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Abstract. In this chapter, we study the problem of recovering the spatial layout
of a scene from a collection of lines extracted from a single indoor image. Equiv-
alent methods for conventional cameras have been proposed in the literature, but
not much work has been done about this topic using omnidirectional vision, par-
ticulary powerful to obtain the spatial layout due to its wide field of view. As the
geometry of omnidirectional and conventional images is different, most of the
proposed methods for standard cameras do not work and new algorithms with
specific considerations are required. We first propose a new method for vanishing
points (VPs) estimation and line classification for omnidirectional images. Our
main contribution is a new approach for spatial layout recovery based on these
extracted lines and vanishing points, combined with a set of geometrical con-
straints, which allow us to detect floor-wall boundaries regardless of the number
of walls. In our proposal, we first make a 4 walls room hypothesis and subse-
quently we expand this room in order to find the best fitting. We demonstrate
how we can find the floor-wall boundary of the interior of a building, even when
this boundary is partially occluded by objects and show several examples of these
interpretations.

1 Introduction

Indoor structure recovery from images is an easy task for humans but not that easy for
computers. At the same time, it is a very useful task since knowing floor-wall boundaries
can give us valuable information for navigation, motion planning, obstacle detection or
3D reconstruction.

This problem has been studied several times and still attracts the effort of many re-
searchers to implement each time better algorithms. Most of these contributions work
under the Manhattan-World assumption [1], which assumes the scene is composed of
3 main directions orthogonal to each other. Indoor environment usually satisfies this
condition so is understandable this hypothesis is extensively used. Some examples are
[2], that uses extracted lines and geometric reasoning to generate hypothesis and se-
lect the best fit, or [3] which represents the room as a 3D box and tries to recognize
floor-wall boundary in cluttered rooms. There are also other works as [4] that uses
Bayesian filtering over a set of floor-wall boundary hypotheses without the restriction
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of Manhattan-World assumption, but there still being 3 main directions without the im-
position of orthogonality between them.

Lately, research on omnidirectional vision is taking more importance due to the wide
range of vision of these images, which helps in the detection of VPs and makes visible
lines much longer. However, in central catadioptric images, straight lines from the real
world become conics adding the issue of geometrical complexity, implying that many
of existing algorithms for conventional images are not applicable. So it is needed to
come up with new methods that take in account characteristics of this kind of images.

Here, we present our work for structure recovery from images. Starting from a single
omnidirectional indoor image, we extract lines from it, classify them depending on
their orientation. From this classification, we select a set of points which will lead us
to generate possible wall-floor boundaries, and imposing geometrical constraints we
generate a first 4 walls-room hypothesis to later on expand or not this room according
on how the data is distributed.

Inspired by [5], we propose a new method. This approach is more robust since it
does not rely in finding corners which often are not easy to detect, also we do not need
to specify the number of walls we are looking for. In addition, it is much faster, as
trying every possible combination of normals vector to classify the extracted lines or
combination of corners to find the room hypothesis was high time-consuming. With our
new approach we avoid all these long iterations making viable its use in a sequence of
images at real-time.

2 Vanishing Point Estimation through Line Detection

The first step of our proposal begins with extraction of lines from the image. Regarding
to line extraction for catadioptric systems two methods are [6] [7]. Both start using
Canny edge detector and linking edge pixels. The main difference is that [7] works
on the catadioptric image, where lines and VPs are extracted by RANSAC. Whereas
[6] uses the unitary sphere model proposed in [8] where points from the image pI =
(Xo, Yo, 1) are projected as pS = (XS , YS , ZS). By doing this, each chain of pixels
from a line in the image defines a great circle on the sphere which can be represented
by its normal vector n = (nx, ny, nz).

We use Bazin’s Matlab toolbox1, but adapting the equations from para-catadioptric
(ξ = 1) to hyper-catadioptric (0 < ξ < 1) system in order to generalize the method
for a more general mirror shape. From this point, [6] proposes to test every possible
combination between pairs of normal vectors to identify main directions (1 vertical,
2 horizontal) at the same time as the 3 corresponding VPs. However, this method is
time-consuming and sometimes comes up with misclassifications.

We propose a new robust and fast method to classify lines parallel to the 3 dominant
directions, taking in consideration two hypotheses: a) Manhattan-world assumption [1]
which states the scene is build on a cartesian grid, b) Z camera’s axis is aligned with
Z reference’s axis of the world, since catadioptrical systems are mainly used in wheel-
based robots, so planar-motion is assumed. It is easily demonstrable that under these

1 http://graphics.ethz.ch/˜jebazin

http://graphics.ethz.ch/~jebazin
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Fig. 1. In the sphere model, every line from the image is represented by its normal on the sphere.
The figure represents the sphere where each point corresponds to a normal vector (Colorcode:
X=Red, Y=Green, Z=Blue). From left to right: Sphere with perfect data; Sphere of a real image;
classification of the previous data using our algorithm in the horizontal plane. Big dots represent
VPs.

assumptions and with perfect data, normal vectors n = (nx, ny, nz) corresponding to
the three different directions X,Y,Z does not has its own component (i.e. line from
the real world belonging to direction X, has a normal vector n whose component nx =
0 ), Fig. 1. However, often data is not perfect so it will suffer deviations from this
configuration. The classification process for these normals is done as follows:

1) Under assumption b, image lines whose normal vectors has nz component below
a threshold (experimentally we find 0.2 is a good value) are automatically classified as
vertical lines, and removed for next steps.

2) Suppress nz component of remaining normals so every n = (nx, ny, 0) will
fall in a 2D plane, and using RANSAC we seek two orthogonal lines which minimize
error
inliers (with number of inliers greater than a minimum). These lines will define the
two horizontal main directions.

3) Image lines are labeled depending on the distance between its normal vector and
one of the two main directions. It is remarkable that normal vectors whose component
nz � 1 are conflictive as they are conics which degenerate into circles and can not be
properly classified, so it is better remove them to avoid errors.

4) Finally, VPs are estimated as the points where the lines defining main directions
cut the sphere at the hemisphere (Z = 0), see Fig. 1.

3 Hierarchical Layout Hypothesis Method

Due to noise and imperfections of real images often there is not enough information to
clearly define where the floor-wall boundary is, so with the extracted lines and a set of
geometric constraints we must seek the best approach to find where these boundaries
are. In order to do this we generate conics (possible boundaries) from a set of points
belonging to the lines previously classified.

3.1 Selection of Set of Points

The first factor to notice is that information obtained by vertical lines is more robust and
less susceptible to noise than horizontal lines, which sometimes are difficult to classify
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Fig. 2. Left: Lines extracted by Canny Edge detector after pruning step. Right: Same lines
grouped in the 3 dominant directions according to our classification. Big dots represent VPs.

or are not well detected. Furthermore, studying typical images (see examples Fig. 7),
we have noticed that in absence of objects most of vertical lines have their origin around
the region that define floor-wall boundary, and if objects are present, they are standing
over the floor and use to be close to the wall. So, unless these objects are placed all
around the room, the origin of the lines that define them still being close to the desired
boundary.

With these points of vertical lines we have to generate conics which will define possi-
ble floor-wall boundaries. In [9], it has been demonstrated how with a calibrated camera
it is possible to define a conic in the image from only two points. If we apply the con-
dition that every line in the image must pass through a vanishing point, just one point
belonging to the floor-wall intersection is needed to define a conic in the image being a
boundary.

Due to these 2 facts, let us denote as group GZ the set of points composed by the
closest point from each vertical to the center of the image. Additionally, we select a ho-
mogeneously distributed set of points from horizontal lines situated at the same height
as the points in GZ . Carrying out this selection for lines in X and Y direction, we obtain
two more groups, GX and GY , respectively. This is done in order to remove noisy hor-
izontal segments, such as those found in objects, windows, doors,... and prevent them
voting, Fig. 3(left).

3.2 Generation of Conics

Since we do not know which points of these groups are situated in the floor area, we
apply RANSAC to identify the most voted conic, candidate to represent our desired
boundary.

As we mentioned before, only two points are needed, one Vanishing Point and one
point from the previous sets. Cross product between VP and each of these points pi gen-
erates a normal vector ni, which defines a conic Ω finally obtaining ̂Ω after a projective
transformation HC[10].
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Fig. 3. Left: Selection of points as explained in Section 3.1. Right: Graphic explanation for dis-
tance measurement between point and conic in Section 3.2.

Now, distance between conic and every point pj is computed using an approxima-
tion [9] to [11]. We compute the polar line of a point pj in the conic ̂Ω, calculate the
perpendicular specifying it lies over pj. This perpendicular line intersects the conic in
two points q+ and q−, the minimum Euclidean distance between pj and q+ or q−

corresponds to distance from point to conic, Fig. 3.
A new normal vector is estimated from the average of all points with minor dis-

tance than a threshold, and we iterate the whole process until its convergence (no more
points are added). Points voting for this conic are removed from the list, and one of
the remaining is chosen to generate an new conic, repeating the procedure and stopping
when every point has been assigned.

3.3 Initial Boundaries Hypothesis

Computers cannot tell from a bunch of raw data how many walls a room is made of, but
it is known that the most common indoor places are halls and rooms with similar shape
to those shown in Fig. 4. All these geometrical shapes can be depicted by a central
square with branches arising from all or some of its faces which at the same time must
meet a geometric constraint: Parallel faces have to be one at each side of the imaginary
line formed by joining their two corresponding VPs. This comes from the definition of
vanishing point as the geometric place where parallel lines appear to converge.

Due to this constraint, the searching algorithm to extract conics (Section 3.2) is ex-
ecuted for four different cases, in order to find the first four boundaries (better seen in
Fig. 5):
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• Boundaries 1 and 3: Are sought using points of GZ and GX at each sides of the
imaginary line defined by V Ps in direction X (Fig. 5 (left)) .

• Boundaries 2 and 4: Are sought using points of GZ and GY at both sides of the
imaginary line defined by V Ps in direction Y (Fig. 5 (center)) .

Another property is that the four vanishing points define a conic which corresponds to
points situated at the same height as the camera, so every point falling within the conic
might be on the floor and will be a possible candidate, while the ones out of the conic
are automatically eliminated.

Remaining points are projected onto the sphere for each of the four cases previously
defined, and we proceed to generate conics with these points.

Conics more voted are now selected as possible candidates and the nearest to the
center of the image is chosen. We rather chose this closest line to other which might be
more voted because it will have chance to be selected in the expansion process (Sec-
tion 3.4), and if chosen now, it would be possible the loss of information. Once the four
boundaries have been found, they are combined to conform walls and floor of our first
hypothesis (Fig. 5).

Fig. 4. Most common room/hall shapes (top view). Red grid represents the basic square we are
seeking in section 3.3.

Fig. 5. First two images show points from groups GZ , GX and GY under constraints exposed in
section. 3.3, where blue, red and green dots correspond to GZ , GX and GY points respectively.
Dashed red and green lines are the imaginary lines, going through the VPs, which divide the
image in 2 parts. Finally, black conics represent the most voted boundaries for each case. Right
image shows the result of combining those boundaries to generate the first hypothesis.
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3.4 Hierarchical Expansion Process

Let us denote as B1, B2, B3 and B4 the four boundaries defined in previous section 3.3.
The area between those and the end of the image defines four sectors. These sectors
may correspond to actual walls or may exist the possibility they can be expanded, un-
derstanding expand as replacing the boundary Bi for others which enlarge the area of
the first-hypothesis room layout. For each of these sectors we repeat the same method
described in Section 3.3, obtaining a maximum of 3 new boundaries. Let them be BL

i ,
BM

i and BR
i in clockwise order as shown in Fig. 6.

When looking for expansion three cases can happen:

• Enough data is available to define the 3 boundaries BM
i , BL

i and BR
i ; so there will

be expansion in the current sector.
• BM

i is very close to Bi, this means the most voted wall still being the same and
will not be expansion.

• Data only allow us to find 1 or 2 boundaries. This last case can be originated for
different situations and should be studied.

Third case is present when we lack of data, caused by lines not detected or by an oc-
cluded corner (Fig. 6(left)). Both cases imply expanding floor area but results are com-
pletely different, therefore care must be taken.

If missing boundary is a lateral (BL
i , BR

i ) or lateral plus middle (BM
i ), and points

from well-detected boundaries only fall at one side from the VP within the current sec-
tor, this is due to an occluded corner. Thus the missing border is defined as a radial line
through the center of the image and the point, belonging to the well-detected boundary,
whose angle is the closest to the angle defined by the VP.

On the other hand, if previous conditions are not satisfied, we assume some line was
not detected, hence if the missing boundary is any of BL

i or BR
i , it will be defined as

the resulting conic passing through its corresponding VP and the last point belonging

Fig. 6. Left: Synthetic example depicting the possible cases (B1 and B2 are expandable regions,
B3 will not be expanded, and B4 corresponds to an occluded corner). Black line represents the
actual room boundaries, first hypothesis in dashed blue, and final expansions in dashed red. Right:
final result of a real example.
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to BM
i . By contrast, if the missing edge is BM

i , we consider it should be no expansion
except if there are a relevant number of voting points in the lateral boundaries BL

i and
BR

i .

4 Results

Our experiments have been performed using Matlab, running at 3 sec per frame, and
with the dataset COGNIRON composed of indoor images (768×1024) with a wide
variety of rooms. These images were taken by a camera with a hyperbolic mirror spotted
on a mobile robot. The calibration of the camera is also available online [12].

We show some of our results in different kind of indoor situations Fig. 7. First two
examples correspond to T and L shape halls (like the ones shown in Fig. 4), walls are

Fig. 7. Examples of experimental results obtained for five different images. (a)Input images. (b)
Line classification and extracted points which vote for boundary selection. (c) Output images by
our algorithm. (d) Ground truth, manually labeled.
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not too saturated with objects so the result is accurate. In this second example we also
observe an occluded corner at the superior part of the image. Third picture is taken in a
room where walls are made of glass (top and bottom of the image); due to these walls
very bright areas appear in the scene, but we still achieve a good approximation of its
structure.

Forth case shows a hall with a desk and a shelf, where our algorithm is able to
recognize these obstacles. However, it does not detect the open door situated at the top
part of the image, probably due to all the light going through it.

Last scene correspond to a room with many objects, colors are very dark, which
makes difficult line extraction at some areas. At the same time, most of the longest
detected lines fall over the objects, what might lead to misclassify wall-floor boundaries,
but as we can see, we are still achieving good results.

Comparing results from our algorithm with their respective ground truth, we define
as true positives (tp) the number of pixels both have in common, false positives (fp)
the number of pixels identified as floor by our method but do not correspond to the
floor in the ground truth, and false negatives (fn) the number of pixels identified as
not floor when they result to be floor in the ground truth. With these values we com-
pute precision ( tp

tp+fp ), recall (
tp

tp+fn ) and F1 (2 precision recall
precision+recall ) for several images,

Table 1.

Table 1. Performance values obtained for images of Fig. 7

Image1 Image2 Image3 Image4 Image5
Precision 0.973 0.984 0.896 0.964 0.904

Recall 0.887 0.969 0.992 0.937 0.878
F1 0.928 0.977 0.942 0.950 0.891

5 Conclusion and Future Work

We have proposed a new method to extract vanishing points from an omnidirectional
image and to perform line classification. Since for the database of images the Z axis
from camera and world reference were aligned, our proposal have been designed with
this constraint, but we believe this can be extended for the general case where the align-
ment of axis is not known. We also have proposed a new simple and robust method
for scene layout recovery and we have shown its performance in experimental results.
This is useful in many applications, since knowing where floor-wall boundary are and
the height of the camera, we can known exactly where every point of the scene is. Cur-
rently we are working into spread out this method for a whole sequence of images in
order to improve accuracy in those images with possible misclassifications.
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