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ABSTRACT
Wearable computer vision systems provide plenty of oppor-
tunities to develop human assistive devices. This work con-
tributes on visual scene understanding techniques using a
helmet-mounted omnidirectional vision system. The goal is
to extract semantic information of the environment, such as
the type of environment being traversed or the basic 3D lay-
out of the place, to build assistive navigation systems. We
propose a novel line-based image global descriptor that en-
closes the structure of the scene observed. This descriptor is
designed with omnidirectional imagery in mind, where ob-
served lines are longer than in conventional images. Our ex-
periments show that the proposed descriptor can be used for
indoor scene recognition comparing its results to state-of-the-
art global descriptors. Besides, we demonstrate additional
advantages of particular interest for wearable vision systems:
higher robustness to rotation, compactness, and easier inte-
gration with other scene understanding steps.

Author Keywords
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INTRODUCTION
The growing interest and developments on wearable com-
puter vision systems are facilitating new systems and tech-
nologies for human assistance. Our goal is to provide a wear-
able indoor navigation assistance system with semantic in-
formation about the environment traversed by the user. In
particular, this work is focused on the problem of scene un-
derstanding. The prototype developed consists of a helmet-
mounted omnidirectional camera (see Fig. 1) aimed for in-
door navigation assistance. Straight segments play an impor-
tant role to understand the content of images from man made
environments (see Fig. 2). People can easily guess the 3D

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenseCam 2013 San Diego, USA
Copyright 2013 ACM 978-1-4503-2247-8 ...$15.00.

Figure 1. Wearable Omnidirectional camera system. The omnidirec-
tional camera is mounted in a helmet. The system includes an IMU and
a GPS device, but they are not used in this work.

structure of a scene represented by line sketches. Line and
contour cues have been extensively used to analyze images
since they provide very useful information. Contours occur
as boundaries of objects, helping to detect them, or as fron-
tiers between surfaces, encoding the structure of the scenes.
Analyzing contours in the images have been shown useful for
many different tasks, such as object recognition [3], 3D scene
reconstruction [9] or image registration [16].

We propose a novel line-based scene descriptor which is ob-
tained as follows: scene lines are extracted from the omnidi-
rectional images and classified in the three scene dominant
directions; then, the descriptor is built as a histogram that
encloses the distribution of these lines at different image re-
gions. We use a catadioptric vision system (shown in Fig. 1)
able to capture a 360o field of view, therefore observed lines
have the advantage of being longer that in conventional im-
ages. However, it presents highly distorted images, making
line detection more difficult. Although this work is demon-
strated in catadioptric systems, it can be easily extended to
other omnidirectional vision systems.

Our experimental validation shows a detailed analysis of the
parameters of the descriptor computation and demonstrate
its performance for indoor scene recognition on a realistic
dataset1. The place recognition capabilities of the proposed

1Wearable OmniDirectional Vision System Dataset
http://robots.unizar.es/omnicam/



Figure 2. Top row shows line sketches representing different types of
man made scenes easily recognized by a person. Bottom row shows lines
extracted in catadioptric images of the same kind of places. Although
not so intuitive for our sight, image lines (red) extracted in the omnidi-
rectional images are as informative as the top row sketches to identify
the type of scene represented.

descriptor are comparable to state of the art global image de-
scriptors for this task, while it is shown to be more compact
and presents higher rotation invariance (to rotation around
the vertical axis of the camera). These additional advantages
are important when working with a wearable system, due to
the constant and heterogeneous movements done by a per-
son. Besides, the proposed description method extracts and
processes scene lines which are also required for following
scene analysis steps, such as 3D layout reconstruction.

RELATED WORK
Different types of contour based image features have been
used in many computer vision applications since they provide
very distinctive information.

For example, one of the applications where line cues have
shown great potential for 3D scene understanding from a sin-
gle image. Straight lines are highly present in man made en-
vironments, in particular, parallel lines aligned with the main
directions of the scene (Manhattan World assumption). Based
on these cues, authors of [9] presents a method to extract the
spatial layout of a room even with cluttered boundaries. The
approach from [18] proposes an improvement of the perfor-
mance of state-of-the-art methods for spatial layout computa-
tion by decomposing the potentials used in previous literature
into more computationally tractable pair-wise potentials. We
also find approaches specific for omnidirectional vision [14],
that extract the spatial layout of indoor scenes from a single
image.

Lines and boundaries have been also used for shape and ob-
ject recognition tasks. Authors in [3] presented the shape con-
text, which stores the relation between a contour point and the
rest of the contour points of the shape. We also find works that
use similarity measures defined for sets of connected contour
segments for object recognition [7]. Line sketches were also
shown to work well as models for object recognition in [6].
Other applications of image lines include recovering the rota-
tion between frames for visual based localization [10] or their
use for image retrieval [16].

Working with lines presents difficulties to obtain correspon-
dences between images, usually because of the low accuracy

or robustness of the line tip detection. However, lines present
advantages for tasks that need to deal with extreme illumina-
tion changes or low textured environments [19], outperform-
ing local point feature based methods for these settings [11].
We find approaches that propose to use straight line seg-
ments as local image features, describing them with differ-
ent statistics around the edges. Many of these works make
use of geometric constraints to obtain more robust matching
results, e.g., homographies [17] or epipolar constraints [1].
Recent works have proposed more sophisticated line-based
local descriptors, such as the Line Signature [19] that outper-
forms point based local features matching low textured im-
ages. MDSL descriptor [20] is another line-based local de-
scriptor, which is built for each detected line segment. It is
shown to be highly distinctive and robust to image rotation,
illumination and viewpoint change.

Closer to our work, other approaches try to encode the image
information with a line-based global descriptor [10]. Here,
the authors propose the Line Histogram, which represents an-
gles and lengths of all the boundaries of an image in a his-
togram. Our approach also creates a line-based global de-
scriptor, but it captures the distribution of the scene lines in
the omnidirectional image.

We have chosen global descriptors because they have shown
good compromise between precision and computational cost
for general scene recognition problems. In [13] a global Gist
descriptor is presented for scene recognition in real world
scenes. Authors in [5] present the Histogram of Oriented Gra-
dients (HOG) which encodes the gradient orientations present
at different image regions.

As already mentioned, this work is focused on omnidirec-
tional cameras. Due to the wide FOV of this kind of sys-
tems, more lines of the scene appear in the image and they
are longer that in conventional images. However, in the cata-
dioptric vision system used these lines appear as conics in
the image. We find works that have faced the use of lines in
omnidirectional images for rotation estimation [2, 4]. Both
papers propose a method to detect scene lines in omnidirec-
tional images and compute their vanishing points. Estimating
the vanishing points in omnidirectional images is typically ro-
bust and accurate, since these points are visible in the image.
In this work we use the second work for line extraction and
vanishing point computation.

LINE-BASED IMAGE SIGNATURE DESCRIPTOR
This section details the steps to obtain the proposed Line-
based Image Signature (LIS) descriptor. First, the conics of
the image, which actually correspond to straight lines of the
scene, are extracted. Later, these conics are classified using
the vanishing points information. Finally the descriptor is
built as a set of histograms of the distribution of the classi-
fied contours in the image space.

Line extraction
The method used for the extraction of the scene lines in the
catadioptric images was presented by Bermudez et al. in [4].
In this work, the authors describe a system to detect the con-
ics projected in an omnidirectional image corresponding to



Figure 3. Projection of a 3D line and a point X in the line with the
Spherical Camera Model.

(a) (b) (c)
Figure 4. (a) shows the edges extracted by the Canny algorithm and how
they are grouped. Each color represents a group. (b) shows the conics
extracted for certain groups of edges and (c) represents the edges once all
the conics have been classified according to the vanishing points. Vertical
vanishing point (red), Horizontal vanishing points (blue and green), and
Non aligned conics (purple).

straight lines of the scene. The method requires the calibra-
tion of the camera and uses just two points to adjust a conic
in the image.

The Spherical Camera Model [8] is used to model the omni-
directional camera projection. The projection of a 3D point
in the image through this model is performed in three steps.
First, the 3D point, X, in the reference system of the cam-
era, is projected into a unitary sphere centered in the effective
viewpoint O. The resulting point, x′, is reprojected into the
virtual image plane through O′, whose distance to O is ξ. The
relation between the virtual image plane and the real image is
a collineation: Hc. The process is shown in Fig. 3.

In central catadioptric cameras, the projection of a 3D straight
line results in a conic in the image. A 3D line, l, defines a
plane, Π, together with the effective point of the omnidirec-
tional camera, O. Given this plane Π, the equation of the
conic projected in the virtual image plane is

Ω̄ =

(
n2
x(1− ξ2)− n2

zξ
2 nxny(1− ξ2) nxnz

nxny(1− ξ2) n2
y(1− ξ2)− n2

zξ
2 nynz

nxnz nynz n2
z

)
,

(1)
where nx, ny and nz are the components of the normal of the
plane, Π = (nx, ny, nz)T .

A point, x̄, is part of the conic if x̄T Ω̄x̄ = 0. The relation
between the point coordinates and the plane formed by the

Vertical VP Horizontal VP
Figure 5. Sample sets of parallel lines and the corresponding VP di-
rections. li denotes the line i and Πi the normal of the plane created
with O and represented by a gray surface. The normals of parallel lines
are coplanar and perpendicular to the VP direction. The colored circles
show the plane formed by the normals of parallel lines. These planes are
perpendicular to the VP directions. Vertical VP, vV P1, (red), Horizon-
tal VP, vV P2 and vV P3, (blue and green).

3D line is

α = − z̄

1− ξ2
± ξ

1 + ξ2

√
z̄2 + (x̄2 + ȳ2)(1− ξ2) (2)

where α =
nxx̄+ny ȳ

nz
.

Given two points in the virtual image plane, x̄1 and x̄2, the
image conic including both being the projection of a 3D line,
can be computed solving the next system(

x̄1 ȳ1 −α1

x̄2 ȳ2 −α2

)( nx
ny
nz

)
=

(
0
0

)
(3)

Using this relation, the process of the line extraction is the
following. First, the Canny algorithm is used to detect the
edges that appear in the image. Connected edges are grouped
together in boundaries. For each boundary a two point
RANSAC is run in order to detect the conics formed by the
edges. Process repeats till the number of edges in the bound-
ary falls below a threshold, and no more conics are adjusted.
Fig. 4 shows plots of different steps of the detection process.

Classification according to vanishing points
Once all the image conics of the scene have been detected,
we classify them according to the vanishing points. The van-
ishing points (VP) are the image points where parallel lines
intersect. In man made environments, we find three main van-
ishing points, which correspond to the vertical lines and two
sets of horizontal lines.

The vanishing points lay in the infinite, so they are defined
by a direction, vV P . As showed in Fig. 5 all the normals of
the planes created by parallel lines and O are coplanar. They
are also perpendicular to the corresponding direction of the
VP where they intersect, vV Pk. Being li, lj and lm 3 parallel
lines intersecting in the kth VP, and Πi, Πj ad Πm their
corresponding planes, then

(Πi ×Πj) ·Πk = 0
(Πi ×Πj) · vV Pk = 1

(4)



Figure 6. Image tessellation to incorporate in the descriptor the spatial
distribution of scene lines (in this case n = 2).

Figure 7. Steps to build the descriptor (from top to bottom). From the
raw image we obtain the aligned conics, conics are then classified ac-
cording to the VP of the scene and the histograms are built. Third row
shows the sample histograms in polar coordinates (the color of each bin
is related with the number of edges in that bin). Last row shows the final
histogram, once the rotation invariance orientation has been obtained.

These properties can be used to group the conics according
to the vanishing points. We start with all the detected con-
ics, each one represented by a (Ωi,Πi) pair. We assume an
approximate vertical position of the camera, so we can prede-
fine prior directions for the vanishing points: vV P1 is vertical
and vV P2 and vV P3 are parallel to the image plane. We use a
robust estimation algorithm (RANSAC) to adjust this estima-
tion and obtain one group of conics corresponding to each of
these main directions. In each RANSAC iteration two conics
are randomly selected to create a group hypothesis. If these
conics are parallel and aligned with the corresponding VP,
|(Π1 ×Π2) · vV Pk| ≥ 1− thP , we check how many of the
rest of the conics are parallel to them and vote for that hy-
pothesis, (Π1×Π2) ·Πj ≤ thC. The most voted hypothesis
is chosen as one of the groups. Once the groups for the three
VP have been obtained, the remaining conics are grouped as
nonAlignedConics.

The result of this process is useful not only for globally de-
scribe the image. The information of VP aligned conics can
be used to perform other scene understanding tasks such as
3D analysis of the scene under certain assumptions.

Building the descriptor
Once all the detected conics have been classified according to
their VP, we can build the proposed LIS descriptor. To build
the descriptor, the image space is discretized in a polar grid.
The image is split in 4× n angular sections and each angular
section is split into n radial sections. Modifying n we can
adjust the size and resolution of the descriptor.

Due to the self-reflection some parts of the camera and the
mirror support appear in the image. In our system, these im-
age parts are constrained by the minimum and maximum ra-
dius, Rmin and Rmax respectively. With this discretization,
each histogram will be compound of 4 × n × n bins. Fig-
ure 6 shows the grid and the bins of the discretization for the
simplest case n = 2.

We create histograms for the vertically aligned conics, hV V P ,
for the horizontally aligned conics, hHV P and for the non
aligned conics, hnAl. The value of bin i of each histogram is

hV V P i = 100
# Vertically aligned edges in bin i

# Total edges
(5)

hHV P i = 100
# Horizontally aligned edges in bin i

# Total edges

hnAl i = 100
# non aligned edges in bin i

# Total edges

where i ∈ [1..4 × n × n]. Histogram hV V P is com-
pound by the conics included in V P1Conics, hHV P by the
conics in V P2Conics and V P3Conics, and the hnAl his-
togram by nonAlignedConics. The total number of edges,
# Total edges, correspond to the sum on all the edges of all
the detected conics.

When grouping the conics of a scene, the two possible hori-
zontal VP could be misclassified due to a different orientation
of the camera in the same scene. In order to avoid this we join
the conics aligned with the horizontal vanishing points, V P2
and V P3, in the same histogram, hHV P . The final descrip-
tor, hLIS , is composed of the three histograms organized as
follows:

hLIS = [hV V P , hHV P , hnAl]. (6)

For omnidirectional cameras, rotation invariance is an impor-
tant property to be able to recognize a scene when facing it
with different direction of travel. To achieve rotation invari-
ance, we have defined a common reference for all the images.
We set the reference for each image to the angular segment
where most of the vertical line edges lie. This segment gives
us the orientation angle θor. Fig. 7 represents the described
process from top to bottom.

Image similarity using the LIS descriptor
The distance between two of LIS descriptors can be sim-
ply computed as the absolute distance between histograms.
Given the LIS descriptor of two images, h1 and h2, the dis-
tance d between them is

d =

3·4·n·n∑
i=1

‖h1i − h2i‖. (7)



Class 1 - Corridor Class 2 - Room Class 3 - Door/Jamb Class 4 - Stairs Class 5 - Elevator
Figure 8. Examples of the images included in the dataset for each considered category.

n = 2 n = 4 n = 8 n = 16
Figure 9. Confusion matrices for different image space discretization (n). Each row shows how many tests of that class were classified as any of the
possible classes (1: Corridor, 2: Rooms, 3: Doors or Jambs, 4: Stairs, 5: Elevator). Only numeric values above 15% are shown. Color goes from Dark
blue for 0% to Dark red for 100%.

Train Test
Class 1 61% 70%
Class 2 19% 12%
Class 3 9% 4%
Class 4 9% 10%
Class 5 2% 4%

Table 1. Percentage of frames of each class in each sequence.

EXPERIMENTS
This section analyzes the properties of the proposed scene
signature through experiments with real images, acquired
with a calibrated wearable catadioptric vision system at
1024×768 resolution. The dataset is detailed in the following
subsections.

LIS image tessellation analysis
This experiment evaluates the performance of our proposed
descriptor for image categorization with different tessellation
values. We used the OmniCam dataset presented in [15],
and used for metric and topological indoor navigation. The
dataset consists of two different sequences of images acquired
in the same environment. To evaluate the robustness of the
place categorization, the two sets were acquired at differ-
ent times (several months between acquisitions) and covering
different trajectories, i.e., some areas covered by the test se-
quence do not appear in the training set. The sequence used
as training set in this work includes about 12200 catadioptric
image frames, and the test set includes about 7300 frames.
All the images were manually labeled with the correspond-
ing type of indoor area to set the labels ground truth. The 5
classes used to describe the areas of our indoor environment
are shown in Fig. 8 together with some examples of images
in the dataset. The percentage of frames of each class for the
training set is shown in Table 1. It can be observed that some

classes have many more examples than others, e.g., 61% cor-
ridor images and 2% of elevator images, due to typical config-
uration of indoor environments, since any user spends more
time traversing corridors than in the elevators, and the whole
sequences have been used.

The experiment consists on assigning a scene class label to
each test image, according to the nearest neighbour found
among the training images. We choose a nearest neighbour
based approach due its simplicity and because other standard
classification frameworks such as SVM or boosting based ap-
proaches typically require more training data. Probably the
use of more complex learning techniques will raise the per-
formance with any of the descriptors evaluated. Test images
are compared with all the images of the training set, and the
query is labeled with same class of the train image with the
lowest descriptor distance, computed as described in (7). We
run this experiment with different configurations of our ap-
proach. Fig. 9 shows the confusion matrices of the classifi-
cation using different image tessellation: n = 2, 4, 8 and 16.
Higher values of nmean larger (descriptor size: 3×4×n×n)
and higher resolution descriptors. Looking at the results we
can see how the performance is not homogeneous for all the
classes. Corridors (Class 1) are recognized better in all the
experiments, probably because they have well-defined van-
ishing points and lines. The worst performance corresponds
to Doors/Jambs (Class 3). When traversing a door or a jamb,
large part of the omnidirectional image contains areas of the
environment before and after that door, so confusion using the
description of the whole omnidirectional image seems rea-
sonable.

Parameter n is directly related with the size and the resolu-
tion of the descriptor. In general, increasing n improves the
performance, however, there is a point where higher n values



Figure 10. Average precision (red) and Average class precision (blue)
for the descriptors tested as function of the descriptor size.

does not improve the result, even performance is decreased.
For our settings the best value is n = 8. We should note
the behavior of the recognition for the Rooms (Class 2). For
this class, an increment of n produces, in all the cases, worst
results. This class groups many kind of spaces (halls, labora-
tories, offices) with different appearance but similar structure.
In this case an increment of the resolution of the descriptor re-
duces the performance because it starts enclosing too subtle
details that are not common to all elements in the class.

Comparison with state-of-the-art descriptors
This subsection shows the performance of our proposal com-
pared to other global descriptors used for scene recognition
in omnidirectional images. We compare three global descrip-
tors: our proposed LIS approach, the Gist descriptor [13] us-
ing the code provided by the authors, and the adaptation of
this descriptor to omnidirectional images [12].

The average precision and average class precision for all the
descriptors are shown in Fig. 10. The average precision (red)
and the average class precision (blue) are plot as function of
the number of components of each descriptor: 3× 4× n× n
for LIS, 920 for Gist and 3480 for OmniGist. Our proposed
descriptor achieves a precisions between 72% and 78% de-
pending on the discretization, Gist gets a precision of 83%
and OmniGist 88%, and similarly for the average class pre-
cision. The precision of our approach is slightly lower for
the used dataset, but the shorter length descriptor is an impor-
tant advantage for navigation applications where memory and
computational power can be a limitation. Fig. 11 shows some
examples where LIS (n = 8) classify correctly the category
of the query image while the OmniGist fails.

The dataset used was captured while traversing a typical in-
door environment, therefore for most of the cases train and
test images are related by multiples of 90o rotation. There-
fore, the more robust rotation invariance of our descriptor
cannot be observed using only that dataset. Next experiment
proves the higher rotation invariance of our approach.

Rotation invariance
Rotation invariance is an interesting property to achieve ro-
bust place recognition when working with omnidirectional

Figure 11. Examples of images where LIS descriptor performs better
than the other descriptors. The first column shows the query images,
second and third columns show the nearest train image selected by LIS
and OmniGist respectively. Rotation between the query image and the
correct match selected with LIS can be notice in the figure.

images. It allows to have less training data (we do not need
to have examples of every possible acquisition angle at each
location) but still a robust modeling of the different classes.
This is one important advantage of our proposed descriptor.

Next experiment analyzes the rotation invariance of our ap-
proach compared to other global descriptors. We get 36 im-
ages equally distributed along a 360o camera rotation move-
ment, around the vertical camera axis. The camera used for
this experiment is different than the one used in the rest of ex-
periments. It has been installed a goniometer for angle mea-
surement and the images resolution is 1024 × 768. Fig. 12
presents a plot of the descriptor distance versus the angular
difference between all images in the sequence and the first
one. To be able to compare the distances of different descrip-
tors, the distance values have been normalized using Standard
Score normalization. Descriptor distances are shown as the
difference with the mean of the distances, µ, in units of the
standard deviation, σ.

For the standard Gist descriptor, we observe it is not rotation
invariant The minimum distance appears in 0o and 360o,
but grows continuously to the maximum value at rotations
around 180o. For the OmniGist descriptor, minimum values
of the distance appear for angle differences multiple of
90o, while maximum values appear for angles multiple of
45o. Finally, for our approach the distance also varies with
angle, the maximum distance occurs for rotations around
180o, however we can observe local minimum points around
rotations multiple of 45o. This is due to the image space
discretization used for the descriptor, n = 2, where each
angular segment corresponds to an interval of 45o. The
variation of the distances, between images in the sequence
and the reference image at 0o, is much lower for our proposed
method, showing higher invariance to rotations around the
vertical axis.

Integration with spatial layout extraction steps
As already described, our goal is to integrate the proposed
place recognition in our navigation assistance system. This



(a) (b)
Figure 13. Two examples of the joint process of scene categorization and layout recovery for a corridor image (a) and a room image(b). First we extract
and cluster the scene lines from the original image. With the line information we can compute the LIS descriptor (n = 4 shown) and get the kind of
area being traversed. Besides, the layout recovery approach uses the same line information to get the scene planes of the scene, floor (blue) and walls
(red and green) in this case.

Figure 12. Rotation invariance analysis. Relation between the de-
scriptor distance (vertical axis) and the angle difference (horizontal axis)
among images of the same scene, acquired at the same location only with
varying angles around the vertical axis. The proposed LIS descriptor
presents much lower variation than other global descriptors.

work shows how to use of lines for scene recognition, but the
same line information can be used for additional tasks such
as 3D layout recovery. Using LIS global descriptor for place
recognition, our system is able to detect when the kind of
area traversed has changed and the category of the new place.
The 3D scene analysis, that is computationally expensive, can
then be run just when necessary, i.e., after a change of the type
of area visited or for certain types of places.

As initial example of further exploitation of the lines detected
we have run the code presented in [14] to detect the scene

layout in omnidirectional images. This approach follows a
heuristic to iteratively fit the wall-floor boundary, which fol-
lows the same steps and priors for any location. The same
lines used to build the LIS descriptor are used to detect the
scene layout. Fig. 13 shows the results of both tasks: the LIS
histogram for scene categorization and the spatial layout of
the image, where floor and walls are detected.

CONCLUSIONS
Scene understanding is an essential step towards many visual
assistance applications that require semantic information of
the environment. In this work we have presented a new line-
based global descriptor for omnidirectional images that en-
closes the structure of the scene observed, by encoding the
distribution of lines in the scene. We compute the conics
in the image that correspond to lines of the environment and
then we classify them according to the vanishing points. The
descriptor is built as a histogram that captures how the differ-
ent types of lines lay in the different parts of the image space.
We have evaluated the system with catadioptric images but it
is easily extensible to other panoramic systems.

We have run exhaustive experiments to analyze the properties
of the proposed descriptor. Experiments for scene catego-
rization show that the performance of our proposed descrip-
tor is close to state-of-the-art global descriptors. Besides, we
have shown our approach to have interesting advantages for
the aimed application: small size, reducing the memory con-
sumption and comparison time, and higher rotation invari-
ance are interesting properties for person-mounted cameras.
Additionally, preliminary results of integration with com-
plementary line based scene understanding techniques are
shown. Future work includes a robust integration of the scene
categorization step with further scene analysis and guidance
instructions steps.
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