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Abstract. We propose a new approach to 3D reconstruction from se-
quences of images acquired by monocular endoscopes. It is based on two
key insights. First, endoluminal cavities are watertight, a property natu-
rally enforced by modeling them in terms of a signed distance function.
Second, the scene illumination is variable. It comes from the endoscope’s
light sources and decays with the inverse of the squared distance to the
surface. To exploit these insights, we build on NeuS [25], a neural implicit
surface reconstruction technique with an outstanding capability to learn
appearance and a SDF surface model from multiple views, but currently
limited to scenes with static illumination. To remove this limitation and
exploit the relation between pixel brightness and depth, we modify the
NeuS architecture to explicitly account for it and introduce a calibrated
photometric model of the endoscope’s camera and light source.
Our method is the first one to produce watertight reconstructions of
whole colon sections. We demonstrate excellent accuracy on phantom
imagery. Remarkably, the watertight prior combined with illumination
decline, allows to complete the reconstruction of unseen portions of the
surface with acceptable accuracy, paving the way to automatic quality
assessment of cancer screening explorations, measuring the global per-
centage of observed mucosa.
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1 Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and is
the second most common cause of cancer death [23]. Early detection is crucial
for a good prognosis. Despite the existence of other techniques, such as vir-
tual colonoscopy (VC), optical colonoscopy (OC) remains the gold standard for
colonoscopy screening and the removal of precursor lesions. Unfortunately, we do
not yet have the ability to reconstruct densely the 3D shape of large sections of
the colon. This would usher exciting new developments, such as post-intervention
diagnosis, measuring polyps and stenosis, and automatically evaluating explo-
ration thoroughness in terms of the surface percentage that has been observed.
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This is the problem we address here. It has been shown that the colon
3D shape can be estimated from single images acquired during human colono-
scopies [3]. However, to model large sections of it while increasing the recon-
struction accuracy, multiple images must be used. As most endoscopes contain
a single camera, the natural way to do this is to use video sequences acquired
by these cameras in the manner of structure-from-motion algorithms. An im-
portant first step in that direction is to register the images from the sequences.
This can now be done reliably using either batch [21] or SLAM techniques [8].
Unfortunately, this solves only half the problem because these techniques pro-
vide very sparse reconstructions and going from there to dense ones remains an
open problem. And occlusions, specularities, varying albedos, and specificities of
endoscopic lighting make it a challenging one.

To overcome these difficulties, we rely on two properties of endoscopic images:

– Endoluminal cavities such as the gastrointestinal tract, and in particular
the human colon, are watertight surfaces. To account for this, we represent
its surface in terms of a signed distance function (SDF), which by its very
nature presents continuous watertight surfaces.

– In endoscopy the light source is co-located with the camera. It illuminates
a dark scene and is always close to the surface. As a result, the irradiance
decreases rapidly with distance t from camera to surface; more specifically
it is a function of 1/t2. In other words, there is a strong correlation between
light and depth, which remains unexploited to date.

To take advantage of these specificities, we build on the success of Neural implicit
Surfaces (NeuS) [25] that have been shown to be highly effective at deriving sur-
face 3D models from sets of registered images. As the Neural Radiance Fields
(NeRFs) [15] that inspired them, they were designed to operate on regular im-
ages taken around a scene, sampling fairly regularly the set of possible viewing
directions. Furthermore, the lighting is assumed to be static and distant so that
the brightness of a pixel and its distance to the camera are unrelated. Unfor-
tunately, none of these conditions hold in endoscopies. The camera is inside a
cavity (in the colon, a roughly cylindrical tunnel) that limits viewing directions.
The light source is co-located with the camera and close to the surface, which
results in a strong correlation between pixel brightness and distance to the cam-
era. In this paper, we show that, far from being a handicap, this correlation is a
key information for neural network self-supervision.

NeuS training selects a pixel from an image and samples points along its
projecting ray. However, the network is agnostic to the sampling distance. In
LightNeuS, we explicitly feed to the renderer the distance of each one of these
sampled points to the light source, as shown in Fig. 1. Hence, the renderer can
exploit the inverse-square illumination decline. We also introduce and calibrate
a photometric model for the endoscope light and camera, so that the inverse
square law discussed above actually holds. Together, these two changes make the
minimization problem better posed and the automatic depth estimation more
reliable.
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Fig. 1. From NeuS to LightNeuS. The original NeuS architecture is depicted by
the black arrows. In LightNeuS, when training the network with a sampled point, we
provide the sampling distance t to the renderer, that takes into account illumination
decline. We also incorporate a calibrated photometric endoscope model that is used to
correctly compute the photometric loss. The changes are shown in red.

Our results show that exploiting the illumination is key to unlocking implicit
neural surface reconstruction in endoscopy. It delivers accuracies in the range of
3 mm, whereas an unmodified NeuS is either 5 times less accurate or even fails
to reconstruct any surface at all. Earlier methods [3] have reported similar accu-
racies but only on very few synthetic images and on short sections of the colon.
By contrast, we can handle much longer ones and provide a broad evaluation in
a real dataset (C3VD) over multiple sequences. This makes us the first to show
accurate results of extended 3D watertight surfaces from monocular endoscopy
images.

2 Related Works

3D Reconstruction from Endoscopic Images. It can help with the effective
localization of lesions, such as polyps and adenomas, by providing a complete rep-
resentation of the observed surface. Unfortunately, many state-of the-art SLAM
techniques based on feature matching [5] or direct methods [7, 6] are impractical
for dense endoscopic reconstruction due to the lack of texture and the inconsis-
tent lighting that moves along with the camera. Nevertheless, sparse reconstruc-
tions by classical Structure-from-Motion (SfM) algorithms can be good starting
points for refinement and densification based on Shape-from-Shading (SfS) [24,
28]. However, classical multi-view and SfS methods require strong suboptimal
priors on colon surface shape and reflectance.

In monocular dense reconstructions, it is common practice to encode shape
priors in terms of smooth rigid surfaces [17, 20, 14]. Recently, [22] proposes a
tubular topology prior for NRSfM aimed to process endoluminal cavities where
these tubular shapes are prevalent. In contrast, for the same environments, we
propose the watertight prior coded by implicit SDF representations.
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Recent methods for dense reconstruction rely on neural networks to predict
per-pixel depth in the 2D space of each image and fuse the depth maps by
using multi-view stereo (MVS) [2] or a SLAM pipeline [12, 13]. However, holes in
the reconstruction appear due to failures in triangulation and inaccurate depth
estimation or in areas not observed in any image. Wang et al. [27] show the
potential of neural rendering in reconstruction from medical images, although
they use a binocular static camera with fixed light source, which is not feasible
in endoluminal endoscopy. Unfortunately, most of the previous 3D methods do
not provide code [14, 22], are not evaluated in biomedical settings [17, 20], or do
not report reconstruction accuracy [12, 13].

Neural Radiance Fields (NeRFs) were first proposed to reconstruct novel
views of non-Lambertian objects [15]. This method provides an implicit neural
representation of a scene in terms of local densities and associated colors. In
effect, the scene representation is stored in the weights of a neural network,
usually a multilayer perceptron (MLP), that learns its shape and reflectance for
any coordinate and viewing direction. NeRFs use volume rendering [9], based
on ray-tracing from multiple camera positions. The volume density σ(x) can be
interpreted as the differential probability of a ray terminating at an infinitesimal
particle at location x. The expected color C(r) of the pixel with camera ray
r(t) = o + td is the integration of the radiance emitted by the field at every
traveled distance t from near to far bounds tn and tf , such that

C(r) =

∫ tf

tn

T (t) σ(r(t)) c(r(t),d) dt where T (t) = exp

(
−
∫ t

tn

σ(r(s)) ds

)
(1)

where c stands for the color. The function T denotes the accumulated trans-
mittance along the ray from tn to t, that is the probability that the ray trav-
els from tn to t without hitting any other particle. The authors propose two
MLPs to estimate the volume density function σ : x → [0, 1] and the direc-
tional emitted color function c : (x,d) → [0, 1]3, so the density of a point does
not depend on the viewing direction d, but the color does. This allows them
to model non-Lambertian reflectance. In addition, they propose a positional en-
coding for location x and direction d, which allows high-frequency details in the
reconstruction.

Neural Implicit Surfaces (NeuS) were introduced in [25] to improve
the quality of NeRF representation modelling watertight surfaces. For that, the
volume density σ is computed so as to be maximal at the zero-crossings of a
signed distance function (SDF) f :

σ(r(t)) = max

(
Φ′
s(f(r(t)))

Φs(f(r(t)))
, 0

)
where Φs(x) =

1

1 + e−sx
(2)

The SDF formulation makes it possible to estimate the surface normal as
n = ∇f(x). The reflectance of a material is usually determined as a function of
the incoming and outgoing light directions with respect to the surface normal.
Therefore, the normal is added as an input to the MLP that estimates color
c : (x,d,n), as shown in Fig. 1.
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3 LightNeuS

In this section, we present the key contributions that make LightNeuS a neural
implicit reconstruction method suitable for endoscopy in endoluminal cavities.
In this context, the light source is located next to the camera and moves with it.
Furthermore, it is close to the surfaces to be modeled. As a result, for any surface
point x = o + td , the irradiance decreases with the square of the distance to
the camera t. Hence, we can write the color of the corresponding pixel as [3]:

I(x) =
(
Le

t2
BRDF(x,d) cos (θ) g

)1/γ

(3)

where Le is the radiance emitted by the light source to the surface point, that
was modeled and calibrated in the EndoMapper dataset [1] according to the
SLS model from [16]. The bidirectional reflectance distribution function (BRDF)
determines how much light is reflected to the camera, and the cosine term
cos (θ) = −d · n weights the incoming radiance with respect to the surface
normal n. Equation (3) also takes into account the camera gain g and gamma
correction γ.

3.1 Using Illumination Decline as a Depth Cue

The NeuS formulation of Section 2 assumes distant and fixed lighting. However,
in endoscopy inverse-square light decline is significant, as quantified in Eq. (3).
Accounting for this is done by modifying the original NeuS formulation as fol-
lows. Fig. 1 depicts the original NeuS network in black. It uses a SDF network—
shown in orange—to estimate a view-independent geometry and only the final
RGB color depends on the viewing direction d. It is estimated by the network
shown in green. Thus, this second network c(x,d,n) may learn to model non-
Lambertian BRDF(x,d), including specular highlights, and the cosine term of
Eq. (3). However, if the distance t from the light to the point x is not provided
to the color network, the 1/t2 dependency cannot be learned, and surface recon-
struction will fail. Our key insight is to explicitly supply this distance as input
to the volume rendering algorithm, as shown in red in Fig. 1 and reformulate
Eq. (1) as

C(r) =

∫ tf

tn

T (t) σ(r(t))
c(r(t),d,n)

t2
dt (4)

This conceptually simple change, using illumination decline while training, un-
locks all the power of neural surface reconstruction in endoscopy.

3.2 Endoscope Photometric Model

Apart from illumination decline, there are several significant differences between
the images captured by endoscopes and those conventionally used to train NeRFs
and NeuS: fish-eye lenses, strong vignetting, uneven scene illumination, and post-
processing.
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Endoscopes use fisheye lenses to cover a wide field of view, usually close
to 170 degrees. These lenses produce strong deformations, making it unwise to
use the standard pinhole camera model. Instead, specific models [19, 10] must
be used. Hence, we also modified the original NeuS implementation to support
these models.

The light sources of endoscopes behave like spotlights. In other words, they
do not emit with the same intensity in all directions, so Le in Eq. (3) is not
constant for all image pixels. This effect is similar to the vignetting effect caused
by conventional lenses, that is aggravated in fisheye lenses. Fortunately, they can
be accurately calibrated [1, 16] and compensated for.

The post-processing software of medical endoscopes is designed to always
display well-exposed images, so that physicians can see details correctly. An
adaptive gain factor g is applied by the endoscope’s internal logic and gamma
correction is also used to adapt to non-linear human vision, achieving better
contrast perception in mid tones and dark areas. Endoscope manufacturers know
the post-processing logic of their devices, but this information is proprietary and
not available to users. Again, gamma correction can be calibrated assuming it is
constant [3], and the gain change between successive images can be estimated,
for example, by sparse feature matching.

All these factors must be taken into account during network training. Thus,
our photometric loss is computed using a normalized image:

I ′ =

(
Iγ

Leg

)1/γ

(5)

4 Experiments

We validate our method on the C3VD dataset [4], which covers all different sec-
tions of the colon anatomy in 22 video sequences. This dataset contains sequences
recorded with a medical video colonoscope, Olympus Evis Exera III CF-HQ190L.
The images were recorded inside a phantom, a model of a human colon made of
silicone. The intrinsic camera parameters are provided. The camera extrinsics
for each frame are estimated by 2D-3D registration against the known 3D model.
In an operational setting, we could use a structure-from-motion approach such
as COLMAP [21] or a SLAM technique such as [8], which have been shown to
work well in endoscopic settings. The gain values were easily estimated from the
dataset itself. For vignetting, we use the calibration obtained from a colonoscope
of the same brand and series from the EndoMapper dataset [1].

During training, we follow the NeuS paper approach of using a few informa-
tive frames per scene, as separated as possible, by sampling each video uniformly.
For each sequence, we train both the vanilla NeuS and our LighNeuS using 20
frames each time. They are extracted uniformly over the duration of the video.
We use the same batch size and number of iterations as in the original NeuS
paper, 512 and 300k respectively. Once the network is trained, we can extract
triangulated meshes from the reconstruction. Since the C3VD dataset comprises
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Table 1. Reconstruction error [mm] on the C3VD dataset. Surveyed: points
seen at least once. Extended: points within 20 mm of a visible point. Anatomical
regions: Cecum, Descending, Sigmoid and Transverse. For NeuS, we provide two sets
of numbers because the optimization failed on the other sections. In italics we mark
the sequences where the camera moves less than 1 cm yielding higher errors.

NeuS LightNeuS (ours)

Sequence C1a C4b C1a C1b C2a C2b C2c C3a C4a C4b D4a S1a S2a

S
u
r.

MedAE 4.53 10.6 0.95 4.85 1.40 3.26 2.57 1.12 1.90 1.41 2.66 4.23 1.19
MAE 5.07 10.6 1.48 5.11 1.54 3.65 3.00 2.54 2.14 1.63 3.26 4.33 1.89
RMSE 6.40 11.6 2.01 5.63 1.87 4.39 3.74 5.49 2.92 2.10 4.08 4.96 2.78

E
x
t.

MedAE 4.68 5.35 0.83 4.89 1.41 3.32 2.54 1.27 1.91 1.45 4.50 4.01 1.40
MAE 6.24 6.74 1.26 5.10 1.56 3.70 3.01 3.83 2.18 1.72 6.61 4.19 2.36
RMSE 8.77 8.56 1.72 5.60 1.90 4.42 3.77 7.96 2.95 2.20 9.32 4.87 3.96

LightNeuS (ours)
S3a S3b T1a T1b T2a T2b T4a Mean T2c T3a T3b T4b Mean
2.57 3.63 3.43 2.33 2.24 2.16 1.15 2.39 5.07 6.39 11.0 1.75 6.04
2.68 4.16 3.47 2.72 2.28 2.30 2.31 2.80 5.45 8.65 12.1 6.70 8.23
3.18 4.81 4.07 3.34 2.58 2.70 3.79 3.58 6.48 10.7 14.4 11.3 10.7
2.87 3.54 3.38 2.69 2.19 2.12 1.29 2.53 4.44 6.54 13.6 8.00 8.16
3.27 4.64 3.31 3.21 2.22 2.28 2.22 3.15 5.36 8.10 14.1 10.4 9.47
4.04 6.10 3.86 3.96 2.55 2.69 3.32 4.18 6.78 9.94 15.9 13.9 11.6

a ground-truth triangle mesh, we compute point-to-triangle distances from all
the vertices in the reconstruction to the closest ground-truth triangle.

In the first rows of Table 1, we report median (MedAE), mean (MAE), and
root mean square (RMSE) values of these distances for all vertices seen in at
least one image. Columns show the result for 22 sequences. We note 18 sequences
where the camera moved at least 1 cm, and the reconstruction yielded a mean
error of 2.80 mm. The other four smaller trajectories (<1cm) lack parallax and
the mean error is higher (8.23mm).

This is in the range of reported accuracy in the literature for monocular dense
non-watertight depth estimation, 1.1mm in [14] for high parallax geometry in
laparoscopy, which is a much more favorable geometry than the one we have
here, or 0.85mm for the significantly smaller-size cavities of endoscopic endonasal
surgery (ESS) [11].

In contrast, vanilla NeuS assumes constant illumination. The strong light
changes typical of endoscopy fatally mislead the method. We only report numer-
ical results of NeuS in two sequences because in all the rest, the SDF diverges
and ends up blown out of the rendering volume, giving no result at all.

We provide a qualitative result in Fig. 2 and additional ones in the sup-
plementary material. Note that the watertight prior inherent to an SDF allows
the network to hallucinate unseen areas. Remarkably, these unsurveyed areas
continue the tubular shape of the colon and we found them to be mostly accu-
rate when compared to the ground truth. For example, the curved areas of the
colon where a wall is occluded behind the corner of the curve is reconstructed,
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Fig. 2. Benefits of illumination decline. Result on the “Cecum 1 a” sequence. Top:
The NeuS reconstruction exhibits multiple artifacts that make it unusable. Bottom:
Our reconstruction is much closer to the ground truth shape. The error is shown in
blue if the reconstruction is inside the surface, and in red otherwise. A fully saturated
red or blue denotes an error of more than 1cm and grey denotes no error at all.

as shown in Fig. 3. This ability to “fill in” observation gaps may be useful in
providing the endoscopist with an estimate of the percentage of unsurveyed area
during a procedure.

We hypothesize that this desirable behavior stems from the fact that the
network learns an empirical shape prior from the observed anatomy of the colon.
However, we don’t expect this behavior to hold for distant unseen parts, but only
for regions closer than 20 mm to one observation. In the last rows of Table 1, we
compute accuracy metrics for this extended region. It includes not only surveyed
areas, but also neighboring areas that were not observed.

5 Conclusion

We have presented a method for 3D dense multi-view reconstruction from endo-
scopic images. We are the first to show that neural radiance fields can be used
to obtain accurate dense reconstructions of colon sections of significant length.
At the heart of our approach, is exploiting the correlation between depth and
brightness. We have observed that, without it, neural reconstruction fails.

The current method could be used offline for post-exploration coverage anal-
ysis and endoscopist training. But real-time performance could be achieved in
the future as the new NeuS2 [26] converges in minutes, enabling automatic cov-
erage reporting. Similar to other reconstruction methods, for now our approach
works in areas of the colon where there is little deformation. Several sub-maps of
non-deformed areas can be created if necessary. However, this limitation could
be overcome by adopting the deformable NeRFs formalism [18].
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(a) First frame (c) Ground Truth (e) 3D Reconstruction

(b) Deepest frame (d) Surveyed (GT) (f) Error

1 20 -1 cm 0 +1 cm

Fig. 3. Reconstructing partially observed regions. Results on “Transcending 4 a”
sequence. The camera performs a short trajectory from (a) to (b). In (c) we represent
both frames and intermediate camera poses. (d) Number of frames seeing each surface
point, with GT unobserved areas shown in gray. (e) We managed to reconstruct a
curved section of the colon. (f) Our method plausibly estimates the wall of the colon
at the right of camera (b), although it was never seen in the images.
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Supplementary material

(a) First frame (c) Ground Truth (e) 3D Reconstruction

(b) Last frame (d) Surveyed (GT) (f) Error

1 20 -1 cm 0 +1 cm

Fig. 4. Reconstructing with low parallax. Results on “Transcending 1 a” sequence.
(c) The camera travels in a straight line, covering less than a third of the section. As
shown in (a) and (b), the haustra completely hide the background walls. (e) Conse-
quently, the reconstruction underestimates the diameter of the end of the tube. How-
ever, the three characteristic folds in our reconstructed colon match the ground truth
in number and location. In addition, areas observed multiple times —red in (d)— are
reconstructed with high accuracy —gray in (f).

Input & GT N = 2500 N = 5000 N = 12500 N = 15000 N = 65000

Fig. 5. Reconstruction convergence. Results on “Transcending 1 a” sequence. We
show the intermediate results for N optimisation iterations. We see how the recon-
struction converges quickly. In 65k iterations we already have a reasonable solution,
compared to the 300k iterations proposed by the authors of NeuS.
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(a) First frame (c) Ground Truth (e) 3D Reconstruction

(b) Last frame (d) Surveyed (GT) (f) Error

1 20 -1 cm 0 +1 cm

Fig. 6. Reconstructing congruent shapes. Results on “Descending 4 a” sequence.
(c) The camera takes the most challenging route: the shortest translation of the se-
quences tested, turning towards the right wall. (d) This results in very poor coverage,
especially to the left of the camera. The curve to the left is never seen. (e) In this
way we check that our method only “hallucinates” partially observed areas, based on
the structure of the region it has actually observed. As a result, the reconstruction
continues as a straight tube. Again, areas observed multiple times —red in (d)— are
reconstructed with high accuracy —gray in (f).

(a) (b) (c)

Fig. 7. Post-intervention 3D visualization. Results on “Transcending 4 a” se-
quence. Our reconstructions would allow physicians to revisit the area explored during
the endoscopy. This opens the door to augmented reality (AR) in post-intervention
diagnostics. As an example, we show a visualisation of the area not surveyed during
the procedure, marked in red. After inspecting a colon section, our watertight surface
displays (a) visualized and (b), (c) non-visualized mucosa. The doctor can analyse
non-visualized areas and make decisions about subsequent exploration. A video of this
demonstration is included in the supplementary material.


