information obtained using structure-from-motion techniques. Similarly,
Furlan et al. [9] proposed a method to estimate the 3D indoor scene layout from
a moving camera. They pre-process the sequence to obtain the camera motion
and a 3D map of the environment. From these results the method creates scene
hypotheses that are evaluated and improved along the sequence. Tsai et al.[27]
described a method to create a model of the environment using images acquired
from a mobile robot. Since they focus on a robot moving indoors they can adopt
constraints about the camera motion and the environment. The method uses
different hypotheses describing the environment, that are updated with new
details discovered while the robot moves.

Also related to our approach, we find papers on how to propagate semantic
information in video sequences using different probabilistic frameworks. Badri-
ranayanan et al. [1] used a probabilistic graphical model. They are able to use
pixel-wise correspondences from motion estimation, image patch similarities or
semantical consistent hierarchical regions to propagate the labels. Vazquez et
al. [28] presented the Multiple Hypothesis Video Segmentation method for un-
supervised segmentation of video sequences. The method works with a few frames
at a time and creates, propagates and terminates the labels without supervision.
Rituerto et al.[21] focused on label propagation indoors using images acquired
from a mobile robot. They learn the appearance of the different regions of inter-
est from some training examples and propagate them trough the sequence using
a non-parametric model. Similarly, Hussain et al. [19] estimate the 3D structure
of outdoor video scenes by computing different appearance, location and motion
features.

Our work also proposes a probabilistic framework to propagate semantic
information in a sequence, in particular, we aim to propagate the 3D layout
of the environment traversed by a camera. We use a hierarchical method for
single image layout estimation adapted from [18], and we then propagate and
update this information making use of spatio-temporal restrictions and the lines
detected in each frame.
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Fig. 2. Scene layout model. The colored areas in the image encode the different planes
of the scene according to the surface orientation (red for horizontal, green and blue
for vertical). The black lines define the scene structure and are grouped as floor (lFi ),
vertical (lVi ) and ceiling lines (lCi ). A scene with n planes contains n ceiling and floor
lines and n − 1 vertical lines. Blue dashed lines denote the basic scene layout that
originated the complete layout. Black dashed lines are the horizon and vertical lines
defined by the vanishing points of the scene. (Best seen in color).

3 Initial 3D scene layout

This section presents our approach for single-view layout estimation. The pro-
posed method provides a set of scene layout hypotheses that will be automati-
cally evaluated, ranked and propagated accordingly. We adapt the hierarchical
method proposed in [18] to compute the scene layout from an omnidirectional
image. They proposed to start the process by looking for a basic scene layout: a
rectangular space around the camera. Once this basic layout has been detected,
they expand it by looking for plausible walls and corners. The method uses floor
points as base to build and expand the hypothesis. Fig. 2 shows the scene model
that we adopt inspired by those ideas. Since we are using conventional cameras,
with smaller field of view than omnidirectional cameras, the basic scene layout is
formed by just three walls, Left, Top and Right. As the original work, we expand
the basic layout in a hierarchical process.

Lines, vanishing points and intersections. In the first step of the method line
segments and vanishing points of the image are computed. To extract the image
lines Canny edge detector (Kovesi [15] Matlab toolbox) is run and the vanish-
ing points are detected following the method presented by Rother [22]. Then,
intersections between the detected line segments are computed.

Building a basic room layout. Room hypotheses are randomly generated from
the intersections computed. The process is shown in Fig. 3. To build a basic
room, a floor intersection is randomly chosen. The vanishing lines crossing in
that point are computed. To finish the hypothesis, another floor intersection
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Basic layout hypothesis Expanded layout hypothesis

Fig. 3. Basic and expanded scene layout hypotheses. In both figures, red lines represent
the vanishing lines used to build a hypothesis and red points are the points used to define
one hypothesis. To build a basic layout hypothesis (black lines), a floor intersection
point is chosen randomly and vanishing lines in the directions intersecting on that
point are computed. To complete the hypothesis another point is randomly selected
among those where vanishing lines intersect. To expand a basic layout hypothesis (blue
lines), we follow each of the basic room boundaries (left, top and right) and look for
intersections that enlarge the room area. Gray areas show the expansion area where
these intersections occur. (Best seen in color).

is chosen between those aligned with the computed vanishing lines. The lines
crossing in those points compound the basic room hypothesis.

Expanding a basic room layout. Given a basic room hypothesis, it can be ex-
panded to fit more complex environments. Fig. 3 shows this process. For each
boundary of the basic room model, we look for intersections that could enlarge
the floor area. The gray areas show where these intersections appear. The ex-
pansion process depends on the kind of boundary that we try to expand:

– Top boundary: we start with a random floor intersection in the Top boundary.
From this point, a vanishing line is computed and another point aligned with
this new line is chosen. This process is repeated until we close the area.

– Left or Right boundaries: in the case of Left or Right boundaries we define
two ways of expanding the floor. We can choose a point aligned with the Top
boundary as show for the Right boundary in Fig. 3, or choose a point in the
correspondent boundary as done for the Left boundary in the same figure.

Ceiling detection. We adopt the Indoor World model that combines the Man-
hattan World assumption [6] and a single-floor-single-ceiling model. This model
applies to most indoor environments and introduces symmetry between ceiling
and floor shapes, something useful when the floor-walls boundaries are occluded.
Once the floor boundaries have been defined, we look for the ceiling boundaries.
We assume floor-ceiling symmetry, so we just have to detect the height of the
room. We compute the first vertical line of our model, and look for ceiling inter-
sections aligned with that line: one is randomly chosen. When we have computed
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the height of one vertical line, the rest of the ceiling boundaries can be computed
drawing parallel lines to the floor boundaries and computing the intersections
with the rest of vertical lines.

4 Propagating the 3D layout in a video sequence

Once we are able to compute the scene layout from a single image, our goal is
to propagate this layout at every frame of a video sequence. We exploit the fact
that consecutive frames in a video have certain spatio-temporal restrictions that
constrain the variations in the acquired images. As seen before, the proposed
method for single-view scene layout estimation is based on line detection. Image
lines are very informative, but their detection is noisy. By propagating the possi-
ble layouts computed in one frame to the next frames, we are hoping to improve
the results and obtain a more robust estimation for each frame in the sequence.
We adopt a particle filter based strategy to track the posterior probability of the
layout given all the observations up to the current frame.

Algorithm 1 presents the main steps of our approach. It is the frame at
time t and Xt is the layout state, compound by n layout hypotheses, Xt =
{x1, x2, . . . xn}. For the first frame, hypotheses are created using the single-view
algorithm (Section 3). These hypotheses are evaluated and ranked as detailed
in the following subsections, and the best one is selected as the solution for
that frame. For next frames, new hypotheses (particles) are randomly generated
depending on previous hypotheses and their evaluation score. Again, these hy-
potheses are evaluated in a similar manner and the best one is selected as the
solution in each of the following frames.

Algorithm 1 Particle filter based algorithm for hypothesis sampling

Require: Video sequence: It|t = 0 . . .# frames
Ensure: 3D Scene Structure Layout: bestHypt

X0 = generateHypothesisFromImage(I0)
p0 = evalHypotheses(X0, I0)
for i = 1 . . .# frames do

Xt = sampleNewHypotheses(Xt−1, pt−1)
pt = evalHypotheses(Xt, It)

end for

4.1 Layout parametrization

The model used to define the 3D scene layouts is shown in Figure 2. A room
hypothesis xi compound of n walls is parametrized as sets of floor, vertical and
ceiling lines, and the vanishing points of the scene:

xi = {(lF1 . . . lFn ), (lV1 . . . lV(n−1)), (lC1 . . . lCn ), (V P1, V P2, V P3)} (1)
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Observed orientation map Hypothesis orientation map Overlapping lines

Fig. 4. Evaluation of the hypotheses. The observed orientation map, computed from
the detected lines, and the hypothesis orientation map are compared to compute Somap.
Soverlap is computed as the length of overlapping (red) divided by the total length of
the hypothesis lines (black). Blue lines are the detected lines that are parallel and close
to the model lines. (Best seen in color).

where lFi is the i-th floor line, lVi the i-th vertical line and lCi the i-th ceiling
line, that is aligned with the same vanishing point than lFi (they are parallel in
the scene). The model also includes the vanishing points: V P1, V P2 and V P3.

4.2 Hypotheses evaluation

The evaluation of the hypotheses is performed on every frame. For all the images,
lines and vanishing points are computed and used to evaluate the compatibility of
the layout hypotheses. We define two measurements for this evaluation computed
for each layout hypothesis xi:

– Orientation map: the orientation map is presented in [17]. It expresses the
local belief of region orientations computed from detected line segments
(Fig. 4(b)). This orientation map, omap(Ii), is compared with the orien-
tation map defined by the hypothesis being evaluated, omap(xi) (Fig. 4(a)).
The evaluation score is computed as the number of pixels where the orienta-
tion of both maps is the same divided by the total number of image pixels,
nPix = width× height

Somap i =

nPix∑
k=0

omap(Ii)k = omap(xi)k

nPix
(2)

where k is the pixel index. This score is the only evaluation used in [17]
where the highest Somap gives the chosen solution.

– Observed lines overlap: this evaluation measures the length of the overlapping
between the observed lines and the lines of the hypothesis being evaluated.
The layout parametrization used defines model lines delimiting the layout
areas (Fig. 4(c)). We look for lines parallel and close to these model lines
and compute their overlapping length with the model lines. The score of this
evaluation is computed as the total overlapping length divided by the total
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Fig. 5. The cross-ratio of the four points showed remains constant between consecutive
views. This relation is used to locate the ceiling points when sampling new hypotheses.
(Best seen in color).

length of the model lin:

Soverlap i =

( ∑
overlap length∑

model lines length

)
i

(3)

Both scores are used together to evaluate the hypotheses:

Stotal i = mean(Somap i, Soverlap i) (4)

4.3 Sampling new hypotheses

A new set of hypotheses is created by sampling from the hypotheses of the
previous frame and their evaluation score. For each hypothesis, a score has been
computed, Stotal i. The number of new hypothesis sampled from each previous
hypothesis depends on this score. The probability of generating a new hypothesis,
x′i, from previous hypothesis xi is pi = Stotal i. New hypotheses are created
randomly, high scores will generate more new hypotheses since they are more
probable, and low scores hypotheses will receive few samples or even disappear.

The model used parametrizes the layout as sets of lines describing planes.
Given the camera motion, a homography relates the projection of the copla-
nar points between frames and the vanishing points are related by the rotation
matrix. We work with a moving camera where rotation and translation are un-
known. To create a new hypothesis from a previous one, we assume a random
motion of the camera, with zero velocity and random noise in camera translation
and rotation. Random rotation and translation are created, R and t, from 3 ran-
dom angles (R = f(roll, pitch, yaw) and 3 random translations (t = [tx, ty, tz]T ).
The homography H relating coplanar points can be computed as

H = R− t nT

d
(5)
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where n is the normal of the plane where the junction points lie and d the
distance between the camera and the plane. The plane used is the floor plane,
where we have computed the room hypothesis. We assume d distance as unitary
so the scale of the random translation t is defined by the real distance to the
plane.

From hypothesis xi, sampled hypothesis x′i will be related by the random R
and t. Points, pt, of the floor lines are related by a homography:

pt′ = H · pt = (R− t nT

d
)pt (pt ∈ lFi |i = 1 . . . n) (6)

and the vanishing points are related by the rotation matrix:

V P ′k = R · V Pk (k = 1 . . . 3) (7)

Ceiling points relation. Through the computed homography, we are able to relate
the points on the floor, however we cannot relate the points in the ceiling of the
scene, since they are part of a different plane. To relate the ceiling points, we
assume that the distance between camera and floor remains the same between
consecutive frames. We use the cross ratio to relate the height of the scene
between images, Fig. 5. Given 4 collinear points, A, B, C and D, the cross ratio,
CR remains invariant for any perspective. The collinear points in our case are
the two intersections defining the height of the room in the image, b and d, the
vertical vanishing point, a, and the intersection between the vertical line and
the line of the horizon, c. Since we consider the camera height to be the same
between consecutive frames, the horizon is the same and the cross ratio remains
constant. So, the cross ratio, CR, is computed in the current image as:

CR =
|ac|
|ad|
|bd|
|bc|

(8)

where |ac| is the signed distance between a and c. Therefore, we obtain the
ceiling point from the the floor point in next image as:

|b′d′| = CR
|a′d′||b′c′|
|a′c′|

(9)

5 Experimental validation

We have run experiments in public datasets to show the performance of the
proposed method and how its use can improve object recognition tasks.

5.1 Analysis of the method performance

We analyze the performance of the layout estimation obtained by our method
by comparing it with a well know state-of-the-art method [17] as baseline 1.

1 We have used the code provided by the authors in http://www.cs.cmu.edu/~dclee/

code/index.html. This version does not include the complete environment model
presented in the paper.
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Corridor Entrance 1 Entrance 2 Lounge 1

Lounge 2 Room 1 Room 2 Room 3

Room 4 Room 5

Fig. 6. Example images of all the sequences included in the dataset [9] with the best
fitting layout obtained with our method.

Experimental settings. We have tested our method on the 10 sequences in-
cluded in the dataset presented in [9]. These sequences have been acquired in-
doors with two different mobile cameras (Fig. 6) and include between 203 and
965 images. For all the sequences, the ground-truth has been manually annotated
in one of each ten images. Figure 6 shows example frames of all the sequences
included in the dataset and the correspondent resulting layout. Note that the
Manhattan World assumption cannot be applied in some of the sequences, like
Room 1 where walls are not orthogonal.

The accuracy of the solution is computed as the number of pixels where the
orientation defined by the ground-truth and the orientation computed from the
layout hypothesis are the same divided by the total number of pixels of the image

Accuracy = 100

nPix∑
k=0

omap(GT )k = omap(xi)k

nPix
(10)

where k is the pixel index, GT denotes the ground-truth layout, xi is the layout
hypothesis being analyzed and the number of pixels in the image is nPix =
width× height.

Method evaluation Table 1 shows the accuracy for all the sequences included
in the dataset for our method and the base method [17]. The base method is
intended to work on single images so we run this algorithm over all the frames
of the sequence independently. For each sequence and both methods, the mean
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Table 1. Mean accuracy of the layout solutions for each sequence obtained with Lee
et al. method [17] and the proposed method.

Lee et al. [17] Proposed
method

Corridor 56.84 71.77
Entrance 1 80.13 72.49
Entrance 2 74.27 66.45
Lounge 1 47.40 55.43
Lounge 2 36.38 57.38
Room 1 50.73 55.99
Room 2 66.79 78.93
Room 3 36.82 74.49
Room 4 25.93 63.29
Room 5 64.70 78.85

Average 53.99 67.50

of the accuracy obtained for the solution hypothesis in all frames is shown.
Our method performs better for the majority of sequences. Main performance
differences correspond to Lounges 1 and 2 and Rooms 3 and 4 sequences, where
the algorithm in [17] performances are low while our method produces good
results. In these sequences there is more clutter than in the rest. On average, our
method performs better that the baseline algorithm. Fig. 6 shows the resulting
layout on one image of each sequence.

5.2 Improving object recognition tasks

This subsection shows results on object recognition tasks, poster detection in
this case, using an egocentric vision dataset.

Experimental settings The images used in this second experiment are part of
a wearable vision system dataset publicly available here 2. It consists of several
indoor sequences acquired with wearable vision sensors. We have selected certain
frames along those sequences that contain poster or signs, our objects of interest,
to be able to demonstrate how the context information provided by the layout
helps to automatically discard wrong detections.

We analyze how the performance of a sign detector can be improved by using
the layout information as prior information. We consider a sign detection method
that detects rectangular hypothesis in the scene that could correspond to signs.
We compute the Precision and Recall of the correctly detected signs given the
rectangles provided by this detector, i.e., among those hypothesis given by the
detector, which ones are correct or wrong after the filtering achieved thanks to
the layout information.

2 https://i3a.unizar.es/es/content/wearable-computer-vision-systems-dataset
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(a) (b) (c)

(d) (e) (f)

Fig. 7. We run the (rectangular) sign detector presented in [3]. We use the layout infor-
mation to filter the rectangles and detect which ones are actual signs. Black rectangles
show rectangles that have been correctly discarded with our filtering: they are not
aligned with the scene vanishing directions or are part of more than one layout region.
Blue rectangles are aligned with the layout and the vanishing directions, but they are
not classified as posters by our filtering because of the relative location in the scene.
Green and red show detections accepted by our filtering (correct or incorrectly respec-
tively) and magenta rectangles are signs that have been incorrectly rejected. (Best seen
in color).

Poster detection evaluation Fig. 7 shows how the layout information im-
proves the detection of posters in the images. We run the sign detector presented
in [3] on a selection of images of the dataset. The detector creates detection
hypotheses all over the image, but just some of them are correct. The rectan-
gle hypothesis detected can be easily filtered using the scene layout and prior
knowledge about man made environments to decide which hypothesis actually
correspond to posters/signs or not:

– Scene objects are aligned with the scene vanishing points and with the van-
ishing points of the scene plane where they lay.

– Interesting objects, posters in our case, appear in walls, nor in floor or ceiling.
– Posters height is smaller than the wall height, they appear close to the eyes

height (camera height in our case) and do not appear on top or bottom parts
of the wall.

Sign detector detects 25 sign candidates per frame on average, and about 18
of these candidates are rejected (not aligned with the vanishing directions or are
part of more than one layout region). The sign candidates remaining after the
filtering are classified into poster or no poster. The precision of this classification
is 95.24% and the recall is a bit lower 88.19%. The main reason for these high
values is the filter step, where rectangles no fitting the structure are rejected.
Fig. 7 shows examples of the poster detection.
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6 Conclusions

This paper presents a new approach to obtain the 3D layout of a single image
and propagate this layout along a video sequence. The approach is designed for
indoor environments, so Manhattan World assumption is adopted. Our proposed
method obtains an initial layout from a single image using certain assumptions
typical for indoor environments and first-person perspective videos. Then, a par-
ticle filter framework is used to take advantage of the sequential information on
video sequences and propagate the scene layout. The layout estimation method
has shown better accuracy than a well known baseline and we show how to
propagate the layout instead of computing all the model for each frame. Ad-
ditionally, our experiments demonstrate how the 3D layout we obtain provides
useful priors for recognition tasks. In particular we show how sign recognition
can be improved by easily rejecting the numerous false positive detections.
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