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Resumen

Con el rápido desarrollo de la electrónica y la informática en los últimos años, las cámaras se
han convertido en dispositivos omnipresentes en nuestra vida diaria, hasta tal extremo que hoy
en d́ıa casi todo el mundo dispone de una en todo momento acoplada a su teléfono móvil. Lo
que hace especialmente atractivas las cámaras para las personas es su capacidad para capturar
rápidamente una gran cantidad de información del entorno codificada en una imagen o v́ıdeo, lo
que nos permite inmortalizar momentos especiales en nuestra vida o compartir en pocos segundos
gran cantidad de información con otras personas. Sin embargo, mientras que la tarea de extraer
la información de una imagen puede ser trivial para nosotros, en el caso de un computador se
requieren algoritmos complejos con una alta carga computacional para transformar una imagen
en información útil para la máquina. En este sentido, el mismo rápido desarrollo de la electrónica
y la informática que permitió la universalización de las cámaras, ha permitido también la
posibilidad de aplicación en tiempo real de algoritmos cada vez más complejos y potentes.
Entre los campos de investigación actuales en la comunidad de visión por computador, esta
tesis está particularmente involucrada con algoritmos de localización métrica y reconstrucción
3D. Estos algoritmos son un componente clave en muchas aplicaciones prácticas, tales como la
navegación de robots, realidad aumentada 3D o la reconstrucción de modelos del entorno. El
objetivo de esta tesis es profundizar en la localización visual y la reconstrucción del entorno a
partir de sensores de visión, prestando especial atención tanto a cámaras convencionales como
no convencionales que se pueden llevar o ser manejadas por una persona con facilidad. En esta
tesis se aportan contribuciones en los siguientes aspectos de los procesos de odometŕıa visual y
SLAM (del inglés, Simultaneous Localisation and Mapping):

SLAM monocular generalizado: Los algoritmos de SLAM actuales suelen estar
diseñados para cámaras convencionales, que pueden ser modeladas por un modelo simple
de cámara estenopeica pero cuyo campo de vista es bastante limitado. Sistemas de visión
consistentes en la combinación de una cámara y un espejo de forma cónica, conocidas
como cámaras catadióptricas, ofrecen un campo de vista mucho más amplio, pero a cambio
requieren de un modelo de calibración más complejo, que generaliza la proyección de los
sistema de proyección centrales. Nuestra propuesta en este área es la adaptación para
cámaras catadióptricas de un SLAM monocular en tiempo real diseñado inicialmente para
cámaras convencionales.

Problema de escala en visión monocular: Un problema de los algoritmos de
localización y reconstrucción con sistemas monoculares es su incapacidad de proporcionar
la escala real del movimiento de la camara y el entorno observado. Para resolver este
problema, se debe obtener información adicional, bien de sensores adicionales, bien
conocida a priori. Nuestra propuesta en este área es un algoritmo para estimar la escala,
y además evitar la deriva en la misma, en un SLAM monocular realizado con una cámara
portable, obteniendo la velocidad al andar del usuario a partir de su frecuencia de paso.
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Odometŕıa densa RGB-D: Los algoritmos recientes para la estimación de la odometŕıa
a partir de cámaras RGB-D estiman el movimiento de la cámara por medio de una
minimización pixel a pixel del error fotométrico y geométrico entre dos imágenes. Sin
embargo, en muchos casos propiedades importantes del modelo de error del error de
profundidad son ignoradas, lo que puede afectar a la precisión del cálculo de la odometŕıa.
En esta tesis proponemos un método para odometŕıa con cámaras RGB-D que usa la
profundidad inversa, cuya distribución de probabilidad es más cercana al modelo de error
del sensor, para la parametrización del error geométrico, mejorando los resultados del
estado del arte.

Reconocimiento robusto de lugares: En SLAM visual un módulo de reconocimiento
de lugares es un componente clave para la relocalización de la cámara cuando se pierde el
seguimiento o para cerrar bucles en lugares revisitados. Sin embargo, en el reconocimiento
de lugares se asume frecuentemente que la escena no sufre cambios entre dos visitas, lo cual
puede ser fuente de fallos, afectando a la robustez de los algoritmos de reconocimiento de
lugares. Nuestro trabajo en este área y en el contexto de sensores RGB-D propone descartar
partes de la escena con una entroṕıa alta en las normales de sus superficie para aumentar
la robustez del reconocimiento de lugares frente a cambios a largo plazo en la escena.

Optimización de grafos de localizaciones: En diferentes métodos de SLAM, la
optimización de grafos de localizaciones es un enfoque usado frecuentemente para
imponer restricciones de cerrado de bucle entre pares de localizaciones. Los problemas
de grafos de localizaciones suelen mezclar rotación y traslación en la misma función de
optimización. Dado que traslación y rotación se miden en unidades diferentes es necesario la
normalización de estas variables, lo cual se puede realizar siempre de una manera rigurosa.
También, parece innecesario tener que optimizar la orientación junto con la traslación,
cuando el objetivo principal es deformar una curva que representa la trayectoria de la
cámara. A partir de estas observaciones proponemos una reparametrización del problema
de optimización de grafos, eliminado las orientaciones del vector a optimizar y haciendo
posible la optimización solo de la posición de la cámara.
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Abstract

Under the rapid development of electronics and computer science in the last years, cameras
have become omnipresent nowadays, to such extent that almost everybody is able to carry one
at all times embedded into their cellular phone. What makes cameras specially appealing for
us is their ability to quickly capture a lot of information of the environment encoded in one
image or video, allowing us to immortalize special moments in our life or share reliable visual
information of the environment with other persons. However, while the task of extracting the
information from an image may by trivial for us, in the case of computers complex algorithms
with a high computational burden are required to transform a raw image into useful information.
In this sense, the same rapid development in computer science that allowed the widespread
of cameras has enabled also the possibility of real-time application of previously practically
infeasible algorithms.

Among the current fields of research in the computer vision community, this thesis is specially
concerned in metric localisation and mapping algorithms. These algorithms are a key component
in many practical applications such as robot navigation, augmented reality or reconstructing 3D
models of the environment.

The goal of this thesis is to delve into visual localisation and mapping from vision, paying
special attention to conventional and unconventional cameras which can be easily worn or
handled by a human. In this thesis contribute in the following aspects of the visual odometry
and SLAM (Simultaneous Localisation and Mapping) pipeline:

Generalised Monocular SLAM: State of the art visual SLAM algorithms are usually
designed for conventional cameras, which can be modelled by a simple pin-hole camera
model but have a narrow field of view. Vision systems consisting in a combination of a
camera and a conic-shaped mirror, catadioptric cameras, offer a larger field of view, but in
turn require of the use of a more complex projection model, which generalises the projection
of central projection systems. Our proposal in this field is the adaptation to catadioptric
cameras of a real time monocular SLAM system initially designed for conventional cameras.

Scale problem in monocular vision: One problem of localisation and mapping
algorithms for monocular systems is their inability to provide the real scale of the camera
motion and the observed map. To solve this problem, extra information has to be obtained
either from additional sensors or from known or assumed priors about the environment.
Our proposal in this field is an algorithm for scale estimation and scale drift avoidance
when monocular SLAM is performed with a wearable camera by capturing the walking
speed of the user, from the step frequency.

Dense RGB-D odometry: Recent algorithms for odometry estimation with RGB-
D sensors, estimate the camera motion by performing pixelwise minimisation of the
photometric and/or the geometric error. However, in many cases important properties
of the error model of the depth sensor are ignored, which could affect the performance of
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odometry computation. In this thesis we propose a direct RGB-D odometry method which
uses the inverse depth for the parametrisation of the geometric error, whose probability
distribution is closer to the error model of a depth sensor, improving state of the art results.

Robust place recognition: In visual SLAM, a place recognition module is a key
component for camera relocalisation when lost, or to close loops at revisited areas. However
during place recognition, it is frequently assumed that a scene does not suffer changes
between visits, which can be a source of fails, affecting robustness of place recognition
algorithms. Our work in this field and in the context of RGB-D sensors proposes the
pruning of scene parts with a high entropy in the surface normals in order to increase the
robustness of place recognition under long term changes in the scene.

Pose-graph optimisation: In SLAM approaches, pose-graph optimisation is a frequently
used approach to enforce loop constraints between pairs of camera poses. Pose-graph
problems usually mix the camera rotation and translation in the same optimisation
problem. The different units in which rotation and translation are measured make
neccesary a normalisation of these variables, but it is not always possible to do this in
a rigorous way. In addition to this, it seems also unnecesary having to optimise the
orientation together with the translation, when the main objective might be bending the
curve which represents the trajectory of the camera. Stemming from these observations
we propose a reparametrisation of the pose-graph problem removing the orientations from
the optimised vector and making possible the optimisation only on the position part of
the poses.
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Chapter 1

Introduction

1.1. Computer Vision and Metric Localisation

The use of cameras on sensing platforms arouses great interest due to the low cost of this kind
of sensors and the high amount of information which is encoded in one image. However, while
extracting this information might appear as a trivial task for humans, in the case of computer
systems a raw image must undergo many processing steps, dependent on the application, to
allow the extraction of some meaningful information. In many cases these steps involve costly
operations, so the use of images in the fields of computer science and robotics has been intimately
linked to the performance of the computer systems. In the recent years, the increasing power
and universalization of computers has lead to an extended use of computer vision techniques in
robotics and computer science.

In addition to the improvement on CPU performance, the advances in camera miniaturization
and mobile computing have lead to an emerging interest in the use of wearable cameras [Mann,
1997], which are now available as consumer products 1 2. Although these commercial products
are focused on recreational use, wearable cameras can also provide assistance to impaired people.
For example, in [Hodges et al., 2011] it is presented a wearable device, the Sense-Cam, which
captures images of the wearer’s daily life to help people with memory disorders; and in [Mann
et al., 2011] authors design a prototype consisting of a vibrotactile helmet with an attached
Kinect range camera to allow visually impaired people to avoid obstacles.

In a platform including a vision system, a precise odometric localisation of the camera and
representation of the environment is an important step, prior to the performance of higher level
tasks. In robotics this problem is known as Simultaneous Localisation and Mapping (SLAM)
and its resolution has many practical applications such as augmented reality [Klein and Murray,
2007], smart navigation for robots, consistent 3D reconstructions of cities from images [Agarwal
et al., 2009], or dense 3D reconstructions of indoor environments [Whelan et al., 2015].

For such localisation and navigation purposes, panoramic cameras with an horizontal field
of view of 360o provide a better performance than conventional ones. The immediate benefit of
using panoramic cameras is the passive perception of most of the environment independently of
the camera orientation. Among panoramic cameras, catadioptric cameras, which consist in one
camera-mirror system, offer more compactness, simplicity and a lower cost than multicamera
systems. However catadioptric images capture the environment with a severe deformation and
provide a coarsest resolution. Furthermore the resolution varies with the distance to the principal
point. This makes that many computer vision techniques must be adapted to this kind of sensors.

1http://gopro.com
2http://memoto.com
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We have referred to the problem of localisation and scene reconstruction as SLAM. However,
although the problem to be solved is essentially the same, its name actually depends on the
perspective from which it is addressed. In the computer vision literature it is referred to as
Structure from Motion (SfM), while the term SLAM is applied in the field of robotics. In
Structure from Motion the stress is put into reconstructing a 3D scene from a sparse set of
images, for which batch non-linear optimization techniques known as Bundle Adjustment (BA)
are used [Triggs et al., 2000].

On the other hand, Visual SLAM techniques focus in estimating the camera motion in real
time from images taken at video rate. Traditionally, the V-SLAM problem has been addressed
from a bayesian filtering perspective either by using an Extended Kalman Filter [Davison, 2003]
or particle filters [Montemerlo et al., 2002]. Probabilistic filters process images sequentially,
keeping track of the map and the last camera pose. Previous poses and measurements are
marginalised out by updating an uncertainty matrix which spans over the current pose and the
map features. This marginalisation step of previous poses allows for real-time operation at the
expense of getting lower precision and establishing strict limits on the map size due to the cost
of the matrix update, which is quadratic with the state vector size.

However, later approaches like the iSAM [Kaess et al., 2008] of Kaess et al. and the
PTAM [Klein and Murray, 2007] of Klein and Murray have showed successful solutions for the
real time SLAM from an optimization-based perspective, which is closer to a Bundle Adjustment
problem. In [Kaess et al., 2008], a reordering of the information matrix allows for an efficient
resolution of SLAM posed as a least squares problem. In [Klein and Murray, 2007], authors
get rid of the uncertainty matrix and its limitations by separating the camera tracking and the
environment mapping. Camera motion relative to a fixed map is estimated on-line in one thread,
while another thread updates this map periodically by applying Bundle Adjustment on selected
keyframes.

Following the success of the new optimization-based SLAM approaches, in [Strasdat et al.,
2010] Strasdat et al. compare the filtering vs optimization paradigms, and conclude that Bundle
Adjustment optimisation generally outperforms filtering techniques. In [Kümmerle et al., 2011]
Kümmerle et al. presented the g2o, a state-of-the-art C++ framework for graph optimization
which aims to provide high scalability for several variants of SLAM and BA.

The probabilistic nature of SLAM and the incremental estimation of the camera motion, lead
to an unavoidable error build-up. The accumulated error gives raise to a drift in the trajectory,
which becomes evident when the sensor platform revisits a previous location. It is expressly in
these situations when the so called loop closing techniques can be applied to correct the drift.

The loop closure process can be divided into three steps: loop detection, computation of
the loop closing constraint and trajectory correction with the new constraints. The detection
of loops is performed by attempting match the current frame against a database of keyframes.
These keyframes are selected such that they are spatially far enough from temporally close
keyframes but still share most of the captured environment. State of the Art approaches for loop
detection [Cummins and Newman, 2011], [Gálvez-López and Tardos, 2012], use a technique based
on Bag of Words. It consists in extracting local features in the keyframe and classifying these
features into words using a vocabulary which has been previously constructed offline. Finally an
histogram with the frequency in the keyframe of each vocabulary word is built. When querying
the database of keyframes, those keyframes with histograms similar to the current frame are
selected as keyframe candidates.

After a set of possible candidates has been selected, the final phase of loop detection comes
which is coupled with the computation of the loop constraint. Given the correspondences
between local features in both candidate and current frames, a putative motion estimate is
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CHAPTER 1. INTRODUCTION

computed using algorithms for multiple view geometry for each candidate frame match. This is
done within a RANSAC scheme, such that a loop is detected if there are enough correspondences
supporting the best motion estimate. This estimate can be then further refined by non linear
optimisation with the inlier matches.

The last step involves the correction of the trajectory and map by enforcing the new loop
constraints. This is done by optimising a pose-graph where the final trajectory is the one which
minimises the combined cost of violating the initial odometry constraints from the SLAM front-
end and the new loop closure constraints.

One important limitation of visual SLAM techniques is that monocular vision systems are
not able to provide depth measurements of the observed landmarks. One would need two images,
provided that the baseline between the corresponding camera poses is large enough, to estimate
both the camera translation and the depth of the observed landmarks up to an ambiguity in the
scale factor.

In the context of monocular SLAM, this limitation translates in two closely related problems.
The first one is a chicken-egg problem during initialisation by which neither camera translation
nor the depth of the landmarks can be estimated until enough parallax is observed. This
can be tackled by direct intervention of the user providing some initial landmarks whose 3D
position is fully known [Davison, 2003], or manually selecting two initial keyframes with enough
parallax [Klein and Murray, 2007]. However, an smarter automatic initialisation is possible using
a specialised initialisation algorithms [Mur-Artal et al., 2015] or even without need of applying
a specific algorithm, if we choose an appropriate parameterisation for the landmarks [Civera
et al., 2008].

The second one is known as scale drift. During the initialisation of monocular SLAM,
the scale is initially fixed to a real or an arbitrary value, depending of the used method of
the mentioned before. However, far from keeping itself constant, the continuous lost of old
landmarks and the initialisation of new ones gives raise to a change of the scale of the scene as
the camera moves. This ends up by introducing a deformation in the final trajectory and map
estimates which goes beyond a simple scale ambiguity. The deformation introduced by the drift
in the scale can even persist after applying state-of-the-art loop closure techniques. To correct
the scale drift one typically needs to track the scale using information from additional sensors
or from prior information, though it is also possible to correct it at loop closure using similarity
transformations to express the motion between camera poses [Strasdat et al., 2010].

In computer vision, the straightforward solution to the scale problem is using stereo vision
systems [Nistér et al., 2006, Paz et al., 2008, Mei et al., 2010] where the known fixed baseline
between two cameras allows to estimate the depth of the pixels in the image. However with
respect to monocular systems they are much more expensive, bigger and more difficult to
calibrate, and also they cannot accurately measure the depth of distant scene points or poorly
textured areas.

For this reason the recent advent of new RGB-D sensors has aroused great interest in the
development of visual odometry and SLAM systems. Their cheapness and their ability to provide
dense depth measurements of the environment in contrast to traditional stereo cameras makes
them quite appealing to address not only localisation and mapping but also many other problems
for which monocular systems are typically used. The main limitation is their use being limited
to indoor environments.

3
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1.2. Goals and contributions

The main goals and contributions in this PhD Thesis can be grouped in the following related
topics:

Monocular SLAM: We first propose, an adaptation of a real-time monocular SLAM
application from conventional to catadioptric systems. Secondly we propose a new
algorithm for scale estimation and scale drift avoidance in monocular SLAM running on
wearable cameras.

RGB-D Localisation and Dense Mapping: We contribute with a dense RGB-D
odometry method which as a novelty uses the inverse depth instead of depth to parametrise
the geometric error. We also propose the pruning of high surface normal entropy in a dense
RGB-D map in order to potentially improve place recognition with RGB-D cameras.

Pose-graph optimisation: We propose a novel redefinition of the pose-graph constraints
in order to allow for the resolution of pose-graph optimisation problems dropping the
orientation part of the poses and optimising only the position.

1.2.1. Monocular SLAM

The first part of this thesis turns around visual SLAM with a single camera, or monocular
SLAM. Much of the work in this part has been done over the MonoSLAM application developed
initially in [Davison, 2003] and further improved in the works [Civera et al., 2008], [Civera
et al., 2010]. Our contributions in the field of monocular SLAM are described in Chapter 2 and
Chapter 3.

Generalization of Monocular SLAM for central projection systems: Chapter
2 describes the generalisation of a monocular SLAM initially designed only for conventional
cameras, in order to make it work with every kind of central projection system, which include
not only conventional cameras but also catadioptric systems which are those formed by a mirror
and a camera. Since catadioptric systems offer a more extended field of view with respect to
conventional ones, a visual SLAM system which is able to work with such cameras is likely
to have better precision and produce richer reconstructions of the environment. The paper
associated to this contribution is:

[Gutiérrez et al., 2011] D. Gutiérrez, A. Rituerto, J.M.M. Montiel, J.J. Guerrero,
”Adapting a Real-Time Monocular SLAM from Conventional to Omnidirectional
Cameras”, In 11th OMNIVIS Omnidirectional Vision, Camera Networks and Non-classical
Cameras, IEEE International Conference on Computer Vision Workshops, pp. 343-350,
2011.

Scaled Monocular SLAM for Wearable Systems: In monocular SLAM, the
reconstruction of the 3D map and the trajectory of the camera can only be estimated up
to one scale factor. Furthermore the scale factor is not unique for the whole reconstruction,
being subject to a drift which ultimately produces severe deformations in the reconstruction.
To address this problem in Chapter 3 we present a novel method to compute the scale for
monocular SLAM running on wearable systems. Our method in essence obtains the walking
speed of the user, from the step frequency, based on a biological model of people walking which
is computed by analysing the vertical movement of the camera in a temporal window. Knowing
the walking speed we are able to obtain a scale factor for the frames contained in that temporal
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CHAPTER 1. INTRODUCTION

window. The experiments, carried out in outdoor and indoor environments and with different
types of cameras, show that our method is reliable and robust to challenging situations like
stops, changes in pace or stairs, and provides a significant improvement with respect to the
initial unscaled estimate. The papers associated to this contribution are:

[Gutiérrez-Gómez et al., 2012] D. Gutiérrez-Gómez, L. Puig, J.J. Guerrero. ”Full Scaled
3D Visual Odometry from a Single Wearable Omnidirectional Camera”, In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 4276 - 4281,
2012.

[Gutiérrez-Gómez and Guerrero, 2013] D. Gutiérrez-Gómez, J.J. Guerrero. ”Scaled
Monocular SLAM for Walking People”, In ACM International Symposium on Wearable
Computers (ISWC), pp. 9 - 12, 2013.

[Gutiérrez-Gómez and Guerrero, 2016] D. Gutiérrez-Gómez, J.J. Guerrero. ”True Scaled
6 DoF Egocentric Localisation”, Journal paper under review

1.2.2. RGB-D Localisation and Dense Mapping

In the second part of the thesis the work was focused towards RGB-D sensors.

Dense RGB-D visual odometry using inverse depth: With the advent of RGB-
D sensors approaches for dense odometry estimation, i.e., using all the pixels in the image
rather than local features sparsely distributed along the image became increasingly popular.
Though dense methods were previously applied on RGB sensors, the lack of depth measurements
made the problem being solved ill-posed and thus requiring from costly and complex variational
methods for the resolution. The availability of depth, greatly simplified the problem and dense
visual odometry methods for RGB-D cameras started to proliferate. However, all of them have
in common the usage of depth for the resolution of the problem, which in principle is not well
suited to the noise model of the depth measurements in RGB-D sensors. Our contribution
presented in Chapter 4 proposes a new visual odometry method computing the inverse depth,
which fits better with the noise model of cameras than using standard depth. The method
also summarises most of the best practices found in the literature, which makes the algorithm
robust and non-dependent on heuristic or tunable parameters. We report a high accuracy of
our method with superior results to other state of the art RGB-D odometry approaches in real
world as well as in synthetic datasets. We have implemented this method within the scope of
PCL (Point Cloud Library) as a branch of the code for large scale KinectFusion, where the
original ICP system for odometry estimation has been completely substituted by our method.
A PCL fork including the modified method is available for download .The papers associated to
this contribution are:

[Gutiérrez-Gómez et al., 2015a] D. Gutiérrez-Gómez, W. Mayol-Cuevas, J.J. Guerrero.
”Inverse Depth for Accurate Photometric and Geometric Error Minimisation in RGB-
D Dense Visual Odometry”, In International Conference on Robotics and Automation
(ICRA), 2015. Finalist to the Best Robotic Vision paper Award and Best Conference
Paper Award.

[Gutiérrez-Gómez et al., 2016] D. Gutiérrez-Gómez, W. Mayol-Cuevas, J.J. Guerrero.
”Dense RGB-D Visual Odometry using Inverse Depth”.Robotics and Autonomous Systems
(RAS ), 2016.
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Segmentation in superjuts for robust place recognition: One open problem in the
fields of place recognition and mapping is to be able to recognise a revisited place when its
appearance and layout have changed between visits. In Chapter 5 we investigate this problem
in the context of RGB-D mapping in indoor environments. We propose to segment the scene in
juts (neighbourhood of 3D points with normals that stick out from the surroundings) and look
at low-level features, like textureness or entropy of the normals. The key idea is that these kind
of properties can help to differentiate zones of the scene which change or move along time from
those that are likely to remain static. We also present a method which improves the matching
between images of the same place taken at different times by pruning details basing on these
features. We evaluate on a number of communal areas and also on some scenes captured 6
months apart. Experiments with our approach, show an increase up to 70% in inlier matching
ratio at the cost of pruning only less than 20% of correct matches, without the need of performing
geometric verification.The papers associated to this contribution are:

[Gutiérrez-Gómez et al., 2015b] D. Gutiérrez-Gómez, W. Mayol-Cuevas, J.J. Guerrero.
”What Should I Landmark? Entropy of Normals in Depth Juts for Place Recognition in
Changing Environments Using RGB-D Data”, In International Conference on Robotics
and Automation (ICRA), 2015.

Robust RGB-ID SLAM in Changing Environments: Chapter 6 brings together the
contributions of the two previous chapters, to build a robust RGB-ID SLAM system, ID for
Inverse Depth, which is able to relocate at scenes which have suffered changes between different
sessions. Our system consists in 2 threads working in parallel. The first thread is a front-
end operating at frame rate, which processes every incoming frame from the RGB-D sensor to
compute the incremental odometry and integrate it in a keyframe which is changed periodically
following a covisibility-based strategy. The second thread is a back-end which receives keyframes
from the front-end. This thread is in charge of segmenting the keyframes based on their
structure, describing them using Bags of Words, trying to find potential loop closures with
previous keyframes, and in such case perform pose-graph optimisation for trajectory correction.
The first experiments with our approach in the TUM RGB-D benchmark datasets show results
superior in accuracy to the state-of-the-art in many of the sequences. These promising initial
evaluation encourages us to further improve our method.

1.2.3. Pose-graph optimisation

The last part of this thesis is concerned with the pose-graph optimisation problem which
in visual SLAM frequently arises when loops are closed. During loop closure, pose-graph
optimisation is the final step where the camera trajectory and map are bended so that they
satisfy relocalisation constraints of a camera in a previously visited area. Our contribution in
this area is covered in Chapter 7.

Removal of orientation in pose-graph problems: We propose a reparametrisation
of the pose-graph optimisation, where a graph containing only nodes with poses of a rigid
body is optimised such that these poses satisfy new constraints. This kind of problem arises
frequently when trying to close a loop in a trajectory. This trajectory, initially computed
only from odometry constraints has to be bended such that it satisfies new loop constraints
obtained when old zones of the environment are revisited. The usual practice is to establish
these constraints both in the position and orientation of the body. We propose to reformulate
the optimisation problem in order to drop the orientation part of the poses. Instead of treating
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trajectory as a set of poses, we look at it as a curve in its pure mathematical meaning. We define
an observation function which computes the estimate of one constraint in a local reference
frame using only the robot positions. Our proposed method is compared against state-of-
the-art pose graph optimisation algorithms in 2 and 3 dimensions.The main benefits of doing
this is i) a reduction of the number of variables to be optimised and ii) avoid the mixture of
errors of different magnitudes, which is specially important in the case that properly computed
information matrices cannot be provided. The papers associated to this contribution are:

[Gutiérrez-Gómez and Guerrero, 2014] D. Gutiérrez-Gómez, J.J. Guerrero. ”Curve-
Graph odometry: Removing the orientation in loop closure optimisation problems”, In
International Conference on Intelligent Autonomous Systems (IAS), 2014. Best Student
Paper Award in International Conference on Intelligent Autonomous Systems (IAS).

[Gutiérrez-Gómez and Guerrero, 2015] D. Gutiérrez-Gómez, J.J. Guerrero. ”Curve-graph
odometry: Orientation-free error parametrisations for loop closure problems”, Robotics
and Autonomous Systems (RAS), 2015.

I have also collaborated with other researchers of our group in the integration of developed
algorithms in systems with a higher complexity, in the context of the VINEA research project:

[Pérez-Yus et al., 2016] A. Pérez-Yus, D. Gutiérrez-Gómez, G. López-Nicolas, J. J.
Guerrero ”Stairs Detection with Odometry-aided Traversal From a Wearable RGB-D
Camera”. Under Review Journal Paper.

[Guerrero et al., 2015] J. J. Guerrero, A. Pérez-Yus, D. Gutiérrez-Gómez, A. Rituerto,
G. López-Nicolás. ”Human navigation assistance with a RGB-D sensor”. In VI Congreso
Internacional de Diseño, Redes de Investigación y Tecnoloǵıa para todos (DRT4ALL), pp.
285-312, 2015.

[Murillo et al., 2012] A. C. Murillo, D. Gutiérrez-Gómez, A. Rituerto, L. Puig and J.
J. Guerrero. ”Wearable Omnidirectional Vision System for Personal Localization and
Guidance”, In IEEE Computer Vision and Pattern Recognition Workshops (CVPRW)
2nd Workshop on Egocentric Vision, pp. 8-14, 2012.
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Chapter 2

Real-Time Generalized Monocular
SLAM for Central Cameras

The SLAM (Simultaneous Localization and Mapping) problem is one of the essential
challenges for the current robotics. The main objective in this chapter is to develop a
real-time visual SLAM system using monocular omnidirectional vision. Our approach
builds on a Visual SLAM system based on the Extended Kalman Filter (EKF). To
obtain geometric information from the images, instead of the typical pin-hole camera
model with distortion parameters, we use a generalised model which scopes not only
conventional cameras but also any central projection system like the catadioptric
omnidirectional cameras used in this work. This model is integrated in the EKF-based
SLAM through the linearization of the direct and the inverse projections. We introduce
an affine transformation to warp the descriptor patch for catadioptric omnidirectional
cameras which aims to reach rotation and scale invariance. We perform experiments
with omnidirectional images comparing this new approach with the conventional one.
The experimentation confirms that our approach works better with omnidirectional
cameras since features have a larger lifespan and constructed maps are bigger.

2.1. Introduction

Solving the SLAM problem implies building a map of the surrounding and localising an
autonomous robot relative to this map using only partial measurements of the environment.
SLAM is usually formulated in a probabilistic way, i.e.the estimate of the robot position and map
are computed as a probability distribution. Two main approaches are used for the computation
of the probability distribution: the extended Kalman filter (EKF) [Thrun et al., 2005] and the
particle filter [Arulampalam et al., 2002].

In Visual SLAM applications, image projections of relevant points known as local features
are used as measurements. To extract and store the features on the image an extractor and
descriptor are used. The feature extractor process the image and detects the key-points on it.
The image processing is a high time-consuming step, which is critical for a real time application
like SLAM. Rosten et al. [Rosten et al., 2010] developed the feature extraction algorithm FAST
(Features Accelerated Segment Test). They benchmark their FAST extractor with other widely
used feature extractors showing that FAST outperforms them in computational cost and in
repeatability when viewing the scene from different positions. The descriptor provides an
identifier to an extracted point so that it can be recognised in future measurements. The
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most basic descriptor is a patch of a certain size centred in the key-point, although there exists
more kinds of descriptors like SIFT [Lowe, 2004], SURF [Bay et al., 2008], LBP [Heikkila et al.,
2009], etc.

Since the seminal work of Davison [Davison, 2003], monocular SLAM has been a fertile
research field. In this work we propose to combine state of the art robust EKF SLAM [Civera
et al., 2010] with an omnidirectional sensor. We integrate the Spherical Camera Model in
a Real Time application. The main differences with the work developed in [Rituerto et al.,
2010] is that now we use image patches instead of SIFT descriptors and our solution includes
robust detection of spurious, operating at video sampling rate. Besides that we develop an
affine transformation for patch warping in catadioptric cameras which considers rotation and
scale invariance in function of mirror parameters. To reach rotation invariance we base on the
proposal of [Andreasson et al., 2007]. For scale invariance we develop a formulation of the scale
factor in function of the mirror parameters which can be applied in any kind of central camera
and, in particular, in a hyper-catadioptric system compound by a hyperbolic mirror coupled
with a perspective camera.

2.2. Related Work

Visual SLAM using omnidirectional cameras has been proposed in [Corke et al., 2004], [Mei,
2007], [Tardif et al., 2008] and [Scaramuzza et al., 2009b]. The main advantage of using
omnidirectional cameras in this context is that their large field of view, allows to track features
during longer times than in the case of conventional cameras, specially when big camera rotations
occur. The increased lifespan of the features on the image translates in a better estimation of
the position of the features on the map, a lower need to initialise new features and a increased
robustness.

However the omnidirectional images involve a more complex projection model, important
image deformation, distortion and variable scale in the image. So, the feature descriptor should
be modified for catadioptric cameras. In this way, [Svoboda and Pajdla, 2001] propose the use
of patches with variable size and shape (active windows). Their experiments show that active
windows provide best matching results than square windows. [Chang et al., 2009] propose the
computation of patches of different angular apertures for the same feature to overcome the
matching problems derived from the varying resolution of the camera. [Scaramuzza et al., 2007]
take advantage of the projection of vertical lines of the world as radial lines on the image. They
propose a method to extract and match vertical lines with rotation invariant descriptors and
apply this method to an EKF-SLAM. [Andreasson et al., 2007] propose a modified SIFT feature
with no scale invariance. To obtain rotation invariance they rotate each patch to the same global
orientation. [Lu and Zheng, 2010] combine the rotation invariant patch by Andreasson with a
FAST extractor and a CS-LBP descriptor and they compare it with the SIFT algorithm.

2.3. The Spherical Camera Model

Central catadioptric systems are those composed by a conventional camera and a planar
or conic-shaped mirror, and have the characteristic of having a unique projection center.
The projection of 3D points in systems with a unique projection center, which are not only
catadioptric ones, but also conventional and fish-eye cameras can be described by a generalised
projection model proposed by Geyer and Daniilidis [Geyer and Daniilidis, 2000] and extended
Barreto and Araujo [Barreto and Araujo, 2001].
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CAMERAS

Figure 2.1: Scheme of the sphere projection model.

Taking a 3D point expressed in the camera reference frame with euclidean coordinates
x = (x, y, z), its projection on the image is modeled by a following projection function p = Π (x),
which is invariant to the camera-point distance, i.e., Π (x) = Π (kx) ∀k ∈ R+. This allows to
reinterpret x more generally as a projective ray where the projected 3D point lies. With this in
mind, the projection can be divided in the following steps (see Fig. 2.1):

The ray x is projected onto the unit sphere centred in the origin O. The intersection
point is projected to a virtual projection plane π through the virtual projection center
CP = (0, 0,−ξ)T yielding the point x′ . This step is coded by the non-linear function ~:

x′ = ~ (ξ,x) = x +

 0
0

ξ||x||

 (2.1)

The virtual plane π is transformed in the image plane πIM through a homographic
transformation Hc

x′′ = Hcx
′ (2.2)

Hc = KcRcMc (2.3)

where Kc includes the camera parameters, Mc includes the mirror parameters and Rc is
the rotation matrix between camera and mirror. Assuming a pin-hole camera model and
Rc = I, the transformation Hc yields:

Hc =

ηf 0 u0

0 ηf v0

0 0 1

 =

γ 0 u0

0 γ v0

0 0 1

 , (2.4)

11



2.3. THE SPHERICAL CAMERA MODEL

where γ = ηf is the generalized focal length of the camera-mirror system with η a mirror
parameter and f the focal length of the camera.

Finally the image coordinates are calculated by dividing x′′ by its z′′ coordinate:

p =

 u
v
1

 =
x′′

eTz x′′
, (2.5)

where eTz = (0, 0, 1).

The parameter of the model, ξ depends only on the kind of camera and the geometry of the
mirror. For conventional cameras ξ = 0. ξ = 1 for catadioptric systems with parabolic mirror
and orthographic camera, and 0 < ξ < 1 with hyperbolic mirror and perspective camera.

It is also possible to estimate the 3D ray which is projected on the image, through the inverse
of the projection model. Starting with the point in image coordinates p = (u, v, 1)T , we obtain
the corresponding ray as follows:

x′ = Hc
−1p (2.6)

x = ~
−1

(ξ,x′) = x′ −

 0
0

ξ||x′||
ξeTz x′+

√
(1−ξ2)||x′||2+ξ2(eTz x′)2

 . (2.7)

2.3.1. Jacobians of the Spherical Camera Model

In some cases, as occurs in optimisation, probabilistic filtering or uncertainty propagation,
we need to compute the Jacobians of the projection model. In this section we provide the
analytical expressions for those Jacobians, as obtained in [Rituerto et al., 2010].

For the projection model the Jacobian is given by:

∂p

∂x
=

∂p

∂x′′
∂x′′

∂x′
∂x′

∂x
(2.8)

∂p

∂x′′
=

[
1
z′′ 0 − x′′

z′′2

0 1
z′′ −

y′′

z′′2

]
(2.9)

∂x′′

∂x′
= Hc (2.10)

∂x′

∂x
=
∂~(x)

∂x

 1 0 0
0 1 0
ξx
ρ

ξy
ρ 1 + ξz

ρ

 , (2.11)

where ρ =
√
x2 + y2 + z2

The Jacobian of the inverse projection is computed as:
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∂x

∂p
=
∂x

∂x′
∂x′

∂p
, (2.12)

∂x′

∂p
= H

−1

c , (2.13)

∂x

∂x′
=
∂~
−1

(x′)

∂x′
=

 1 0 0
0 1 0

− ξx
′

χ − ξy
′

χ 1−
ξ(z′−ξ x

′2+y′2+z′2
ξz′+χ )

χ

 , (2.14)

where χ =
√

(1− ξ2)(x′2 + y′2) + z′2

2.4. EKF-based Simultaneous Localisation And Mapping

The camera state as well as the position of the landmarks at time step i are encapsulated in
a state vector xi

xi = (rCW,i, RW
C
i , vCW,i, ω

C
C,i︸ ︷︷ ︸

Camera state xCi

, r
C(j)
W,i , θ

(j)
i , φ

(j)
i , ρ

(j)
i , ...︸ ︷︷ ︸

3D points (IDP) y
(j)
IDP,W

), (2.15)

where rCW,i is the camera position, RW
C
i is the rotation matrix representing its orientation and

vCW,i and ωCC,i are its linear and angular velocities, respectively.
The 3D locations are parametrised in an anchored inverse depth parametrisation (IDP)

[Civera et al., 2008], where r
C(j)
W,i is the anchor camera position where the landmark was first

viewed, θ
(j)
i , φ

(j)
i and ρ

(j)
i are respectively the elevation angle, the azimuth angle and the inverse

depth with respect to the anchor position.
Since the EKF produces a probabilistic estimate of the state we need to define also the

covariance Pi corresponding to the state vector xi. We start by defining an error vector:

δxi = (δrCW,i, δθ
C
W,i, δv

C
W,i, δω

C
C,i︸ ︷︷ ︸

Camera state δxCi

, δr
C(j)
W,i , δθ

(j)
i , δφ

(j)
i , δρ

(j)
i , ...︸ ︷︷ ︸

3D points (IDP) δy(j)
IDP,W

), (2.16)

from which we obtain the expression for the covariance

Pi =

[
PCC
i PCM

i(
PCM
i

)T
PMM
i

]
= E

[
δxiδx

T
i

]
(2.17)

Generally the error for each component of the state vector is obtained by modeling it as an
additive perturbation on the true quantity to be estimated (x̂ = x + δx). In the case of the
rotation however a direct addition on a rotation matrix ( R̂W

C
i = RW

C
i + δRW

C
i ) implies a

direct violation of the constraints induced by the manifold of 3D rotations SO(3). To preserve
these constraints, errors on the true rotation must be modeled in the corresponding Lie Algebra,
δθCW,i ∈ so(3), using a minimal parametrisation with 3 DoF, then mapping it to the Lie Group
through the exponential map, and applying the perturbation by the composition operation, i.e.,

13
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R̂W
C
i = exp([δθCW,i]×) RW

C
i , (2.18)

where the notation [v]× is used to denote the 3x3 skew-symmetric matrix obtained from a
3-dimensional vector v.

2.4.1. Motion model

In an EKF based SLAM a motion and a measurement model must be provided. The motion
model describes the change on the camera pose from time step i− 1 to i and it is described by
the following equation:

xCi = f(xCi−1,ui), (2.19)

where f(·) is the state transition function , xCi−1 is the last estimated camera pose and ui is the
control input.

This model is used to propagate the camera state estimate xCi and its covariance PCC
i in the

EKF prediction step. Internal measurements from an odometer or an IMU can be integrated
as control inputs ui. Alternatively, in absence of these measures, a constant velocity model is
frequently used to propagate the state. Possible changes in velocity are dealt with by modelling
the control input as linear and angular accelerations with zero mean and a variance which has
to be tuned:

ûi =

(
naC
nαC

)
,naC ∼ N (0,Σa),nαC ∼ N (0,Σα) (2.20)

To obtain the transition function we need to integrate the differential equations governing
the dynamics of a rigid body moving in the 3D space with random perturbations in acceleration:

ṙCW = vCW (2.21)

ṘC
W = RC

W [ωCC ]× (2.22)

v̇CW = RC
W naC (2.23)

ω̇CC = nαC (2.24)

Taking naC = nαC = 0, the transition function of the camera state is:

rCW,i = rCW,i−1 + vCW,i−1∆t (2.25)

RW
C
i = RW

C
i−1R(ωCC,i−1∆t) (2.26)

vCW,i = vCW,i−1 (2.27)

ωCC,i = ωCC,i−1 (2.28)

To propagate the covariance we have to integrate the differential equations of the error model.
The obtention and the integration of the continuous error model is detailed in Appendix A. At
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the end we obtain a discrete time model for the error propagation from which we obtain the
following expression for the propagation of the state covariance.

Fi =
∂δxCi
∂δxCi−1

=


I 0 I∆t 0

0 I 0 RW
C
i−1Q(ωCC,i∆t)∆t

0 0 I 0

0 0 0 I

 (2.29)

Gi =
∂δxCi
∂δui−1

=


RW
C
i−1S(ωCC,i−1∆t)∆t2 0

0 RW
C
i−1

(
Q(ωCC,i−1∆t)− S(ωCC,i−1∆t)

)
∆t2

RW
C
i−1Q(ωCC,i−1∆t)∆t 0

0 I∆t

 (2.30)

PCC
i = FiP

CC
i−1F

T
i + Gi

[
Σa 0
0 Σα

]
GT
i (2.31)

PCM
i = FiP

CM
i−1 (2.32)

2.4.2. Measurement model

The measurement model is used to introduce the information from measurements of external
sensors in the EKF update step. In monocular SLAM it is defined by an observation function
which encapsulates a projectivity transformation. The observation function depends on the
characteristics of the vision system. For central projection systems, i.e., planar (conventional),
dioptric or catadioptric systems, we use the generalised model described in Section 2.3, taking

h
(j)
C,i as the ray corresponding to the j − th landmark, whose projection is predicted at the

location z
(j)
i in the image plane. This is encoded in the following equations:

z
(j)
i = Π

(
h

(j)
C,i

)
= Hc~

(
ξ,h

(j)
C,i

)
(2.33)

h
(j)
C,i =

(
RW
C
i

)T (
ρ

(j)
i

(
r
C(j)
W,i − rCW,i

)
+ m

(
φ

(j)
i , θ

(j)
i

))
, (2.34)

where ξ is a parameter encapsulating the geometric properties of the camera, ~ is a non-linear
function, Kc is a conventional camera calibration matrix, and m(·) the function which maps
the elevation and azimuth angles to a unit vector. The Jacobian of the measurement function
is computed as:

H
(j)
i =

∂Π(j)

∂h
(j)
C,i

[
∂h

(j)
C,i

∂δxCi
· · ·

∂h
(j)
C,i

∂δy
(j)
IDP,i

· · ·

]

=
∂Π(j)

∂h
(j)
C,i

(
RW
C
i

)T −ρ(j)
i [ RW

C
i h

(j)
C,i]× 0 0 · · · ρ(j)

i

∂m

∂
(
φ

(j)
i , θ

(j)
i

)T (
r

(j)
W,i − rCW,i

)
· · ·

 ,
(2.35)
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where ∂Π(j)

∂h
(j)
C,i

is the Jacobian of the sphere projection model from (2.8).

With this generalised model, the observations of the tracked features (those in the EKF

state vector) are predicted, and then putative matches ẑ
(j)
i are obtained by active search in the

uncertainty region given by the bound of the 95% confidence interval of the projection S
(j)
i of

the state covariance:

S
(j)
i = H

(j)
i PiH

(j)
i

T
+ Σ(j)

z , (2.36)

where Σ
(j)
z is the measurement noise in the image.

Spurious matches are rejected by RANSAC [Civera et al., 2010], and then correct matches
are used to update the state both of the camera and the landmarks. For the update step we
need to compute the innovation νi, the covariance of the measurements Si and the Kalman gain
Ki:

νi =


ẑi1 −Π

(
xCi ,y

(1)
IDP,i

)
...

ẑiM −Π
(
xCi ,y

(M)
IDP,i

)
 (2.37)

Hi =


H

(1)
i
...

H
(M)
i

 (2.38)

Si = HiPiH
T
i + Σz, (2.39)

Ki = PiH
T
i S−1

i . (2.40)

And the state update ∆xi =
(
∆rCW,i, ∆θCW,i, ∆vCW,i, ∆ωCC,i, ..., ∆y

(j)
IDP,i, ...

)
is computed as:

∆xi = Kiνi. (2.41)

For each variable in the state vector the update is applied by direct addition, x← x+ ∆x,
except for the rotation where the increment is applied by computing the exponential map and
the update and the composition operation:

RW
C
i ← exp

(
[∆θCW,i]×

)
RW
C
i (2.42)

The covariance of the state estimate has also to be updated due to the gain of information
from the measurements in the last processed frame:

Pi ← (I−KiHi) Pi. (2.43)
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2.4.3. Initialization of landmarks

After the EKF update, a keypoint extraction is performed in the image and new landmarks
are initialised preferently in image areas with low density of features. New landmarks in inverse

depth coordinates, y
(j)
IDP,W =

(
r
C(j)
W , θ(j), φ(j), ρ(j)

)T
, are initialised from the current estimate

of the camera state vector xCi and the corresponding keypoint location z(j) in the image:

r
C(j)
W = rCW,i, (2.44)(

θ(j)

φ(j)

)
= m−1

(
h

(j)
W,i

)
, (2.45)

ρ(j) = ρ0, (2.46)

with h
(j)
W,i = RW

C
i Π−1

(
z(j)
)

where the function m−1(·) maps a projective ray to azimuth and

elevation angles. Note that, since the inverse depth ρ(j) is not observable from just the first
image measurement it is initialised to an arbitrary prior ρ0 with a high standard deviation σρ0.

We have to estimate also de covariance of the new landmark. First we compute the Jacobians
of the previous functions with respect to the state vector and the measures:

H
(j)

inv,xCi
=
∂y

(j)
IDP,W

∂δxCi
=

 I 0 0 0

0 −∂m−1

h
(j)
W,i

[h
(j)
W,i]× 0 0

0 0 0 0

 (2.47)

H
(j)
inv,z =

[
∂y

(j)
IDP,W

∂z(j)

∂y
(j)
IDP,W

∂ρ(j)

] 0 0

−∂m−1

h
(j)
W,i

RW
C
i

∂Π−1(z(j))
∂z(j) 0

0 1

 . (2.48)

Then the covariance of a 3D point in inverse depth is computed as:

Σ(j)
yIDP = H

(j)

inv,xCi
PCC
i

(
H

(j)

inv,xCi

)T
+ H

(j)
inv,z

[
Σ(j)

z 0
0 σ2

ρ0

](
H

(j)
inv,z

)T
, (2.49)

and appended to the state covariance

Pi ←
[

Pi 0

0 Σ(j)
yIDP

]
. (2.50)

2.4.4. A remark on the EKF and least squares optimisation

The update of EKF can be interpreted also as the solution of the following non-linear least
squares optimisation problem performing a single iteration.

arg min
xi

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


f
(
x̂Ci−1,0

)
� xCi

...

ŷ
(j)
IDP,i−1 − y

(j)
IDP,i

...


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

P−1
i

+
∑
j

∣∣∣∣∣∣ẑij −Π
(
xCi ,y

(j)
IDP,i

)∣∣∣∣∣∣2
Σ

(j)
z

(2.51)
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Pi =

[
Fi 0
0 I

]
Pi−1

[
FTi 0
0 I

]
+

[
GiΣa,αGT

i 0
0 0

]
(2.52)

where essentially the predicted camera pose and previous estimates of the 3D landmarks in
the map are being treated as a multidimensional measurement with covariance Pi, and new
observations of the landmark on the current image are introduced as measurements ẑij with

covariance Σ
(j)
z .

By taking the predicted camera pose and previous estimates of the landmark positions as
the seed for the non-linear optimisation

xCi = x̆Ci � ∆xCi = f
(
x̂Ci−1,0

)
� ∆xCi , (2.53)

y
(j)
IDP,i = y̆

(j)
IDP,i + ∆y

(j)
IDP,i = ŷ

(j)
IDP,i−1 + ∆y

(j)
IDP,i, (2.54)

and linearising the cost function around this seed we get:

arg min
∆xi

||∆xi||2P−1
i

+ ||νi −Hi∆xi||2Σz
(2.55)

where the solution ∆xi for is straightforward

∆xi =
(
P−1
i + HT

i Σz
−1Hi

)−1
HT
i Σz

−1νi (2.56)

where it can be shown by using matrix identities [Bell and Cathey, 1993] that the expression(
P−1i + HT

i Σz
−1Hi

)−1
HT
i Σz

−1 is equivalent to the Kalman gain Ki.
One interesting consequence of this view of the EKF, comes after noticing that, by means of

the anchored inverse depth parametrisation of landmarks, rather than discarding old poses as
normally occurs in filtering-based SLAM techniques, they are still tracked as landmark anchors.
Then, the result of using this landmark parametrisation is that it can bring together two
approaches, probabilistic filtering and Bundle Adjustment, which are usually depicted in the
literature as opposite ways to solve the SLAM problem. Under the light of anchored inverse
depth landmarks an EKF-SLAM approach is equivalent to the online resolution of a Bundle
Adjustment optimisation.

2.5. Patch warping for catadioptric systems

An essential step in Monocular SLAM is the tracking of the landmarks of the map to compute
the measurements of their 2D projections in the current frame. The tracking is performed
through an active search in a region bounded by a prior uncertainty in the camera motion
between consecutive frames. In this active search, a patch which is taken as the landmark
descriptor during its initialisation is compared against the patches computed around every pixel
in the search region, and the one with best correlation is picked as a putative match.

A prior warping of the patches predicting the change in appearance due to the change in
viewpoint produced by the camera motion, considerably increases the chances of getting positive
matches. This warping is specially important in catadioptric systems where the high distortion
induced by the camera-mirror system leads to large changes in appearance under some camera
motions. This section is then devoted to the computation of a simple affine transform which
provides rotational and scale invariance in catadioptric systems.
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Δθ

θpred

θini

Δθ
RΔθ

Figure 2.2: Rotation transformation computed from ∆θ = θpred − θini is applied to a big patch.
New patch for correlation is extracted from the warped patch.

2.5.1. Rotation invariance

For the rotation invariance we inspire on the idea proposed in [Andreasson et al., 2007]. A
squared oriented patch is extracted by bilinear interpolation in the radial direction from the
principal point to the feature. This patch is then rotated to a fixed orientation and stored as
descriptor.

However, in the used SLAM application matching is done by active search in a small region
in the image. So, if we use Andreasson’s approach each candidate patch inside the search region
should be determined by bilinear interpolation in the non-natural radial and polar directions of
the image, which would be time consuming.

To avoid this, we combine this idea with the implementation existing in the SLAM application
[Molton et al., 2004]. A bigger patch is extracted during feature initialisation. Before the
matching process, the big patch is warped by an homographic transformation [Hartley and
Zisserman, 2000] to predict how the appearance patch varies depending of the variation of the
position of the camera respect to the position in which the feature was initialised. A new patch
for correlation is extracted from the center of the warped big patch. This way patches for
correlation are always determined in the horizontal and vertical directions of the image and
bilinear interpolation is only computed during the big patch warping.

For its use with omnidirectional cameras, instead of computing the homography, we
transform the patch by a rotation transformation given by the variation of the polar angle (∆θ)
of the feature in the image between the current prediction of its projection and the position
where it was first observed and initialised (Fig. 2.2).

2.5.2. Scale invariance

To reach scale invariance, we develop the simple idea of scaling the patch by a given scale
factor. To consider the variable resolution in the catadioptric image, a theoretical formula was
obtained as a function of the mirror parameters and the image position.

To obtain it, first we define a point in the 3D space in homogeneous coordinates at a depth
D from the camera with an azimuth φ and an elevation of θ. Due to the rotational symmetry
of the mirror and for the sake of simplicity an azimuth angle of φ = 0 is taken without loss of
generality. So the coordinates of the 3D point yield X0 = (D cos θ, 0, D sin θ, 1)T According to
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Figure 2.3: Projection of a sphere from the scene to the image plane by the jacobian computed on its
centre X0

the spherical camera model, this point is projected on the image plane as p0 = ( γ cos θξ+sinθ , 0, 1)
T

taking the reference frame attached to the principal point (u0 = v0 = 0 in the matrix HC). The
norm of the projected point is the distance from the principal point Rim:

Rim = ||p0|| =
γ cos θ

ξ + sinθ
. (2.57)

Projection of the points in the neighbourhood of X0 can be approximated by a linear mapping
from the 3D scene to the image plane given by the projection jacobian of (2.8) computed in X0,
which after some calculations and algebraic manipulation yields:

JX=X0 =
γ

D(ξ + Sθ)2

[
Sθ(1 + ξSθ) 0 −Cθ(1 + ξSθ)

0 ξ + Sθ 0

]
, (2.58)

where Sθ = sin θ and Cθ = cos θ. This jacobian maps points from a 3D to a 2D euclidean space.
To extend it to a projective transformation in the projective space we do:

PJ(3×4) =

[
JX=X0 0

0T 1

]
. (2.59)

Now lets take a sphere of radius r << D centred on X0. It is parametrised by a quadratic
form with matrix:

Q(4×4) =

[
I 0

0T −r2

]
. (2.60)

And its projection is computed as follows (see Fig. 2.3):

C = (PJQ
−1
PT

J)
−1

=


γ2(1+ξSθ)2

D2(ξ+Sθ)4 0 0

0 γ2

D2(ξ+Sθ)2 0

0 0 −1
r2

 , (2.61)
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Figure 2.4: Comparison of the theoretical formulas to calculate the ellipse semi-axis in which the sphere
is projected (red) with the results of a simulation using a camera model with distortion parameters (blue).
Figure (a) for the minor semi-axis. Figure (b) for the major semi-axis

where C is the matrix which determines the quadratic form of a ellipse with major and minor
semi-axis:

r+
im = γ

r

D

1 + ξ sin θ

(ξ + sin θ)2
(2.62)

r−im = γ
r

D

1

ξ + sin θ
(2.63)

From (2.57) for θ we can calculate sin θ as a function of Rim and the parameters ξ and
γ, which we call f(ξ, Rim

γ ). After some substitutions and manipulation we get a second order
equation with unknown sin θ. By solving the equation and selecting the solution with physical
meaning, we obtain:

Sθ = f(ξ,
Rim
γ

) =

√
1 + (Rimγ )2(1− ξ2)− ξ(Rimγ )2

1 + (Rimγ )2
. (2.64)

According to the obtained formulas for the semi-axis it is deduced that the scale of a feature
on the image depends on the following parameters:

Real size of the feature (r).

Distance of the feature to the camera (D).

Camera-mirror parameters ξ and γ.

Distance in the image to the principal point (Rim).

To compute the scale factor the real size of the feature is not relevant since it does not change
between frames.

Concerning the contribution of Rim and the mirror parameters, to apply a uniform scale
factor, one of the two formulas (2.62) and (2.63) must be selected. A sensibility test to the the
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Figure 2.5: Scale of a feature in the image (rim) as a function of the distance to the principal
point (Rim) and the distance in meters (z) to the plane where the camera moves.

unmodelled image distortion and the linearisation error induced by the jacobian is lead. The
test involves a simulation of the projection of a set of spheres with D = 6 m, r = 0.1 m and a
gradual shift on elevation angle using a real camera calibration with 5 distortion parameters [Mei
and Rives, 2007]. From the simulation results, empirical data is obtained for the dependency
on Rim of the semi-axis in the radial and tangential directions of the projected ellipses. These
functions are compared with the functions for r+im and r−im respectively (Fig. 2.4). For the major
semi-axis the maximum absolute and relative errors are 2 pixels and a 15% respectively, while
for the minor semi-axis the maximum errors are 0.3 pixels and a 2%.

Therefore we select r−im to calculate the scale factor, which yields:

k =
r−im2

r−im1

=
D1

D2

ξ + f(ξ, Rim1

γ )

ξ + f(ξ, Rim2

γ )
. (2.65)

The depth of the feature in the scene D is the most problematic contribution since it is not
observable in one image. As explained in Section 3, new detected features are initialized in IDP
with an arbitrary depth value with high uncertainty, which is not reliable to calculate the scale
factor. For this reason, the application of the whole scale factor can only be considered when
features have been repeatedly observed and thus depth uncertainty has reasonably decreased.

For features with a high depth uncertainty, the application of a partial scaling dropping the
depth terms can be considered. To evaluate it, we consider that the camera moves in a plane,
so relative movement of the tracked features takes place in parallel planes. By making D = z

sin θ
in (2.63), we obtain the dependence of rim on sin θ, and so on Rim, at different distances z from
the plane where the camera moves (Fig. 2.5). For features below the camera (z < 0) their scale
decreases until 0 in the line at infinity (given by the circumference with radius Rim = R∞ = γ

ξ );
while for features above the camera its scale increases from R∞.

However, the contribution of the shape of the mirror always increases with Rim (Fig. 2.4).
So, assuming movement in a plane, the use of a scale factor without depth estimate only makes
sense when the tracked features are above the camera (i.e.Rim > R∞). As it only supposes a
fraction of the image, the computation of the partial scale factor for landmarks with high depth
uncertainty was eventually not considered.
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Figure 2.6: Limit for the minimum allowed scale factor (khBP =
√

2hP cos(π4 − mod (∆θ, π2 )))

2.5.3. Computation of patch transformation

Before computing the patch transformation, we must be check that the smaller descriptor
patch will be fully contained in the zone of the warped big patch which contains some
information. The limit situation arises when the borders of the warped patch are in contact
with the corners of the descriptor patch (Fig. 2.6). In this case, the scale factor is:

k =
√

2
hP
hBP

cos(
π

4
− mod (∆θ,

π

2
)) (2.66)

where hBP and hP are the half of the sizes of the big patch and the descriptor patch
respectively and ∆θ is the variation of the polar angle used to construct the transformation. If
we add a security margin of 0.1 we obtain an expression for the limit of the scale factor:

klim =
√

2
hP
hBP

cos(
π

4
− mod (∆θ,

π

2
)) + 0.1 (2.67)

With this previous consideration, the computation of the warping is done in the following
steps:

1) Check the condition k > klim. If k does not fill this condition it is set to klim.
2) Calculation of the transformation matrix:

H = HtrHSHtr
−1

(2.68)

HS =

k cos(∆θ) −k sin(∆θ) 0
k sin(∆θ) k cos(∆θ) 0

0 0 1

 (2.69)

with HS the transformation matrix which combines the rotation transformation R∆θ with
the scale factor k and Htr is a translation matrix to translate the patch coordinate frame to the
center of the patch.

3) Computation of the warped patch by doing the inverse mapping to the original big patch
and performing a bilinear interpolation.

XBP = HS
−1
XWP (2.70)

4) Extraction of the patch for correlation from the center of the warped patch.
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Figure 2.7: Image sequence taken for test 1 (180o rotation). Selected corners for matching are shown in
red

2.6. Experiments

In this section experiments to evaluate the omnidirectional visual SLAM and the new patch
are presented. The images used to lead the experiments were taken from one of the image
databases provided by The Rawseeds Project1. This database consists of a sequence with more
than 32000 frames acquired by a robot equipped with a hyper-catadioptric camera.

2.6.1. Experiment 1

We carried three tests out where we decoupled the matching process from the SLAM
algorithm to make a preliminary evaluation of the rotation and the scale factor transformation.
The set up of the three tests was quite similar. First, we extracted corners on the first frame with
the FAST extractor. Among the extracted corners, we selected some features and stored their
locations and their patches. Like the matching proccess has been decoupled from the SLAM
algorithm, the true locations of the features were manually selected on each frame (Fig. 2.7)
and the search region was fixed to a 50x50 pixels square. The matching in the selected frames
is done by obtaining for each feature the best correlation inside the search region, as is done in
the SLAM application.

For each feature and frame, we have defined the following variables to be measured:

Correlation in true feature location.

Best correlation in search region.

Distance between true feature location and best correlation location.

Test 1: Rotated patch and 180o rotation

We evaluate the rotation of the patches in a sequence in which the robot rotates 180o. From
this sequence we have extracted 6 frames spaced by 20 frames between them. We have selected
9 features to carry the test out (Fig. 2.7).

The results show that rotated patches provide a better correlation value on the true feature
location, which confirms that they are more rotation invariant than the non rotated patches
(Fig. 2.8). The rotated patch also provides by far better values for the best correlation inside
the search region (all of them above 0.9) as well as a very low distance between true feature
location and matched location.

1HTTP://www.rawseeds.org
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Figure 2.8: Matching results of test 1. In red, with oriented patch. In blue, with not oriented patch
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Figure 2.9: Image sequence taken for test 2 (translation). Selected corners for matching are shown in
red

Test 2: Rotated patch and translation

Performance of rotated patches is evaluated in a sequence only containing camera translation.
6 frames were extracted with intervals of 20 frames between them and the number of selected
features was 6 (Fig. 2.9).

The results (Fig. 2.10) reveal that slightly better correlation values are obtained using a
rotated patch. This is due to the relative motion of the map features along lines which are
projected as conic curves in a catadioptric image. So, the rotated patch initially intended to
improve the matching results during camera rotations, can also deal with translations better
than a non rotated patch. However as the translated distance increases, the matchings tend
to be made in the wrong location for both patches. One possible reason is that as the robot
translates, the features change their scale and their point of view and can become occluded by
other scene objects.

Test 3: Scaled patch

We evaluate the performance of the matching process with respect to the scale changes. Due
to the decoupling from SLAM, it is not possible to determine the depth of the patches extracted
and the contribution of the depth to the scale factor is not considered. So, an image acquisition
without depth changes in the features has been made following the next steps:

- Select a zone in the scene with potential patch richness and situated far enough from the
camera so that D →∞.
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Figure 2.10: Matching results of test 2. In red, with oriented patch. In blue, with not oriented patch

Figure 2.11: Image sequence taken for test 3 (scale change). Selected corners for matching are shown
in red

- Capture images while camera rotates so that the selected zone moves only along the radial
direction. As infinite distance has been assumed, little camera displacements during capture are
not problematic.

A sequence of 6 images was taken for the test. The number of selected features was 7. To
evaluate the performance of the patches under scale change, the features were selected in a zone
with no orientation change in the image (Fig. 2.11). Two cases have been carried out to prove
the performance under scale decrease k < 1 and scale increase k > 1. In the scale decrease
case, the extraction of the features was made in the image where the zone of extraction was the
furthest from the image centre. For the scale increase case the order of the images has been
inverted.

The results of the tests show that in scale decrease (Fig. 2.12(a)) the patch with scaling
offers a better performance than a normal patch while in the case of scale increase(Fig.2.12(b))
both patches perform in a similar way, due to the impossibility of extracting new information
by increasing the scale of an image.

2.6.2. Experiment 2

After testing the new transformations applied to the patch, we evaluated it integrated in our
visual SLAM approach for omnidirectional cameras with the Real-Time application developed
by Davison et al.. For the evaluation we selected a long outdoor sequence from the database
provided by the Rawseeds Project.

To compare our warped patch with the normal patch we ran the sequence using both patches

26



CHAPTER 2. REAL-TIME GENERALIZED MONOCULAR SLAM FOR CENTRAL
CAMERAS

1 2 3 4 5 6

0

0.5

1

frame

C
o

rr
e

la
ti
o

n
 i
n

fe
a

tu
re

 l
o

c
a

ti
o

n

1 2 3 4 5 6

0.7

0.8

0.9

1

frame

B
e

s
t 

c
o

rr
e

la
ti
o

n
in

 s
e

a
rc

h
 r

e
g

io
n

1 2 3 4 5 6
0

10

20

frame

D
is

ta
n

c
e

 b
e

s
t 

c
o

rr
e

la
ti
o

n
 p

o
in

t
 −

 f
e

a
tu

re
 l
o

c
a

ti
o

n
 (

p
ix

e
ls

)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

frame

C
o

rr
e

la
ti
o

n
 i
n

fe
a

tu
re

 l
o

c
a

ti
o

n

1 2 3 4 5

0.8

0.9

1

frame

B
e

s
t 

c
o

rr
e

la
ti
o

n
in

 s
e

a
rc

h
 r

e
g

io
n

1 2 3 4 5
0

10

20

frame

D
is

ta
n

c
e

 b
e

s
t 

c
o

rr
e

la
ti
o

n
 p

o
in

t
 −

 f
e

a
tu

re
 l
o

c
a

ti
o

n
 (

p
ix

e
ls

)

(a) (b)

Figure 2.12: Matching results of test 3 for scale decrease (a) and scale increase (b). In red, with scaled
patch. In blue, with unscaled patch

Table 2.1: Total number of initialised features (FI), Matchings per initialised feature (Rm) and features
in map per initialised feature(Rf )

Correlation Warped patch Normal patch
threshold FI Rm Rf FI Rm Rf

0.8 8648 22.31 0.1 8923 19.75 0.087
0.9 9834 19.38 0.062 10854 16.09 0.046
0.95 13189 13.31 0.027 14970 10.56 0.019

with different correlation thresholds for matching and we have measured three variables:

Total number of features initialised (FI) .

Matchings per feature ratio: (Rm = Total matchings
FI ) .

Features in map per feature initialised ratio: (Rf = Final map size
FI )

The results in Table 2.1 show that the warped patch for omnidirectional cameras performs
better than the patch with no warping, as SLAM initialises less features and is obtains more
information for SLAM per initialised feature. On the other, the correlation threshold may have
more influence on the measured variables than the kind of patch, but at the expense of reducing
the a priori precision of SLAM. In Fig. 2.13 the projections on the XY plane and the YZ plane
of the trajectory obtained with the new patch and a correlation threshold of 0.8 are shown. Note
that although the MonoSLAM application estimates 3D camera motion, being not bounded to
a 2D plane, according to the obtained trajectory the camera is moving on the ground plane.

Finally we compared this trajectory with respect to the ground truth provided by the GPS
data. As scale is not observable by one single camera, for the comparison we scaled the trajectory
and aligned it with the trajectory obtained with the GPS (Fig. 2.14). To evaluate the accuracy
of the SLAM trajectory numerically we have calculated the mean error of the distance between
the corresponding points of both trajectories. The mean error is µerr = 3.44 m with a standard
deviation of σ = 1.93 m and a maximum error of maxerr = 6.73 m. Dividing by the trajectory
length, we obtain a relative mean error of 1%.
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Figure 2.13: SLAM trajectory with correlation threshold 0.8 using the warped patch projected on the
XY plane (up) and on the YZ plane (down) The red dots are the map features

2.7. Discussion

In this work we have developed a Visual SLAM for omnidirectional cameras building on
state of the art EKF monocular SLAM [Civera et al., 2010] for conventional cameras. Two
main modifications have been made: the implementation of the Spherical Camera Model for
projection and the formulation of a new patch for omnidirectional cameras which aims to be
rotation and scale invariant. Then we have lead experiments to compare the new patch with a
conventional patch. First we have tested the matching process decoupled from the SLAM. Once
the superiority of the new patch has been proven we have run in real time the SLAM algorithm
in a 340 meters long trajectory. Results have shown that the obtained trajectory estimation is
quite accurate, which encourages us to make experiments with longer trajectories in the future.
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Figure 2.14: GPS trajectory (red) and SLAM trajectory (green) superposed on the satellite image of
the Campus of Bovisa (Milan) where the sequences were acquired
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Chapter 3

True Scaled 6 DoF Egocentric
Localisation with Monocular
Wearable Systems

After generalising a real-time monocular SLAM to work with any central projection
system, in this chapter we present a novel approach to obtain scaled odometry and map
estimates from monocular SLAM with wearable cameras of conventional or catadioptric
types. Noticing that the oscillation of the body during walking can be observed in the
odometric estimate from a monocular SLAM algorithm, we estimate the walking speed
just from the step frequency using an empirical relation obtained in biomedical studies
analysing human gait. This relation is supported by the tendency in humans to optimise
the metabolic cost of the action of walking. A scale factor can be then dynamically
computed to obtain a true scaled estimate of the map and visual odometry, avoiding
scale drift on long term trajectories. Although the algorithm requires the person to be
walking in order to estimate the scale, the experiments, carried out in outdoor and
indoor environments and with different types of cameras, show that our method is
reliable and robust to challenging situations like stops, changes in pace or stairs, and
provides a significant improvement with respect to the initial unscaled estimate. It also
outperforms state-of-the-art solutions to correct the scale drift in monocular SLAM,
giving in addition the absolute scale of the trajectory and the 3D observed scene.

3.1. Introduction

In this chapter we propose a novel approach to compute dynamically the true scale from
visual odometry estimates obtained with wearable single cameras (Fig. 3.1), avoiding scale drift
problems in large environments. Our method is specially suited to be used in wearable systems
since it takes advantage of the characteristic oscillatory movement of human body during walking
to extract the scale information. The implementation is done within a state-of-the-art visual
SLAM approach [Civera et al., 2010]. Nevertheless as it only needs the output corresponding to
the trajectory estimate it can be used in any visual odometry system, provided that the accuracy
and the time resolution of the SLAM algorithm are fine enough to capture the camera oscillation
associated to walking. Also, to clearly perceive the walking oscillations some restrictions must be
fulfilled. Firstly, the user must be walking on a relatively plain terrain, such that its roughness
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Figure 3.1: Devices used in our experiments. On top, GoPro Hero 2 wide angle camera. On
bottom, our helmet with catadioptric camera consisting on a mirror and a VS-C14U-80-ST
catadioptric camera.

is lower than the amplitude of the walking oscillations. Secondly, the camera must be attached
to a body part whose motion is mainly due to the action of walking, like head, shoulders or
chest.

The method works as follows (Fig. 3.2): given an initial unscaled section of the trajectory
composed by N camera poses, we extract the signal of the vertical component of the camera
position and estimate the step frequency by computing its Discrete Fourier Transform (DFT).
The real walking speed is computed from the step frequency using a biomedical relation [Grieve
and Gear, 1966] which is supported by the natural tendency to optimise the metabolic cost of
walking [Zarrugh et al., 1974,Kuo, 2001]. This speed measurement is fed into a computationally
simple particle filter to compute a dynamic scale factor to scale each trajectory section.

Additionally, our method is made robust against bad scale factor estimates in two ways.
First, the spectral power of the candidate step frequency is tested to be consistent with the
amplitude of the walking oscillations. This test makes possible the detection of non-walking
situations, e.g., when the user is stopped, and then allowing for a different update strategy of
the scale factor. A second compatibility test is performed during particle filtering to reject big
variations of the scale factor.

Our method has been thoroughly evaluated in experiments with GoPro-like wearable cameras
as well as with a prototype consisting on a helmet with a catadioptric camera attached on top.
We tested the performance of the method when camera is attached to different body parts
(head and chest), and compared it to [Strasdat et al., 2010] to show the ability of our method
to remove scale drift. We also measured the sensitivity of our method to a inaccurate estimate
of user-dependent calibration parameters.

3.2. Related work

The main topics for related work in this chapter are wearable vision and the scale problem
in monocular SLAM.
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Figure 3.2: Scheme of the basic scaling method.

3.2.1. Wearable vision

The research on wearable cameras for personal aiding has widespread since the pioneering
works of Mann [Mann, 1997]. Wearable cameras are normally placed in locations like the head,
shoulders or chest, which, for a general purpose, allow for a wide field of view and resilience to
body motion [Mayol-Cuevas et al., 2009].

Most works on wearable vision systems have developed towards recognition of human
activities, where many approaches take advantage from a nice feature of chest-wearable cameras:
the prior knowledge of the action or manipulation taking place at the centre of the image.
Recognition problems where wearable systems have been applied are segmentation of handled
objects [Ren and Gu, 2010, Fathi et al., 2011], recognition of activities and objects in the
workspace [Pirsiavash and Ramanan, 2012], novelty detection in a daily routine [Aghazadeh
et al., 2011], clustering of sport activities from video sequences [Kitani et al., 2011], human
detection [Mitzel and Leibe, 2012] or analysis of human movements to infer social interactions
[Fathi et al., 2012].

With respect to the use of wearable vision for localisation, some works [Kourogi et al.,
2001,Aoki et al., 1999] propose appearance based localisation methods in indoor environments.
Concerning odometric localisation, Mayol-Cuevas et al. [Mayol et al., 2003] presented a wearable
active vision system which changes its heading direction and uses monocular SLAM for self-
localisation. A similar system is presented by Castle et al. [Castle et al., 2010], using monocular
SLAM and object recognition for augmented reality. In [Badino and Kanade, 2011] a head-
wearable stereo system is used to estimate structure and motion. In [Alcantarilla et al., 2012]
the authors propose a wearable stereo system which computes, together with SLAM, an estimate
of the dense scene flow to segment moving objects in the scene. Also some works [Hesch and
Roumeliotis, 2010,Baglietto et al., 2011] propose wearable platforms for human localisation and
navigation without vision sensors, combining an Inertial Measurement Unit (IMU) and a laser
scanner.

3.2.2. Monocular SLAM and the scale problem

The problem of estimating the true scale in monocular SLAM is addressed either by using
additional proprioceptive sensors, like IMUs and odometers, which provide metric information;
or by considering geometric priors or constraints, mainly in robotic platforms.

Among solutions using additional sensors, in [Lupton and Sukkarieh, 2008] the true map
scale is made observable by integrating the visual data and the IMU data within an information
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filter. In [Nützi et al., 2010], the scale is computed by fusing the position and velocity from the
visual odometry estimate with the IMU data in an Extended Kalman Filter (EKF). In a similar
approach [Weiss and Siegwart, 2011] includes not only the position and velocity, but also the
orientation estimate in the EKF state vector, in order to detect failures of the visual system by
checking the consistency with the IMU gyro measurements. In [Engel et al., 2012], the scale
factor of a quadricopter visual odometry estimate is computed from the measurements of its
on-board IMU and altimeter by using an optimisation scheme.

In [Cumani et al., 2004] the wheel odometry is used to provide a prior estimation of the
true scaled motion between two consecutive frames which is refined by the update from camera
measurements. [Eudes et al., 2010] takes the odometric measurement of distance between two
camera poses to compute a scale factor which is applied to the displacement estimated with
the camera. Similarly, in [Scaramuzza et al., 2009b], the measurement of the vehicle speed is
used to compute the true distance between the last two frames and recover the 3D structure
by triangulation of the common image points. In [Civera et al., 2010] a scaled visual odometry
estimate is obtained by fusing the wheel odometry and visual information in a EKF-SLAM
framework.

Concerning works not using additional sensors, [Lothe et al., 2010] uses the prior knowledge
of the distance from the camera to the ground plane, which is obtained from the estimated
3D points of the scene, to compute the scale factor of the scene. In [Scaramuzza et al., 2009a]
non-holonomic motion constraints of wheeled vehicles are exploited to resolve the scale when the
vehicle turns. In [Botterill et al., 2012] the scale drift problem is solved by identifying previously
learnt object classes of the environment and measuring the size of these objects to improve the
scale estimate. In [Strasdat et al., 2010], the authors propose a loop closure technique in which
camera poses are defined as 7 DoF similarity transformations (translation, rotation and scale)
rather than the habitual 6 DoF rigid transformations (translation and rotation). This allows to
correct the deformation produced by the scale drift, though it still remains a scale ambiguity in
the final estimate.

The method proposed in this chapter fits in the second category, since we get the scale only
using the visual information and a prior given by a walking model which depends on the height
and specific user parameters. The strength of our method is that it is explicitly thought to
operate on human wearable systems, where unlike to ground vehicles, odometric information
from encoders is not available to recover the scale.

On the other hand, faced to scale estimation methods not using odometric measurements,
all of them have their own drawbacks. Using the IMU, besides involving an additional sensor,
to obtain scale information we need to know the initial speed, which, if not known a priori,
can only be estimated by performing a joint IMU-camera initialisation. The estimation of the
scale by the identification of the ground plane can be problematic in environments with a poor
textured ground and containing other dominant planes like walls. The identification of known
objects of the scene relies in the detection of a set of previously learnt object categories which
could be affected by false positives. The correction of the scale drift at loop closures is only
possible when one region of the environment is revisited.

Thus, given that all the approaches have their own limitations, an alternative way to compute
the scale as proposed in this chapter has always a beneficial effect.

3.3. Monocular SLAM

Monocular SLAM algorithms aim to estimate a visual odometry and at the same time build
a map of landmarks using only the measurements from a single camera. The algorithm we use
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in this work is based in the monocular EKF-SLAM proposed in [Civera et al., 2010] and its
adaptation to omnidirectional cameras as it was described in Chapter 2. For completeness we
include a brief description in the following lines.

The camera state as well as the position of the landmarks at time step i are encapsulated in
a state vector xi

xi = (rCW,i, RW
C
i , vCW,i, ω

C
C,i︸ ︷︷ ︸

Camera state xCi

, r
C(j)
W,i , θ

(j)
i , φ

(j)
i , ρ

(j)
i , ...︸ ︷︷ ︸

3D points (IDP) y
(j)
W

), (3.1)

where rCW,i is the camera position, qW
C
i is the quaternion of its orientation and vCW,i and ωCC,i

are its linear and angular velocities, respectively.

The 3D locations are parametrised in an anchored inverse depth parametrisation (IDP)

[Civera et al., 2008], where r
C(j)
W,i is the anchor camera position where the landmark was first

viewed, θ
(j)
i , φ

(j)
i and ρ

(j)
i are respectively the elevation angle, the azimuth angle and the inverse

depth with respect to the anchor position.

In an EKF based SLAM a motion and a measurement model must be provided. The motion
model describes the change on the camera pose from time step i− 1 to i and it is described by
the following equation:

xCi = f(xCi−1,ui), (3.2)

where f(·) is the state transition function , xCi−1 is the past camera pose and ui is the control
input. This model is used to propagate the state estimate xi and its covariance Pi in the
EKF prediction step. Internal measurements from an odometer or an IMU can be integrated
as control inputs ui. Alternatively it is often used a constant velocity model, where the control
input ui represents the acceleration which is modeled by zero mean random Gaussian noise.
Possible changes in velocity are taken care of by setting the variance of the acceleration noise.

The measurement model is used to introduce the information from measurements of external
sensors in the EKF update step. In monocular SLAM it is defined by an observation function
which encapsulates a projectivity transformation. The observation function depends on the
characteristics of the vision system. For central projection systems, i.e., planar (conventional),
dioptric or catadioptric systems, it can be divided in these two steps: one projection onto a unit
sphere independent from camera parameters and a non-linear mapping from the sphere to the
image plane which accounts for the camera geometry and calibration parameters [Geyer and
Daniilidis, 2000]. This is synthesised in the following equations:

z
(j)
i = Π

(
xCi ,y

(j)
W

)
= Kc~

ξ, y
(j)
C,i∣∣∣∣∣∣y(j)
C,i

∣∣∣∣∣∣
 (3.3)

y
(j)
C,i =

(
RW
C
i

)T (
r
C(j)
W,i − rCW,i +

1

ρ
(j)
i

m
(
φ

(j)
i , θ

(j)
i

))
, (3.4)

where ξ is a parameter encapsulating the geometric properties of the camera, ~ is a non-linear
function, Kc is a conventional camera calibration matrix, and m(·) the function which maps the
elevation and azimuth angles to a unit vector.
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With this generalised model, the observations of the tracked features (those in the EKF

state vector) are predicted, and then putative matches z
(j)
i are obtained by active search in the

uncertainty region given by the bound of the 95% confidence interval of the projection S
(j)
i of

the state covariance:

S
(j)
i = H

(j)
i PiH

(j)
i

T
+ Σ(j)

z , (3.5)

where H
(j)
i is the jacobian of the measurement function and Σ

(j)
z the measurement noise in the

image.
Spurious matches are rejected by RANSAC, and then correct matches are used to update

the state both of the camera and the landmarks.

3.3.1. Map Management

To keep the computational cost low, only a few features, referred to as tracked features Ti,
are kept within the EKF state. Tracked features are divided in point (low depth uncertainty)
and ray (high depth uncertainty) features. At each step, features which failed to be matched in
the last frames are removed from the EKF. The set of removed features at step i is denoted by
Ei = [Eri , E

p
i ]

The removed point features are added to an independent fixed map ME,i which is not
updated by the EKF:

ME,i = [ME,i−1, Epi ] , (3.6)

being the global map composed by the point tracked features and the features in ME,i

Mi = [T pi ,ME,i] . (3.7)

3.3.2. Loop closure

To make possible a fair evaluation of our method using the ground truth trajectory, we
correct the noticeable odometry drift which inevitably arises in large experiments by closing the
loop at revisited areas. Closing the loops makes also possible the comparison of our proposal
with a state-of-the-art method to correct the scale drift [Strasdat et al., 2010].

To compute the relative pose between loop frames we use the libraries OpenCV [Bradski,
2000] for feature extraction and matching and OpenGV [Kneip and Furgale, 2014] for geometric
algorithms. Given a loop detected between a recent frame j and an older frame i , we must
estimate the rigid body motion between them expressed by the transformation:

Tj
i =

(
Rj
i rij

0 1

)
∈ SE(3). (3.8)

To do so, first we establish 2D-2D correspondences between frame j and a close frame jaux
with enough parallax; and we robustly estimate with RANSAC the relative pose, rescaling the
translational part by taking the norm of the translation between frames from the visual odometry.
Secondly, correct correspondences between frames j and jaux are triangulated, and finally Tj

i is
obtained from 3D-2D correspondences between the triangulated 3D points referenced at frame
j and the keypoints extracted in frame i.
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Figure 3.3: Top: Trajectory estimate of Visual SLAM from a head-mounted catadioptric camera
including a partial zoom. Bottom: Power spectra of the vertical component

For the comparison with [Strasdat et al., 2010] we need to use similarity transforms:

Sj
i =

(
sj
i Rj

i rij
0 1

)
∈ Sim(3), (3.9)

where we require an additional parameter sj
i to compute the loop constraint. To estimate it,

first we compute Ti
j in the same way as with Tj

i by interchanging the roles of i and j. Note

that in presence of scale drift Tj
i Ti

j 6= I since translation of each transform has a different scale
propagated from the visual odometry at the frame taken as reference for the triangulated 3D
points. However, introducing the extra scale parameter in the transform we can apply Sj

i Si
j = I

and thus we get:

sj
i Rj

irji + rij = 0 =⇒ sj
i =

∣∣∣∣rij∣∣∣∣∣∣∣∣∣∣rji ∣∣∣∣∣∣ . (3.10)

3.4. Walking speed estimation

Our scheme for the estimation of the real walking speed is based in two hypotheses. First,
the oscillation of the body during walking can be observed in the visual odometry (Fig. 3.3).
The second hypothesis is the existence of a tight correlation between the step frequency and the
stride length which allows to estimate the walking speed without knowing the later.

3.4.1. Walking speed - step frequency relation

The estimation of the walking speed is based on its close correlation with the step frequency,
which was shown in the work by Grieve et al. [Grieve and Gear, 1966]. This correlation is
encapsulated in a power law where the walking speed (Vwalk ) normalised with height (H) is
presented as a function of the step frequency (fstep):
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Figure 3.4: Power fitting of the experimental data to compute the relation between walking
speed and step frequency (µerr = 0.018, maxerr = 0.04).

Vwalk = αfβstepH, (3.11)

where Vwalk is in m/s, fstep in Hz, H in m, and α and β are characteristic parameters which
differ from one individual to another. The mean values provided in [Grieve and Gear, 1966] for
these parameters are, after converting to I.S. units, α = 0.2896 and β = 1.7544. Noting that:

Vwalk = fstepLstride, (3.12)

and substituting in (3.11) we can observe, that though not explicitly shown, our method in
essence is taking the stride length Lstride as the geometric prior needed to get the absolute scale,
and computes it as a function of the step frequency and specific user parameters (α, β and
height).

By measuring the oxygen consumptions of different subjects under forced and free gaits for
a set of speeds, in [Zarrugh et al., 1974] it was shown that the relation in (3.11) is the result of a
human tendency to choose a step frequency which minimises the metabolic cost of walking. [Kuo,
2001] proposed a metabolic cost function modelling the combined actions of pushing off and
swinging the leg, whose minimisation predicts the preferred relationship presented in [Grieve
and Gear, 1966].

Although walking speed can be estimated using the mean values provided in [Grieve and
Gear, 1966], for higher accuracy we use our own α and β parameters explicitly computed for the
camera operator. We measured the time ti it took the operator to walk a distance s = 100 m
at the times per step ∆Ti given by a metronome ranging from 0.45 to 0.80 seconds in intervals
of 0.05 seconds. The height of the operator is H = 1.88 m. During the experimentation, it was
noticed that measurements above and below the considered interval of times per step were not
possible due to the impossibility to consistently synchronise with the metronome beat. Thus,
we have established a range of feasible step frequencies between f−st = 1 Hz and f+st = 3 Hz.
Normalised walking speeds Vi

′ and step frequencies fi were computed from the raw experimental
data. Then a power fitting was applied to obtain the values of α = 0.329 and β = 1.534 (Fig.
3.4).
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3.4.2. Estimation of the step frequency

Given the previous biomedical relation, the problem of estimating the walking speed, can be
translated into estimating the step frequency.

To correct scale drift, the walking speed must be computed periodically in sections or
windows of N camera poses. If we let i be the SLAM time step index, each camera pose
xCi can be equivalently notated as xCk (n) assigning a section k and an index n within that
section as follows:

k = Int

(
i− 1

N

)
, (3.13)

n = i− (k − 1)N. (3.14)

The world reference frame for the visual odometry is fixed by the initial camera pose. In the
experimental setups for the different cameras, the camera frame is oriented so that one of its axis
is approximately aligned with the normal to the ground plane. This is a reasonable assumption
for a camera worn on the head or some part of the trunk. Also, since a fixed transformation
known a priori can be applied so that the z-axis of the world frame is aligned with the ground
normal, without loss of generality we assume that the body oscillation is observed in the z-
component of the trajectory.

The step frequency is estimated by extracting the spectral composition of the oscillatory
component of the trajectory estimate using the DFT. When computing the Fourier Transform
of discrete signals, the gap between the first and the last elements of the signal, the variations
or the drift of the ground plane, and the slight miss-alignment of the reference z-axis with
the ground normal can introduce low frequency harmonics. To counteract these effects the
data sequence is preprocessed by subtracting the first element zk(1) from all the elements and
applying a second order high pass digital filter with a cut-off frequency of fc = 0.7 Hz, which
provides a good attenuation of the low frequency harmonics, without affecting the harmonics in
the range of feasible step frequencies. (Fig. 3.5).

After filtering the data the spectral composition is obtained by the DFT:

Γd,k(fm) =
1

FsN

∣∣∣∣∣
∣∣∣∣∣
N∑
n=1

zk(n)exp

(
−j 2πfm(n− 1)

Fs

)∣∣∣∣∣
∣∣∣∣∣
2

(3.15)

fm =
mFs
N

m = −N
2
, ...,−1, 0, 1, ...,

N

2
, (3.16)

where Γd power spectral density function, Fs is the sampling frequency, which in our case is
the number of frames per second (fps) of the camera, and fm are the frequencies for which the
spectrogram is sampled.

The sampling frequency must be high enough to avoid aliasing when the maximum feasible
step frequency f+st occurs. Also, the number of poses taken must be high enough to provide
a good resolution of the spectrogram, with its lower limit given by the minimum number of
samples needed to observe at least one oscillation in the case of the minimum feasible step
frequency f−st .

For the computation of the DFT, N has to be as high as possible, but from a global point of
view, a high N involve a less frequent update of the scale factor and a reduced ability to detect
changes in the walking speed. This can result in a decreasing accuracy in the scaled trajectory
estimate. Moreover, if interested in real time operation, the time delay to update the scaled

39



3.4. WALKING SPEED ESTIMATION

(a) (b)

(c) (d)

Figure 3.5: Z-component signal segment (top) and corresponding power spectra in logarithmic
scale (bottom) of two instances from the same visual odometry section: (a,c) without
preprocessing the input signal and (b,d) with offset elimination and filtering of the input signal.
Note how in (b) the power peak at the step frequency (2 Hz) is observable and the highest in
the interval of feasible step frequencies. Signal segments have been copied three times to make
visible the difference in the discontinuity between the two instances.

trajectory grows linearly with N , since before scaling one section we need to get the new N
unscaled camera poses from the SLAM algorithm. Thus, in summary, for the choice of N we
must reach a trade-off between the accuracy of the DFT and the frequency with which the scale
factor is updated.

Given the spectrogram Γd,k(fm), the step frequency fst,k is estimated as:

fst,k = arg max
fm∈[f−st,f

+
st]

Γd,k(fm). (3.17)

3.4.3. Detection of non-walking situations

At this point the method to estimate the step frequency would return an estimate regardless
of whether the user is walking or not. To discard erroneous estimates when the user is not walking
we check that the spectral power P̄ (fst,k) of the computed step frequency to be consistent with
a range of feasible oscillation amplitudes during walking bounded by a A+

z and A−z . Applying
the Parseval’s theorem, which states that the energy of a signal is preserved in the frequency
domain, we can approximate the energy P̄ of the signal corresponding to the body oscillation
as:

P̄ (fst,k) = 2
Fs
N

m+∑
m=m−

Γd (fm,k) , (3.18)

with m− = round
(
N fst−∆f

Fs

)
, m+ = round

(
N fst+∆f

Fs

)
, and where fst,k is the estimated step

frequency, Γd is the discretised spectrogram of the z-component of the camera poses, Fs is the
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sampling frequency of the camera, N the camera poses in the analysed section and ∆f the
frequency interval centred at fst,k along which the energy is spread along.

Since the power spectral density is computed for the unscaled z-component of the visual
odometry, the computed power must be scaled by multiplying it by the square of the current
mean scale factor d̄k. Thus, assuming that the body oscillation is sinusoidal, the condition for
the spectral power consistency of the step frequency yields:

1

2
A−z

2 ≤ d̄2
kP̄ (fst,k) ≤ 1

2
A+
z

2
. (3.19)

If this condition is not fulfilled we should choose another strategy. For example if d2
kP̄ (fst,k) ≤

1
2A
−
z

2
we may assume that the person is stopped and then avoid updating the scale factor.

3.5. Dynamic scale update

Having a walking speed estimate and assuming that it is affected by Gaussian noise,
the maximum likelihood scale factor for section k could be straightforwardly computed by
dk =

Vwalk,k

µV,k
, where µV,k is the average dimensionless speed of the camera poses in section

k. However, given the empirical method for the walking speed estimation and the possible
variability of the SLAM velocity along N frames, we propose to use a probabilistic filter for
the computation of the scale factor. The purpose is to provide robustness against spurious
estimations of the walking speed.

After computing the scale factor, the poses and the features measured in current section are
scaled using a recursive approach to take care of the scale drift with respect to previous sections.

3.5.1. Particle Filter for scale factor tracking

For the design of the probabilistic filter we consider a dynamic system whose state sk is
composed by the magnitude of the SLAM velocity VSLAM,k and the decimal logarithm of the
scale factor λk = log10(dk).

sk =

[
VSLAM,k

λk

]
. (3.20)

Taking the logarithm has the advantage to naturally restrict the scale factor to positive
values allowing to model its uncertainty and noise with additive Gaussian distributions. As
a consequence all the non-linearities of the model will be encapsulated in the measurement
function.

To track the scale factor, a particle filter with Sampling Importance Resampling is designed
[Gordon et al., 1993]. The use of the particle filter is encouraged over an EKF due to its ability
to deal with high uncertainty priors of the scale factor which would involve a large linearisation
error of the measurement function. Also, since the system state is composed only by 2 variables,
the major drawback of the exponential growth of the number of required particles with the
number of state variables is negligible.

Hence the state of the system in each section k is approximated by a set of particles:

Sk =
{

(s
(L)
k , ω

(L)
k ) | L = 1, 2, ..., P

}
, (3.21)
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where P is the number of particles and s
(L)
k and ω

(L)
k are respectively the state vector and the

resampling weight of particle L.

The particles are initialised such that the initial values of λ
(L)
0 are drawn from a Gaussian

distribution λ0 ∼ N (0, σ0), where σ0 is a parameter related to the orders of magnitude in the
scale being scoped out.

In the predictive part of the particle filter, particles are sampled down by a proposal
distribution p(sk|sk−1):

s
(L)
k ∼ p(sk|s(L)

k−1). (3.22)

In our system the sampling of the proposal distribution includes both the update of the
non-dimensional speed, which is taken as a control input coming from the visual odometry, and
the possible drift in the scale. This is encoded in the following equations:

V
(L)
SLAM,k = µV,k + n(L)

v (3.23)

λ
(L)
k = λ

(L)
k−1 + n

(L)
λ , (3.24)

with n
(L)
v ∼ N (0, σV,k) and n

(L)
λ ∼ N (0, σdrift), and where µV,k and σV,k are the averaged speed

and the corresponding standard deviation of the last set of N SLAM camera poses used for
spectral analysis, and σdrift is a prior for the standard deviation of the scale drift between two
consecutive sections, which is modelled as Gaussian noise.

To incorporate the walking speed information into the state estimate, first we need to define a

measurement function hV (s
(L)
k ) which predicts the walking speed measurement for each particle

L.

hV (s
(L)
k ) = V

(L)
SLAM,k10λ

(L)
k . (3.25)

To prevent from later accepting spurious estimates of the walking speed, first we take the 95%
confidence interval of the histogram of the predicted measurements by eliminating the samples
at the tails, thus reducing the number of particles from P to P ′.

The remaining samples are weighted by a probability density function p(Vwalk,k| s
(L)
k ), which

captures the statistics of the speed estimate. Assuming that it is affected by Gaussian noise of
zero mean and a standard deviation σV walk to be set up empirically, weights are computed as:

ω
(L)
k = p(Vwalk,k| s(L)

k ) = φ

(
Vwalk,k − hV (s

(L)
k )

σV walk

)
, (3.26)

where φ(z) is the probability density function of the standard normal distribution.
Then a consistency test is carried out to verify that the weighted particles lie in the 95%

confidence interval of the probability distribution of the measurement model, i.e.:

0.95 = P

(
−1.96 ≤

Vwalk,k − hV (s
(L)
k )

σV walk
≤ 1.96

)
. (3.27)

If every particle fails this test, the particle filter iteration ends here. Otherwise the weights
of the particles are normalised:
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ω̂
(L)
k =

ω
(L)
k

P ′∑
p=1

ω
(p)
k

, (3.28)

and the set of particles Sk is resampled by drawing P particles from a multinomial distribution
Mult(P, ω̂(1), ..., ω̂(P ′)).

Then for a given section k, the scale factor is obtained by computing the geometric mean of
the scale values in the particle set Sk. That is:

λ̄k =

P∑
i=1

λ
(i)
k

P
(3.29) d̄k = 10λ̄k . (3.30)

3.5.2. Scaling of the trajectory

This scale factor must be applied to the state variables with length dimensions, position and
velocity. These are encapsulated in a vector:

xCdk (n) =

 rCW,k(n)

vCW,k(n)

 . (3.31)

To ensure the continuity in position and velocity, each vector xCd
k (n) contained in the current

section k is scaled using the following recursive formula:

x̆Cdk (n) = x̆Cdk−1(N) + d̄k

[
xCdk (n)− xCdk−1(N)

]
k = 2, 3, ... (3.32)

x̆Cd1 (n) = d̄1x
Cd
1 (n), (3.33)

where x̆Cd
k (n) contains the scaled camera position and velocity estimates.

3.5.3. Scaling of landmarks

The set of landmarks to be updated or initialised in the scaled map estimate is given by
all the point landmarks marginalised from the EKF during current section and the landmarks
matched in the EKF update of the last pose of the section:

MS,k =
[
Ep(k−1)N+1, · · · , E

p
kN , T

p
kN

]
. (3.34)

The scale of each landmark is set to the one of its anchor pose in IDP:

y̆
(j)
W = r̆

C(j)
W + d̄κ(j)

(
y

(j)
W − r

C(j)
W

)
(3.35)

where the function κ : N→ N which establishes a surjective mapping from a landmark index j

to the index of the section containing the anchor pose r
C(j)
W of the landmark.
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3.5.4. Real time implementation and reduction of the update delay

The complete scaling algorithm is implemented in a new thread within the real-time
monoSLAM C++ application [Davison et al., 2007], working in parallel with the main SLAM
thread. After each EKF iteration, the main thread stores the last camera pose and the
corresponding landmarks in two shared buffers. When the buffer with the camera poses is
fully updated with N poses, the main thread triggers the scaling thread. After executing the
scaling algorithm, the scaled trajectory is updated by adding the recently scaled camera poses.

In spite of the real-time operation, the update of the scaled odometry estimate is delayed
due to the time tDFT it takes to fill the buffer of camera poses with the N states needed to
perform the DFT. One way to reduce this delay is to reduce N , at the expense of reducing the
accuracy of the DFT to compute the step frequency.

Alternatively we propose to use a sliding window, updating only one fraction Nf of the
buffer of camera poses at a time. Thus the number of camera poses used for the spectral
analysis remains N by reusing poses from previous sections, while the amount of scaled camera
poses per section is reduced to Nf . The time required to update the scaled trajectory with the
new Nf poses is notated as tupd. The complete scaling method is described in Algorithm 1.

Algorithm 1 Complete Visual Odometry Scaling algorithm

Require: xCk (1..N), Sk−1

Ensure: x̆Ck (1..Nf ), Sk
//Notation
xCk (n) = nth unscaled camera state of section k
x̆Ck (n) = nth scaled camera state of section k
N = # input camera states
Nf = # output/new camera states
Sk = Set of particles for the particle filter
//Algorithm
k = 0; [S0] = Initialise particles ()
while Not end of sequence do
k = k + 1
Wait for new x̆Ck (1..N) from monoSLAM
[zk(1..N), µV,k, σV,k] = Extract z-comp & mean speed

(
xCk (1..N)

)
[zk(1..N)] = High Pass Filter (zk(1..N))
[fm, Γd,k] = Spectrogram (zk(1..N))
[fst,k, Γd,k (fst,k)] = Estimate Step Frequency (fm, Γd,k)
if Step freq power is consistent (dk−1, Γd,k (fst,k)) then

[Vwalk,k] = Walking speed model (fst,k)
[Sk] = Sample Proposal Distribution (Sk−1, µV,k, σV,k)
[Sk] = Weighting and Resampling (Sk, Vwalk,k)
[dk] = Compute mean scale factor (Sk)

else
dk = dk−1 ; Sk = Sk−1

end if
if k=1 then[

x̆C1 (1..N)
]

= Scale Section
(
d1, xC1 (1..N)

)
else[

x̆Ck (1..Nf )
]

= Scale Section
(
dk, xCk ((N−Nf+1)..N)

)
end if

end while
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3.6. Experiments

For the validation of our proposal we use three different cameras in our experiments, each
one with varying geometries, resolution and frame rates.

The first experiments have been carried out with a catadioptric omnidirectional camera
VS-C14U-80-ST model which consists on a mirror and a Sentech UltraSmall STC-MC83USB
camera with a resolution of 1024x768, at frame rate of 15 fps, which is mounted on a helmet to
be carried by a human operator.

In the last experiments we used the wearable GoPro Hero and Sony Action Cam, in order
to verify the applicability of our method also to conventional cameras, whose narrower field of
view is likely to provide less accurate motion estimates than omnidirectional cameras [Rituerto
et al., 2010], which could affect the perception of the body oscillations. Also, their ability to be
attached to several body parts, allows us also to evaluate our method when the camera is worn
on the chest, which, as in the case of the head, also shows the characteristic oscillatory motion
while walking.

Trajectory estimates in the experiments have been refined by applying loop closure
optimisation when possible, where the loop constraints were determined as explained in 3.3.2.
Frames for loop closure were selected manually, since the loop detection problem is out of the
scope of this work. Also this avoids uncertainties due to possible errors in automatic loop
detection, allowing for a fair comparison of the scale drift removal capabilities between our
method and the proposed in [Strasdat et al., 2010].

The Ground Truth for the experiments has been obtained from the Google Maps satellite
view using the distance measurement tool. To compare numerically the Ground Truth and
the scaled odometry estimates, we parametrise both curves by the normalised arc length or
accumulated distance ξ which spans from 0 (start) to 1 (end). Then, given the Ground Truth
trajectory tGT , the error for a given pose is computed as follows:

err(i) =
∣∣∣∣∣∣t(i)

V O − tGT (ξ(t
(i)
V O))

∣∣∣∣∣∣ . (3.36)

3.6.1. Parameter tuning

Our algorithm presents a series of parameters that have to be tuned previously. The number
of particles used in the particle filter is set to P = 5000 for all the experiments. The standard
deviation of the distribution for the initial logarithmic scale factor is set to σ0 = 1, which allows
us to cover an uncertainty interval for the scale factor between 10−2 and 102 with a 95% of
confidence. The setup of the uncertainty parameters for the scale drift σdrift and σVwalk

is
heuristic, trying to reach a trade-off between robustness and rapid response to sharp scale factor
changes. We use σdrift = 0.1 and σVwalk

= 0.2 m/s. This last value lies within the interval of
standard deviations for the feasible step frequencies range, as it can be proved by computing
the derivative of (3.11):

σVwalk = αβfβ−1Hσf , (3.37)

with σf = 1
tDFT

; and taking tDFT = 3 s and evaluating at the limits of the feasible step
frequencies. Note that though for larger tDFT , σVwalk

should be theoretically lower, keeping it
constant overcompensates the fact of loosing accuracy due to a lower robustness to changes in
speed when using larger windows.
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Figure 3.6: Spectral analysis along the same path at the three step frequencies of 2 (top), 1.67
(centre) and 1.43 Hz (bottom) with different section sizes. A higher section size implies a more
reliable frequency estimate.

3.6.2. Testing the ability to measure the step frequency

For the first experiment we acquired three image sequences with the catadioptric camera
walking along the same path of 230 meters with three different step frequencies, which were set
up by a metronome with 0.01 seconds of resolution. The user’s pace was fixed to 0.50, 0.60 and
0.70 seconds per beat for each sequence, which translates in step frequencies of 2, 1.67 and 1.43
Hz respectively. The purpose of this experiment is testing the ability of the method described
in Section 3.4.2 to estimate the step frequency just from the visual odometry signal.

We select different section dimensions of N = 50, N = 100 and N = 200 camera poses.
To compute the DFT we use the FFTW (Fast Fourier Transform West) C library [Frigo and
Johnson, 2005].

In Fig. 3.6 it is shown that the dominant frequency obtained by spectral analysis closely
approximates the step frequency fixed by the metronome. Among the considered setups,
N = 200 results in better accuracy and less outliers in the estimation of the step frequency.
However, as argued in Section 3.4.2, a window of this length might not be the optimal for the
performance of our method as a whole. This issue is addressed in the next experiments.
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Table 3.1: Estimation error for combinations of tDFT and tupd for the experiment with changes
in pace.

tDFT tupd Mean Maximum Relative
[s] [s] error[m] error[m] mean error

12 12 12.54 28.83 1.42%
12 3 10.43 18.65 1.18%
3 3 9.26 21.24 1.05%

3.6.3. System robustness under changes of pace

The sequence for this experiment was acquired with the catadioptric camera along a path of
886 m containing a variety of challenging situations like changes of pace, stops, stairs and walking
along a narrow corridor. Transitions between these situations have been ticked accordingly in
the frame when they take place.

The objective is evaluating the robustness of our method under these conditions, and select
the optimal number of poses to be taken for scaling at each iteration. Instead of using the
number of poses N and Nf to define the window sizes in the experiments, from this point we
will take their temporal length tDFT and tupd, as it generalises better for different frame rates.

In this experiment we evaluate the use of a dynamic window approach to scale the trajectory
sections. We have tested 3 different alternatives. In two alternatives tDFT is set to 12 seconds
and tupd is varied to compare the performance of static (tupd = 12 seconds) and dynamic (tupd = 3
seconds) windows. The third alternative consists in using a static window with tDFT = tupd = 3
seconds.

Fig. 3.7 (top) reveals how the step frequency computed from the raw unscaled visual
odometry varies accordingly with the pace of the walker. Note that for lower tDFT the step
frequency estimate is less accurate and oscillates more, though the global tendency in the pace
is still captured. In Fig. 3.7 (bottom), during the long stop, the spectral power shows a violation
of the consistency condition which leads to ignore the erratic estimation of the step frequency.
During the short stop, the violation of the consistency is not observed with tDFT = 12 s, due to
the masking effect of the poses corresponding to a walking state. In the case of going upstairs
the power peak is noticeable but not as clear as in the stop to establish a clear upper limit for
the consistency condition.

Fig. 3.8 (top) shows the dynamic estimation of the scale factor. It can be noticed that scale
drift can occur in two different ways. On the one hand it can be a gradual drift as occurs at
the start of the sequence or during the corridor. Drift at the start can be due to the still highly
uncertain depth estimate of the tracked points during initialisation, while on the corridor it is
the gradual substitution of points in spacious areas by points on the walls of the narrow corridor
what causes the drift. On the other hand drift can occur sharply if landmarks which act as
an anchor for the scale are suddenly lost. This might be caused for example by occlusions by
dynamic elements or sudden camera accelerations, as occurs when restarting the walk after a
stop.

Fig. 3.9a shows a comparison between the scaled trajectories obtained for each considered
setup. Loops have been closed at the end and at the middle of the path. Numerical comparison
with the Ground Truth is detailed in Table 3.1. It is shown that taking tDFT = 3 s offers an
slightly better scaled estimate of the visual odometry with a mean relative error of 1.05% over
the trajectory length. This demonstrates the convenience of losing a bit of accuracy in the DFT
using short windows (but large enough to capture the body oscillations), in order to get a higher
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Figure 3.7: Evolution of the step frequency estimate (top) and its corresponding spectral power
(bottom) in the changing pace experiment. Consistency bounds are violated when estimate does
not correspond to a walking step frequency.

Figure 3.8: Evolution of (top) the scale factor, (middle) the non-dimensional speed and (bottom)
the estimated real walking speed in the changing pace experiment. Ground Truth speed was
assumed constant for a given pace and computed from Google Maps Ground Truth and the time
difference between frames.
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update rate of the scale and a faster detection of stops or changes in pace (Fig. 3.7).

The great improvement of all the considered cases with respect to the raw odometry estimate
shows the ability of our approach not only to compute the scale but also to remove the scale
drift, which is reflected on the deformation of the raw estimate.

Comparison with state-of-the-art scaling approach

Once we pick the configuration with tDFT = tupd = 3 s we compare our method with
the approach described in [Strasdat et al., 2010]. This approach aims to remove the scale
drift in the trajectory during loop closure optimisation by expressing the camera poses and
both the odometry and loop closure constraints as similarity transforms (Sim(3)) instead of
as conventional rigid body motions (SE(3)). Note that this approach tackles the scale drift
problem but it does not compute the absolute scale of the odometric estimate. Thus, for a
fair comparison, each of the finally obtained trajectories by the different evaluated methods is
rescaled so that its total distance is the same as that of the Ground Truth. We evaluate 4
different solutions: standard loop closure optimisation in SE(3) of the raw estimate (unscaled),
scale drift correction with loop closure optimisation in Sim(3) (optimSim3 [Strasdat et al., 2010]),
standard loop closure optimisation in SE(3) of our scaled estimate (dynScale) and loop closure
optimisation in Sim(3) of our scaled estimate (dynScale + optimSim3 [Strasdat et al., 2010]).
Qualitative and numerical results shown in Fig. 3.9b and Table 3.2 respectively. It can be
observed that both our method and [Strasdat et al., 2010] clearly improve the raw estimate,
though our method provides better accuracy. Note also that the combination of both methods
slightly improves our raw proposal providing the most accurate estimate.

This result is expected since while our approach estimates the scale every 3 seconds, in
[Strasdat et al., 2010] it is only possible to observe it at loop closures. However it can be noted
that, as both approaches obtain scale drift information from different sources, they can combine
well providing a more accurate estimate together than both alone. A complete view of the best
trajectory estimate and the points of the scene is shown in Fig. 3.9c.

3.6.4. Indoor experiment

In the second experiment we test our approach with the catadioptric camera in an indoor
environment [Murillo et al., 2012] along a path of 464 m under a freely chosen gait, keeping
the tuning used in previous experiment. Our approach is able to correct a significant scale drift
of 200% taking place at the start of the trajectory (Fig. 3.10b), providing a final odometry
estimate (Fig. 3.13a) with a mean error of 4.69 m (1.01% over the trajectory length). Note in
Fig. 3.10a the peak in the spectral power occurring at the two stair parts in the trajectory.

The comparison with [Strasdat et al., 2010] shown in Fig. 3.13 and Table 3.3 is similar to the
previous experiment. Our approach alone outperforms [Strasdat et al., 2010] alone, and both
together provide a better estimate.

3.6.5. GoPro experiment

For this experiment we acquired an image sequence with a GoPro camera attached to the
user’s head. The user walked at steady pace along a path of 410 m. the camera resolution and
frame rate were set to 1280x720 and 60 fps respectively. The tuning of our scaling algorithm is
the same as the one used in the previous experiments with the omnidirectional camera, taking
again tDFT = tupd = 3 s.
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(a) (b)

(c)

Figure 3.9: Changing pace experiment. (a)Scaled trajectory estimates for different setups
of tDFT and tupd. (b) Result of using different approaches for scale drift removal, with all
trajectories rescaled to the Ground Truth’s scale. Estimates of our scaled and raw trajectory
estimates prior to loop closure are shown in the small view, in which the raw estimate has been
rescaled for better visualisation. (c) Scaled trajectory and scene points obtained with the most
accurate approach.

50



CHAPTER 3. TRUE SCALED 6 DOF EGOCENTRIC LOCALISATION WITH
MONOCULAR WEARABLE SYSTEMS

Table 3.2: Estimation error for different scaling and optimisation combinations for the
experiment with changes in pace.

Method Mean Maximum Relative
error[m] error[m] mean error

unscaled 30.47 71.10 3.43%
optimSim3 [Strasdat et al., 2010] 11.29 30.02 1.27%

dynScale (ours) 5.35 19.34 0.60%
dynScale (ours) + optimSim3 [Strasdat et al., 2010] 4.04 9.68 0.46%
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Figure 3.10: Indoor experiment with catadioptric camera. (a) Evolution of the step frequency
estimate (top) and its corresponding spectral power (bottom), (b) Evolution of (top) the scale
factor, (middle) the non-dimensional speed and (bottom) the estimated real walking speed.

Table 3.3: Estimation error for different scaling and optimisation combinations for the indoor
experiment with the catadioptric camera.

Method Mean Maximum Relative
error[m] error[m] mean error

unscaled 10.82 22.90 2.33%
optimSim3 [Strasdat et al., 2010] 6.47 12.82 1.39%

dynScale (ours) 3.77 10.37 0.81%
dynScale (ours) + optimSim3 [Strasdat et al., 2010] 3.21 9.37 0.69%

In Fig.3.14a it is shown both the evolution of the step frequency and the spectral power
of the head oscillation. Note that there exists a peak in the spectral power above the higher
limit for oscillation amplitude, which corresponds to the stairs part of the trajectory. An outlier
can be observed in the estimation of the step frequency, though, as it can be noted in Fig.
3.14b, the particle filter successfully rejects this measure and both scale factor and walking
speed estimates are not affected. As in the previous experiment the scale smoothly drifts as we
enter in the narrow corridor (between frames 2200 and 3200).

The final odometric estimate in Fig. 3.15a shows once again the competitiveness of our
method, with a mean error of 1.79 m (0.44% over the total trajectory length). Note that even
prior to loop closure, scale drift correction can be observed in the small view as the start and
end points of the trajectory are almost coincident. In this experiment the loop was closed at the
end of the sequence. As the camera view direction of the scene differs between the start and the
end poses, and a camera with limited field of view is used, correspondences for loop closure can
only be obtained in a small portion of the matched images, which result in a loss of precision of
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Figure 3.11: Camera-on-chest experiment. (a) Evolution of the step frequency estimate (top)
and its corresponding spectral power (bottom), (b) Evolution of (top) the scale factor, (middle)
the non-dimensional speed and (bottom) the estimated real walking speed.

the loop constraint.
As we can observe in Fig. 3.15b and Table 3.4, our approach outperforms alone clearly all

the other options. The lack of improvement when combining optimSim3 with our method may
be due to the limited common field of view between the loop closing frames. The final odometry
and map view obtained with our approach is shown in Fig. 3.15c.

3.6.6. Sony Action Cam attached to the chest

In this experiment, we test the ability of our method for performing scale correction when
the camera is not worn on the head. We used a Sony Action Cam with a resolution of 960x540
at 30 fps attached to the user’s chest. The sequence was acquired in an indoor loop with a
length of 187 m.

Fig. 3.11 show that the step frequency and the scale factor can be successfully estimated when
the camera is worn on the chest, due to showing only a oscillatory motion during locomotion.
The final reconstruction after loop closure (Fig. 3.12) shows the correction of a slight drift in
the scale and that the estimate with the absolute scale is indeed computed.

3.6.7. Analysis of the change in the walking model parameters

In this section we analyse how the scaled estimate of some of the previous experiments is
affected by the variation of the walking model parameters α and β from their nominal values
explicitly fitted for the user. We evaluate the effect both on the absolute scale and on the scale
drift. A prior theoretical analysis is lead by naively assuming that:

d(t) =
Vwalk(t)

VSLAM (t)
. (3.38)

The change of the model parameters produce a variation of the estimated Vwalk, which leads
to a change in d. The change in the absolute scale is expressed by the following ratio:

r(t) =
d(t)

d̂(t)
=
Vwalk(t)

V̂walk(t)
, (3.39)
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(a) (b)

Figure 3.12: Camera-on-chest experiment. (a)Trajectory estimate after loop closure with and
without our scaling algorithm. Estimates prior to loop closure are shown in the small view, in
which the raw estimate has been rescaled for better visualisation. (b) Scaled trajectory and
scene points obtained with our approach.
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(a) (b)

(c)

Figure 3.13: Indoor experiment with catadioptric camera. (a)Trajectory estimates after loop
closure in our scaled estimate and the raw estimate. Estimates prior to loop closure are shown in
the small view, in which the raw estimate has been rescaled for better visualisation. (b) Result
of using different approaches for scale drift removal. Absolute scale of each estimate is fitted to
the Ground Truth’s. (c) Scaled trajectory and scene points obtained with our approach.
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Table 3.4: Estimation error for different scaling and optimisation combinations for the GoPro
sequence.

Method Mean Maximum Relative
error[m] error[m] mean error

unscaled 5.83 11.94 1.42%
optimSim3 [Strasdat et al., 2010] 2.81 7.40 0.69%

dynScale (ours) 1.54 4.46 0.37%
dynScale (ours) + optimSim3 [Strasdat et al., 2010] 2.53 5.89 0.62%
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Figure 3.14: GoPro experiment. (a) Evolution of the step frequency estimate (top) and its
corresponding spectral power (bottom), (b) Evolution of (top) the scale factor, (middle) the
non-dimensional speed and (bottom) the estimated real walking speed.

(a) (b) (c)

Figure 3.15: GoPro experiment. (a)Trajectory estimates after loop closure in our scaled estimate
and the raw estimate. Estimates prior to loop closure are shown in the small view, in which the
raw estimate has been rescaled for better visualisation. (b) Result of using different approaches
for scale drift removal. Absolute scale of each estimate is fitted to the Ground Truth’s. (c)
Scaled trajectory and scene points obtained with our approach.
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while the scale drift with respect to the nominal model is given by its first order time derivative
r′(t).

Let us first analyse how the variation of parameter α affects both r(t) and r′(t). Recalling
(3.11) we get that:

r(t) =
α

α̂
(3.40) r′(t) = 0. (3.41)

which means that a proportional change in the scale is to be expected if we vary α. Since α is
a constant parameter, no drift is expected with respect to the nominal scaled estimate.

In the case of varying β we have:

r(t) =
fβ

f β̂
= f∆β (3.42) r′(t) = ∆βf∆β−1 ∂f

∂t
, (3.43)

which means first, that the change in the absolute scale will be higher with increasing ∆β and
higher step frequencies and, secondly, that if there are changes in the user’s pace, we might
expect a drift in the scale higher for larger ∆β .

For the experimental evaluation we used the changing pace and GoPro sequences. Each time
we run our algorithm, we set one parameter to the nominal value fitted to our camera operator,
while varying the other between our nominal value and 3 other options computed from average,
lower limit and upper limit values of the parameters for the model proposed in [Grieve and Gear,
1966].

Results in Fig. 3.16 show that an ad hoc calibration for each user is crucial to get the absolute
scale of the estimate. However, for just scale drift correction, which is more important in practice,
it is shown that an accurate calibration of the walking model parameters is not critical, as long
as extreme pace changes are avoided during walking. Note that the experimental observations
confirm the predicted behaviour by the theoretical analysis.

3.7. Discussion

In this work we have presented a novel approach to provide estimates with the absolute
scale of wearable odometric localisation systems using a single camera. Our proposal makes
these hypothesis: first, the camera must be attached to a body part whose motion is mainly
caused by the action of walking; secondly, the initial unscaled visual odometry estimate must
be accurate enough to register the oscillations which take place during walking, and thirdly the
roughness of the terrain on which the user moves is low enough not to mask the amplitude of
the walking oscillations.

Our method has been thoroughly evaluated in a rich set of video sequences, combining indoor
and outdoor environments and using many kinds of cameras, attached either to the head or to
the chest of the user. In spite of this high variety in the conditions which the system has been
tested on, our algorithm shows a good performance without requiring to be retuned for each
experiment with the same user. Also we show that if the pace of the user does not change a lot
during the path, the calibration of our system for a specific user is not critical in terms of scale
drift correction.

We have compared our algorithm in our most challenging sequences against the scale drift
correction method proposed in [Strasdat et al., 2010], where ours shows a better performance.
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Figure 3.16: Variation of (a) the absolute scale with α, (b) the absolute scale with β, (c) the scale drift with α, (d) the scale drift with β.
Results for the pace change sequence are shown in the first row. Results for the GoPro sequence are shown in the second row row. Note
that a wrong α has no negative effect on scale drift correction, while a wrong β is only harmful if there are high changes in pace.
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This gain in performance is due to the fact that our method corrects the scale dynamically
every few seconds, instead of having to wait for a loop detection to obtain scale information as
done in [Strasdat et al., 2010]. Note also, that as both methods extract the scale from different
sources, they are not mutually exclusive. Indeed we have shown in the experiments, that he
combination of both provides the better performance. In this sense, we expect also that the
proposal presented in this work can also combine well not only with [Strasdat et al., 2010], but
also some of other present and future methods for scale computation, in order to get more robust
information about the real camera trajectory and 3D observed scene.
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Chapter 4

Dense RGB-D Visual Odometry
using Inverse Depth

In this chapter we present a dense visual odometry system for RGB-D cameras
performing both photometric and geometric error minimisation to estimate the camera
motion between frames. Contrary to most works in the literature, we parametrise
the geometric error by the inverse depth instead of the depth, which translates into
a better fit of the distribution of the geometric error to the used robust cost functions.
To improve the accuracy we propose to use a keyframe switching strategy based
on a visibility criteria between frames. For the comparison of our approach with
state-of-the-art approaches we use the popular datasets from the TUM for RGB-D
benchmarking as well as two synthetic datasets. Our approach shows to be competitive
with state-of-the-art methods in terms of drift in meters per second, even compared
to methods performing loop closure too. When comparing to approaches performing
pure odometry like ours, our method outperforms them in the majority of the tested
datasets. Additionally we show that our approach is able to work in real time and we
provide a qualitative evaluation on our own sequences showing a low drift in the 3D
reconstructions. We have implemented this method within the scope of PCL (Point
Cloud Library) as a branch of the code for large scale KinectFusion, where the original
ICP system for odometry estimation has been completely substituted by our method. A
PCL fork including the modified method is available for download .

4.1. Introduction

The recent advent of new RGB-D sensors has aroused great interest in the development of
visual odometry and SLAM systems. Their cheapness and their ability to provide dense depth
measurements of the environment in contrast to traditional stereo cameras makes them quite
appealing to address not only localisation and mapping but also many other problems for which
monocular systems are typically used. The main limitation is their use being limited to indoor
environments.

Some of the first systems using RGB-D sensors for SLAM [Henry et al., 2010], [Huang
et al., 2011], [Endres et al., 2012] tended to adapt the sparse feature based approaches from
monocular vision, using the depth information to straightforwardly lift the features to 3D points
and occasionally to apply the iterative closest point (ICP) algorithm for refinement of the pose
estimate. Preference for systems using sparse features for localisation might be caused by the fact
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that in monocular systems, direct odometry estimation from raw frames, i.e., without extracting
sparse features, inherently forced to estimate the dense depth or optical flow map between
frames simultaneously or prior to the camera motion. These are ill posed problems with more
unknowns than constraints and requiring from the use of regularisers and variational methods
for their resolution [Newcombe et al., 2011b]. In addition to this, dense methods require high
computational power for real time computation of pixel-wise operations. In this sense, advent
of new generation CPUs and high performance GPUs almost simultaneously to RGB-D sensors
allowed for a significant cost reduction of dense algorithms due to new programming paradigms
which allowed for high paralellisation of per pixel operations.

One of the first and maybe most known approaches for direct odometry estimation is
KinectFusion [Newcombe et al., 2011a], which using only the depth channel, is able to estimate
the odometry and a dense map by ICP alignment. Almost alongside with KinectFusion came
more direct approaches for odometry estimation either minimising the pixel-wise photometric
error [Steinbrücker et al., 2011] or both photometric and geometric errors [Tykkala et al., 2011]
between pairs of close enough frames.

We present a direct visual odometry method minimising both types of error. Our main
contribution is the novelty of using the inverse depth to parametrise the geometric error instead
of the depth as most works in the literature do. In monocular vision, the ability of inverse depth
(if measured along the camera optical axis) or inverse distance (if measured along the projected
ray) to easily deal with points at long distances [Civera et al., 2008] has been shown to lead to
an improvement in performance [Solà et al., 2012]. In depth range systems, though there is no
need to deal with points at distances greater than the maximum camera range, inverse depth
has still the theoretical benefit of fitting better to the depth error model of a RGB-D camera.
This potential benefit of using the inverse depth is experimentally validated in the Technische
Universität München (TUM) real world benchmarking datasets [Sturm et al., 2012] as well as in
synthetic datasets [Handa et al., 2014], showing the better performance of the geometric error
based on inverse depth. As additional contribution, though equivalent in essence, the problem
formulation is slightly varied with respect to related works, first linearising the flow equations,
obtaining generic linear 3D flow equations and then applying the assumption of small rigid scene
motion between frames to get the linear constraints just on camera motion parameters. We also
evaluate the performance under different robust cost functions (Huber, Tukey biweight and
Student’s t distribution-based estimator) and two different methods in the state-of-the-art to
compute the uncertainty-based scaling parameters of an error distribution: one with the Median
Absolute Deviation (MAD), and one with its Maximum Likelihood (ML) estimator given the
cost function used for robust optimisation. Also, as an alternative to alignment of consecutive
frames, we consider the alignment against a reference frame, using a frame switching strategy
based on covisibility between frames. We have implemented this method within the scope of
PCL (Point Cloud Library) [Rusu and Cousins, 2011] as a branch of the code for large scale
KinectFusion [Bondarev et al., 2013], where the original ICP system for odometry estimation
has been completely substituted by our method, while algorithms for dense volumetric mapping
and volume shifting have been kept unchanged. A fork of PCL including our modification is
available for download 1.

4.2. Related Work

We classify the related work in RGB-D visual odometry into two categories: methods
which rely at some point on the extraction and matching of sparse RGB features and those

1http://webdiis.unizar.es/~danielgg/code.html
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which are completely dense performing pixel-wise minimisation of photometric and/or geometric
constraints from the intensity and depth maps.

4.2.1. Sparse feature-based methods

One of the first SLAM methods with RGB-D cameras was presented by Henry et al. [Henry
et al., 2010]. They perform the visual odometry estimation between two frames in two steps. In
the first step SIFT features are matched and lifted to 3D points using the available depth
information. Then RANSAC-based 3D alignment between the features in both frames is
applied to find the initial estimate of the relative rigid transformation. In the second step
the motion estimate is refined by joint minimisation of the euclidean 3D distance between inlier
correspondences from previous step and the point to plane distance from the ICP alignment
between point clouds. Both error contributions have to be weighted by a parameter which is
empirically estimated. This method is further developed in [Henry et al., 2012], where main
changes in the visual odometry estimation process are the substitution of SIFT features by
FAST features, and the substitution of the 3D euclidean error between features by the image
reprojection error.

In [Endres et al., 2012], Endres et al. propose a RGB-D SLAM system, which similarly
to [Henry et al., 2010] estimate the initial transformation by RANSAC-based 3D alignment of
sparse features. However, in the refinement step they only minimise the point cloud alignment
error from the ICP algorithm. The method is improved in [Endres et al., 2014], including an
Environment Measurement Model to prune wrong motion estimates which passed undetected in
the RANSAC and ICP steps.

Maybe one weakness of both methods is that they seem to rely on the detection of loop
closures to provide accurate map and trajectories estimates. The precision of the methods for
visual odometry, i.e., computing the motion estimate only between temporally close frames,
can not be assessed since quantitative evaluation is performed after the loop closure step. Also
they tend to directly extend the algorithm from visual odometry estimation for loop closure,
rather than making first an appearance-based selection of loop candidates. In [Henry et al.,
2012] authors attempt to align each new created keyframe with all the previous keyframes by
RANSAC, which would lead to prohibitive computational costs for large datasets. In [Endres
et al., 2014] in turn authors attempt to close loops in a random sample from a set of keyframes
and each frame-to-frame motion calculation between candidates for loop closure is parallelised,
thus keeping bounded the computational cost and close to the frame rate of the camera (between
5 and 15 Hz). This has proven to be a successful approach in the RGB-D TUM datasets, usually
comprising short datasets with frequent loop closures. However in the case for large datasets
with few loop closures, it could be argued that as the pool of eligible keyframes steadily grew,
the chances of randomly picking keyframes with successful loop closures would be increasingly
reduced.

In [Dong et al., 2014], Dong et al. propose the combination of 3D RANSAC alignment and
large scale KinectFusion for RGB-D dense mapping.

4.2.2. Direct methods

In the last years, approaches which estimate the camera motion directly from the images
without a previous extraction and matching of sparse features have become more and more
popular. The main characteristic of these methods is that they compute the motion estimate
between frames from pixel-wise constraints instead of sparse feature correspondences. Since
direct methods make use of the whole dense information contained in the image, they are likely
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to offer better precision for camera tracking than methods based on sparse features. The main
restriction of direct methods is that inter-frame motion must be small, producing disparities
of a few pixels. Though this restriction can be relaxed up to some degree with coarse-to-
fine approaches by image downsampling; the main consequence is that though direct methods
perform successfully in video sequences, where the temporal proximity between frames generally
guarantees small pixel disparities, for temporally unrelated pairs of frames, as occurs in loop
closure, sparse feature methods would be more robust.

Maybe one of the first dense approaches with RGB-D cameras is KinectFusion by Newcombe
et al. [Newcombe et al., 2011a]. KinectFusion is composed by two different modules, one for
camera tracking and one for dense volumetric mapping. For each new frame first the motion is
estimated by frame-to-model ICP alignment of depth maps, i.e., current depth map is aligned
with the depth map raycasted from a voxelized 3D model. Then, current depth map is integrated
in the 3D model using a truncated signed distance function. The main limitation of KinectFusion
is its limitation to small workspaces, which was nevertheless solved in latter works by using a
cyclical buffer to shift the volume as the camera explores the environment [Bondarev et al.,
2013], [Whelan et al., 2013a].

Bylow et al. [Bylow et al., 2013] proposed a method which, as KinectFusion, uses only
the depth fusion, but rather than raycasting a depth map from the model for posterior ICP-
alignment, the camera is tracked by directly minimising the signed distance function between the
current warped depth map and the model surface defined in the voxelised volume. This results in
a better accuracy and similar real-time computational performance compared to KinectFusion.

In contrast to direct approaches using only geometric information, Steinbrücke et al.
[Steinbrücker et al., 2011] presented a method for visual odometry estimation based on the
pixel-wise minimisation of the photometric error between consecutive frames, showing that if
interframe motion is small enough their approach is more accurate and computationally efficient
than ICP alignment. Audras et al. [Audras et al., 2011] propose a similar method, but instead of
standard least squares they propose the Huber robust cost function in order to gain robustness
to outliers, e.g., moving objects or occlusions. An information selection scheme is used to prune
pixels in homogeneous regions and gain computational performance. Motion is estimated by
aligning the current and a reference frame, switching the reference frame when the Median
Absolute Deviation (MAD) of the error between the aligned frames is above a given threshold.

In [Kerl et al., 2013b], Kerl et al. extend the method described [Steinbrücker et al., 2011]
by modelling the photometric error by a Student’s t-distribution. This leads to a cost function
which shows to be robust to outliers and performs better than other widely used estimators like
Huber’s or Tukey’s.

Klose et al. [Klose et al., 2013] optimise the Tukey-robustified photometric error by
performing Efficient Second Order Minimisation (ESM) between a reference and current frame,
using the accumulated camera motion, to decide when to switch the reference frame. Also,
to gain robustness to ilumination changes they include parameters modelling the variation in
contrast and brightness in the optimised variables.

Following the paradigm of working on 3D models [Newcombe et al., 2011a], Stuckler and
Behnke propose in [Stuckler and Behnke, 2012] and [Stückler and Behnke, 2014] converting the
RGB and depth images into multi-resolution surfel maps by using a voxel octree representation.
Each surfel maintains a shape-texture descriptor, which guide data association between surfels
in different maps during camera pose estimation. To alleviate the odometry drift they register
the current frame with respect to the latest keyframe. A new keyframe is inserted when camera
motion w.r.t. last keyframe is large enough. They also propose a loop closure technique
where loop closure candidates are randomly sampled from a probability density function which
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Figure 4.1: Assuming that the disparity (d) error follows a Gaussian or, more generally,
a symmetric distribution, the depth (Z ∝ 1

d) error distribution is not Gaussian, not even
symmetric. The asymmetry is more pronounced for higher Z.

positively weights the selection of spatially closer keyframes.

Direct motion estimation minimising simultaneously the geometric and photometric residuals
was proposed first by Tykkala et al. [Tykkala et al., 2011]. To solve the problematic of mixing
residuals in different magnitudes they propose the heuristic of weighting the depth residuals by
the quotient of the medians of the intensity and depth maps. In [Damen et al., 2012], Damen
et al. propose an ESM approach to minimise both residuals, weighting their contributions by
an empirically set parameter. In [Whelan et al., 2013b], Whelan et al. propose to compute the
visual odometry by mixing the costs functions from [Newcombe et al., 2011a] and [Steinbrücker
et al., 2011], also weighting them by an empirically set parameter. Based on this work Whelan et
al. proposed in [Whelan et al., 2014] a RGB-D SLAM system with volumetric fusion performing
appearance-based loop closing to improve the system accuracy. The use of heuristics to weight
both error contributions can be risky, since a tuning which works well for some dataset could
not do so in other ones. For this reason it is advisable to reduce their use as much as possible.
In this sense Kerl et al. [Kerl et al., 2013a] propose the computation of an automatic scaling
matrix based on the covariance of the photometric and geometric pixel residuals, which produces
a rigorous normalisation of both residuals. In addition to this automatic scaling they propose
the estimation of the camera motion with respect to keyframes, which are switched following an
entropy-based criteria, and the inclusion of a simple but effective loop closure method based on
keyframes spatial proximity to further refine the final odometry estimation.

In all of the described approaches the use of a constant scaling parameter, either heuristic or
automatic, for all the geometric residuals is prone to be a source of inaccuracies in the estimation
process due to the quadratic grow of the depth uncertainty in RGB-D sensors [Khoshelham and
Elberink, 2012]. Meilland et al. [Meilland and Comport, 2013b] take this fact into account,
weighting the depth residuals by the inverse squared depth, but still use additional heuristic
parameters to weight photometric and depth residuals. Also, under the frequent assumption of
a symmetric, generally Gaussian, distribution of the disparity error; the depth which is inversely
proportional to the image disparity, is not symmetric (Fig. 4.1), and thus inaccurately modeled
by the robust cost functions frequently employed in the literature.
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Inverse depth, in turn, depends linearly on the disparity, which means that it follows the
same error distribution and thus its uncertainty is constant for any depth. In spite of this, to the
best of our knowledge, the use of inverse depth for dense visual odometry with RGB-D cameras
has been only proposed in by Lui et al. [Lui et al., 2012], by extending the ICP algorithm
from KinectFusion. However its performance is only tested on short sequences, lacking from
a thorough evaluation on larger RGB-D sequences and a comparison against state-of-the-art
methods for dense RGB-D odometry estimation.

4.3. Linear Visual Odometry Constraints from Optical Flow

In this section we derive the visual odometry pixel-wise constraints through the flow equations
obtained from the photometric and geometric constraints between two camera positions.

4.3.1. Optical flow equations

Let us denote two camera frames as A and B, at instants t and t + ∆t respectively. Given
the intensity images IA and IB, and inverse depth maps WA and WB defined over the image
domain Ω ⊂ P2, for an image point p = (u v 1)T ∈ Ω in frame A, the following constraints hold:

IB(p + ∆p) = IA(p) (4.1)

WB(p + ∆p) =
1

eTz XB
, (4.2)

where XB is the 3D point lifted from pixel p + ∆p in frame B, ∆p = (∆u ∆v 0)T is the
displacement of one point from frame A to B, and eTz = (0 0 1). The constraint in intensity
assumes constant illumination of one scene point. The second constraint is the measurement
model of the depth sensor at frame B.

Assuming small pixel displacements between frames we compute the flow equations from
(4.1) and (4.2):

∇IA(p)∆p + IB(p) = IA(p) (4.3)

∇WA(p)∆p +WB(p) =
1

eTz XB
, (4.4)

where the gradient operators ∇I =
(
∂I
∂u

∂I
∂v 0

)
and ∇W =

(
∂W
∂u

∂W
∂v 0

)
.

4.3.2. Projection model

A world point X is projected in the image point p by:

p = π (X) = K
X

eTz X
=

 fx 0 cx
0 fy cy
0 0 1

 X

eTz X
, (4.5)

where K is the conventional calibration matrix, including the camera intrinsic parameters.
Inverse depth measurements W(p) = 1

eTz X
allow to lift 2D points from the image to 3D

coordinates by the inverse projection function:

X = π−1(p) =
1

W(p)
K
−1
p. (4.6)
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Figure 4.2: Schematic representation of optical and scene flow between two frames A and B.

4.3.3. 3D flow equations

Flow constraints (4.3) and (4.4), can be manipulated to get constraints on the 3D flow at
one pixel, which is denoted as ∆Xp

.
= XB − XA (see Fig. 4.2). Using this relation, first we

compute the first order Taylor expansion of the inverse depth of one point at frame B:

1

eTz XB
=

1

eTz XA
− 1

(eTz XA)2
eTz ∆Xp +O

(∣∣∣∣eTz ∆Xp

∣∣∣∣2) (4.7)

≈ WA(p)−W2
A(p)eTz ∆Xp. (4.8)

Using this relation and the camera projection model we get also:

∆p = K
XB

eTz XB
−K

XA

eTz XA
(4.9)

(4.8)
= KXB

(
WA(p)−W2

A(p)eTz ∆Xp

)
−KXAWA(p) (4.10)

(4.5)
= WA(p)

(
K− peTz

)
∆Xp −KW2

A(p)∆XpeTz ∆Xp (4.11)

≈ WA(p)
(
K− peTz

)
∆Xp. (4.12)

And substituting in (4.3) and (4.4) we get:

WA(p)∇IA(p)
(
K− peTz

)
∆Xp + IB(p)− IA(p) = 0 (4.13)

WA(p)
(
∇WA(p)

(
K− peTz

)
+WA(p)eTz

)
∆Xp+

+WB(p)−WA(p) = 0. (4.14)

4.3.4. Rigid motion

We have obtained general flow equations taking small pixel displacement as the only
assumption. Only (4.3) presents a dense optical or 2D flow estimation problem [Horn and
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Schunck, 1981], while (4.13) and (4.14) involve a dense scene or 3D flow problem [Herbst et al.,
2013]. Both are ill posed problems which require regularisation and variational methods to reach
a solution.

We focus instead on RGB-D visual odometry estimation. This implies the assumption of a
rigid scene, i.e., the displacements ∆Xp of each of the WimHim points projected on the image
frame are due only to the motion of the camera, which has 6 DoF. Assuming a small motion
described by the rotation and translation pair ( RA

B , rAB) ∈ SE(3) we have:

∆Xp = RA
B XA + rAB −XA

=
(
I + [θAB ]×

)
XA + rAB −XA +O

(∣∣∣∣∣∣[θAB ]2×XA

∣∣∣∣∣∣)
≈ rAB − [π−1(p)]×θ

A
B = M(p)ξAB . (4.15)

where [·]× denotes the antisymmetric matrix from a vector and θAB is the logarithmic map of
RA
B. Note that ξAB = (rAB ; θAB) is not a twist, i.e., ξAB /∈ se(3), since rAB is yet the translation

part of the rigid motion. Eq. (4.15) leads to a well-posed problem with 6 unknowns for nearly
WimHim constraints, excluding pixels without depth measurements, with the following residuals:

rI(p, ξ) =WA(p)∇IA(p)(K−peTz )M(p)ξ+

+ IB(p)− IA(p) (4.16)

rW(p, ξ) =WA(p)
(
∇WA(p)(K−peTz )+WA(p)eTz

)
M(p)ξ+

+WB(p)−WA(p), (4.17)

which can be straightforwardly minimised by standard Gauss-Newton least squares.

Note that in the monocular RGB case, no depth is provided and only the constraint
(4.16) would be used. Thus WA(p) becomes an unknown yielding an ill-posed problem with
WimHim constraints for WimHim + 6 unknowns, which is solved using optical flow variational
methods [Newcombe et al., 2011b], or by performing variable baseline stereo matching [Engel
et al., 2013].

4.4. Visual Odometry Estimation by Iterative Optimisation

With the proposed residuals, ξAB is computed as the solution to the following optimisation
problem:

ξAB = argmin
ξ

∑
p∈Ω

ρ

(
rI(p, ξ)

σrI

)
+ ρ

(
rW(p, ξ)

σrW

)
, (4.18)

where ρ(x) is a generic cost function which must be symmetric, definite positive and ρ(0) = 0.
σrI and σrW are scaling parameters which capture the uncertainty in intensity and inverse
depth residuals, and allow for normalisation of residuals in different magnitudes. The choice
ρ(x) = x2

2 results in standard least-squares linear optimisation. Nevertheless to gain robustness
against outliers, e.g., pixels belonging to non-static elements, robust M-estimators are usually
employed. Optimisation with robust cost functions is addressed by the Iteratively Reweighted
Least Squares algorithm (IRLS) [Holland and Welsch, 1977] (see Appendix B), which results in
a linear least-squares problem to be solved at each iteration:
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ξAB = argmin
ξ

∑
p∈Ω

ω

(
r̆I(p)

σrI

)
r2
I(p, ξ)

σ2
rI

+ ω

(
r̆W(p)

σrW

)
r2
W(p, ξ)

σ2
rW

, (4.19)

where r̆I(p) and r̆W(p) denote the initial residuals computed after updating the camera motion
at previous iteration, and the weighting function ω(x) depends on the used M-estimator. For
more details on robust minimisation with M-estimators we refer the reader to Appendix B.

Rigid motion between frames is computed in a coarse-to-fine manner using image pyramids,
performing a number of iterations at each pyramid level. Let us have the intensity and inverse
depth image pairs {Ik, Wk} and {Ik+1, Wk+1}, between consecutive frames k and k + 1. At the

start and every time we step down to the next pyramid level, we set {IA, WA} =
{
I(pyr)
k , W(pyr)

k

}
,

and compute {∇IA, ∇WA}. Initial camera motion, expressed by the transform Tk
k+1
(0) is

initialised assuming a constant velocity, i.e., Tk
k+1
(0) = Tk−1

k.
After initialisation, the following steps are performed at each iteration γ: image warping,

scaling parameters computation, optimisation and pose composition.

4.4.1. Image Warping

Image warping is performed at the start of every iteration in order to reset the incremental
motion estimate to ξ

A(γ)
B = 0, instead of accumulating it. This is done to avoid unrealistic

intensity or inverse depth estimates in frame B beyond the sensor measurement limits, as it
can be verified if we take a look back to the left members of (4.3) and (4.4). At each iteration,
{Ik+1, Wk+1} are warped towards frame k using the current motion estimate Tk

k+1
(γ) , resulting in

the warped images {I (γ)
B , W(γ)

B }. This is done by reverse warping in the following steps:

Given a pixel p in the destination warped image, the corresponding pixel p
(γ)
k+1 in the source

image is obtained as:

X
(γ)
k+1 = Rk+1

k
(γ)K

−1
p

1

Wk(p)
+ r

k(γ)
k+1 , (4.20)

p
(γ)
k+1 = p + ∆p(γ) = K

X
(γ)
k+1

eTz X
(γ)
k+1

, (4.21)

By using (4.1) and (4.2) and resetting X
(γ)
k+1 = Rk+1

k
(γ)K

−1
p 1

W(γ)
B (p)

+ r
k(γ)
k+1 , compute the

warped intensity and inverse depth maps, I(γ)
B and W(γ)

B as:

I(γ)
B (p) = Ik+1(p

(γ)
k+1) (4.22)

W(γ)
B (p) =

eTz Rk+1
k
(γ)K

−1
p

1− eTz r
k(γ)
k+1

Wk+1(p
(γ)
k+1)

Wk+1(p
(γ)
k+1), (4.23)

where Ik+1(p
(γ)
k+1) andWk+1(p

(γ)
k+1) are obtained by bilinear interpolation, which is efficiently

computed with CUDA capable NVIDIA GPUs using texture memory.

Warping is performed at the level with highest resolution. Once the warping is done,
{I (γ)

B , W(γ)
B } are downsampled to the pyramid level where current optimisation step is

taking place.
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4.4.2. Scaling parameters

In a proper minimisation problem, specially when mixing residuals in different magnitudes,
the scaling parameters related with the covariance of the residuals need to be provided. In some
cases these scaling parameters are known or can be estimated before the optimisation and thus
they can be introduced as constants. However in other cases they are difficult to know and
they have to be computed prior to every optimisation step from the current estimates of the
residuals. In principle we assume that these parameters are not known and to obtain them we
first compute the initial residuals at ξA(γ)

B = 0 :

r̆{I,W}(p) = {I (γ)
B (p), W(γ)

B (p)} − {IA(p), WA(p)} . (4.24)

Scaling parameters σrI and σrW can then be computed by the Median Absolute Deviation
(MAD):

σMAD
r{I,W}

= 1.4286 med
p
|r̆{I,W}(p)−med

p

(
r̆{I,W}(p)

)
|, (4.25)

or alternatively they can be computed by their Maximum Likelihood (ML) estimator, noticing
that for any cost function ρ( r−µσ ) we can obtain the associated likelihood function as:

fρ(r|µ, σ) =
Kρ

σ
exp

(
−ρ
(
r − µ
σ

))
, (4.26)

where Kρ is a scaling constant for
∫∞
−∞ fρ(r|µ, σ)dr = 1, and µ and σ the location and the scaling

parameter of the residuals respectively. The scaling parameters would be computed by iteratively
solving:

[
µML
r{I,W}

, σML
r{I,W}

]
= argmin

µ, σ

∑
p∈Ω

log σ + ρ

(
r̆{I,W}(p)− µ

σ

)
, (4.27)

taking ρ(x) = x2

2 in the first iteration to compute the initial seed and then switching to our
selected cost function. Though not explicitly required, location parameters µML

r{I,W}
are also

calculated since the scaling parameters depend on their estimate.
Computing the scaling parameters using all the pixels in the image can involve a high

computational burden. As an alternative, we propose computing the scale parameter taking only
a sample from all the pixel residuals. Following a similar reasoning to the typically followed to
compute the minimum number of iterations in a RANSAC scheme, we can determine statistically
the minimum sample size N to reach a relative precision ε in the scale parameter estimation
with a confidence 1 − α. Assuming that the sum of the weighted squared normalised residuals
follows a chi squared distribution, we have that:

(N − 1)σ̂2

σ2
∼ χ2

N−1, (4.28)

where σ is the true scaling parameter and σ̂ its estimate. We can define then a confidence
interval with the desired relative precision in our estimate.

P
(
(1− ε)σ2 < σ̂2 < (1 + ε)σ2

)
=

= P

(
(1− ε)(N − 1) <

(N − 1)σ̂2

σ2
< (1 + ε)(N − 1)

)
= 1− α (4.29)
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Since N > 50, we can approximate the chi squared distribution by a Gaussian distribution,
χ2
N−1 ∼ N (N − 1, 2(N − 1)), and then we have:

P

(
− ε(N − 1)√

2(N − 1)
< z <

ε(N − 1)√
2(N − 1)

)
= 1− α, (4.30)

where z is a standard normally distributed random variable. From the previous expression we
obtain the minimum required number of samples to obtain a desired precision in the estimated
scaling parameter with a given confidence level.

N =
2z2

1−α2
ε2

+ 1. (4.31)

Taking a sample of N = 10000 pixels we obtain a relative precision ε = 0.05 for the scaling
parameter with a confidence level greater than 99.9%.

4.4.3. Robust optimisation

We consider for comparison 3 different cost functions frequently used in the related literature:
Huber [Huber, 1964a], Tukey biweight [Beaton and Tukey, 1974] and a Student’s t-distribution-
based estimator [Lange et al., 1989], which will be denoted as Student in advance. The constants
for Huber and Tukey estimators are set up to 1.345 and 4.685 respectively, which yield an
asymptotic relative efficiency (ARE) of 95% in case the error followed a Gaussian distribution.
The number of degrees of freedom of the Student estimator is set up to ν = 5 as in [Kerl et al.,
2013b]. We have verified numerically that the ARE of the Student’s estimator with this setup
is near to 94% for a normally distributed error.

Given an M-estimator, once we have the initial residuals and the scaling parameters the
computation of the weights for IRLS is straightforward. This is followed by the computation of
ξ
A(γ)
B by solving the linear optimisation in (4.19).

4.4.4. Motion update

After each iteration the motion estimate between frames k and k + 1 is updated by the
current incremental estimate:

Tk
k+1
(γ+1) =

(
exp([θ

A(γ)
B ]×) rAB
0 1

)−1
Tk
k+1
(γ) . (4.32)

4.4.5. Keyframe selection by covisibility ratios

Taking a reference frame for estimation of the visual odometry requires a switching strategy.
Very often the decision of switching the reference frame, or keyframe, is taken based on rotational
and translational distance between frames. However we find that this might be a poor criteria
since first, how the captured environment changes when the camera translates depends also on
the depth of the elements in the scene, and secondly, camera motion does not necessarily result
in a variation of the captured scene (consider for example the case of simultaneously translating
the camera along its horizontal axis and rotating it around its vertical axis).

Recent works use instead a statistic criteria for reference frame switching. In [Meilland
et al., 2011] authors use the MAD estimator of the standard deviation of the final pixel-wise
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residuals between reference and current frame, and compare it to a reference value in order to
make the decision. In [Kerl et al., 2013a] instead of the variance of the residuals, authors use
the covariance matrix of the computed motion. They take as reference value the covariance of
the motion estimate between the last inserted keyframe and its consecutive frame and take a
keyframe switching decision based on the ratio between the entropy of the reference covariance
and the current estimate’s.

Using sparse features a frequently used criteria for keyframe insertion is the visibility of map
features in current frame [Klein and Murray, 2007], [Huang et al., 2011]. This criteria has also
been used for dense point clouds [Meilland and Comport, 2013a].

In this work we use a covisibility criteria described as follows. Given two frames A and B
and the camera motion estimate between them ( RA

B , rAB) ∈ SE(3), we transfer pixels from A to
B using (4.20) and (4.21). Then if the following two conditions are met:

pB ∈ Ω∣∣∣WB(pB)− 1
ez
TXB

∣∣∣ < 3σw

a pixel is tagged as visible. First condition rejects points out of the image domain, while the
second condition rejects occluded pixels and where σw is computed using (4.27) after the last
iteration of the visual odometry algorithm. After this test we can compute the visibility ratio:

vis ratioA→B =
#visible pixelsA→B
#nohole pixelsA→B

. (4.33)

This procedure is repeated switching the role of A and B, and then we select the minimum
visibility ratio. If this ratio is below a threshold, the reference frame is switched. Different
thresholds will be tested in the experiments section.

4.4.6. Enhancement of the computational performance

Optimisation is performed in a coarse-to-fine scheme at 3 pyramid levels (160x120, 320x240
and 640x480). The naive approach offers the highest precision performing a fixed number of 10
iterations at each level. This results in cost per frame of about 50 ms, which is broke down into
the costs of the different processes in Fig. 4.3. Alternatively, to improve the time performance
we consider the following optimisations:

Skip optimisation on the highest resolution level.

In Fig. 4.3 it can be observed that one important fraction of the time is employed in
estimating the scale parameters σI and σW . This cost can be completely eliminated if
we fix the scaling parameters for the optimisation. We propose taking σI = 5, with
I(p) ∈ (0, 255) and σW = 0.0025 m−1. The choice for σI is justified by tests with static
sequences while σW stems from the precision of the disparity measurements [Konolige and
Mihelich, 2014], [Martinez and Stiefelhagen, 2013].

Instead of warping at the highest resolution and then downsampling at each iteration,
a coarser but more efficient alternative would be downsampling {Ik+1, Wk+1} before
optimising and warping on the current pyramid level.
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Figure 4.3: Costs of the processes involved in the computation of the RGB-D visual odometry.

4.5. Experiments

In the first experiments we use the RGB-D dataset from Technische Universität München
(TUM) [Sturm et al., 2012] to evaluate the accuracy of our approach with different
configurations, paying special attention to the comparison of performances using inverse depth
or depth based geometric residuals. We also study with the same datasets, how both the
accuracy and the computation speed are affected when applying the options for enhancement of
computational performance from section 4.4.6.

Then after selecting the configuration which yields the better accuracy we compare our
method, using different covisibility thresholds for keyframe switching, to other works in the
literature. For this comparison we use not only the TUM datasets, but also the synthetic
datasets presented in [Handa et al., 2014].

Finally we show a qualitative evaluation of our visual odometry method showing the 3D
reconstructions obtained from some of the TUM datasets and also from our own sequences.

The experiments were performed on a desktop computer with Ubuntu 12.04 32-bits and
equipped with an Intel Core i5-2500 CPU at 3.30 GHz, 8GB and a nVidia GeFroce 660GTX
GPU with 2GB of memory. The implementation was done as an extension of the large
scale KinectFusion large scale algorithm from the Point Cloud Library (PCL) [Rusu and
Cousins, 2011], where the original ICP system for odometry estimation has been completely
substituted by our method. The algorithms for dense volumetric mapping and volume shifting
are kept unchanged. A fork of PCL including our modified version is available for download in
http://webdiis.unizar.es/~danielgg/code.html.

4.5.1. Inverse depth vs depth residuals

We evaluated all the possible combinations of robust cost functions (Huber, Tukey and
Student), geometric error parametrisation (depth, inverse depth) and residual scale estimators
(MAD, ML). Table 4.1 shows the different values of the RMSE for the translational drift,
measured in m/s, using different approaches. Best results are obtained with the Student
estimator, with little difference between using MAD or ML estimators for the scaling parameters.
Parametrisation of the geometric error with inverse depth yields an improvement over the depth
parametrisation in all the datasets except in fr2/desk. It can be noted also that the Huber
estimator offers in general the lowest accuracy and that the performance of the Tukey estimator
is slightly worse if we use the ML estimator for σ. However its performance is comparable to
Student’s if the MAD estimator is used. For the rest of the experiments we use the configuration
with Student robust cost function, inverse depth parameterisation for the geometric error and
the ML estimator for the scale parameters.
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Table 4.1: Translational drift relative root mean square error (RMSE) in meters per second
using different methods for RGB-D visual odometry estimation

Estimator Geom. error σ fr1/desk fr1/desk2 fr1/room fr2/desk

Student depth ML 0.0278 0.0425 0.0504 0.0115
Student depth MAD 0.0271 0.0439 0.0490 0.0121
Student invDepth ML 0.0260 0.0387 0.0491 0.0121
Student invDepth MAD 0.0260 0.0396 0.0485 0.0122
Tukey depth ML 0.0292 0.0808 0.0502 0.0143
Tukey depth MAD 0.0271 0.0527 0.0483 0.0142
Tukey invDepth ML 0.0381 0.0720 0.0485 0.0135
Tukey invDepth MAD 0.0287 0.0422 0.0471 0.0131
Huber depth ML 0.0322 0.0495 0.0681 0.0193
Huber depth MAD 0.0322 0.0496 0.0662 0.0233
Huber invDepth ML 0.0289 0.0453 0.0640 0.0209
Huber invDepth MAD 0.0280 0.0435 0.0606 0.0219

Table 4.2: Translational drift relative root mean square error (RMSE) in meters per second
minimising different types and combinations of errors

Geom. error Min. errors fr1/desk fr1/desk2 fr1/room fr2/desk

none phot 0.0312 0.0513 0.0503 0.0119
invDepth phot+geom 0.0260 0.0387 0.0491 0.0121

depth phot+geom 0.0278 0.0425 0.0504 0.0115
invDepth geom 0.0332 0.0454 0.0495 0.0356

depth geom 0.0377 0.0562 0.0555 0.0465

For a more detailed evaluation of how the combination of both geometric and photometric
errors affect the accuracy of the estimate and better assess the gain of using inverse depth
instead of depth for the geometric error, we have performed another set of tests with optimising
on intensity error only, geometric only and the combination of both geometric and intensity
error. For the cases where geometric error is used we have switched between inverse depth and
depth based errors (Table 4.2). It can be observed that when considering the geometric error
only the superiority of using inverse depth residuals is clearer.

4.5.2. Performance vs accuracy

We evaluated how the accuracy and computational performance are affected after applying
the modifications proposed in Sec. 4.4.6 to decrease the computational cost of our approach.
Following the order in which they are presented, we denote these as lvl followed by the level
index at which optimisation is stopped, sigmaFix and pyrF irst. Results of using one or a
combination of these modifications are shown in Table 4.3. It can be observed that either
stopping optimisation at level 1, i.e., resolution of 320x240, or using constant scale we achieve
a computation time in the limits of the camera frame rate of 30 Hz with little lost in accuracy,
and even we can reach a reduction to 9ms applying all the proposed optimisations.
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Table 4.3: Translational drift and average and maximum computation time per frame for
different options to enhance the computational performance

Approach RMSE[m/s] time
fr1/desk fr1/desk2 fr1/room fr2/desk mean[ms] max[ms]

näıve 0.0260 0.0387 0.0491 0.0121 47 50
lvl1 0.0268 0.0407 0.0492 0.0120 26 28

pyrFirst 0.0270 0.0401 0.0491 0.0127 40 42
pyrFirst+lvl1 0.0282 0.0416 0.0498 0.0138 18 20

σFix 0.0260 0.0389 0.0498 0.0112 34 35
σFix+lvl1 0.0271 0.0399 0.0500 0.0121 17 17

σFix+pyrFirst 0.0272 0.0397 0.0498 0.0118 26 27
σFix+pyrFirst+lvl1 0.0287 0.0409 0.0500 0.0143 9 10

4.5.3. State-of-the-art comparative

In this section we first compare our method to state-of-the-art RGB-D visual odometry and
SLAM approaches. For the comparison we use 2 publicly available benchmarking datasets:
the TUM benchmarking dataset [Sturm et al., 2012], consisting of real image sequences, and
a RGB-D benchmarking dataset generated from 2 synthetic scenes, one office and one living
room. For our approach we have considered different thresholds for reference frame switching.
The evaluation in the TUM datasets has been carried out in the two error metrics proposed by
the authors of the TUM datasets: the Relative Pose Error (RPE) in meters per second and the
Absolute Trajectory Error (ATE) in meters. For the synthetic datasets we only evaluated the
ATE since RPE is not compared in the literature.

In the RPE evaluation (Table 4.4), we observe that there does not exist a clear difference
in accuracy between taking consecutive frames or a reference frame for odometry estimation.
With respect to the state-of-the-art, our frame-to-frame approach has the lowest error in the
fr1/desk2 and fr2/desk datasets. In the fr1/desk dataset our approach is not the best but
the results are close to [Meilland and Comport, 2013a] and RGB-D+KF+Opt [Kerl et al.,
2013a], even ours not using reference frames. In fr1/room, the better accuracy of [Meilland
and Comport, 2013a] is clear.

The ATE is qualitatively shown in Fig. 4.4 and quantitatively evaluated in Table 4.5. We
found that though our approach is not the best in the tested real TUM datasets, it shows
competitive results considering that many of the methods considered in the comparison include
some kind of loop closure method, which significantly helps into reducing this error. As in the
RPE comparative it can be observed that taking a reference frame has a moderate or almost
unnoticeable effect on the accuracy except for the fr2/desk and fr3/office datasets, where
the ATE metrics are twice larger when not taking reference frames. Given that these datasets
were acquired with a slow moving camera, this greater error is likely to be caused by a motion
between consecutive frames producing in some parts an optical flow beyond the limits of the
pixel accuracy. Fixing the visibility ratio threshold to a high value (0.8 or 0.9) seems to be
enough to prevent this problem from happening in sequences with slow camera motion and has
no negative effects on sequences with faster motion.

In the synthetic datasets the comparison was performed against the RGB-D odometry
methods originally evaluated by the authors of the benchmark. In Table 4.6 we show the
ATE for different values of the visibility ratio threshold which have been compared against the
lowest ATE of the approaches evaluated in [Handa et al., 2014], which generally corresponds to
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Table 4.4: Translational drift relative root mean square error (RMSE) in meters per second using
different visibility ratio thresholds for keyframe switching and comparison with state-of-the-art
approaches

Visibility ratio fr1/desk fr1/desk2 fr1/room fr2/desk fr3/office

No KF 0.0260 0.0387 0.0491 0.0121 0.0168
vrth = 0.9 0.0255 0.0384 0.0473 0.0115 0.0118
vrth = 0.8 0.0253 0.0382 0.0472 0.0124 0.0120
vrth = 0.7 0.0246 0.0385 0.0441 0.0131 0.0121
vrth = 0.6 0.0264 0.0413 0.0423 0.0258 0.0812

FOVIS ( [Huang et al., 2011])∗ 0.0604 - 0.0642 0.0136 -
ICP+RGB-D [Whelan et al., 2013a] 0.0393 - 0.0622 0.0208 -
VP [Meilland and Comport, 2013a] 0.0259 - 0.0351 0.0147 -

ESM + Tukey + Aff. Il. [Klose et al., 2013] 0.0302 0.0526 0.0397 0.0147 -
RGB+D [Kerl et al., 2013a] 0.036 0.049 0.058 - -

RGB+D+KF [Kerl et al., 2013a] 0.030 0.055 0.048 - -
RGB+D+KF+Opt [Kerl et al., 2013a] 0.024 0.050 0.043 - -

∗ comp. in [Whelan et al., 2013a]

No KF

vrth = 0.9

vrth = 0.8

vrth = 0.7

vrth = 0.6

(a) fr1/desk (b) fr1/desk2 (c) fr1/room (d) fr2/desk (e) fr3/office

Figure 4.4: Trajectories on real TUM datasets. Estimated trajectory is shown in blue, ground
truth is in black. Error between visual estimate and ground truth is shown in red.
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Table 4.5: Absolute trajectory error (RMSE, median and max) in meters using different visibility ratio thresholds for keyframe switching
and comparison with state-of-the-art approaches

Visibility ratio fr1/desk fr1/desk2 fr1/room fr2/desk fr3/office
RMSE median max RMSE median max RMSE median max RMSE median max RMSE median max

No KF 0.032 0.027 0.078 0.070 0.047 0.189 0.087 0.077 0.218 0.170 0.144 0.299 0.186 0.135 0.515
vrth = 0.9 0.033 0.026 0.086 0.066 0.044 0.180 0.097 0.086 0.195 0.075 0.077 0.104 0.082 0.036 0.143
vrth = 0.8 0.033 0.027 0.087 0.081 0.052 0.230 0.088 0.085 0.162 0.077 0.076 0.111 0.064 0.021 0.112
vrth = 0.7 0.033 0.028 0.083 0.092 0.069 0.257 0.096 0.077 0.195 0.078 0.075 0.109 0.091 0.040 0.173
vrth = 0.6 0.043 0.038 0.097 0.073 0.053 0.199 0.158 0.123 0.305 0.102 0.098 0.232 0.279 0.193 0.950

VP [Meilland and Comport, 2013a] - 0.018 0.066 - - - - 0.144 0.339 - 0.093 0.116 - - -
ICP+RGB-D [Whelan et al., 2013a] - 0.069 0.234 - - - - 0.158 0.421 - 0.119 0.362 - - -

6D RGB-D odometry [Dong et al., 2014] - - - - - - 0.095 0.067 0.254 0.197 0.174 0.416 - - -
SDF tracking [Bylow et al., 2013] 0.035 - - 0.062 - - 0.078 - - - - - 0.040 - -

RGB-D SLAM [Endres et al., 2014]∗ 0.023 - - 0.043 - - 0.084 - - 0.057 - - 0.032 -
MRSMap [Stuckler and Behnke, 2012]∗ 0.043 - - 0.049 - - 0.069 - - 0.052 - - 0.042 -
RGB+D+KF+Opt [Kerl et al., 2013a]∗ 0.021 - - 0.046 - - 0.053 - - 0.017 - - 0.035 - -

RGb-D SLAM Vol. Fusion [Whelan et al., 2014]∗ 0.037 0.031 0.078 0.071 - - 0.075 0.068 0.231 0.034 0.028 0.079 0.030 - -

∗ with loop closure and pose-graph optimisation
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Table 4.6: Absolute trajectory error (RMSE) in meters in the synthetic RGB-D dataset using
different visibility ratio thresholds and comparison with state-of-the-art approaches

Dataset Visibility ratio threshold Best in
No KF 0.9 0.8 0.7 0.6 [Handa et al., 2014]

office tr0 0.1081 0.0921 0.0253 0.0145 0.0193 0.0216
office tr1 0.0715 0.0384 0.0145 0.0114 0.0147 0.3778
office tr2 0.0956 0.0327 0.0080 0.0067 0.0086 0.0109
office tr3 0.0547 0.0550 0.0201 0.0108 0.0084 0.0838

livingRoom lt0 0.0982 0.0365 0.0102 0.0061 0.4846 0.0724
livingRoom lt1 0.0476 0.0229 0.0153 0.0162 0.0113 0.0054
livingRoom lt2 0.1798 0.1683 0.0780 0.0109 0.0108 0.0154
livingRoom lt3 0.1131 0.0950 0.0553 0.0365 0.0355 0.3554

office tr0 noNoise 0.0040 0.0040 0.0040 0.0040 0.0027 0.0029
office tr1 noNoise 0.0114 0.0114 0.0229 0.0096 0.0032 0.0385
office tr2 noNoise 0.0293 0.0296 0.0295 0.0309 0.0085 0.0016
office tr3 noNoise 0.0341 0.0341 0.0427 0.0222 0.0128 0.0021

livingRoom lt0 noNoise 0.0431 0.0419 0.0403 0.0099 0.0183 0.1138
livingRoom lt1 noNoise 0.0123 0.0123 0.0126 0.0071 0.0023 0.0023
livingRoom lt2 noNoise 0.0058 0.0058 0.0058 0.0042 0.0028 0.0015
livingRoom lt3 noNoise 0.0166 0.0136 0.0307 0.0319 0.0499 0.0200

the one resulting from using a model-to-frame ICP algorithm originally used in KinectFusion.
Surprisingly, though our approach computes the odometry in a frame-to-frame fashion we obtain
the best accuracy in most of the sequences with simulated noise and some of the noiseless ones.
A qualitative evaluation of the trajectories for all the sequences using different visibility ratio
thresholds is shown in Figs. 4.5 and 4.6. As occurs with the fr2/desk dataset, quantitative and
qualitative results show that using a keyframe switching strategy provide a better accuracy.

4.5.4. Odometry covariance and image filtering

In the proposed approach we initially avoided to apply any filtering to the intensity and
inverse depth maps in order to conserve the raw sensor measurements and we dealt with the
sensor noise by computing the scaling parameters of photometric and geometric residuals. As
shown in the experiments on structurally and texturally rich scenes, the effect of not filtering
the noise showed not to be harmful, obtaining accurate motion estimates.

However it must be noted that uncertainty in the odometry estimate is modeled by its
covariance matrix which is computed as the inverse of the Hessian at the last iteration of
the minimisation problem. The Hessian depends on the intensity and inverse depth gradients
computed at the reference frame. This means that if the captured environment is poorly textured
and highly planar, e.g., a white wall, the Hessian must be nearly singular and thus the problem
is ill conditioned.

We noted nevertheless that in some tests with planar and poorly textured scenes this
hypothesis was not verified, due to the noise making the Hessian well conditioned without
actually providing useful information. For this reason we noticed that, though the motion
estimate would be wrong as well, applying a bilateral filter [Tomasi and Manduchi, 1998] only
as a prior step to the computation of the gradients of the intensity and depth maps, would likely
produce ill-posed Hessians when they are meant to arise, and thus help to detect poor odometry
estimates.
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No KF

vrth = 0.9

vrth = 0.8

vrth = 0.7

vrth = 0.6

(a) tr0 (b) tr1 (c) tr2 (d) tr3 (e) lt0 (f) lt1 (g) lt2 (h) lt3

Figure 4.5: Trajectories on office (a)-(d) and living room (e)-(h) synthetic datasets with
simulated noise. Estimated trajectory is shown in blue, ground truth is in black. Error between
visual estimate and ground truth is shown in red.

No KF

vrth = 0.9

vrth = 0.8

vrth = 0.7

vrth = 0.6

(a) tr0 (b) tr1 (c) tr2 (d) tr3 (e) lt0 (f) lt1 (g) lt2 (h) lt3

Figure 4.6: Trajectories on office (a)-(d) and living room (e)-(h) synthetic datasets without
noise. Estimated trajectory is shown in blue, ground truth is in black. Error between visual
estimate and ground truth is shown in red.
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Figure 4.7: Hessian conditioning with and without filtering of the inverse depth gradient map
in visual odometry with geometric error minimisation only in (left) structurally rich sequence
and (right) structurally poor sequence.

To evaluate how the noise filtering affects the estimate of the odometry covariance we propose
to evaluate the condition number of its inverse, the Hessian, for the case of minimising only on the
geometric error. Looking at (4.17) it can be verified that when viewing a plane perpendicular
to the camera optical axis, ∇WA(p) = (0, 0, 0) for every pixel and thus the Hessian of the
resulting linear system when minimising the residual becomes singular. This occurs because the
translation on the image axes and rotation around the optical axis are unobservable, while the
rotation around camera axes and translation on the optical axis are still observable. A similar
reasoning can be applied with respect to the movements on the axes parallel and perpendicular
to a plane with arbitrary orientation viewed by the camera.

The condition number of a Hessian H can be defined as the quotient between its highest and
lowest singular values:

κ(H) =
σmax(H)

σmin(H)
(4.34)

If H is singular then κ(H) → ∞. This means that a higher κ(H) indicates a more ill-
conditioned matrix and thus less accurate estimates in some of the motion degrees of freedom.

The evaluation of how bilateral filtering helps into a better estimation of the conditioning
of the Hessian was performed on two sequences of the TUM RGB-D dataset: one showing a
rich structure, composed by several planes and one showing a poor structure, with only one
plane (Fig. 4.7). It can be observed that the effect on the Hessian conditioning of filtering the
inverse depth map is almost unnoticeable for the scenario with rich structure, but in the case
of a planar environment filtering makes more evident the ill-posedness of the Hessian, which
otherwise would likely remain unnoticed.

4.5.5. 3D reconstruction

Though for volumetric 3D mapping we use the original functions in KinectFusion, a good
quality of the reconstructed dense 3D volume depends critically on the drift introduced by the
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Figure 4.8: Dense 3D reconstruction of the fr1/desk dataset.

visual odometry algorithm. Thus, we also present qualitative results of our approach showing
the reconstruction of some of the tested RGB-D datasets from the TUM, and also two different
datasets acquired by us in one laboratory of approximately 90 m2 and the corridor of our
department with a length of more than 80 m.

Our acquisitions were carried out with an Asus Xtion Pro RGB-D camera attached to a
laptop by an arm-clamp system. The camera was only calibrated with a linear pinhole model
without distortion parameters for the RGB sensor. The depth sensor is not calibrated, taking
the depth values directly as provided by the sensor; and we use the hard-coded stereo pair
calibration for depth and RGB registration. All the reconstructions are obtained just using our
modified version of KinectFusion without performing loop closure.

Qualitative results for the datasets fr1/desk , fr1/room and fr2/desk are shown in Figs.
4.8, 4.9 and 4.10. It can be observed the great level of detail in fr1/desk, which indicates a low
drift in the reconstruction. In the fr1/room there are some zones, like the table at right, where
the quality of the 3D reconstruction is poor. This occurs generally when mapping the same
area under large camera motion and when revisiting a previously mapped place. In these cases
new depth maps integrated into the mapped volume conflict with the stored map generating
artefacts. However for zones which are swept during less time, as occurs in the rest of the
sequence, the drift during mapping is low and the map reconstruction is more accurate. In the
fr2/desk the same zone is being constantly mapped moving slowly the camera in a loop around
the desk. The final reconstruction shows a high precission without having applied loop closures
nor any type of map correction.

Results for our laboratory and the corridor sequences are shown in the figure 4.11 and 4.12
respectively. The accuracy of the reconstruction can be assessed from the comparison to RGB
images from similar points of view. Note also that given that our method is frame-to-frame,
the drift both in the laboratory, reflected in the mismatch in the right wall, and in the corridor,
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Figure 4.9: Dense 3D reconstruction of the fr1/room dataset. Note how the shape of the room
is accurately captured. Black part on the right top corner of the fr1/room map corresponds to
the ceiling reconstruction viewed from outside the volume.

Figure 4.10: Dense 3D reconstruction of the fr2/desk dataset. Note the high accuracy of the
final reconstruction without having performed loop closure.
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Figure 4.11: (Top-left) RGB image of the laboratory, (Top-right) KinectFusion 3D reconstruction
using our method for visual odometry and (bottom) plant view of the complete 3D mesh.

reflected in the slight curvature of its side view, are relatively low.

4.6. Discussion

In this chapter we have presented a new visual odometry system on GPU based on the
alignment between consecutive frames by minimisation both on the photometric and geometric
error. Our system is implemented as an extension of the KinectFusion implementation Kinfu
Large Scale in PCL, where the original ICP algorithm for frame alignment and visual odometry
computation has been completely substituted by our method. The main contribution of our
proposal is using the inverse depth instead of the depth to parametrise the geometric error, as well
as allowing to switch between different robust estimators, residuals’ scale estimators or geometric
error parametrisation for comparative purposes. Our method shows its competitiveness with
other state-of-the-art methods outperforming them in the majority of the tested datasets in
terms of Relative Pose Error (RPE) and showing low Absolute Trajectory Error (ATE) in
spite of not performing loop closure. With the introduction of some changes to increase the
computational performance our system is able to reach a performance above 30 Hz with the
GPU device nVidia GeForce 660GTX used in the experiments, without hindering the accuracy
of the method. Also we show that extensions on the method such us taking reference frames for
odometry estimation and performing bilateral filtering on the gradients of the images can first
improve the accuracy when the camera moves slowly, and secondly allow for a better detection
of bad odometry estimates.

81



4.6. DISCUSSION

Figure 4.12: (Top-left) RGB image of the corridor, (Top-right) KinectFusion 3D reconstruction
with our visual odometry method, (middle) side view and (bottom) plant view of the complete
3D mesh. Note the challenging of the sequence due to the poor texture of the corridor and light
reflexes.
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Chapter 5

What Should I Landmark? Entropy
of Normals in Depth Juts for Place
Recognition in Changing
Environments Using RGB-D Data

One open problem in the fields of place recognition and mapping is to be able to
recognise a revisited place when its appearance and layout have changed between visits.
In this chapter, we investigate this problem in the context of RGB-D mapping in indoor
environments. We propose to segment the scene in juts (neighbourhood of 3D points
with normals that stick out from the surroundings) and look at low-level features, like
textureness or entropy of the normals. These could differentiate those zones of the scene
that change or move along time from those that are likely to remain static. We also
present a method which improves the matching between images of the same place taken
at different times by pruning details basing on these features. We evaluate on a number
of communal areas and also on some scenes captured 6 months apart. Experiments
with our approach, show an increase up to 70% in inlier matching ratio at the cost of
pruning only less than 20% of correct matches, without the need of performing geometric
verification.

5.1. Introduction

In computer vision, the problem of place recognition consists in being able to tell if two given
images correspond to the same scenario or not. Place recognition is the key element to perform
topological mapping [Ulrich and Nourbakhsh, 2000], but also it is important in the context of
geometric localisation and mapping to relocalise when the system is lost or to be able to close
loops when revisiting previously mapped areas [Williams et al., 2011].

Robust place recognition is a fundamental step to perform life long mapping. In [Konolige
and Bowman, 2009], Konolige and Bowman give a concise definition of what a lifelong map
implies. A lifelong map system must carry out an incremental mapping, be able to operate in
dynamic environments and to relocalise and close loops by recognising revisited places when
given the chance. Focusing on the dynamic environment problem, two different issues are
pointed: ephemeral objects, which move at the same time a zone is being mapped, and long-
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Figure 5.1: Depth-based detection of zones which moved between mappings. A simple masking
based on the entropy of different zones of the scene improves the inliers ratio of matched visual
features.

term changes, which involve changes in the scene which take place between different tracks of
the scene. Ephemeral objects are usually ignored during mapping when using the traditional
approaches such as visual odometry, and this makes such maps brittle beyond a few moments
after being captured. In some cases, optimisation techniques based on RANSAC [Civera et al.,
2010] or robust M-estimators [Kerl et al., 2013b] could be used to diminish the effect of ephemeral
objects on the localisation and mapping, but this can only be considered an indirect approach
to address the fundamental nature of scene change.

Naturally occurring long-term scene changes, such as objects on a common room or bedroom
appearing, disappearing or changing places can affect loop closure detection and this thus must
be dealt with at the place recognition stage. Standard approaches for place recognition though
perhaps featuring some robustness to scene changes, do not handle these alterations actively nor
identify where potential future changes may occur.

In this chapter we address the issue of place recognition under long-term changes. Concretely
we focus on robust place recognition with RGB-D cameras in indoor scenes. From the point cloud
and the RGB images we can compute low-level features of parts of the scene like textureness,
planarity or entropy of normals. This information can be very valuable to both decide where
not to place landmarks but also to identify moving scene objects.

To define and evaluate our proposed method we perform two types of experiments. The first
experiment is performed with images taken at fixed poses of different real scenes over which
we have no control of changes and over different days, and where Ground Truth of static and
changing zones is available. This experiments aims to inform us on which features are better to
discriminate static from changing scene parts.

In the second experiment, we compute 3D maps of some of the scenes on different days with
KinectFusion method [Newcombe et al., 2011a], which is more akin to the case of a system
of lifelong mapping for a personal or robotic device. Here we evaluate the matching between
snapshots from reconstructions on different days by masking out zones below a given score,
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based on the previously studied features. We show how this masking improves the inlier ratio
(Fig. 5.1).

5.2. Related work

The work of Konolige and Bowman [Konolige and Bowman, 2009] is focused towards efficient
storage, keeping a map whose size scales with the explored area instead of with time. Keyframes
are clustered by appearance similarity, trying to keep the maximum number of clusters, while
fixing the maximum number of total stored keyframes. However this work does not address the
problem of maintaining matches over long term changes, but propose the idea of picking up
stable features as a path for improvement of long-term life-long mapping.

In the context of place recognition with RGB-D cameras Gee and Mayol-Cuevas [Gee and
Mayol-Cuevas, 2012] pointed out the robustness to map changes as one important property
for place recognition. They propose a regression of small synthetic views of 80x60, or even
20x15 pixels, which offers a degree of tolerance to changes in order to recognise revisited places.
Whelan et al. [Whelan et al., 2013b] focus on using optimisation to produce a consistent map
deformation when closing the loop and address the problem of place recognition by using a visual
based bag of words scheme with SURF descriptors.

Also, when considering RGB-D sensors, many authors have focused in discovering moving
objects in a scene. This problem is related to lifelong mapping in the sense that moving objects
are precisely what we want to discard when performing place recognition. Herbst et al. [Herbst
et al., 2011] discover objects in the scene after aligning two 3D maps of the same scene with
different objects. For the alignment they assume that the moving objects occupy a small fraction
of the map. Finman et al. [Finman et al., 2013] detect objects from changes in maps and then
train a segmentation method to segment the discovered objects in future runs.

Karpathy et al. [Karpathy et al., 2013] propose a method to discover objects, which in
contrast does not rely in an object displacement to detect them. Instead they perform a
non-semantic segmentation [Felzenszwalb and Huttenlocher, 2004] of the scene based on the
map of normals, and then each segment is ranked with different objectness features. To avoid
ambiguities, in this work we name the 3D segments as superjuts as the result of extending the
concept of superpixel to 3D points with normals.

However, when dealing with lifelong mapping with RGB-D, though recognising specific
objects can be useful, it would be desirable to discard anything which can move, no matter
which object it is or if it has been seen or not before. To do this, we can take advantage of some
results and proposals from works in object discovery, like for example a non-semantic superjut
segmentation. But instead of detecting objects explicitly, we propose the use of statistics and
entropy of low-level features to identify areas that are good and those that are likely to be
unstable landmarks. This approach removes the elusive definition of object.

When looking for features which characterise movable objects, some ideas can also be drawn
from supervised segmentation methods for RGB-D scenes [Cadena and Kosecka, 2013], [Ren
et al., 2012], [Silberman et al., 2012], [Couprie et al., 2013]. These methods usually classify
the scene into coarse classes (e.g.walls, floor, furniture, and props). The “props“ class usually
makes reference to objects which can be easily carried, which corresponds precisely to the kind
of objects we want to remove from place recognition routines. Thus, features used in these
methods as inputs for categorisation can provide some clues for the task of discarding movable
objects.
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Figure 5.2: 2D simplified scheme of the segmentation in superjuts and the entropy of the normals
H(F (n)) of each superjut.

5.3. Proposed method

Our proposal for robust place recognition tries to detect zones which can move no matter
which objects are in them, using the information obtained from both 3D point clouds and RGB
images. Fig. 5.2 shows an intuition of the proposed method. With a point cloud segmentation
algorithm based on the similarity of normals between adjacent points [Karpathy et al., 2013], a
point cloud is segmented in superjuts, represented with different colours. Then at each superjut
we extract low level features which allow to discriminate static from moving parts of the scene.
Looking at everyday indoor environments one can probably note that zones of the environment
which are likely to change often show a high degree of derangement, which yields a more cluttered
map of normals and more textured areas in the image. In the figure for example, the entropy
H(F (n)) of the histogram of normals is represented, noting that for superjuts with irregular
shape is greater than in superjuts composed by planar surfaces.

5.3.1. Point cloud segmentation

First we use the method proposed in [Triebel et al., 2010] and extended in [Karpathy et al.,
2013] to segment a dense 3D point cloud in objects or small groups of objects. It is based on
the segmentation algorithm by Felzenszwalb and Huttenlocher [Felzenszwalb and Huttenlocher,
2004], but applied on a map of normals instead of a RGB image. A graph G = (V,E) is
constructed, where each vertex in V represents a 3D point Xi and the edges E represent the
neighbouring relations between points. Having the normals at every point, a weight wij for the
edge joining vertices i and j is computed:

wij =

{
(1− nTi nj)

2 if nTj (Xj −Xi) > 0
1− nTi nj if nTj (Xj −Xi) ≤ 0

(5.1)

where the squared weight is applied to convex edges, reflecting the fact that convex regions
usually contain points belonging to the same object and concave regions are likely to arise in
frontiers between objects. After computing the weights, the segmentation algorithm is run and
essentially groups points sharing edges with low weights in the same segment. A parameter k
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(a) (b)

Figure 5.3: Two possible binnings of the 3D sphere to compute the histogram of normals: (a) by
discretising azimuth and elevation angles and (b) by approximate uniform distribution of points
in the sphere. The number of bins is set to M = 80 in both cases.

must be tuned such that the higher k, the larger segments will be obtained. In this work we
always use k = 0.6 for all the experiments.

Depending on the characteristics of the point cloud we compute the normals and edges
required for segmentation in two different ways.

Triangular mesh: The first option is to build a triangular mesh from a given point cloud.
This is specially preferable if we have dense 3D map resulting from mapping as the camera
moves, e.g. with KinectFusion [Newcombe et al., 2011a] approach. This way, an edge between
two points Xi and Xj is created if they have any triangle, among the ones they belong to, in
common. The normal for a point is computed as the average of the normals of the triangles it
belongs to. Using this approach the segmentation algorithm is like the one proposed in [Karpathy
et al., 2013], resulting in a set of superjuts.

Image domain: Alternatively the point cloud can be projected onto an image domain, for
example if the point cloud has been cast from a single depth image and the 3D map might be so
noisy to build a triangular mesh. In this case the segmentation would be done directly in image
projected superjuts, with the edges being created between adjacent pixels horizontally, vertically
and diagonally. The normal for a point a 3D point projected in pixel (k, l) is computed as:

nk,l =
(Xk,l+1 −Xk,l)× (Xk+1,l −Xk,l)

||(Xk,l+1 −Xk,l)× (Xk+1,l −Xk,l)||
(5.2)

5.3.2. Computation of superjut low-level features

Once the segmentation is done, we extract the low-level features to discriminate static from
moving parts of the scene. We take the hypothesis that parts which are likely to move can be
discriminated by their 3D structure and their textureness.

Structure by histogram of normals

To gather information about the structure of each superjut we compute its histogram of
normals F (n). Since normals are 3-dimensional unit vectors, they can be represented as points
over the surface of a unit sphere. Thus, a first attempt would be to compute a 2-dimensional
histogram by binning the angles of azimuth φ and elevation θ as proposed in [Tang et al.,
2012]. However we noted that this binning might not be adequate if we want to obtain a good
distribution of the bins on the sphere. This is graphically shown in Fig. 5.3a, where it can
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be noted that the area covered by each bin greatly changes with the elevation angle. Also it
must be noted that points situated near the poles would be spread among all the confluent bins.
These two facts can severally affect the quality of the histogram.

To overcome these problems we opt instead for the computation of a 1-D histogram with
M bins. Each bin is a Voronoi cell corresponding to one point out of M points uniformly
distributed over the sphere. Since there is no analytical solution to the problem of evenly
distributing M points on the sphere for any M , we use a simple solution based on the golden
section spiral [Boucher, 2006], which results in a discretisation with bins covering areas of similar
size and avoids the confluence of more than 4 bins in a single corner (Fig. 5.3b).

Given the histogram of normals, we extract the following properties:

Entropy of the histogram ent(F ) =
∑M

i=1F (ni) log(F (ni)).

Planarity, measured as the relative frequency of the dominant normal plan(F ) =
maxF (n).

Horizontality, given by hor(F ) = eTynmode, with nmode = arg maxn F (n), where eTy =
(0 1 0).

Textureness from the eigen-transform

To obtain texture information we apply the eigen Transform proposed by Targui et al. [Targhi
et al., 2006] over the grey scale images. This approach produces a grey-scale map, where more
textured areas of the image yield a higher response than less textured ones. Then for each
superjut projected in a superpixel over the intensity image, we compute the mean eigentransform
value over the region it covers.

5.4. Experiments

We have performed two experiments. In the first experiment we recorded different scenarios
from fixed poses in order to capture the changes which took place during time and facilitate a
Ground Truth separation of moved and static zones, on which discriminative power of structural
and texture characteristics can be evaluated.

In the second experiment, we recorded sequences of 3 scenarios on different days with a
moving camera and reconstructed a 3D volume to evaluate the use of structural information with
more accurate depth maps in the context of place recognition. To demonstrate the performance
even with very long term changes one set of sequences was acquired more than 6 months after
the first one.

5.4.1. Evaluating features for detection of moved areas

RGB and depth images have been taken on 9 scenes at different locations: two laboratories at
different universities and one bedroom (Fig. 5.4). For each scene, images have been acquired on
different days to capture the changes in their layout. Each day, the camera is carefully positioned
at each of the selected poses so that the same scene is captured as in the acquisitions of previous
days. To diminish the effect of illumination noise in intensity images, and decrease the holes in
the depth images, we captured frames during some seconds and computed the average of all. In
the averaging of the depth image, hole pixels are zero-weighted.

The first step is building a Ground Truth to separate static and moved zones of the different
scenes. To do so, first, images of to the same scene on different days are robustly aligned to
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Figure 5.4: Images taken on 9 different scenes at different locations (2 labs and 1 beedroom).

normal 
map

eigen
transform

segmentation

Figure 5.5: Starting with the aligned RGB and depth images and the masks for moved objects, we
compute the eigen transform as well as a segmentation separated in static and moved superjuts.
This data is used to compute superjut features for the first experiment.

reduce the disparity due to non exact camera positioning with respect to previous days. To
do so we use a similar scheme as for computing the RGB-D dense visual odometry [Gee and
Mayol-Cuevas, 2012].

Once we have the aligned images and depth maps, we have to extract the parts of the scenes
which may correspond to moved objects. This is done by computing the disparity in the depth
maps. Note, however, that the existence of a disparity does not imply a moved object since it
might correspond to a static area in the background revealed by an object which was occluding
it. For a depth map Di of a scene M , the parts which have changed are those which show
a negative disparity in any difference with every other of the NM depth maps of that scene.
Mathematically we can express this by:

maskMovedi =

NM∑
j=1

1x>th (medFilt(Dj −Di))

 > 0 (5.3)

where 1x>th is an indicator function. To eliminate disparity caused by a non-perfect alignment
between frames, all the disparity maps are median filtered with a window size of 10x10, and
the threshold for the indicator function is set to 50mm. After this step we have NM masks per
scene extracting the changing zones.
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Once we have aligned RGB and depth images as well as computed the masks, we follow
the pipeline shown in Fig. 5.5 to obtain the map of normals, the Eigen-transform and the
segmentation, divided in static and moved superjuts. This data is used to compute both the
structural and textureness features for the superjuts as described in section 5.3.2.

The results shown in Fig. 5.6 support the intuition of moving areas being more likely a higher
entropy of the normals and lower planarity. It is shown also a correlation between entropy and
planarity, which is not a surprise since the existence of a dominant bin in a histogram reduces
its entropy. Texture information from the Eigen transform and horizontality seems not to be
very useful to discriminate static from moved areas.

In some scenes however, distinction of moved from static areas based on the used features
is less clear. It must be noted that in this experiment we lack from some accuracy due to
the restriction of recording scenes from fixed poses. On the one hand the Ground Truth we
take for moved and static elements is not perfect, due to residual misalignment of the images
corresponding to the same poses and noisy depth measurements of far away areas of the scene.
On the other hand, the segmentation on the image domain (Fig. 5.5) is not as good as computed
on smooth 3D meshes as it is done in the next experiment (see 3th row of Fig. 5.7).

5.4.2. Improving place recognition on 3D meshes

For this experiment, we have selected 3 of the scenes captured in the previous experiment.
These scenes have been selected due to their availability to record sequences on them. The
idea is to prove that using information about 3D structure, based on the features proposed and
analysed in previous experiment, to discard zones of the scene can benefit place recognition
algorithms.

First, a point cloud and its corresponding triangular mesh are constructed for every scene
for different days using the large scale KinectFusion implementation from the PCL library [Rusu
and Cousins, 2011]. Then meshes are segmented using the algorithm of [Karpathy et al., 2013]
and for every superjut, a histogram of normals is computed as explained in section 5.3. Since
entropy was shown to be quite discriminative in previous experiment, we use it as the only feature
to prune moved parts of the scene. Each segment is scored then by computing its normalised
neg-entropy:

negent(F ) = 1− ent(F )

entmax(F )
= 1− ent(F )

log(M)
(5.4)

To evaluate our approach we match keypoints between snapshots selected from the image
sequences of the same scene at different days, using SURF descriptors. During mapping, the
poses of the camera are saved so that the 3D point cloud can be projected and then obtain the
scores and the segmentation in the corresponding 2D image domain (Fig. 5.7). The matching
pipeline was set to take keypoints with a Hessian score greater than 200 and discard matches
with a ratio greater than 0.85 for the distance between the two best matching hypotheses.

For a given image pair, a Ground Truth set of inliers IGT is obtained by computing a robust
fundamental matrix by RANSAC to select the geometrically consistent matches. On the other
hand, the set of successful matches Sth for a given threshold th for the normalised neg-entropy
score are those whose keypoints do not belong to any superjut with a score below the threshold.
Given these definitions we can compute the precision and the recall for a given threshold
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precision(th) =
size(IGT ∩ Sth)

size(Sth)
, (5.5)

recall(th) =
size(IGT ∩ Sth)

size(IGT )
(5.6)

For every scene, we have computed the precision-recall curves on each of the possible
combination of image pairs, by shifting the neg-entropy threshold th to prune likely-to-move
areas. Fig. 5.8 show how the masking varies for different values of th. In Fig. 5.9 it is shown
how the matching is affected only between image pairs corresponding to pairs of sequences
acquired with 6 months of difference, for each of the 3 considered scenes. Note that for pairs
of images where the zones of high entropy have been masked we obtain a higher ratio of inliers
than matching the raw images. The neg-entropy threshold established for the masking is in
each image pair, the one which produces the highest peak in the precision-recall curve. It can
be observed that the zones that remain unmasked correspond in their majority to planar zones
like walls, which contain very stable features. On the other hand masking can also eliminate
zones which remain static between acquisitions, such as the selves in the roomBed scenario.
Also planar objects which are likely to change their position, such as laptop screens can remain
unmasked. However, in spite of discarding some stable zones and accepting unstable ones for
matching, the precission and recall curves indicate that the effect of that masking is beneficial
for some neg-entropy threshold.

In Fig. 5.10, we show the average precision and recall curves for each scene, including all
the possible combinations of image pairs from all the sequences acquired for the 3 scenarios.
Note that for the first scene (labDesk) we obtain an increase in precision of more than 75%
with a decrease in recall of only 20% with respect not using any masking. This is caused by
the presence of textured elements on walls which leads to a great number of matches in a low
entropy zones. However, in the third scene (roomBed), the lack of highly textured low-entropy
areas makes the beneficial effect less noticeable.

Note that though being evaluated in an image matching context, our approach computes the
masks prior to the matching process. Considering this fact and also that a greater inliers rate
between two matched images is caused by a greater appearance similarity between both images,
our approach is likely to be applied within the framework of efficient image search algorithms
[Cummins and Newman, 2008] increasing their performance. Though the computational cost
of performing the mesh segmentation and superjut projection and scoring is relatively high,
around the order of 5 seconds, it must be noted that every time a new keyframe is tested
for place recognition the cost of our approach is constant and does not grow linearly with the
number of frames as it surely would a computationally costly exhaustive matching and geometric
verification scheme over all the keyframe search space.

5.5. Discussion

This work is concerned with the problem of long-term indoor mapping with RGB-D cameras.
Concretely we focused on finding and evaluating properties of the elements of the scene which
can allow to discard parts of the scene which easily change with time and could affect severally
to place recognition algorithms for example when relocalising or detecting loop closures. In the
experiments we have shown that parts of the scene which move along time tend to present a
more chaotic structure, which is reflected in a high entropy of the histogram of normals. We
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Figure 5.6: Distribution of static and moved superjuts in (a) some of the tested scenes, for
(b) entropy-eigen transform, (c) entropy-planarity, (d) horizontality-eigen transform scores.
Superjuts corresponding to moved/static areas are shown in blue/red.
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Figure 5.7: Samples of data used in the experiments with depth map. 1st row shows the obtained
3D maps, 2nd row represents snapshots selected for matching, 3rd row is the segmentation of
the map of normals computed on the 3D mesh and 4th row shows the normalised neg-entropy
for every superjut projected on the image.

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

Figure 5.8: Masks obtained in one frame of the labDesk scene for different values of the score
threshold th of the superjut’s entropy of normals.
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Figure 5.9: Evaluation of our method in 3 different scenes taken with 6 months of difference in an
uncontrolled area (from left to right: labDesk, roomDesk and roomBed). (1st row) Unmasked
raw matches, (2nd row) matches after masking for the score corresponding to the highest peak
in the precision-recall curves in 4th row (masked areas are in magenta), (3rd row) Ground Truth
matches by geometric consistency.
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Figure 5.10: Average precision-recall curves for the 3 considered scenes
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have validated this observation, by matching images of the 3D map built on different days, with
a maximum difference between acquisitions of 6 months apart, for 3 selected scenes. Though the
validation was performed in a standard matching scheme, the results are promising and can be
extended to robustify appearance based place recognition approaches by allowing to prune words
in high entropy areas. This is important considering that for large keyframe search databases
appearance based methods are the alternative to the maybe more precise but also much more
computationally expensive matching and geometric verification schemes.
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Chapter 6

Robust RGB-ID SLAM in Changing
Environments

In this Chapter we develop a complete RGB-D SLAM system, which builds upon
our proposals presented in previous chapters. First, our accurate and efficient dense
RGB-D odometry algorithm in GPU, and secondly our proposal based on point cloud
segmentation for robust place recognition. Our system consists in 2 threads working in
parallel. The first thread is a front-end operating at frame rate, which processes every
incoming frame from the RGB-D sensor to compute the incremental odometry and
integrate it in a keyframe which is changed periodically following a covisibility-based
strategy. The second thread is a back-end which receives keyframes from the front-
end. This thread is in charge of segmenting the keyframes based on their structure,
describing them using Bags of Words, trying to find potential loop closures with previous
keyframes, and in such case perform pose-graph optimisation for trajectory correction.
The first experiments with our approach in the TUM RGB-D benchmark datasets show
results superior in accuracy to the state-of-the-art in many of the sequences. These
promising initial evaluation encourages us to further improve our method.

6.1. Introduction

In the last years visual SLAM has become one fertile research topic in the fields of computer
vision and robotics. A complete visual SLAM system usually consists of the following modules:

Camera tracking

3D reconstruction

Place recognition and loop closure when a zone is revisited

To develop our complete SLAM system we build on our previous work presented in prior
chapters. The camera tracking module builds upon our dense RGB-D odometry algorithm
incorporating some minor improvements. The incorporation of a place recognition and loop
closure module is new in this chapter and it is based in a Bag of Words scheme using ORB
descriptors [Mur-Artal and Tardós, 2014]. Nevertheless we will use of the structure-based
segmentation method discussed in previous chapter for pruning of potentially unstable parts
of the scene.
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Regarding the 3D reconstruction, though RGB-D sensors already provide a dense depth map
of the scene, raw depth maps direct from the sensor show a large noise which grows quadratically
with the distance of the observed point. For this reason, in order to obtain an accurate dense
3D reconstruction of the environment one needs to fuse multiple consecutive depth maps. In the
literature we find that this fusion can be addressed by two different approaches: integration on
a 3D volume of voxels [Newcombe et al., 2011a] or integration in keyframes wich are sampled
from the sequence of frames [Meilland and Comport, 2013b].

Volumetric fusion can be viewed as the integration of every incoming frame within a set of
concatenated 2D slices each slice corresponding to a depth value. This representation in many
depth slices has the advantage of allowing for handling occlusions; however it demands large
amounts of memory and also, in the process of quantisation and integration of depth measures
in the volume, important information about the depth uncertainty is lost.

In keyframe fusion in turn, integration is performed in a single slice represented by the
depth map of the frame at which the keyframe was initialised. The main benefits are two.
First, a more lightweight and efficient memory representation and secondly, since integration
is performed in the frame of the original image space without discretising the depth values,
depth uncertainty can be rigorously handled. The main disadvantage of this representation is
that, with a single slice, occlusions between elements in the scene cannot be handled. In our
keyframe-based approach, since we generate new keyframes periodically this is not a problem.
Also it is worth remarking that a keyframe representation comes on handy when performing
applying state of the art appearance-based loop closure strategies in visual SLAM, since it
provides a direct mapping of the 3D scene to the RGB image of the keyframe. Furthermore, in
our keyframe integration scheme, as in our previous work on direct RGB-D odometry, we take
advantage of the usage of inverse depth maps instead of depth maps, which allows us to use a
constant uncertainty-based tolerance for the integration of a new inverse depth value.

6.2. Related Work

One of the earliest and most influential works on real time monocular SLAM was presented
by Davison [Davison, 2003]. It is a visual feature-based SLAM system, where the camera motion
and position of landmarks of the environment are estimated using an Extended Kalman Filter
(EKF) from the image displacement of the image projections, or features, of such landmarks.
Following the success of this work, several contributions introduced new improvements and
functionalities like the inverse depth parametrisation of the landmarks [Civera et al., 2008],
a relocalisation module [Williams et al., 2007], and efficient scheme for data association and
outlier rejection [Civera et al., 2010] or a generalised projection model to support catadioptric
sensors [Gutiérrez et al., 2011].

One weakness of this approach is that following a probabilistic filter paradigm, camera
tracking and mapping are performed both at frame rate, which limits severally the number
of landmarks which could be reconstructed. Klein and Murray [Klein and Murray, 2007]
addressed this issue with their PTAM (parallel Tracking and Mapping), where camera tracking
and mapping are separated into two different threads. The tracking thread operates at frame
rate and is on charge of estimating the camera position given a fixed map; while the mapping
thread operates at a lower rate, by building or updating a map by performing bundle adjustment
between a set of keyframes selected from the total number of frames.

Basing on PTAM Mur-Artal et al. presented in [Mur-Artal et al., 2015] a new visual SLAM
approach addressing some of the weaknesses of PTAM, like handling of landmarks occlusions or
mapping scalability, as well as including a novel loop closure and relocalisation method based

98



CHAPTER 6. ROBUST RGB-ID SLAM IN CHANGING ENVIRONMENTS

on Bags of Binary Words using ORB descriptors.

In the last years visual SLAM has been has been very influenced by two differential events.
First the development of a new generation of GPUs and CPUs, which allowed to design
algorithms with high parallelisation; and secondly the advent of depth sensors, which are able to
provide a dense depth image of the observed environment. The earlier prompted the development
of real-time dense visual SLAM methods, while the later enabled SLAM, both feature-based and
direct, using RGB and depth channels from a RGB-D camera.

The main challenge in feature-less or direct monocular SLAM methods is the lack of depth
measurements from vision sensors. Maybe the earliest and most influencing work in real-time
dense monocular method was DTAM (Dense Tracking and Mapping) presented by Newcombe
et al. [Newcombe et al., 2011b]. The authors propose to reconstruct the depth of the scene in
keyframes and at the same time estimate the pose of the camera. The problem of estimating
a dense depth map from just RGB images is ill-posed and thus authors used an optimisation
framework based on variational methods and implemented on GPU. In [Engel et al., 2013], Engel
et al. propose a direct monocular SLAM method which obtains a semidense mapping based on
variable baseline matching.

Maybe the best example of a feature-based RGB-D SLAM system is the approach proposed
by Endres et al. [Endres et al., 2012]. To estimate the camera motion they first compute an
initial seed by RANSAC-based 3D alignment of sparse features, followed by a refinement step
where they only minimise the point cloud alignment error from the ICP algorithm. The method
is improved in [Endres et al., 2014], including an Environment Measurement Model to prune
wrong motion estimates which passed undetected in the RANSAC and ICP steps. The system
is able to close loops taking a random sample from a set of keyframes and each frame-to-frame
motion calculation between candidates for loop closure is parallelised, thus the computational
cost is close to the frame rate of the camera, between 5 and 15 Hz.

KinectFusion by Newcombe et al. [Newcombe et al., 2011a] was a ground-breaking
contribution in dense RGB-D SLAM. KinectFusion is composed by two different modules, one
for camera tracking and one for dense volumetric mapping. For each new frame first the motion
is estimated by frame-to-model ICP alignment of depth maps, i.e., current depth map is aligned
with the depth map raycasted from a voxelized 3D model. Then, current depth map is integrated
in the 3D model using a truncated signed distance function. The main constraint of KinectFusion
is its limitation to small workspaces, which was nevertheless solved in latter works by using a
cyclical buffer to shift the volume as the camera explores the environment [Bondarev et al.,
2013], [Whelan et al., 2013a]. However, artefacts are likely to appear in the reconstructed 3D
model when an area is revisited. This is solved in recent works [Whelan et al., 2014, Whelan
et al., 2015] where a loop closure back-end is introduced. This back-end is able to correct
potential artefacts in the 3D volume by enforcing the loop constraints not only on the camera
trajectory but also on the dense 3D map using a deformation graph.

Following the paradigm of working on 3D models [Newcombe et al., 2011a], Stuckler and
Behnke propose in [Stuckler and Behnke, 2012] and [Stückler and Behnke, 2014] converting the
RGB and depth images into multiresolution surfel maps by using a voxel octree representation.
Each surfel maintains a shape-texture descriptor, which guide data association between surfels
in different maps during camera pose estimation. To alleviate the odometry drift they register
the current frame with respect to the latest keyframe. A new keyframe is inserted when camera
motion w.r.t. last keyframe is large enough. They also propose a loop closure technique
where loop closure candidates are randomly sampled from a probability density function which
positively weights the selection of spatially closer keyframes.

Kerl et al. [Kerl et al., 2013a] propose an RGB-D SLAM system where camera motion is
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estimated with respect to keyframes, which are switched following an entropy-based criteria.
They include of a simple but effective loop closure method based on keyframes spatial proximity
to further refine the final odometry estimation. The final 3D is obtained by simply joining all
the raw depth maps from the keyframes.

Contrary to volumetric-based approaches like KinectFusion, Meilland and Comport [Meilland
and Comport, 2013a], integrate the depth map of each received frame in a set of close keyframes.
To track every new frame they use the integrated keyframes to synthesise a reference keyframe
from which the new frame is tracked. Though not reporting the use of any loop closure technique
their method shows a compelling accuracy in terms of Absolute Trajectory Error, keeping a low
trajectory drift.

In this work we base our RGB-ID SLAM approach on a representation of the environment
in keyframes rather than by 3D volumes. We find that a keyframe representation of a 3D
model facilitates the process of loop closure by state-of-the-art methods. We use this keyframe
representation to reliably perform a structure based segmentation on the image domain of
smooth depth maps. This segmentation based purely on the structure allows then to rate
elements of the scene by the entropy on their normals. This rating can be used later to generate
different masks filtering potentially unstable elements on the scene to facilitate appearance based
place recognition system.

However contrary to [Meilland and Comport, 2013a], though we use reference frames for
camera tracking, given our successful previous results [Gutiérrez-Gómez et al., 2016], we keep
the raw representations for the depth map instead of using integrated keyframes.

6.3. Models and functions

In our RGB-ID SLAM system we frequently use some models and functions which are
summarised in this section.

6.3.1. Projection model

A world point X is projected in the image point p by:

p = π (X) = K
X

eTz X
=

 fx 0 cx
0 fy cy
0 0 1

 X

eTz X
, (6.1)

where K is the conventional calibration matrix, including the camera intrinsic parameters.

Inverse depth measurements W(p) = 1
eTz X

allow to lift 2D points from the image to 3D
coordinates by the inverse projection function:

X = π−1(p,W(p)) =
1

W(p)
K
−1
p. (6.2)

6.3.2. Photometric and geometric constraints

Let us denote two camera frames as A and B, at instants t and t + ∆t respectively. Let
us denote the 3D camera motion between A and B by the rotation and translation pair(

RB
A, rAB

)
∈ SE(3). Assuming that the scene is static, given the intensity images IA and IB,

and inverse depth maps WA and WB defined over the image domain Ω ⊂ P2, for an image point
p = (u v 1)T ∈ Ω in frame A, the following constraints hold:
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IB
(
π
(

RB
Aπ−1(p,WA(p)) + rAB

))
= IA(p) (6.3)

WB

(
π
(

RB
Aπ−1(p,WA(p)) + rAB

))
=

1

eTz

(
RB
Aπ−1(p,WA(p)) + rAB

) , (6.4)

where eTz = (0 0 1). The constraint in intensity assumes constant illumination of one scene
point. The second constraint is the measurement model of the depth sensor at frame B.

6.3.3. Reverse warping

Given two frames A and B we want to warp the intensity and inverse depth maps of B
towards A to generate a new warped frame B∗. Warping is performed for every pixel in the new
generated frame following these steps

Given a pixel p in the destination warped image, the corresponding pixel pw in the source
image is obtained as:

Xw = RB
Aπ−1(p,WA(p)) + rAB , (6.5)

pw = π (Xw) (6.6)

By using the intensity constraint (6.3) the generation of the new intensity map is
straightforward:

IB∗(p) = IB(pw) (6.7)

To obtain the new inverse depth maps we need to perform some algebraic manipulation.
From the inverse depth constraint (6.4) we have:

WB (pw) =
1

eTz

(
RB
A 1
WB∗(p)K

−1p + rAB

) (6.8)

and solving for WB∗ (p):

WB∗ (p) =
eTz RB

AK−1p

1−WB (pw) eTz rAB
WB (pw) (6.9)

During the warping process, the projections pw on the source image are usually obtained
on float locations. Since intensity and inverse depth maps are represented over a discrete pixel
grid we need to interpolate to compute the new intensity and inverse depth values. In a CUDA
capable NVIDIA GPU interpolation in a grid is quite efficiently performed using texture memory.
For the intensity we use a bilinear interpolation with the 4 neighbouring pixels. For the inverse
depth values, in turn, we use a more simple nearest neighbour interpolation. The reasons for this
decision are two fold. First, a pixel falling on an edge might yield an unrealistic intermediate
value if linearly interpolating with 4 distinct inverse depth values. Secondly, given that depth
maps from depth sensor show some areas without depth values, the more pixels are used for
interpolation, the more chances we have of picking a hole which spoils the inverse depth estimate
for the warped frame.
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6.3.4. Dense frame covisibility ratio

Computing the covisibility score between two given frames is a key element to prune
redundant frames, selection of reference frames or keyframes, or computing visibility graphs.
In this work, taking advantage of the availability of dense depth maps, we use a covisibility
computed from all the pixels in the image. Given two frames A and B and the camera motion
estimate between them ( RB

A, rAB) ∈ SE(3), we transfer pixels from A to B using (6.5) and (6.6).
Then if the following two conditions are met:

pw ∈ Ω∣∣∣WB(pw)− 1
ez
TXw

∣∣∣ < 3σW

a pixel is tagged as visible. First condition rejects points out of the image domain, while the
second condition rejects pixels which became occluded, by checking that their inverse depth
values are in the uncertainty range σW allowed by the sensor noise model. After this test we
can compute the covisibility ratio:

vis ratioA→B =
#visible pixelsA→B
#nohole pixelsA→B

. (6.10)

This procedure is repeated switching the role of A and B, and then we select the minimum ratio
as the final covisibility ratio.

6.3.5. Dense frame alignment

Dense frame alignment or registration consists into estimating the camera motion T̂A
B =

( R̂A
B , r̂BA) between two frames A and B by pixel-wise minimisation of the photometric and

inverse depth residuals rI(p) and rW(p). This motion is computed iteratively in a coarse-to-fine
manner using image pyramids, performing a given number of iterations at each pyramid level.
At the start and every time we step down in the image pyramid, we downsample {IA, WA} and
compute the gradients {∇IA, ∇WA} at current pyramid level.

The initial estimate of the rigid motion is set to the identity, T̂A
B
(0) = I, unless an initial

guess is provided.
At each iteration γ, first intensity and depth maps in frame B, {IB , WB}, are warped towards

frame A taking the up-to-date motion estimate T̂A
B
(γ). By using the reverse warping approach

described in Section 6.3.3 we obtain the warped images {I B(γ) , WB(γ) }. These images are
downsampled to the pyramid level at which current iteration is taking place.

The next step is the update of the motion estimate between frames. This is done by
minimising the following cost function:

ξ̂
A

B(γ) = argmin
ξ

∑
p∈Ω

ρ

(
rI(p, ξ)

σrI

)
+ ρ

(
rW(p, ξ)

σrW

)
, (6.11)

with

rI(p, ξ) =WA(p)∇IA(p)(K−peTz )
[
I − [π−1(p)]×

]
ξ + IB(γ)(p)− IA(p) (6.12)

rW(p, ξ) =WA(p)
(
∇WA(p)(K−peTz )+WA(p)eTz

) [
I − [π−1(p)]×

]
ξ +WB(γ)(p)−WA(p), (6.13)
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The expressions for the residuals are the result of the linearisation of the constraints in

(6.3) and (6.4) assuming a small motion described by the vector ξ̂
A

B(γ) =
(
r̂A
B(γ) , θ̂

A

B(γ)

)
, where

θ̂
A

B(γ) is the axis-angle representation of the rotation given by rotation matrix R̂
B(γ)

A. ρ(x) is
a generic cost function which must be symmetric, definite positive and ρ(0) = 0. σrI and σrW
are scaling parameters which capture the uncertainty in intensity and inverse depth residuals,
and allow for normalisation of residuals in different magnitudes. The choice ρ(x) = x2

2 results in
standard least-squares linear optimisation. Nevertheless to gain robustness against outliers, e.g.,
pixels belonging to non-static elements, robust M-estimators are usually employed. Optimisation
with robust cost functions is addressed by the Iteratively Reweighted Least Squares algorithm
(IRLS) [Holland and Welsch, 1977], which results in a linear least-squares problem to be solved
at each iteration:

ξ̂
A

B(γ) = argmin
ξ

∑
p∈Ω

ω

(
rI(p,0)

σrI

)
r2
I(p, ξ)

σ2
rI

+ ω

(
rW(p,0)

σrW

)
r2
W(p, ξ)

σ2
rW

, (6.14)

where the weighting function ω(x) depends on the used M-estimator. In this case we use the
Student M-estimator (see Appendix B) for details.

The scaling parameters can be either provided as constants or automatically obtained at each
iteration by their Maximum Likelihood (ML) estimators σML

r{I,W}
given a choice of the robust cost

function. To compute these estimators we have to solve the following non-linear optimisation
problem:

[
µML
r{I,W}

, σML
r{I,W}

]
= argmin

µ, σ

∑
p∈Ω

(
log σ + ρ

(
r{I,W}(p,0)− µ

σ

))
, (6.15)

Taking ρ(x) = x2

2 , the problem is linear. Thus, in the first iteration we compute the initial
seed with this function and then switch to the Student loss function. Though not explicitly
required, location parameters µML

r{I,W}
are also calculated since the scaling parameters depend on

their estimate.

When using the estimator based on the Student’s t-distribution it is neccesary to adjust
the degrees of freedom of the distribution. A typical choice is to set it to ν = 5 which yields
approximately an asymptotic relative efficiency (ARE) of 95% at the Gaussian distribution.
However, using the t-distribution for robust minimisation gives us the option of estimating ν
as we do with the location and scaling parameters. By maximising the log-likelihood of the
Student distribution with respect to ν [Liu and Rubin, 1995] we obtain the following non-linear
equation:

∑
p∈Ω

(
−φ
(ν

2

)
+ ln

(ν
2

)
+ φ

(
ν + 1

2

)
− ln

(
ν + 1

2

)
+ 1 + ln(ω(x(p), ν))− ω(x(p), ν)

)
= 0, (6.16)

where φ(y) denotes the digamma function. This equation is solved by the bisection method,
assuming ν ∈ [2, 10], both for the intensity and inverse depth residuals yielding νI and νW ,
with a lower ν implying more robustness to outliers. Ideally robustness parameters should be
estimated alternatively with location and scaling following a Expectation-Maximisation scheme.
However to keep computational cost low we estimate first the final location and scaling values for
intensity and depth residuals fixing νI = νW = 5, and then we solve (6.16) with the computed
values.

103



6.4. RGB-ID SLAM SYSTEM

In dense RGB-D tracking the main source of outliers are the high depth residuals caused by
occlusions which are due to dynamic objects or areas which simply become revealed or hidden
by the camera motion. Due to this fact in scenes where many occlusions occur may yield lower
values of νW , while for scenes with no occlusions, e.g., planar scenes, νW will be typically higher.
For this reason and because too much robustness can lead to a bad or slow convergence to the
solution, we correct the robustness parameter of the intensity residuals by taking:

νI = max(νI , νW). (6.17)

Naive computation of the scaling and robustness parameters would use all the residuals.
Given that every residual in intensity and inverse depth corresponds to a single pixel, the number
of samples would be extremely large, more than 300000 samples at the highest resolution level,
which would involve a high computational cost. To reduce this burden we compute the scaling
parameters in a sample with a maximum size of N = 19200 points obtained by systematic
selection. This sample size guarantees first an integer stride for pixel sampling at all the
considered resolutions; and secondly, after leading an statistical analysis, a relative precision
of 0.03 with a confidence level of 99.7%.

Finally, after computing the scaling and robustness parameters, minimisation of (6.14) leads
us to solve the following linear system:

H(γ)ξ̂
A

B(γ) = b(γ), (6.18)

and after computing ξAB(γ) we update the interframe motion estimate for the next iteration:

T̂A
B
(γ+1) =

(
exp([θ̂

A

B(γ) ]×) rA
B(γ)

0 1

)−1
T̂A
B
(γ). (6.19)

The covariance of the motion estimate is computed as the inverse of the Hessian. The Hessian
depends on the intensity and depth maps gradients computed in the frame A. Due to sensor
noise it is possible that some pixels provide misleading information making the Hessian larger,
which would yield a wrongly optimistic covariance matrix. In order to prevent this, we estimate
the Hessian by performing an extra iteration where the motion estimate is not updated and
where {IA, WA} are applied a bilateral filter prior to the computation of their gradients.

ΣB→A
B = H−1

filt (6.20)

We want the covariance referenced in the frame A. So we apply a change of coordinates:

ΣA→B
A =

(
− RA

B 0
0 − RA

B

)
ΣB→A
B

(
− RA

B 0
0 − RA

B

)T
(6.21)

6.4. RGB-ID SLAM system

Our RGB-ID SLAM system is implemented in two CPU threads running concurrently. One
thread executes a front-end for every incoming frame from the RGB-D sensor, performing camera
tracking and fusion of inverse depth measurements in a single keyframe. For both of these tasks
the CPU thread calls functions which execute in GPU where pixel-wise operations can be easily
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Figure 6.1: Scheme of our complete RGB-ID SLAM system

parallelised. The second thread executes a back-end in charge of managing the keyframes passed
by the front-end through a buffer. First it performs a segmentation of the keyframe in juts
using the map of normals. Secondly for every keyframe it obtains different BoW histograms
and stores the keyframe in a database. Finally it attempts to close loops comparing the last
processed keyframe against the keyframes in the database. All the tasks of the back-end thread
are performed in CPU except for a dense alignment in GPU between keyframes when a successful
loop is detected. In order to allow for simultaneous access to GPU by both threads without
blocking, each thread calls its GPU functions on its own CUDA stream which is executed
asynchronously.

6.4.1. Camera tracking

For every upcoming frame {Ik, Wk} we have to compute the rigid body transformation T̂rf
k

which best aligns it with a given reference frame {Irf , Wrf}. This motion is computed by the
dense RGB-D alignment method described in Section 6.3.5. We provide an initial guess of the
motion estimate using a constant velocity model, i.e., T̂rf

k
(0) = T̂rf

k−1 T̂k−2
k−1.

Once we compute the motion estimate between the reference and current frame T̂rf
k and its

covariance Σrf→k
rf , we compute the sequential odometry constraint as it will be required in the

latter pose-graph optimisation step.

Tk−1
k =

(
Tref
k−1
)−1

Tref
k (6.22)

Σk−1→k
k−1 =

(
− Rrf

k−1 0

0 − Rrf
k−1

)T (
Σrf→k
rf + Σrf→k−1

rf

)( − Rrf
k−1 0

0 − Rrf
k−1

)
(6.23)

The naive approach to set the reference frame would be just taking the frame of the previous
time step k − 1. However the odometry estimate would be likely to show a high drift specially
in sequences where the camera moves so slowly that interframe motion is below pixel accuracy.

Instead, at each time step we check if a new reference frame has to be taken by computing the
covisibility ratio between the reference frame and current frame (see Section 6.3.4). If this ratio
is below a threshold we reset the reference frame to current frame. We found that a threshold
of 0.9 provides a good compromise between the requirements of taking spatially close frames to
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perform a dense alignment, and at the same time showing a motion large enough to be perceived
in the pixel-wise photometric and geometric residuals.

6.4.2. Keyframe fusion

After the visual odometry, the inverse depth map of current frame is fused in the last selected
keyframe. The criteria for keyframe selection is the same covisibility criteria as used for the
reference frames taken for odometry. We must note that generally keyframes do not have to
coincide with the odometry reference frames, since we allow for using a different covisibility
threshold. Normally it will be set to a lower value for keyframe switching, i.e., we will initialise
new keyframes at a lower rate than reference frames, using a visibility threshold of 0.7. Once
a keyframe is initialised, the inverse depth maps of the incoming frames are fused with the
keyframe’s. We not only fuse the incoming frames but also the frames recorded prior to the
keyframe selection in order to ensure that parts of the image no longer observed after keyframe
initialisation. To do so, frames are stored temporally in a buffer and erased once integrated in
the later keyframe. Every time we integrate an incoming frame, we integrate also the frame
closest in time of the ones remaining in the buffer.

Fusion in keyframes is performed in GPU using the reverse warping approach detailed in
section 6.3.3, where the frame to be integrated is warped towards the keyframe. Note that since
we are using a reverse warping scheme parts of the scene with missing depth measurements in the
frame from which the keyframe is initialised cannot be reconstructed from subsequent frames.
We find this a minor disadvantage given first, that reverse warping in CUDA is computationally
cheap and easy to implement and secondly, that the generation of many keyframes generally
guarantees that zones missing in one keyframe can be observed in another one.

Once the frame has been warped we have to integrate every new inverse depth value for
every pixel in the keyframe. To do this we first verify that the pixels on both the keyframe and
the warped frame correspond to the same scene point by performing the same covisibility check
as in Section 6.3.4. If a pixel passes this test we update its inverse depth value in the keyframe
as follows:

Wkf (p)← Wkf (p)Ckf (p) +Wk(pw)

Ckf (p) + 1
(6.24)

Ckf (p)← Ckf (p) + 1 (6.25)

where is a weight map Ckf computed pixel-wise and set to 1 upon a new keyframe initialisation.
When a new keyframe is initialised, normals are computed in the last keyframe, which is then
stored in a buffer, awaiting to be processed by the back-end in the second CPU thread.

6.4.3. Superjuts and entropy of normals

For every keyframe which is passed to the back-end we generate a normal map from its
inverse depth map. Then we perform an object-like segmentation from the point cloud generated
by a keyframe on the map of normals as in the methods proposed by [Triebel et al., 2010]
and [Karpathy et al., 2013], which are based in the segmentation algorithm for RGB images
developed by Felzenszwalb and Huttenlocher [Felzenszwalb and Huttenlocher, 2004].

A graph G = (V,E) is constructed, where each vertex in V represents a 3D point Xi lifted
from a pixel location and the edges E represent the neighbouring relations between points. Edges
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are inserted between points with adjacent pixel locations on the image. Having the normals at
every point, a weight wij for the edge joining vertices i and j is computed:

wij =


(1− nTi nj)

2 if nTj (Xj −Xi) > 0

1− nTi nj if nTj (Xj −Xi) ≤ 0

(6.26)

where the squared weight is applied to convex edges, reflecting the fact that convex regions
usually contain points belonging to the same object and concave regions are likely to arise in
frontiers between objects. After computing the weights, the segmentation algorithm is run and
essentially groups points sharing edges with low weights in the same superjut. A parameter k
must be tuned such that the higher k, the larger segments will be obtained. We set this value
always to 0.6.

After the segmentation we compute a histogram of normals F (n). Each of the M bins in
the histogram corresponds to a Voronoi cell associated to one point out of M points uniformly
distributed over the sphere. Since there is no analytical solution to the problem of evenly
distributing M points on the sphere for any M , we use a simple approximate solution based
on the golden section spiral [Boucher, 2006], which results in a discretisation with bins covering
areas of similar size. Finally given the histogram of normals of a jut, we can compute its entropy:

ent(F ) =

M∑
i=1

F (ni) log(F (ni)). (6.27)

6.4.4. Keypoint extraction and BoW histograms

Loop detection primarily relies on the DBoW2 place recognition system based in Bags of
Binary Words proposed by Gálvez-López and Tardós [Gálvez-López and Tardos, 2012]. Mur-
Artal et al. [Mur-Artal and Tardós, 2014] used this approach with ORB descriptors obtaining
a quite reliable and fast loop closing system. As the authors suggest, we compute a pyramid of
8 levels and a relative scale of 1.2 between levels from the intensity image, and then we extract
FAST keypoints at each pyramid level. In order to distribute the keypoints uniformly over the
image we divide the image in cells and set the firing threshold for the FAST extractor adaptively
to extract the desired number of points at each cell. Once the keypoints are extracted, they
are lifted to 3D points using the inverse depth map of the keyframe and ORB descriptors are
computed in the intensity image.

For the classification of the ORB descriptors in a BoW we use the same dictionary as in [Mur-
Artal and Tardós, 2014]. For each keyframe a BoW histogram is computed with the frequency of
each word in the given image. In order to gain robustness against long-term changes in the scene
taking place more probably on zones of high entropy, different BoW histograms can be generated
for the same keyframe by masking the keyframe for different entropy thresholds. Finally the
processed keyframe is stored in a keyframe database from which keyframes are queried in the
loop closure proccess.

6.4.5. Loop closure

After extracting keypoints and computing the BoW histogram the keyframe database is
searched for potential keyframe candidates for loop closure. Given two keyframes, DBoW2
returns a similarity score based on the distance between their BoW histograms, which we
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normalise with the score between the currently querying keyframe and the previous keyframe. If
this score is above a threshold for any of the histogram comparisons a potential loop candidate is
stored. In order to ensure that potential loop closures are obtained between temporally distant
keyframes we establish a minimum keyframe separation.

For every possible keyframe candidate we match its 3D points with the 3D points of current
keyframe using their ORB descriptors. Then we perform a geometric validation of the detected
loop by computing a rigid motion estimate applying the method described in [Horn et al., 1988]
for alignment of 3D point clouds in a 3-point RANSAC scheme. If more than 10 points agree
with the computed motion between keyframes, and the convex hull spanned by these points
takes up more than 5% of the image, the loop is tagged as correct. In order to compute the
loop constraint, containing both a motion estimate and its covariance, we align both keyframes
using the approach described Sec. 6.3.5 where we pass the RANSAC rigid motion estimate as
initial guess.

Pose-graph optimisation

When a new loop is detected it is added to a cluster containing loop constraints which
are temporally close, allowing a maximum separation of 10 keyframes between any two of the
keyframes in the cluster. Pose-graph optimisation is applied when one of the clusters is no longer
accepting new loop constraints, updating the graph with the new constraints in the cluster, as
well as the poses and odometry constraints computed by the front-end, since the last graph
update. Then, given a graph with a set of odometry constraints, S = {(1, 2), ..., (N − 1, N)},
and a set of loop constraints, R = {(i1, j1), ..., (iL, jL)}, we want to find the trajectory x ={

TW
1, TW

2, ..., TW
N
}

which minimises the following cost function:

x∗ = arg min
x

∑
(i,j)∈S

eTij(x)Σi→j
i eij(x) +

∑
(i,j)∈R

eTij(x)Σi→j
i eij(x), (6.28)

where the error term eij(x) represents the residual between a constraint T̂i
j and the relative

motion between the trajectory poses TW
i and TW

j it is connecting, expressed with a minimal
parametrisation in the tangent space of the manifold of rigid body motions SE(3):

eij(x) = logSE(3)

(
T̂i
j( TW

j)−1 TW
i
)

(6.29)

In order to speed-up the process we perform the optimisation in a multi-layered scheme. In
the first layer, odometry constraints between consecutive frames, are substituted by constraints
between consecutive keyframes, which are also computed by the tracking front-end, and thus we
only optimise the poses of the keyframes. In the second level the keyframe poses are fixed, and
the poses of the rest of the frames are optimised by enforcing the odometry constraints.

6.5. Experiments

We first compare our method quantitatively with the state-of-the-art in terms of trajectory
estimation. Then we perform a qualitative evaluation of the 3D reconstructions both in the
Freiburg and our own RGB-D sequences, and finally we measure the computational performance,
both of the front-end, in charge of camera tracking, and the back-end, performing keyframe
processing and loop closing.
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Table 6.1: Absolute trajectory error (RMSE, median and max) in meters of our method with and without loop closure and comparison
with state-of-the-art approaches. For a given error measure in a dataset, we show in bold the best approach in the state of the art and
ours if it is the absolute best.

Approach fr1/desk fr1/desk2 fr1/room fr2/desk fr3/office fr3/nst
RMSE median max RMSE median max RMSE median max RMSE median max RMSE median max RMSE median max

Ours (w/o loop closure) 0.034 0.030 0.087 0.054 0.037 0.137 0.087 0.072 0.203 0.037 0.026 0.084 0.057 0.042 0.118 0.041 0.030 0.105
Ours (w/ loop closure)∗ 0.017 0.014 0.056 0.035 0.026 0.103 0.038 0.032 0.132 0.019 0.017 0.043 0.027 0.026 0.048 0.018 0.016 0.062

Unified VP [Meilland and Comport, 2013b] - 0.018 0.066 - - - - 0.144 0.339 - 0.093 0.116 - - - - - -
ICP+RGB-D [Whelan et al., 2013a] - 0.069 0.234 - - - - 0.158 0.421 - 0.119 0.362 - - - - - -

6D RGB-D odometry [Dong et al., 2014] - - - - - - 0.095 0.067 0.254 0.197 0.174 0.416 - - - - - -
SDF tracking [Bylow et al., 2013] 0.035 - - 0.062 - - 0.078 - - - - - 0.040 - - - - -

DIFODO [Jaimez and González-Jiménez, 2015] 0.047 - - 0.094 - - 0.109 - - 0.342 - - - - - - - -
ElasticFusion (w/o loop closure) [Whelan et al., 2015] 0.022 - - - - - - - - - - - 0.025 - - 0.027 - -

RGB-D SLAM [Endres et al., 2014]∗ 0.023 - - 0.043 - - 0.084 - - 0.057 - - 0.032 - - 0.017 - -
MRSMap [Stuckler and Behnke, 2012]∗ 0.043 - - 0.049 - - 0.069 - - 0.052 - - 0.042 - - 2.018 - -

DVO-SLAM [Kerl et al., 2013a]∗ 0.021 - - 0.046 - - 0.053 - - 0.017 - - 0.035 - - 0.018 - -
Kintinious [Whelan et al., 2014]∗ 0.037 0.031 0.078 0.071 - - 0.075 0.068 0.231 0.034 0.028 0.079 0.030 - - 0.031 - -

ElasticFusion (w/ loop closure) [Whelan et al., 2015] ∗ 0.020 - - - - - - - - - - - 0.017 - - 0.016 - -

∗ with loop closure and pose-graph optimisation (deformation graph for ElasticFusion)
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6.5. EXPERIMENTS

6.5.1. Trajectory Estimation

We first compare our method to state-of-the-art visual odometry and SLAM approaches
with RGB-D systems. For the comparison we use the TUM benchmarking dataset [Sturm et al.,
2012]. The evaluation has been carried out taking the error metric of the Absolute Trajectory
Error (ATE) in meters (see Table 4.5). Since we did some new improvements and modifications
on the code, the performance of our approach without loop closure detection nor pose-graph
optimisation slightly differs from the performance of the RGB-D odometry method presented in
Chapter 4. However it is worth noticing that there exists a large improvement in the fr2/desk
dataset. Apparently the reason is a correction we applied to the depth maps of the Freiburg
2 sequences by a constant scaling factor. This correction was in principle reported as done
by the authors of the dataset. However it seems from the observation made by Mur-Artal et
al. in [Mur-Artal and Tardós, 2014] of a scale bias in the RGB-D SLAM system of Endres et
al. [Endres et al., 2014], that it has not been applied in the Freiburg 2 datasets available for
download.

The table shows that our method outperforms most of the odometry and SLAM methods in
the literature and it is close to the ElasticFusion of Whelan et al. [Whelan et al., 2015], which
shows the best performance in the state-of-the-art in the datasets fr3/office and fr3/nst.
Among the methods performing only odometry, ElasticFusion in tracking-only mode outperforms
them and even some of the methods performing loop closure. However in other datasets our
method shows overall the best performance both in tracking-only mode and with loop closures.
It is worth noticing that challenging datasets like fr1/desk2 and fr1/room, showing a fast
camera motion, our method provides a great precision.

6.5.2. 3D reconstruction

In this section we perform a qualitative evaluation of the 3D models reconstructed of our
SLAM system. To build the 3D model of the scene we concatenate the point clouds of different
keyframes in real-time. To avoid unnecessary redundant points we only concatenate partial
point clouds which correspond to novel parts of the scene between consecutive keyframes.
Redundant points due too loop closure are eliminated at the end of the execution of our method
by performing a voxel grid filtering with a voxel size of 1 cm. In Fig. 6.2 we show the 3D models
of the evaluated TUM datasets, showing a great detail of the reconstructions.

6.5.3. Computational performance

The computational performance of our system has been evaluated in a laptop PC with an
Intel Core i7-4710HQ CPU at 2.50GHz, 16GB of RAM and a nVidia GeForce GTX 850M GPU
with 4GB of memory. As shown in Table 6.2, the execution time of the front-end varies depending
on whether the system operates in tracking only-mode, i.e., with the back-end disabled or with
its complete functionalities. This is due to the division of the GPU resources upon successful
loop closure between the visual odometry and integration modules from the front-end, and the
keyframe alignment module between loop keyframes from the back-end.

In Fig. 6.3 we show graphically the computational cost of the back-end pipeline, which
has been dissected in the different processes involved. As we can observe there is a nearly
constant cost for keyframe segmentation and descriptor extraction, while the cost for loop
closure detection and pose-graph optimisation shows a great variability. The reason is that
most of the cost of loop closure detection is governed by the step of geometric verification and
loop constraint computation, which is run only on a reduced list of loop candidates delivered by
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fr1/desk fr1/desk2

fr1/room fr2/desk

fr3/office fr3/nst

Figure 6.2: Final 3D models from the TUM datasets on which our method has been evaluated.
Despite the discontinuities in color, we can appreciate a good level of detail in the final
reconstruction.
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Table 6.2: Computational cost of the front-end pipeline in milliseconds

fr1/desk fr1/desk2 fr1/room fr2/desk fr3/office fr3/nst

w/o loop closure 39 39 42 38 38 36
w/ loop closure 46 55 76 49 53 41

Table 6.3: Mean computational cost of the processes involved in the back-end pipeline in
milliseconds. To achieve online performance the mean total cost should be lower than the
mean keyframe rate.

fr1/desk fr1/desk2 fr1/room fr2/desk fr3/office fr3/nst

Segmentation 147 156 152 151 174 203
ORB desc. + BoW hist. 18 19 18 17 18 19

Loop detection 54 61 52 46 33 36
Pose-graph optim. 1 1 1 1 1 1

Total keyframe proc. 243 260 246 237 250 286

Mean keyframe rate 320 222 246 1017 773 1735

the efficient appearance-based BoW algorithm for loop detection. Red dashed line represents
the time it takes the front-end to deliver a new keyframe to the back-end, assuming that it is
able to process al the frames in the sequence at the frame rate of 30 Hz. We can observe that
in datasets where the camera is moved slowly in a loop around the same scene, the back-end
processing time is widely below the average keyframe rate. However in datasets like fr1/desk2
or fr1/room, where the camera moves quickly and/or the area being mapped changes a lot, the
back-end struggles to operate at keyframe rate. These observations are embodied numerically
in Table 6.3.

6.6. Discussion

In this Chapter we have presented an initial version of a complete RGB-ID SLAM system
which combines an accurate dense and direct RGB-D odometry system and state-of-the-art loop
closing procedure to achieve a great accuracy in the estimation of the trajectory. The algorithm
also performs the integration of the tracked frames into keyframes with smooth inverse depth
maps. The fusion of depth measurements in keyframes allows first to achieve a greater accuracy
in the computation of relative camera transformation at loop closure, and secondly to perform
an online segmentation of the keyframe based solely on the structure of the captured scene.
The concatenation of the novel parts between consecutive keyframes allow to obtain precise 3D
models of the environment. Future work to improve this system include exploring the possibilities
of taking advantage of the segmentation method, for example, to perform robust loop closure
and relocalisation under long-term changing environments or investigating more sophisticated
ways of efficiently generating lightweight 3D models from the keyframes in real-time.
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Figure 6.3: Computational cost of the keyframe processing in the back-end divided by processes
(area graph), and average acquisition time of a keyframe (dashed red). In the datasets where
the average acquisition time is not shown, it means that it is out of the plot bounds (above 600
ms). This usually occurs in datasets when the camera executes a loop around some scene, which
normally involves that keyframes are switched with low frequency.

113



6.6. DISCUSSION

114



Chapter 7

Curve-graph odometry:
Orientation-free error
parameterisations for loop closure
problems

During the incremental odometry estimation from mobile sensors, the accumulation
of estimation error produces a drift in the trajectory, as it was shown to occur in
previous chapters with visual and RGB-D SLAM. This drift becomes observable when
returning to previously visited areas, where it is possible to correct it by applying loop
closing techniques. Ultimately a loop closing process leads to an optimisation problem
where new constraints between poses obtained from loop detection are applied to the
initial incremental estimate of the trajectory. Typically this optimisation is jointly
applied on the position and orientation of each pose of the robot using the state-of-the-
art pose graph optimisation scheme on the manifold of the rigid body motions. In this
chapter we propose to address the loop closure problem using only the positions and thus
removing the orientations from the optimisation vector. The novelty in our approach is
that, instead of treating trajectory as a set of poses, we look at it as a curve in its pure
mathematical meaning. We define an observation function which computes the estimate
of one constraint in a local reference frame using only the robot positions. Our proposed
method is compared against state-of-the-art pose graph optimisation algorithms in 2
and 3 dimensions. The main benefits of eliminating orientations are twofold. First,
the objective function in the optimization does not mix translation and rotation terms,
which may have different scales. Secondly, computational performance can be improved
due to the reduction in the state dimension of the nodes of the graph.

7.1. Introduction

The probabilistic nature of Simultaneous Localisation and Mapping (SLAM) techniques, and
the incremental estimation, lead to an unavoidable error build-up. The accumulated error gives
raise to a drift in the trajectory, which becomes evident when the sensor platform revisits a
previous location. It is expressly in these situations when the so called loop closing techniques
can be applied to correct the drift.
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7.1. INTRODUCTION

The loop closure process can be divided into three steps: loop detection, computation of the
loop closing constraint and trajectory correction with the new constraints. The detection and
the constraint computation techniques are sensor dependent and are managed by the front-end.

The last step, trajectory correction, is the one which this work is mainly focused on.
Traditionally, the new loop constraints are enforced by defining a non-linear least squares
optimisation problem where the final trajectory is the one which minimises the combined cost
of violating the initial odometry constraints from the SLAM estimate and the new loop closure
constraints.

Following the state-of-the-art pose graph formulation [Kümmerle et al., 2011], the loop
closure optimisation problem is presented as a graph of nodes where each node represents one
pose and the arcs represent the odometry and loop closure constraints. An odometric constraint
encapsulates the incremental motion estimate between two consecutive poses i − 1 and i in a
reference frame attached to i−1, in such a way that an arbitrary spatial transformation applied
to both poses should not modify the cost of violating this constraint. This applies similarly to
a loop closure constraint between two poses, say, i and j, on the relative motion of pose j with
respect to a reference frame attached to i or vice versa.

In a pose graph formulation, each pose includes a translation and a rotation and is represented
as an element of the special Euclidean group, a manifold which describes the rigid body
kinematics in 2 (SE(2)) or 3 (SE(3)) dimensions. In the context of optimisation, variables
lying on manifolds different from the usual Euclidean space Rn are prone to violate the manifold
constraints if no special care is taken. One typical approximation, thus subject to inaccuracies,
is to impose these constraints after optimisation. However, for greater correctness and accuracy,
smarter solutions impose the manifold topology directly during optimisation [Absil et al., 2007].

Another problematic specific to Euclidean Groups and pose-graph optimisation in SLAM
is the inability to define an unambiguous metric [Park, 1995], which arises from the different
magnitudes in which rotation and translation are measured. Since error functions in pose-
graph SLAM combine rotation and translation, the set up of the scaling between rotation and
translation can have a strong influence in the final result of the optimisation. The information
matrix for a given constraint solves this ambiguity by normalising both magnitudes. However
it is not rare the case where the exact information matrix for some constraints of the graph is
not available or easy to compute.

We propose to reformulate the loop closure optimisation problem using a state representation
which removes the orientation of the poses. The novelty in our approach is that, instead of
treating trajectory as a set of poses, we look at it as a curve in its pure mathematical meaning.
A curve is a mathematical entity defined in an Euclidean Space Rn and has a set of local
properties like speed, curvature and torsion, which can be defined point wise and are invariant
to arbitrary rigid transformations. This leads to the idea that proper odometry and loop closure
constraints can be computed using only the positions and that these constraints are related with
the local properties of a discrete curve.

Resulting from our proposal three main advantages arise:

We avoid mixing translation and rotation magnitudes in the same optimised vector,
avoiding heuristic scalings in the norm of the residuals when the information matrix is
not available.

The number of degrees of freedom per pose is reduced from 6 to 3 in the 3D case and
from 3 to 2 in the 2D case. This leads to a dimensionality reduction of the optimisation
problem which can involve a potential increase in computational performance.

116



CHAPTER 7. CURVE-GRAPH ODOMETRY: ORIENTATION-FREE ERROR
PARAMETERISATIONS FOR LOOP CLOSURE PROBLEMS

The optimisation could be performed directly in a Euclidean space, with no need for
defining an error function and special operators for non-Euclidean spaces.

One issue of our this new representation of a pose-graph problem are the potential
singularities when poses are redundant or are aligned in a straight. To tackle this, we first
perform a graph reduction to prune redundant and aligned poses. The evaluation of our method
is performed in a extensive dataset containing trajectories in 2 and 3 dimensions.

7.2. Related Work

Several related works address efficiency and convergence issues of the optimisation algorithms
for pose graphs. However the discussion on different representations of the nodes of the graph is
less prevalent and, to the best of our knowledge, all of them assume that the optimisation must
be performed both in the orientation and the position of the poses.

Concerning the optimisation algorithms the main objective is to make it robust to local
minima and lowering the computational needs. Standard approaches to solve non-linear least
squares problems are based on the Gauss-Newton method, which consists in iteratively linearising
the energy function around the current solution and solving a linear system until convergence.
However this involves a large computational cost and, unless a good initial estimate is provided,
it is likely to stuck on a local minima. Approaches based on this method like iSAM [Kaess et al.,
2008] and g2o [Kümmerle et al., 2011] tend to exploit the structure of the graph to reduce the
computational cost.

Another family of approaches introduce a relaxation of the problem, i.e., at each iteration
they compute an update of only a subset of the nodes. Although these updates are approximate,
the robustness to local minima sticking is generally increased. In this sense Duckett et al.
proposed the use of Gauss-Seidel relaxation [Duckett et al., 2002] and based on this, Frese et
al. [Frese et al., 2005] introduced a multilevel relaxation (MLR). Olson et al. [Olson et al.,
2006] propose a relaxation based approach using a Stochastic Gradient Descent algorithm
(SGD) and an incremental pose parametrisation. Their results showed a dramatic reduction
in computational cost compared with other existing approaches at that time. In [Grisetti
et al., 2009], Grisetti et al. extend Olson’s method including a novel tree parametrisation
for the poses and extending to 3D poses. Grimes et al. [Grimes et al., 2010] propose to apply
a stochastic relaxation while solving the linearised system around current estimate. In [Peasley
and Birchfield, 2014], Peasley and Birchfield proposed first performing a SGD with relative pose
parametrisation to get a quick initial solution close to the minimum and the switching to the
Gauss-Seidel method to reach the minimum.

Martinez et al. [Mart́ınez et al., 2010] and Carlone et al. [Carlone et al., 2011] proposed a
linear approximation to compute a first suboptimal solution in 2D pose graphs without requiring
an initial seed for the state of the nodes. This suboptimal solution could then be refined by
non-linear optimisation approaches. Also for 2D graphs, Carlone and Censi [Carlone and Censi,
2014] proposed recently a method for orientation estimation which is more robust to local minima
than state-of-the-art approaches. In [Dubbelman et al., 2010], Dubbelman et al. propose an
efficient method which obtains a closed form solution for loop closure in trajectories where there
is a single loop constraint. This work was further extended [Dubbelman and Browning, 2013]
enabling it to close multiple loops on the same trajectory.

Recently Anderson et al. [Anderson et al., 2014] proposed a continuous-time SLAM approach,
which addresses the pose-graph optimisation by parametrising the motion of the platform by
continuous wavelet functions based on B-splines instead of conventional parametrisation with
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discrete poses. This is beneficial when using high-rate sensors, multiple unsynchronized sensors,
or scanning sensors, such as lidar and rolling-shutter cameras, during motion.

Concerning different descriptions of the states of the nodes, the proposal by Strasdat et
al. [Strasdat et al., 2010] is specially convenient for pose graph optimisation from loop closure
of visual odometry estimates obtained by some monocular front-end. By describing the poses
and the constraints between them by similarity transforms instead of by rigid body motions, it
allows scale drift correction in the optimisation back-end.

Another important issue in the scope of pose-graph optimisation which have been addressed
in the literature is the robustness to false positives during the loop detection step. In this sense
authors of [Kümmerle et al., 2011] propose several robust cost functions in their implementation
to decrease the effect of outliers. More sophisticated methods for robust pose-graph optimisation
include the introduction of switchable constraints [Sünderhauf and Protzel, 2012] which act
as weights for the loop closure constraints, the RRR algorithm [Latif et al., 2013] based on
consistency checks of topologically similar loop constraints, or the Max-Mixture Model [Olson
and Agarwal, 2013] which accounts for the possibility of false loop closures using a high variance
Gaussian distribution.

7.3. Standard Pose Graph Optimisation

Let x = (x1 · · · xN ) be the optimisation state vector which contains the configuration xi of
each node in the graph. Let ẑ = (ẑ1 · · · ẑM ) be the vector containing all the constraints between
the nodes in the graph. These constraints can not only represent edges joining pairs of nodes
but also, more generally, cliques relating an undetermined number of nodes. Let also fk (x) be
an observation function which computes the estimate of the constraint ẑk given the current state
x of the graph.

7.3.1. Node Parametrisation and Constraints in SE(n)

When defining a pose-graph optimisation problem in the context of SLAM, nodes in the
graph represent poses. One pose consists of a location in the space and an orientation and both
can be jointly described in the manifold of rigid body motions in 2D (SE(2)) or 3D (SE(3)) by
using transformation matrices. Then the configuration of a node xi in the graph is parametrised
as xi = WTi , i.e., the spatial transformation from the world frame W to the frame associated
to pose i.

The observation function for a constraint between two poses is defined as:

fij(x)
.
= fk(x) =

(
WTi

)−1
WTj . (7.1)

The odometry constraints for the optimisation problem are computed by applying the
observation function to the initial state x̂ = {W T̂1, W T̂2, ..., W T̂N}, while the loop closure
constraints are provided by a module in charge of both loop detection and computation of
transforms TLC = {i1T̂

j1
LC , ..., iLT̂jL

LC}. That is:

ẑk = iT̂
j =


(
W T̂i

)−1
W T̂j if (i, j) ∈ S

iT̂
j
LC if (i, j) ∈ R

, (7.2)

where S = {(1, 2), ..., (N − 1, N)} and R = {(i1, j1), ..., (iL, jL)} are respectively the sets of pose
pairs sharing odometry and loop closure constraints.
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7.3.2. Generalised Optimisation on Manifolds

The unambiguous description of elements lying on a manifold usually require more
parameters than dimensions has the manifold. Such is the case of elements in SE(n), usually
described by transformation matrices. For each additional parameter a constraint related
with the manifold topology is established. To comply with these constraints during iterative
optimisation, updates of the estimation must be computed in the tangent space of the manifold
using a minimal parametrisation. For this purpose the operators � and � are used. Roughly
speaking, the operator � computes the difference between two transformations with a minimal
parametrisation, while the operator � applies a minimally parametrised perturbation to a rigid
transformation (for a more detailed and rigorous explanation we refer the reader to [Hertzberg
et al., 2013]).

Then, the error ek resulting from violating the graph constraint between poses i and j is:

ek(x) = fk(x) � ẑk. (7.3)

The uncertainty for a constraint ẑk is represented by the information matrix Ωk . Assuming
that all the constraints are independent, the cost function for pose graph optimisation is:

x∗ = arg min
x

∑
(i,j)∈S

eTk (x)Ωkek(x) +
∑

(i,j)∈R
eTk (x)Ωkek(x)

= arg min
x

eT(x)Ωe(x),

(7.4)

where e = (e1 · · · eM ) and Ω = diag (Ω1, ...,ΩM ) and M = (N − 1) + L is the total number of
constraints.

Given the initial guess x̆ = x̂ , (7.4) can be solved iteratively until convergence by computing
a first order Taylor expansion of the error at each iteration :

e(x̆ � δ) = e(x̆) +
∂ (e (x̆ � δ))

∂δ

∣∣∣∣
δ=0

δ = ĕ + Jδ, (7.5)

where δ = (δ1 · · · δN ) and abusing from notation x̆� δ = {x̆1 � δ1, ... , x̆N � δN} . The Jacobian can
be computed analytically (Chap. 2 in [Strasdat, 2012]).

Then, the resulting linear optimisation problem is solved to obtain the state incremental
update δ which is used to compute the state for next iteration:

x̆← x̆ � δ. (7.6)

7.4. Our Approach: Graph Optimisation on Rn

Instead of jointly estimating the position and orientation of the poses by carrying on an
optimisation in the manifold of rigid body motions, we propose imposing the loop closure
constraints by taking only the position part of the poses. The underlying idea behind this
proposal is that a trajectory can be considered a discrete curve in the Euclidean space where
new loop constraints between some points are imposed modifying as less as possible the local
properties of the curve, which are encoded in the odometric constraints. This is intuitively shown
in the example of Fig. 7.1. Given a trajectory where no information about the orientation is
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Figure 7.1: (a) Curve with an open loop where the point A should be at the same position
as ALC and keep a relative orientation w.r.t. the vector tangent to the trajectory at B. (b)
Intuition of how this loop should be closed.

shown, one can perceive however how the trajectory has to be bended so that the point A is at
the relative position w.r.t. B given by the loop closure constraint (dashed line) and the vector
vB tangent to the trajectory at B.

Moreover, the removal of the orientations out of the optimised variables seems reasonable,
since the position and orientation of a body which freely moves in the space do not have to
be coupled generally. In this sense, the inclusion of the orientation in the optimisation may
respond primarily to the need of expressing the odometry and loop constraints in a local reference
frame, such that that the error function is invariant to rigid body motions applied to the whole
trajectory.

Thus the main challenge is to define appropriate constraints given only the set of positions
composing the trajectory. These constraints must keep the error invariant to an arbitrary rigid
motion applied to the curve.

7.4.1. Curves in 2D and 3D

Let us first introduce some notions about curves in 2 and 3 dimensions [Pressley, 2001].
These notions though not applied in the implementation of our approach help to provide a
mathematical insight of the implications of our approach, showing in fact that our proposed
optimisation problem is equivalent to bending a curve so that it passes through new points,
while trying to keep its original shape.

Generally, a curve r can be defined as a mapping of a scalar t in a given interval I = [a, b]

onto the euclidean space Rn, i.e., r : I → Rn.
A n-dimensional curve is characterised by n properties defined locally at every point of the

curve. For a 2D curve these properties are the metric derivative or speed ||r′||, and the curvature
κ(t) which is defined as:

κ(t) =
r′

T
(t)Jr′′(t)
||r′(t)||3

, (7.7)

with
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J =

(
0 1
−1 0

)
. (7.8)

For the 3D case we have to consider a new property of the curve: the torsion τ(t). The
torsion of a curve is given by the variation of its osculating plane which can be defined as the
plane which locally contains the curve in the vicinity of one of its points. Note that planar
curves have no torsion since they are contained in the same plane at every point.

Then, for a 3D curve the curvature and torsion are defined by:

κ(t) =
||r′(t)× r′′(t)||
||r′(t)||3

, (7.9)

τ(t) =
r′′′

T
(t)(r′(t)× r′′(t))

||r′(t)× r′′(t)||2
. (7.10)

Note that these properties are invariant to rigid transformations applied to the curve both
in the 2D and 3D cases.

7.4.2. Node Parametrisation and Constraints

Our approach parametrises each node in the graph as xi = riW = WTi (1 :3, 4). Analogously
to Sec. 7.3 we define an observation function for the constraints:

fij(x)
.
= fk(x) = f(FRn(riW ), rjW ), (7.11)

where FRn(riW ) is a function which extracts from the graph, the minimum number of poses
backwards from riW to define a reference frame for a given number of spatial dimensions n.
Details on how this reference frame is defined for different dimensions will be provided in next
sections.

To apply our method we need the relative position measurements ∆r̂iji between all the pairs of
frames (i, j) sharing one constraint. This is done in two steps. The first step consists in computing
the absolute pose measurement of frame j as the result of concatenating the constraint between
i and j with the absolute pose of frame i, and then taking the translation part of the pose. In the
case of the odometric constraint this step is straightforward, since absolute positions correspond
to the initial state of the graph x̂ = {r̂1

W , ..., r̂NW } directly obtained from the odometry front-end.
In the case of a loop closure constraint, the associated absolute pose W T̂jl

LC for a loop constraint
between frames il and jl is computed as:

W T̂jl
LC = W T̂il

ilT̂
jl
LC (7.12)

where transformation W T̂il is taken from the absolute poses given by odometry front-end, and

ilT̂
jl
LC is computed by the loop detection front-end. The corresponding absolute position is

extracted from the resulting transform, as r̂jlW,LC = W T̂jl
LC (1 :3, 4).

Note that this step is the only one where we use the rotation part of the poses and that it
is agnostic of whether the platform is oriented in the direction of movement or not. This means
that our approach does not need to assume that the orientation of the platform is aligned with
the platform speed vector.
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The second step is the computation of the constraints for our optimisation problem applying
the observation function to the measures of the absolute positions we have computed in the first
step:

ẑk = ∆r̂iji =


f
(
FRn(r̂iW ), r̂jW

)
if (i, j) ∈ S

f
(
FRn(r̂iW ), r̂jW,LC

)
if (i, j) ∈ R

. (7.13)

Then the optimisation is performed analogously to Sec. 7.3. Since we are optimising in Rn,
� and � operators are the conventional operators for addition and subtraction.

Since the number of properties of the curve is not the same in 2 and 3 dimensions, the
definition of function f(·) and the structure of the optimisation problem slightly changes from
one case to another. For sake of clearness we treat the two cases separately starting with the
easiest 2D case and then stepping up to the 3D case. For each case we proceed as follows: first
we compute an observation function f(·) and then show that it is related to the properties of
the curve. In next sections we abuse of notation and merge the definition of both points in the
curve, and positions, i.e., ri

.
= riW .

7.4.3. Loop closure in R2

In the 2D case we need two positions to define a reference frame, so we take FR2(riW ) =

{ri−1
W , riW } and define:

∆r0 = riW − ri−1
W , (7.14)

∆r1 = rjW − riW . (7.15)

The observation function f
(
ri−1
W , riW , r

j
W

)
establishes ternary constraints and is computed

as:

f
(
ri−1
W , riW , r

j
W

)
=

 eTx

eTy

∆r1 =
1

||∆r0||

 ∆r0
T

∆r0
TJ

∆r1, (7.16)

and expresses the odometry vector ∆r1 in a reference frame whose unit vector ex is aligned with
∆r0. Note that an arbitrary rotation applied both to ∆r0and ∆r1does not change the returned
value of this function.

Now let us see how the observation function f
(
ri−1
W , riW , r

j
W

)
, relates with the local properties

of the curve in the case of odometric constraints. In our particular problem, the curve is
discretised in a set of points, being the scalar which parametrises the curve the ith position
index. So we need to apply finite differences to compute the first and second order derivatives:

r′(i) = ri − ri−1 = ∆r0, (7.17)

r′′(i) = rj − 2ri + ri−1 = ∆r1 −∆r0. (7.18)
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Note that for the first order derivative we have taken the backwards difference convention.
We hold this convention through the rest of the chapter for (2n+ 1)th order derivatives.

Applying the definitions of the derivative we can compute the curvature κi at a curve point
ri:

κi =
∆r0

TJ∆r1

||∆r0||3
, (7.19)

and putting it into (7.16) we get:

f
(
ri−1
W , riW , r

j
W

)
=


||∆r1||

√
1− ||∆r0||4

||∆r1||2
κ2
i

||∆r0||2 κ2
i

 , (7.20)

verifying that the odometry constraint encapsulates a preservation of the local properties of the
curve.

Note that when treating the odometry as a curve, distances between adjacent points must
not be zero. Otherwise it is not possible to compute the division by ||∆r0|| and the optimisation
is likely to fail. Special care must be taken by eliminating redundant points from the initial
odometry estimate. It must be remarked that the two poses which a loop is closed at, do not
have to obey this restriction since they are never used to compute ∆r0. Intuitively speaking, a
curve must be always “in movement” but it can intersect itself.

7.4.4. Loop closure in R3

While in a plane we only need one vector to define the reference frame, in the space we
require a plane spanned by two vectors to define it unambiguously. Since we need an additional
point to compute the second vector, we take FR3(riW ) = {ri−2

W , ri−1
W , riW } and define:

∆r−1 = ri−1
W − ri−2

W . (7.21)

Thus, the observation function f
(
ri−2
W , ri−1

W , riW , r
j
W

)
establishes quaternary constraints

between positions. To define the observation function we proceed analogously to the 2D case
and build a local coordinate frame such that ex is aligned with ∆r0 and ez is the normal of
the plane defined by ∆r0 and ∆r−1 (see Fig.7.2). Notating [∆r0]× as the antisymmetric matrix
formed with vector ∆r0 , the following observation function yields:

f
(
riW , r

i−1
W , ri−2

W , ri−3
W

)
=


eTx

eTy

eTz

∆r1 =


∆rT0
||∆r0||

− ∆rT−1[∆r0]2×

||[∆r0]2×∆r−1||

− ∆rT−1[∆r0]×
||[∆r0]×∆r−1||

∆r1. (7.22)

However this observation function involves a division by zero when ∆r−1 and ∆r0 are aligned.
Unlike the case where ||∆r0|| = 0 , this situation is likely to arise in a curve (concretely in straight
parts) and and it stems from the fact that it is impossible to define a plane and consequently a
reference frame from 3 aligned points. In order to avoid this risky situation the 3 graph must
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Figure 7.2: Detail of a discrete 3D curve and the variation of its osculating plane

be preprocessed by joining the odometry segments whose relative angle is near zero. As in the
2-dimensional case note, that an arbitrary rotation applied to ∆r−1, ∆r0and ∆r1does not change
the returned value of the observation function.

As in the 2-dimensional case now we show that in the case of the odometric constraints the
crafted observation function encapsulate restrictions on local properties of the curve (length,
curvature κ and torsion τ ).

Let us first discretise the third derivative,

r′′′(i) = ∆r−1 + ∆r1 − 2∆r0, (7.23)

and take (7.17) and (7.18) for the first and second order derivatives to obtain the discretised
expressions for curvature and torsion:

κi =
||∆r0 ×∆r1||
||∆r0||3

, (7.24)

τi =
∆rT−1(∆r0 ×∆r1)

||∆r0 ×∆r1||2
. (7.25)

Recalling (7.24) and (7.25) and applying the definitions of the cross and dot product and
some trigonometric properties we get

f
(
ri−2
W , ri−1

W , riW , r
j
W

)
=



||∆r1||
√

1− κ2
i
||∆r0||4
||∆r1||2

||∆r0||2 κi
√

1− τi
κ2
i ||∆r0||8

κ2
i−1||∆r−1||6

τiκ
2
i
||∆r0||5
||∆r−1||


, (7.26)

proving that, as occurs in the 2D case, the crafted odometry function for the 3D case encapsulates
a preservation of the local properties of the curve.
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7.4.5. Graph Reduction

In [Latif and Neira, 2013] it was shown that graph sparsification by joining poses in segments
can greatly reduce the computational cost of a pose-graph optimisation problem. In our approach
graph reduction is used to avoid singularities in the observation functions. In the 2D case this
is produced by redundant poses in the graph, while in the 3D case singularities are produced, in
addition, when poses are aligned, i.e., they form a segment. To avoid this, graphs in both 2D and
3D must be potentially reduced such that all distances between consecutive poses are greater
than a threshold thd, and in addition, for the 3D cases a further reduction must be performed
such that the angles between consecutive odometric segments are greater than a threshold thθ.

7.4.6. Projection of pose-graph from 3D onto 2D space

In some cases, as occurs for example with a visual system on a platform which moves on a
planar surface, the odometry and the initial pose-graph are estimated in 3 dimensions though the
motion of the platform occurs mostly on a plane. In pose graph optimisation, 2D problems are
far more simple than 3D ones, and even some approaches are only able to work in 2-dimensional
graphs. For this reason, if it is allowed by the nature of the motion, it can be convenient to
convert a 3D graph into a simplified 2D version. In our approach the gain of doing this is two
fold. First, we not only reduce the dimension of the problem, but also the number of nodes
implied in the constraints. Second, it eliminates the need of dealing with the singularities in
3D graphs which arise from the alignment of points in the trajectory. To generate a 2D graph
from a 3D one, we propose the procedure described in Algorithm 2. This essentially consists in
aligning the z − axis of the reference frame attached to each pose with the direction of plane
which fits better the point cloud formed by all the trajectory points, and then project the poses
and the loop constraints onto the new 2D given by the computed plane.

Algorithm 2 Projection of 3D pose-graph onto 2D space

Require: x̂ = {W T̂1, W T̂2, ..., W T̂N} and TLC = {i1T̂
j1
LC , ..., iLT̂jL

LC} in SE(3)
Ensure: x̂p = {W T̂1

p, W T̂2
p, ..., W T̂N

p } and TLC ,p = {i1T̂
j1
LC,p, ..., iLT̂jL

LC,p} in SE(2)

∆riW := riW −mean({r̂1
W , ..., r̂NW })

[U, S, V] := svd
(∑

i ∆riW
(
∆riW

)T)
; vλmin = V(:, 3);

Rpre :=R∈SO(3) : {vpre = Rvλmin , vpre,z = ||vλmin ||∞}
Ral := R ∈ SO(3) : ez = Rvpre := exp

(
asin||vpre×ez||
||vpre×ez|| vpre × ez

)
for every T3D ∈ {x̂, TLC} do

if T3D ∈ TLC then
T3D ← W T̂ilT3D l = loop idx

end if

T3D,al =

(
Ral 0
0T 1

)(
Rpre 0
0T 1

)
T3D

(
RT
pre 0

0T 1

)(
RT
al 0

0T 1

)
;

θ = atan2 (R3D,al(2, 1), R3D,al(1, 1));

T2D =

 cos θ − sin θ r3Dal,x

sin θ cos θ r3Dal,y

0 0 1

;

if T3D ∈ x̂ then
x̂p ← {x̂p, T2D}

else

TLC ,p ← {TLC ,p,
(
W T̂il

p

)−1

T2D}
end if

end for
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Table 7.1: Convergence speed comparison of different optimisation approaches in 2D datasets
(time in seconds)

Dataset LM R2 LM SE(2) Linear 2D

Manhattan 3500 0.0708 (4 iters) 0.0845 (5 iters) 0.0611 (2 iters)

Manhattan 3500a 0.5144 (20 iters) 0.253 (11 iters) 0.056 (3 iters)

Manhattan 3500b 1.689 (75 iters) 0.6078 (20 iters) 0.049 (3 iters)

Manhattan 3500c 3.1317 (100 iters) 0.566 (30 iters) 0.3656 (30 iters)

Manhattan 10000 1.8314 (10 iters) 1.5707 (10 iters) 0.3648 (2 iters)

City 10000 4.9098 (24 iters) 1.7951 (10 iters) 0.3543 (4 iters)

Table 7.2: Convergence speed comparison of different optimisation approaches in 2D datasets
(time in seconds)

Dataset LM R2 LM R2 + pseudoHuber LM SE(2) Linear 2D

MIT K.C. 0.6364 (282 iters) 0.1158 (50 iters) 0.0453 (21 iters) 0.00675 (3 iters)

Intel 1.1041 (300 iters) 0.6357 (200 iters) 1.455 (363 iters) 0.01099 (3 iters)

7.5. Experiments

In this section we provide experimental validation of our approach using publicly available
data-sets and a comparison with state-of-the art pose graph optimisation methods. The
implementation and comparison of our method has been performed within the g2o framework
[Kümmerle et al., 2011]. The experiments were performed in an Intel Core i5-2500 at 3.30 GHz.

For the 2D case we have compared three different approaches: our optimisation on R2

with CSparse solver and the Levenberg-Marquardt algorithm, optimisation on SE(2) with the
CSparse solver and the Levenberg-Marquardt algorithm and a g2o implementation of the linear
approximation method for 2D pose graphs of Carlone et al. [Carlone et al., 2011]. The CSparse
solver consists of an efficient implementation of a sparse Cholesky factorisation algorithm to
solve linear systems and was selected among other available solvers in g2o due to its accuracy
and low computation times in the tested data-sets.

The experiments on synthetic 2D datasets (Fig. 7.3) show that in 2D our approach is
comparable in accuracy to the other methods. In terms of convergence speed, as shown in Table
7.1, optimisation in SE(2) and our method (optimisation in R2) yield a similar performance.
However, the linear approximation method outperforms both of them since it only takes few
iterations to converge in most of the considered cases, but it is restricted to 2D graphs. Also,
we can observe that for increasing levels of noise in the Manhattan3500 our proposal converges
to qualitative better solutions than optimising on SE(2).

In real datasets (Fig. 7.4 and Table 7.2) our method with standard least squares suffers
from low accuracy and convergence speed. However, we have noted surprisingly that, though
the input graphs do not contain outliers in any of the considered datasets, using a pseudo-
Huber robust cost function available in g2o significantly improves both the accuracy and the
convergence speed when using our parametrisation. This beneficial effect has been also noted
when optimising the MIT Killian Court dataset in SE(2), which when using a pseudo Huber
cost function converges to the same solution as the linear 2D method instead of getting stuck in
a local minima.

The 3D case has been tested with two synthetic datasets, sphere2500 and torus10000,
from [Kaess et al., 2008] and one real dataset, parking-garage, from [Grisetti et al., 2009].
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Input LM R2 LM SE(2) Linear 2D

Figure 7.3: Comparison of different pose-graph optimisation methods on 2D synthetic datasets
(from top to down) 4 versions of Manhattan3500 [Olson et al., 2006] dataset with increasing levels
of noise [Carlone and Censi, 2014], Manhattan10000 [Grisetti et al., 2009] and city10000 [Kaess
et al., 2008].
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Input LM R2 LM R2 + pseudoHuber LM SE(2) Linear 2D

Figure 7.4: Comparison of different pose-graph optimisation methods on real 2D datasets (from
top to down) Intel Research Lab. and MIT Killian Court, both from [Kümmerle et al., 2009]

Table 7.3: Convergence speed comparison of different optimisation approaches in the 3D data-
sets

Dataset CSparse LM R3 CSparse LM SE(3)

sphere2500 3.992 s (0.16 s/iter) 3.80634 s (0.30 s/iter)
torus10000 105.916 s (2.83 s/iter) 17.7078s (1.36 s/iter)

parking-garage 0.2652 s (0.039 s/iter) 0.4625 s (0.088 s/iter)

We have used the CSparse solver in the two compared approaches: optimisation in R3 with
Levenberg-Marquardt (ours) and optimisation on SE(3) with Levenberg-Marquardt. In the
tested datasets (Fig. 7.5) we observe that both methods yield similar accuracy. Concerning the
convergence speed, the difference of performance between both methods greatly varies between
datasets (Table 7.3). In the torus10000 dataset SE(3) shows a better performance requiring less
time per iteration, while in the sphere2500 and the parking-garage datasets our method requires
less time per iteration.

Due to the elimination of the orientation from the nodes parametrisation, our approach
reduces the dimensions of the optimisation problem by a factor of 2/3 for 2D graphs, and by 1/2
for 3D graphs. Since the cost of the Cholesky factorisation required to solve the linear system at
each iteration has order O(n3) in dense problems the computational cost per iteration is around
3.5 and 8 times lower for 2D and 3D respectively. However, in the case of sparse problems,
which can be efficiently optimised with appropriate solvers, the performance is not only affected
by dimension of the problem, but also by the sparsity and also the distribution of the non-zero
elements in the Hessian. In this sense the substitution in our approach of binary constraints by
ternary or quaternary constraints affect also the computational performance.

In Fig. 7.6 we show the sparsity patterns both of the Jacobians and the Hessians for the cases
of the torus10000 graph and a sphere graph with an identical number of poses and constraints.
In torus10000 it can be observed that loop constraints in the lower part of the jacobian show
some randomness in the distribution of the constraints, while in the case of the sphere graph the
constraints show a better arrangement. Note that this last configuration is more realistic since
in real world datasets it is a consequence of the spatio temporal consistency, i.e., if there exists
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Input R3 SE(3)

Figure 7.5: Comparison of different optimisation state vector parametrisation 3D datasets. From
top to down, sphere2500, torus10000, parking-garage (plant view), parking-garage (side view).

a loop closure between poses i and j, it is quite likely that it holds also for poses i+ 1 and j+ 1.
Being the Hessian of both graphs equally sparse, it has been verified that the graph of the sphere
yielded a time per iteration one order of magnitude lower than for the torus10000 dataset, being
the gain in speed of our parametrisation with respect to SE(3) similar to the obtained in the rest
of the tested 3D datasets. This lead us to conclude that the negative effect on computational
performance caused by constraints implying several nodes tends to be aggravated if the Hessian
is poorly structured.

Since the dimension of the optimisation problems and the used cost functions are different,
the quantitative comparison of χ2 scores across different methods is not possible. Quantitative
comparison is performed then only on those synthetic datasets whose Ground Truth is available
(Table 7.4). The column for the SE(n) in the 2D datasets encapsulates both LM + SE(2) and
linear2d results since they produced the same final graph in the tabulated datasets. We have
measured the translational RMSE by taking the error in distance between the position of the
corresponding nodes of the ground truth and the evaluated graphs. It can be noted that in the
2D case the accuracy of our proposal is similar and competitive with respect to the state of the
art, while in the sphere2500 dataset the loss in accuracy of ours, though producing acceptable
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Figure 7.6: Jacobian and Hessian for (a) the torus10000 graph and for (b) a sphere graph
with identical number of nodes and constraints. Note that the sparsity of both Hessians is
approximately the same, but the more aleatory distribution of the non-zero elements over
the Hessian matrix for the torus10000 datasets yields a higher computational cost of the
optimisation.

Table 7.4: RMSE in translational units for synthetic datasets with available ground truth

Dataset LM Rn LM SE(n)

Manhattan 3500 0.4892 0.7982

City 10000 0.2875689 0.047672

sphere2500 6.7286 0.2568

visual results Fig. 7.5, is numerically noticeable.

In the last experiment we have evaluated the effect of projecting a nearly planar 3D graph
on a plane as described in Sec. 7.4.6. We used one of the datasets where we evaluated of
scaled monocular SLAM system from Chapter 3. The dataset was acquired with a wearable
omnidirectional camera camera attached to the head over a total distance of 886 m. We apply
our proposed curve-graph optimisation to the initial odometry estimate obtained by the SLAM
system. Fig. 7.7 shows both the result after optimising the trajectory using our method both
in its original 3D space and also in its projection over a 2D plane as explained in Sec. 7.4.6,
taking advantage of the fact that the trajectory is quasi planar. It can be observed that the
accuracy is improved by projecting the graph and optimising on R2. Also the computational
cost is noticeably reduced from 1.292 s (10 iterations) in R3 to 0.2073 s (5 iterations) in R2.

7.6. Discussion

In this work we have presented an alternative formulation for the nodes and constraints in a
graph for solving loop closure optimisation problems. Instead of building a pose graph in SE(n)
including both translation and rotation we build a graph where nodes consists of points over the
curve which represents the trajectory of the platform in the Euclidean space Rn.

Our method has been evaluated in several public datasets yielding successful results, though
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Figure 7.7: Evaluation of our approach in a data-set acquired with an omnidirectional camera,
optimising on R2 after projecting the initial 3D graph on the dominant plane, and optimising
on R3

the observation function used in our approach would seem initially prone to singularities.
Compared to state of the art methods for pose graph optimisation yields similar accuracy and
computational performance in the 2D datasets. In the 3D case however, our method suffers
from a noticeable lack in accuracy, while the computational performance is generally improved
but it seems to degrade severally in graphs with a large amount of constraints per nodes.

Although the experiments do not show a clear superiority of our graph parameterisation,
we think that results are promising and it could benefit from an improvement in performance
with an smarter choice or design of the cost function or the underlying optimisation algorithm.
Also, it can find its utility in potential cases where the rotation of the platform is not known or
considered or when the information matrix is not available for normalising the translation and
rotation residuals.
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Chapter 8

Conclusions and Future Work

In this thesis we delved into different problems within the field of visual localisation and
mapping, with a special interest in developing solutions and algorithms which can be deployed
in conventional or unconventional cameras which can be easily worn or handled by a human.

In the case of Monocular SLAM we have presented a real-time visual SLAM system
using monocular omnidirectional vision. Our approach builds on a very successful Visual
SLAM system based on the Extended Kalman Filter which initially worked with conventional
cameras which can be easily modeled by the typical pin-hole camera model with distortion
parameters. We substituted the pin-hole projection model by a generalised model which scopes
not only conventional cameras but also any central projection system like the catadioptric
omnidirectional cameras. Also to correct the deformation of the image induced by catadioptric
cameras and improve the tracking of visual features we introduced an affine transformation to
warp the descriptor patch which aims to reach rotation and scale invariance for catadioptric
omnidirectional cameras. During experimental evaluation we confirmed that our proposed
warping scheme improves the matching rate of image features under different kinds of camera
motion. In the context of SLAM this translates into a larger lifespan of the tracked landmarks
and larger map sizes.

Our next step in monocular SLAM was to address the scale unobservability problem inherent
to monocular systems after noticing that in a wearable vision system body oscillations of
amplitudes of the order of centimetres or millimetres caused by walking are accurately estimated
when performing SLAM. We developed a method in which, after computing the step frequency
of these body oscillations and basing on previous biomedical studies analysing human gait, we
obtain a true scaled estimate of the walking speed. Estimating this walking speed in trajectory
sections corresponding to windows of a few seconds, we are able to obtain dynamically a true
scaled estimate of the map and the visual odometry, avoiding scale drift on long term trajectories.
Although the algorithm requires the person to be walking in order to estimate the scale, the
experiments, carried out in outdoor and indoor environments and with different types of cameras,
showed that our method is reliable and robust to challenging situations like stops, changes in pace
or stairs, and provides a significant improvement with respect to the initial unscaled estimate.
In the comparison with state-of-the-art for scale drift correction we showed a better or similar
performance, and best performance is achieved when both are combined. In this sense we find
that as our method extracts the scale from a different source than other approaches it is not
exclusive, but can also be combined with other present and future methods for scale computation,
in order to get more robust information about the real camera trajectory and 3D observed scene.

In the case of RGB-D vision we have developed a new direct visual odometry method
performing dense geometric and photometric error minimisation between frames in GPU.
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Compared to the most successful state-of-the-art RGB-D odometry systems based on dense
image alignment, our method parametrises the geometric error with the inverse depth instead
of the standard depth. This has the advantage of fitting better with the noise model of depth
cameras than the standard depth. The experiments leaded both in real and synthetic datasets
showed that our method is competitive with the state-of-the-art in RGB-D visual odometry.
We outperform it in the majority of the datasets in terms of Relative Pose Error (RPE) and
showing low Absolute Trajectory Error (ATE) in spite of not performing loop closure. An
implementation of this method has been made public within the scope of a fork from the PCL
library.

Also, in parallel we have studied the problem of place recognition with RGB-D sensors when
revisiting an environment whose appearance and layout has changed in the meantime. We
proposed a series of features computed on superjuts which are segmented over the image based
purely on the 3D structure of the scene; and analysed how these features correlated with juts
which remained static or moved between images of the same scene captured at different days
with a time which elapsed from a few days to months. In our analysis we found that superjuts
of the scene which remained static tended to show a lower entropy in their normals, and showed
that an image masking basing on this entropy provided a better performance in an standard
frame-to-frame matching in the tested datasets.

Following our works with RGB-D systems we started to develop a real-time RGB-D SLAM
system with an appearance based place recognition and loop closure system which is robust
to changing environment. Our system works in two parallel threads. One thread consists of a
front-end which is in charge of processing each incoming frame from the RGB-D camera and
estimating the odometry as well as selecting keyframes and performing the integration of frames
in keyframes. A second thread consists of a back-end which requests keyframes to the front-end
when available and processes these keyframes to obtain a segmentation in superjuts and applying
a robust appearance based loop closure with a posterior pose-graph optimisation for correction
of the camera trajectory and the 3D map. In our first experiments with our RGB-ID SLAM
system we have shown that our approach outperforms most of the state-of-the-art systems for
RGB-D SLAM.

Concerning the loop closure problem, we have proposed a new alternative for pose-graph
optimisation, which can impose loop closure constraints without the need of including the
orientation in the error parametrisation. Our approach, named curve-graph odometry treats
a trajectory just as a set of points in the Euclidean Space and it reparametrises the observation
function in order to compute the estimate of one constraint in a local reference frame using only
the positions. We evaluated this approach in several public datasets yielding successful results,
though the observation function used in our approach would seem initially prone to singularities.
Compared to state of the art methods for pose graph optimisation, ours yields similar accuracy
and computational performance in the 2D datasets. In the 3D case however, our method
suffers from a noticeable lack in accuracy, while the computational performance is generally
improved but it seems to degrade severally in graphs with a large amount of constraints per
nodes. Although the experiments do not show a clear superiority of our graph parameterisation,
we think that results are promising and it could benefit from an improvement in performance
with an smarter choice or design of the cost function or the underlying optimisation algorithm.
Also, it can find its utility in potential cases where the rotation of the platform is not known
or considered or when the information matrix is not available for normalising the translation
and rotation residuals. Even more generally out of the context of computer vision or robotics,
this new approach can be a useful solution to the problem of bending a curve to force it to pass
through some control points.
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK

In this work we have proposed different algorithms and methods for metric localisation
and mapping with wearable or portable cameras. However the application of the developed
algorithms in more concrete practical applications still remains as a work to carry out in the
future. As a first step we have recently found that the method presented in this thesis for
RGB-D visual odometry produces an increase in performance in an application used for stairs
detection and modelling. Beyond this application, the developed methods in this work could be
of great utility in a simulator of prosthetics for blind people to provide more accurate models of
the environment; and maybe in long term be part of a navigation assistant.

Another path to explore in the future is the fusion with information of other type of sensors.
Specially I find of great interest the combination of IMU and vision systems which has started
to be explored in the last years in the fields both of robotics and wearable computers. Currently,
on SLAM or visual odometry systems which combine IMU and cameras the trend is to introduce
information from accelerometers or gyroscopes by means of a filtering paradigm where the linear
and angular velocities of the platform is tracked together with the position and orientation.
However, from my point of view, it could be possible to introduce information from an IMU
without need of tracking velocities, just by introducing constraints between two or maybe more
consecutive poses.
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Appendix A

Equations Related to Visual
EKF-SLAM

In this Appendix we detail the proccess to obtain discrete linear model for error propagation
in a constant velocity motion model with white noise in both angular and linear accelerations.
This Appendix is divided in two sections. In the first section we detail the obtention of a
recursive formula for the computation of the k − th order time integral for a rotation matrix
when the angular velocity is constant. This formula will have its utility en the second section
where we detail the obtention of the linear model for the error propagation from the continuous
differential equations of the motion model.

A.1. Closed form solution for k − th order time integral of
rotation matrices

Let the rotation matrix R(ωt) describe the rotation undergone under constant velocity ω
during a temporal window t. Let us also denote the k − th order integral of this matrix as:

IN (k)
R(ωt)

.
=

∫ t

0

∫ t1

0
· · ·
∫ tk−1

0
R(ωtk)dtkdtk−1dt1 (A.1)

The rotation matrix can be decomposed by its Taylor expansion series:

R(ωt) = exp([ω]×t)

=
∞∑
n=0

1

n!
[ω]n×t

n (A.2)

With the Taylor decomposition, assuming that ω is constant along time and using some
manipulation and cross product identities,
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A.2. DISCRETE ERROR MODEL EQUATIONS

IN (k)
R(ωt) =

∞∑
n=0

1

(n+ k)!
[ω]n×t

n+k

=
1

k!
Itk +

1

(k + 1)!
[ω]×t

k+1 +

∞∑
n=2

1

(n+ k)!
[ω]n×t

n+k

(A.3)

1

k!
I− 1

tk
IN (k)

R(ωt) = − 1

(k + 1)!
[ω]×t−

∞∑
n=2

1

(n+ k)!
[ω]n×t

n (A.4)

(
1

k!
I− 1

tk
IN (k)

R(ωt)

)
[ω]×

||ω||2 t
= − 1

(k + 1)!

[ω]2×

||ω||2
+

∞∑
n=2

1

(n+ k)!
[ω]n−1
× tn−1 (A.5)

(
1

k!
I− 1

tk
IN (k)

R(ωt)

)
[ω]×

||ω||2 t
+

1

(k + 1)!

ωωT

||ω||2
=

1

(k + 1)!
I +

∞∑
n=2

1

(n+ k)!
[ω]n−1
× tn−1

=

∞∑
m=0

1

(m+ k + 1)!
[ω]m× t

m

=
1

tk+1
IN (k+1)

R(ωt) , (A.6)

we finally obtain a recursive formula for the k− th order time integral of the rotation matrix
R(ωt):

1

tk
IN (k)

R(ωt) =

(
1

(k − 1)!
I− 1

tk−1
IN (k−1)

R(ωt)

)
[ω]×

||ω||2 t
+

1

k!

ωωT

||ω||2
k = 1, 2, ... (A.7)

with IN (0)
R(ωt) = R(ωt).

Note that previous equation is indetermined for the limit t → 0. For such cases we have to
take the first order approximmation from (A.3):

1

tk
IN (k)

R(ωt) =
1

k!
I +

1

(k + 1)!
[ω]×t (A.8)

Of particular interest for us are the first and second order integrals of the rotation matrix:

Q(ω∆t)
.
=

1

∆t
IN (1)

R(ω∆t) (A.9)

=
1

||ω||∆t
(I−R(ω∆t))

[ω]×
||ω||

+
ωωT

||ω||2
(A.10)

S(ω∆t)
.
=

1

∆t2
IN (2)

R(ω∆t) (A.11)

=
1

||ω||∆t
(I−Q(ω∆t))

[ω]×
||ω||

+
ωωT

2 ||ω||2
(A.12)

A.2. Discrete error model equations

To obtain the error model differential equations, first we apply a perturbation to each of the
variables in the continuous time motion model in (2.21)-(2.24)
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APPENDIX A. EQUATIONS RELATED TO VISUAL EKF-SLAM

ṙCW + δṙCW = vCW + δvCW (A.13)

exp
(

[δθCW ]×

)
[δθ̇

C

W ]× RC
W + exp

(
[δθCW ]×

)
ṘC

W = exp
(

[δθCW ]×

)
RC

W [ωCC + δωCC ]× (A.14)

v̇CW + δv̇CW =
(
I + [δθCW ]×

)
RC

W naC (A.15)

ω̇CC + δω̇CC = nαC (A.16)

And taking the first order error terms, we have the continuous error model equations:

δṙCW = δvCW (A.17)

δθ̇
C

W = RC
W δωCC (A.18)

δv̇CW = RC
W naC (A.19)

δω̇CC = nαC (A.20)

We start by solving (A.20)

δωCC(t) = δωCC,i + nαC (t− ti) (A.21)

We use the solution to solve (A.18):

δθCW (t) = δθCW,i + RW
C
i

 t∫
ti

R(ωCC,i(τ − ti))dτ

 δωCC,i + RW
C
i

 t∫
ti

(τ − ti)R(ωCC,i(τ − ti))dτ

nαC

= δθCW,i + RW
C
i Q(ωCC,i(t− ti))(t− ti)δωCC,i

+ RW
C
i

(
Q(ωCC,i(t− ti))− S(ωCC,i(t− ti))

)
(t− ti)2nαC (A.22)

Eq. (A.19) is solved as:

δvCW (t) = δvCW,i + RW
C
i

 t∫
ti

R(ωCC,i(τ − ti))dτ

naC

= δvCW,i + RW
C
i Q(ωCC,i(t− ti))(t− ti)naC (A.23)

And finally (A.17):

δrCW (t) = δrCW,i +

t∫
ti

δvCW (τ)dτ

= δrCW,i + δvCW,i(t− ti) + RW
C
i S(ωCC,i(t− ti))(t− ti)2naC (A.24)
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Appendix B

Robust minimisation with
M-estimators

In computer vision as well as in other areas, one is frequently facing the problem of, given
a set of data samples zi, having to estimate some latent parameters expressed by the vector x
which better explains the sampled data through some observation model hi(x). This is expressed
through the following equation:

zi = hi(x) + εi, (B.1)

where εi represents noisy perturbations in the data.

One frequent assumption is that these perturbations can be modelled by a zero mean gaussian
noise with some variance Σ, εi ∼ N (0,Σ). This yields the following probability density function
for the data samples:

f (zi| x,Σ) =
1√

(2π)k |Σ|
exp

(
−1

2
(zi − hi(x))T Σ−1 (zi − hi(x))

)
(B.2)

where k denotes the number of dimensions of the samples.

Assuming that the samples are independent and identically distributed we obtain the joint
density function:

f (z1, z2, ..., zN | x) =

N∏
i=1

f (zi| x,Σ) . (B.3)

Now we want to find the parameter vector x̂ which better explains the obtained set of data
samples. In statistical terms we want to compute the Maximum Likelihood Estimator of the
likelihood function:

x̂ = arg max
x

L (x|z1, z2, ..., zN ) = arg max
x

N∏
i=1

f (zi| x,Σ) (B.4)

To convert the product into a sum we maximise instead the log-likelihood function:
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x̂ = arg max
x

N∑
i=1

log (f (zi| x,Σ)) . (B.5)

Substituting (B.2) we arrive at a standard least squares minimisation problem:

x̂ = arg min
x

N∑
i=1

eTi (x)Σ−1ei(x) (B.6)

The main problem of performing least squares minimisation, is that as it has been shown
during the previous reasoning, it stems from the assumption that the samples from which we are
estimating the latent parameters are assumed to follow a Gaussian distribution. While standard
least squares has the property of being a linear minimisation problem (as long as the error
function is linear with respect to the latent variable) it is quite sensitive to gross measurement
errors which do not fit with the Gaussian model. To address this problem, Huber [Huber, 1964b]
proposed alternative Maximum Likelihood Estimators (M-estimators) of the form:

x̂ = arg min
x

N∑
i=1

ρ (ri(x)) (B.7)

where ri(x) = Σ−
1
2 ei(x). The loss function ρ(r) : Rn → R is the log-likelihood function of an

assumed probability density function f and can be seen as an scalar field generated around the
equlibrium point r = 0. The intrinsic idea, is that instead of assuming a Gaussian distribution
now the error is assumed to have a new distribution f with heavier tails that allow to accomodate
gross outliers. The gradient of the loss function, ψT (r) = ∇ρ(r), is known as the influence
function. The election of different M-estimators with their corresponding loss and influence
functions basically affects on how the scalar field varies with the distance to the equilibrium
point. However, most of them should fulfill the following conditions:

It must be a positive-definite function, i.e.,

ρ(0) = 0, (B.8)

ρ(r) ≥ 0 ∀ r ∈ Rn \ {0} (B.9)

ρ(r) only depends on the distance with respect to the equilibrium point, i.e.,

ψT (r) =
∂ρ(r)

∂ ||r||
∂ ||r||
∂r

= ω(r)rT . (B.10)

where ω(r) is a scalar weight.

ρ(r) is monotonically increasing with ||r||, i.e.,

∂ρ(r)

∂ ||r||
≥ 0⇒ ψT (r)r ≥ 0 (B.11)
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After having defined the properties of the loss function ρ(r), we proceed to differentiate the
cost function in (B.7):

N∑
i=1

ψT (ri(x)) Ji = 0T (B.12)

where Ji = ∂ri(x)
∂x . At this point we have a non-linear system of equations F(x) = 0. The

usual way of solving it is by the fixed point iteration method, which consists in algebraically
manipulating F(x) = 0 to express it in the form x = G(x). Then x̂ is estimated iteratively
by the recursive relation x(γ+1) = G(x(γ)). An easy way of obtaining this relation is applying
the Newton-Raphson method, where, taking the first order Taylor expansion of F(x), we obtain

G(x) = − F(x)
F′(x) + x. However with redescending M-estimators, i.e., those for which ∂ψ(r)

∂r is not
semidefinite positive for every r ∈ Rn this approach is prone to result in failure in convergence
to a solution. This is an important issue because many of the most used M- estimators are of
the redescendent type, since this property provides more robustness to outliers.

An alternative to the Newton-Rapson method can be obtained if applying (B.10):

N∑
i=1

ω (ri(x)) JTi ri(x) = 0 (B.13)

And then, to generate the form x = G(x), expressing the residual vectors by their first order
Taylor expansion.

ri(x) = ri(x) + Ji(x− x), (B.14)

and substituting in (B.13) we obtain:

N∑
i=1

ω (ri(x)) JTi ri(x) +

(
N∑
i=1

ω (ri(x)) JTi Ji

)
(x− x) = 0. (B.15)

Note that the scalar weight term is not expanded, since in that case we would be applying
again the Newton-Raphson method. Performing some algebraic manipulations we finally obtain
the recursive relation:

x(γ+1) = −

(
N∑
i=1

ω(ri(x
(γ)))JTi Ji

)−1( N∑
i=1

ω(ri(x
(γ)))JTi ri(x

(γ))

)
+ x(γ) (B.16)

This way of solving a least squares optimisation problem with M-estimators is known as
the Iteratively Reweighted Least Squares method [Holland and Welsch, 1977], and is usually
presented in the literature with the following cost function:

x(γ+1) = arg min
x

N∑
i=1

ω(ri(x
(γ)))

rTi (x)ri(x)

2
(B.17)
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Ideally the chosen loss function to obtain a maximum likelihood estimate should be
that steming from the probability distribution from which the data samples are drawn.
Unfourtunately, in practice, the process of sampling depends on a lot of factors and circumstances
which are difficult to model by a unique probability distribution. In most cases, then, the choice
of a M-estimator can be rather empirical and application-oriented. The tendency is to choose
an estimator whose associated probability distribution has heavy tails where large errors can
be accommodated, and at the same time shows a good performance under the assumption of
gaussian noise in the data sampling process. The measure of this performance with respect
to a distribution is expressed in terms of its relative variance with respect to the MLE of the
distribution. This is denoted in the literature as Asymptotic Relative Efficiency (ARE) and,
considering scalar samples for sake of simplicity, it is defined as:

ARE(ψ, f) =

(
∞∫
−∞

ψ
′
(r)f(r)dr

)2

∞∫
−∞

ψ2(r)f(r)dr

, (B.18)

where ψ(r) is the influence function of the estimator and f(r) is the probability density function
of the assumed distribution for samples. Maximum efficiency of 100%, i.e., that of the estimator
with the lowest variance, is achieved when ψ(r) = ∂

∂r (− log(f(r))). Many M-estimators include
a tunning constant which is usually fitted to get an efficiency of 95% for a gaussian distribution.
Some of the most used M-estimators in computer vision are listed below:

Table B.1: Some examples of M-estimators

Estimator ρ(r) ψ(r)

Quadratic r2/2 r

Huber

{
r ≤ k
r > k

{
r2/2

k(|r| − k/2)

{
r

r(k/|r|)

Tukey

{
r ≤ c
r > c

{
c2/6(1− (1− (r/c)2)3)

c2/6

{
r(1− (r/c)2)2

0

Student(Cauchy) ((ν+1)/2) log(1 + r2/ν) r(ν+1/ν+r2)

From these the Huber and Tukey estimators do not derive from some known probability
distributions. However it can be verified that Huber loss function is very similar to the log-
likelihood function of the logistic distribution, f(r) = exp(−r)/1+exp(−r), which is quadratic as
r → 0 and linear as r → ∞. Also Tukey estimator is close to the log-likelihood function of a
mixture model of a gaussian distribution and a uniform distribution with a wide support. The
Student estimator derives from the Student’s t-distribution with ν degrees of freedom, and it is
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APPENDIX B. ROBUST MINIMISATION WITH M-ESTIMATORS

frequently denoted in the literature as the Cauchy M-estimator with the substitution ν = k2.
In order to achieve an ARE = 95% at the Gaussian the constants of Huber, Tukey and Student
estimators are set to k = 1.345, c = 4.685, ν = 5.688.
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[Kümmerle et al., 2011] Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard,

W. (2011). g2o: A general framework for graph optimization. In IEEE Int. Conf. on Robotics
and Automation (ICRA), pages 3607–3613.

[Kuo, 2001] Kuo, A. D. (2001). A simple model of bipedal walking predicts the preferred speed-
step length relationship. Journal of Biomechanical Engineering, 123:264–269.
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[Solà et al., 2012] Solà, J., Vidal-Calleja, T., Civera, J., and Montiel, J. M. (2012). Impact of
landmark parametrization on monocular EKF-SLAM with points and lines. Int. Journal of
Computer Vision (IJCV), 97(3):339–368.
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