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Submapping and graphical methods have been shown to be valuable approaches to simultaneous localiza-
tion and mapping (SLAM), providing significant advantages over the classical extended Kalman filter (EKF)
solution: they are faster and, when using local coordinates, produce more consistent estimates. The main contri-
bution of this paper is CI-Graph SLAM, a novel algorithm that is able to efficiently map large environments by
building a graph of submaps and a spanning tree of this graph with the following properties: (1) any pair of
neighboring submaps in the spanning tree are conditionally independent and (2) the current submap is always
up to date, containing the marginal probabilities of the submap variables given all previous measurements.
Thanks to these properties, an old submap can be updated at any time by performing a single propagation
from the current map to the old submap along the spanning tree. This operation is required only when a map
is revisited, with a cost linear with the number of maps in the loop. At the end of the experiment the method
performs a single propagation through the whole tree, recovering exactly the same marginals for all the map
variables as the EKF–SLAM algorithm does, without ever needing to compute the whole covariance matrix.
To evaluate CI-Graph performance in extremely loopy environments, the method was tested using a synthetic
Manhattan world. The behavior of the algorithm in large real environments is shown using the public data sets
from the RAWSEEDS project in which a robot equipped with a trinocular camera traversed indoor and outdoor
environments with several loops and revisited areas. Loops are robustly closed using a novel technique that
detects candidate loop closures using a visual vocabulary tree and filters them using temporal and geometric
constraints. Our experiments show that when using frontal cameras, the technique outperforms FAB-MAP. The
epipolar geometry of the loop-closing images is used to find feature matches that are imposed on the CI-Graph
to correct the submap estimations along the loop. C© 2010 Wiley Periodicals, Inc.

1. INTRODUCTION

The goal of the current simultaneous localization and map-
ping (SLAM) research is to develop very efficient algo-
rithms that will allow a robot to operate in increasingly
bigger environments without losing accuracy. At the same
time, vision sensors are gaining even more importance in
present-day applications due to the richness of information
they can provide and their attractive low cost.

To perform SLAM in large environments, submap-
ping algorithms divide the whole map into groups of state
vector variables (features and/or vehicle poses) that are
processed separately. Previous submapping techniques are
based on building local maps of limited size that are sta-
tistically independent (Huang, Wang, & Dissanayake, 2008;
Paz, Tardós, & Neira, 2008b; Tardós, Neira, Newman, &
Leonard, 2002; Williams, Dissanayake, & Durrant-Whyte,
2002). This requirement imposes important constraints to
the submap structure. Valuable information present in a
submap cannot be used to improve other submap estimates
because otherwise the independence property could not

be preserved. In addition, environment features observed
in different maps have independent estimations in each
map.

Instead of using independent submaps, our CI-Graph
SLAM approach is based on building conditionally inde-
pendent submaps (CI submaps) as proposed in Piniés and
Tardós (2008). In that work we showed that CI submaps can
share submap components and information and the whole
map posterior can be obtained in a consistent manner by
a single backpropagation of information from the current
submap to the previous submaps. Although the technique
was demonstrated in real environments, it was restricted to
sequences of maps forming simple topologies such as sin-
gle loops. The generalization to more complex topologies
in which the CI property between maps still holds is not
trivial.

The main contribution of this paper is CI-Graph SLAM,
a novel algorithm that is able to efficiently map large en-
vironments with any topology by building a graph of
submaps in which an edge between two submaps repre-
sents that they share some information. The core of the
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algorithm consists of building a spanning tree of the graph
where these two properties are guaranteed:

1. Any pair of neighboring submaps in the spanning tree
are conditionally independent. We show that in the pres-
ence of loops in the graph, this can be achieved by in-
cluding a copy of the variables that form the loop (the
reobserved features or the robot pose) in all the submaps
along the loop.

2. The submap where the robot is currently located is al-
ways maintained up to date, containing the marginal
probabilities of the submap variables given all previ-
ous measurements. During exploration, this property is
guaranteed by construction. When the robot revisits a
map, the old map is updated before the robot switches
to it.

Thanks to these two properties, an old submap can be up-
dated at any time by performing a single propagation from
the current map to the old submap along the path that joins
them in the spanning tree, with a cost that is linear in the
number of submaps in the path. In practice, this operation
is required only when a map is revisited to guarantee that
the second property still holds. To recover the marginals for
all the map variables, it is enough to perform a single prop-
agation though the whole spanning tree.

It is important to note that the method of decoupling
the whole map in CI submaps and maintaining the span-
ning tree is general, not requiring any assumption about the
underlying distributions or the estimation method used.
In our implementation we perform the classical linear–
Gaussian approximation and use extended Kalman filter
(EKF)–SLAM for computing the submaps. As a result,
our CI-Graph implementation when using absolute coordi-
nates obtains exactly the same linear–Gaussian approxima-
tion of the marginals for all the map variables as the clas-
sical single-map EKF–SLAM algorithm does, without ever
needing to compute the whole covariance matrix.

Given the importance of visual sensors, cameras were
used during the experimental validation of the technique.
To allow the system to work with an arbitrary number of
cameras, we have designed an algorithm that treats each
camera independently. The only information required is
the intrinsic and extrinsic calibration of the camera array.
In particular, the experiments were carried out in the con-
text of the RAWSEEDS project with a trinocular camera
mounted on a robot (RAWSEEDS, 2009). To detect that the
robot is revisiting a previous mapped area, we have de-
veloped an appearance-based loop-closing algorithm based
on a visual vocabulary tree (Nister & Stewenius, 2006). To
avoid false positives, the candidate loops are filtered us-
ing a combination of temporal and geometric consistency
checks. We have compared our approach with the FAB-
MAP (Cummins & Newman, 2008) implementation made
available by the authors, obtaining superior performance.
We believe that the RAWSEEDS data sets are particularly

challenging for FAB-MAP because of the use of forward-
looking cameras instead of panoramic or lateral-looking
cameras.

In Section 2 we give a summary of the related work.
Section 3 is devoted to explain the CI-Graph SLAM al-
gorithm, reviewing first the theory on which CI submaps
are based. Section 4 shows a simulation experiment in a
Manhattan-like world that allows us to test the computa-
tional properties of the algorithm in complex topologies. In
Section 5 we present the algorithm implemented to work
with an arbitrary number of cameras. Section 6 explains
the appearance-based method used to detect loop closures
and revisited areas. Section 7 shows the results obtained
in real experiments using the trinocular system. Finally,
in Section 8 we draw the conclusions and propose future
work. A preliminary version of CI-Graph building two-
dimensional (2D) maps from laser scans was presented in
Piniés, Paz, and Tardós (2009). In this paper, apart from
a more detailed presentation of the method and its prop-
erties, we demonstrate the technique performing three-
dimensional (3D) visual SLAM in real large environments
with multiple loops. We have added an algorithm that al-
lows us to easily include any number of cameras in the sys-
tem and a robust loop-closing algorithm based on visual
appearance.

2. RELATED WORK

CI-Graph is a submapping algorithm designed to work ef-
ficiently in large environments without making any approx-
imation besides the inherent EKF linearizations. Neverthe-
less, the optimistic effect of linearizations in the estimation
of the map covariance (Castellanos, Martinez-Cantin,
Tardós, & Neira, 2007; Julier & Uhlmann, 2001) is greatly
reduced by representing each submap with respect to its
own local reference. Although CI-Graph can deal with any
kind of sensors, the union of CI-Graph with vision devices
turns out to be natural and powerful for two reasons. First,
sensors with partial observability require the integration of
measurements taken from different robot poses to obtain
an accurate estimation of a feature. Thus, the ability of the
algorithm to share features and state components between
maps makes it especially suitable to be applied in visual
SLAM. Second, visual sensors provide very rich visual in-
formation that is extremely useful to recognize previously
visited areas after long traversals of the environment. Using
this information, loop-closing constraints can be applied
to the system, increasing map accuracy. In the following
sections we give a brief review of these three main topics:
large-scale SLAM, visual SLAM, and relocation algorithms.

2.1. Large-Scale SLAM

Essential tasks in mobile robotics strongly rely not only on a
precise estimation of the robot location but also on an accu-
rate map estimate of the surrounding environment. SLAM
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algorithms confront both problems in a single estimation
process. The first consistent solution proposed was based
on the EKF (Durrant-Whyte & Bailey, 2006; Smith, Self, &
Cheeseman, 1988). However, a standard implementation of
the algorithm suffers from memory and time complexities
of O(n2) per step, where n is the total number of features
stored in the map. To reduce the computational cost, new
algorithms take advantage of the fact that SLAM is a sparse
problem, i.e., from a given robot position only a limited
number of features is visible. If all features were always vis-
ible, then no algorithm could overcome the computational
complexity of the EKF solution because the linearized sys-
tem to be solved would be full.

Submapping strategies have become interesting ap-
proaches because they work in small regions of the envi-
ronment, reducing the computational cost of EKF and im-
proving consistency. Under the assumption of white noise
and if no information is shared between maps, submaps are
statistically independent. This allows submaps to be con-
sistently joined using the map joining algorithm (Tardós
et al., 2002) or the equivalent constrained local submap fil-
ter (CLSF) (Williams et al., 2002) with joining cost O(n2).
More recently, divide and conquer SLAM (Paz et al., 2008b)
has been shown to provide a more efficient strategy to join
local maps with amortized linear cost in exploration, out-
performing past sequential methods. Despite its scalability,
the main limitations of these techniques are their inability
to share information between maps and a memory cost of
O(n2).

There are submapping techniques that work on
approximations trading off precision for complexity prop-
erties (Leonard & Feder, 2000). Some of these techniques
combine submaps with a graph structure that repre-
sents adjacency relations between maps. In Atlas (Bosse,
Newman, Leonard, Soika, Feiten, et al., 2003), and CTS
(Leonard & Newman, 2003), for example, nodes of the
graph correspond to submaps and links between nodes
represent relative locations between adjacent submaps.
However, in order to achieve high efficiency, they do not
impose loop constraints to update the graph estimation.
Hierarchical SLAM (Estrada, Neira, & Tardós, 2005) im-
proves these approaches by introducing an optimization
step along the cycles of the graph. Nevertheless, it remains
an approximate algorithm because the optimized informa-
tion is not transmitted back to the submaps.

In contrast to EKF-based approaches, there is a fam-
ily of algorithms that considers the full SLAM problem in
a smoothing and mapping (SAM) sense. Graph SLAM and
square root SLAM (Dellaert & Kaess, 2006; Thrun, Burgard,
& Fox, 2005) showed that the intrinsic structure of the prob-
lem can be modeled as a sparse graph (obtained from the
sparse information matrix) when the state vector is aug-
mented with the total trajectory. The sparse structure of
these algorithms is based on the conditional independence of
the features given the whole trajectory (Thrun et al., 2005)

that in the case of an information form representation of the
state produces a sparse information matrix (Eustice, Singh,
& Leonard, 2006).

The main problem of these techniques is that their
complexity continuously grows with the number of robot
poses, even when the robot is revisiting a previously
mapped area. Iterative algorithms (Kaess, 2008) have been
developed to reduce this complexity.

Based on EKF, graphical SLAM (Folkesson & Chris-
tensen, 2006) builds a compressed graph of all robot and
feature poses as nodes. However, special cases such as loop
closings need particular manipulations. Treemap (Frese,
2006) is based on creating a balanced binary tree structure of
the map. The technique uses a detailed graph granularity to
construct the tree, in which leaf nodes represent each map
entity (current robot and feature locations), resulting in a
very complete but complex graph algorithm.

In this work we are interested in methods that do not
use any approximations. We consider the SLAM problem
as a Gaussian graph model that evolves over time. We pro-
pose CI-Graph SLAM based on Piniés and Tardós (2008),
a submapping method that performs EKF updates, effi-
ciently reducing its quadratic cost. Unlike other nonap-
proximated submapping approaches (Tardós et al., 2002;
Williams et al., 2002), CI-Graph SLAM builds a spanning
tree of conditionally independent submaps that allows us
to transmit information between submaps in a consistent
manner. Compared to batch algorithms (Dellaert & Kaess,
2006; Thrun et al., 2005), CI-Graph does not need to aug-
ment the state vector with the full trajectory. Instead, only
robot poses corresponding to map transitions are consid-
ered. Graphically, we could say that the reduction in the
computational cost in batch algorithms is based on con-
ditioning along the whole robot trajectory, whereas in our
algorithm the cost is reduced by conditioning across the
border between neighboring maps. Compared to Treemap
(Frese, 2006) or Thin Junction Tree (Paskin, 2003), in CI-
Graph the nodes do not represent each element of the map
but the CI submaps. This results in a smaller graph with a
high level of abstraction of the map.

2.2. Visual SLAM

Visual SLAM research has been focused on the use of ei-
ther monocular or stereo vision to obtain 3D information
from the environment, usually represented as a sparse set
of interest points. This visual framework allows the esti-
mation of the trajectory of the camera in six degrees of
freedom (DOF). Several monocular SLAM systems have
been proposed, obtaining good results for small envi-
ronments (Bailey, 2003; Davison, Reid, Molton, & Stasse,
2007; Deans & Hebert, 2000; Fitzgibbons & Nebot, 2002;
Gil, Reinoso, Martı́nez-Mozos, Stachniss, & Burgard, 2006;
Jensfelt, Kragic, Folkesson, & Bjorkman, 2006; Kwok &
Dissanayake, 2004; Lemaire, Lacroix, & Sola, 2005; Sola,
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Monin, Devy, & Lemaire, 2005). One of the main challenges
when working with monocular systems is how to initial-
ize a feature given the partiality of the bearing-only infor-
mation provided by a single camera. The work done in
Civera, Davison, and Montiel (2008) represents a remark-
able solution to this problem with the introduction of an
inverse depth (ID) parameterization to represent points. In
this way, the information provided by a feature can be in-
corporated into the estimation from the first image in which
the feature is observed. To compute an estimate, most of
the previous systems are based on the implementation of
a Bayesian filter and in particular on the EKF algorithm.
A different and very interesting solution for monocular
SLAM is presented in Klein and Murray (2007), where the
authors adopt a more classical computer vision approach
using as estimator engine a recursive structure from mo-
tion (SfM) algorithm. Under this scheme, the SLAM system
is split into two separate threads. The first thread tracks the
pose of the camera relative to the map, as if this map were
certain, and the second thread creates a map with a sub-
set of the frames (called keyframes). Features are included
in the map using triangulation between two keyframes. To
obtain the map, feature positions and keyframe poses are
jointly optimized using bundle adjustment. This technique
uses thousands of interest point correspondences between
keyframes, obtaining highly accurate solutions of medium-
size loops (around 150 keyframes). A recent version of the
algorithm uses as well small line edges as features to im-
prove camera tracking during fast motion (Klein & Murray,
2008).

The main advantage of stereo visual systems over
monocular cameras is that the former can provide the scale
of the estimation when the baseline between the cameras
is known and points close to the camera are observed.
Davison and Murray demonstrated the first active stereo
visual SLAM system (Davison, 2003; Davison & Murray,
2002). More stereo SLAM implementations for small envi-
ronments can be found in Hygounenc, Jung, Soueres, and
Lacroix (2004), Iocchi, Konolige, and Bajracharya (2000),
Jung and Lacroix (2003), Saez, Escolano, and Penalver
(2005), and Se, Lowe, and Little (2002). Stereo vision can
be greatly improved by combining monocular and stereo
information, as is pointed out in Paz, Piniés, Tardós, and
Neira (2008a) and Sola, Monin, Devy, and Vidal-Calleja
(2008). Points far from the camera and parameterized us-
ing ID are useful to obtain accurate angular informa-
tion, whereas close points provide translation and scale
information through the stereo baseline, avoiding “scale-
drift.”

Visual SLAM in large environments has recently been
tackled in different works (Clemente, Davison, Reid, Neira,
& Tardós, 2007; Eade & Drummond, 2007; Konolige &
Agrawal, 2008; Paz et al., 2008a; Piniés & Tardós, 2008),
most of them based on submapping techniques in order to
reduce the computational cost.

In Clemente et al. (2007), a hand-held monocular cam-
era is used to build a set of statistically independent
submaps. When a loop closure is detected, the relative po-
sition of the maps in the loop is optimized using the hier-
archical SLAM framework. Because submaps are indepen-
dent and the scale is not observable, each map converges to
a different scale, introducing an extra difficulty in the loop-
closing procedure. In addition, common features between
adjacent submaps are duplicated and suboptimally esti-
mated because their mutual information cannot be merged.

In Konolige and Agrawal (2008), following a spirit
similar to that of bundle adjustment, the authors solve a
reduced nonlinear system of camera pose constraints ob-
tained from the actual large system of stereo observations.
The system reduction is based on two operations. First, fea-
tures are marginalized out from the system and their in-
formation is spread out among the corresponding camera
frames, increasing their linkage. Second, as frames accu-
mulate over extended trajectories, increasing complexity,
the size of the system is again reduced using marginaliza-
tion, keeping only a selected subset of frames called the
skeleton. However, it is not clear how this subset is selected
and what the influence is of the loss of information due to
the marginalization. Using this technique, large loop clo-
sures can be solved quickly. Similarly, the works of Mei,
Sibley, Cummins, Newman, and Reid (2009) and Sibley,
Mei, Reid, and Newman (2009) relies on an adaptive bun-
dle adjustment method in which poses and features are rep-
resented in relative references using a graph model. During
loop closure events, the graph is traversed in a breadth-first
search to look for nodes that should be adjusted. Nodes are
traversed until the reprojection error reaches an imposed
threshold. This approximation defines an active region that
allows the method to achieve a solution in constant time
with a map representation in relative coordinates. A ques-
tionable point remains in the representation of the total so-
lution, which requires transformation of the relative repre-
sentation into a global Euclidean reference with a cost that
is far from being constant.

In Eade and Drummond (2007), a graph of statistically
independent submaps is built using a monocular camera.
As in Clemente et al. (2007), each submap converges to its
own scale, but this situation is explicitly managed in the
algorithm by working with similarity transformations in-
stead of rigid transformations between maps. Similarly to
Klein and Murray (2007), the camera pose is not estimated
as part of the local state but is tracked independently us-
ing the map estimate. The uncertainty of each local map
is stored in information form. Common features between
adjacent maps are used to locally constrain the relative po-
sitions of the maps, whereas graphs cycles (loop closures)
generate a second type of topological constraints. By com-
bining local and topological constraints in a total cost func-
tion defined by the authors, the graph structure is opti-
mized using a preconditioned gradient descent algorithm.
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Although global edges in the optimization are not statis-
tically independent, they are treated as such by the algo-
rithm, producing, according to the authors, conservative
results.

Finally, Paz et al. (2008a) and Piniés and Tardós (2008)
present previous work with monocular and stereo systems
in large environments. The estimation algorithm in these
papers is based on conditionally independent submaps (CI
submaps). The main advantage of CI submaps over inde-
pendent ones is that common information between maps
can be consistently shared and transmitted, taking into ac-
count all the information available about a feature. How-
ever, complex camera trajectories with several intersecting
loops are not easily tackled by the algorithm. The work
presented in the current paper overcomes this problem, ex-
tending the use of CI submaps to arbitrary map topologies.

2.3. Loop Closing and Relocation

In the visual SLAM context, relocation and loop closure de-
tection are two of the most important topics that have been
addressed in recent years. The former allows the system to
carry out recovery actions after rough motions and blurring
defects, which are very common causes for tracking fail-
ure. The second, loop closure detection, deals with the ca-
pability of a visual SLAM system to recognize a previously
visited place. Both make part of the well-known loop clo-
sure problem. Recently, a comparison among the most rele-
vant loop closure methods for visual SLAM was presented
in Williams, Cummins, Neira, Newman, Reid, et al. (2009).
Three paradigms were compared: image-to-image, which
works only in the image space; map-to-map, which uses
metric map information; and image-to-map, which uses
visual and metric information to perform relocation. The
main conclusion of the work suggests a fusion of image-
to-image and relocation to deal with the drawbacks of the
individual methods.

If we focus on loop closure detection, we find that
appearance-based methods are particularly suitable for
online place recognition due to the richness in information
that cameras provide. These methods can be classified as
image-to-image and commonly rely on the construction of
visual vocabularies or bag of words. The work presented in
Sivic and Zisserman (2003), for example, describes an ap-
proach to object and scene retrieval that searches for and
localizes all the occurrences of a user-outlined object in
a video. The object is represented by a set of viewpoint-
invariant region descriptors or clusters that constitutes the
visual words, so that recognition can proceed success-
fully despite changes in viewpoint, illumination, and par-
tial occlusion. The temporal continuity of the video within
a shot is used to track the clusters and reject unstable
regions, reducing the effects of noise in the descriptors.
The analogy with text retrieval is in the implementation,
in which matches on descriptors are precomputed (using

vector quantization), and inverted file systems and doc-
ument rankings are used. The result is fast retrieval of a
ranked list of key frames. In Cummins and Newman (2008)
the authors propose a probabilistic framework for naviga-
tion using only appearance data. By learning a generative
model of appearance, they can compute the probability that
any two sets of observations originate from the same loca-
tion; hence given a vocabulary and an approximate prob-
abilistic model of observations, it is possible to compute a
probability density function (pdf) over location from an ob-
servation. Although the algorithm complexity is linear in
the number of places, learning a generative model is an of-
fline process. In addition, every time the model has to be
updated, the system experiences a high cost. The method
provides high accuracy on recognizing a place but does not
use metric information from the map to discard false posi-
tives on loop closure detections.

In the case of relocation for visual SLAM, the work
of Williams, Klein, and Reid (2007) is one of the first that
added a robust module to provide a real-time monocular
SLAM system with a relocation tool based on fast keypoint
learning (Lepetit & Fua, 2006): a descriptor (a Harris patch)
is registered and learned at any viewpoint, scale, or orien-
tation by performing classification with randomized trees.
When the SLAM system has become lost, the randomized
list classifier is used on each new frame to generate a tree
of feature correspondence hypotheses detected in the im-
age. Relocation is performed in an image-to-map frame-
work in which the relative pose of the camera to the map
is computed using the well-known random sample consen-
sus (RANSAC) algorithm for three feature correspondences
and their three-point pose (Fischler & Bolles, 1981). Despite
its robustness, the method does not scale well to larger en-
vironments like the image-to-image method.

We find alternative works that deal with the full loop
closure problem in a pose-to-pose fashion (Olson, 2009).
A topological graph of robot poses is maintained so that
when there is evidence of an unambiguous loop, nodes in
the graph are merged only if the uncertainty between their
poses is consistent. This prevents one from accepting false-
positive cases. The idea of joining visual loop detection and
relocation is explored in this work in a way similar to that
of Eade and Drummond (2008), where the construction of
a visual vocabulary and the solution of an epipolar geome-
try problem are fused in a single scheme. The method that
we propose basically consists of three stages: first, we build
an appearance-based representation (bag of words) of im-
ages acquired from one of the cameras; then, our system
checks whether the current scene was seen before, so that
a loop is detected. This is done during SLAM execution,
in which the loop detection thread delivers candidate past
keyframes to the active current submap. These candidates
present high similarity with previous images of already vis-
ited submaps. After a loop is detected, the algorithm dis-
cards false positives and performs closure by verifying the
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geometrical constraints imposed: features detected in can-
didate past keyframes are matched in the current frames
using an active epipolar search based on the fundamental
matrix calculation.

3. CI-GRAPH SLAM

The main contribution of this paper is a new algorithm that
extends the properties of CI submaps to arbitrary trajecto-
ries with any number of loops. A detailed explanation of
CI submaps was presented in Piniés and Tardós (2008). In
the next section we give a brief review of CI submaps. In
Section 3.2 we define our new CI-Graph technique. Finally
in Section 3.3 we describe a practical implementation of our
algorithm.

3.1. Conditionally Independent Submap Review

Figure 1 shows a Bayesian network that represents the
stochastic dependencies between a pair of sequentially
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Figure 1. Bayesian network that describes the probabilistic
dependencies between a pair of consecutive CI submaps (top
and middle) and its corresponding CI graph (bottom).

built CI submaps. The state vector of each submap is given
by [

xA

xC

] [
xB

xC

]
, (1)

where xA represents state components that belong only to
the first map, xB is for elements exclusively included in
the second submap, and xC represents features and vehicle
states that are shared between both. Notice that common
elements xC are replicated in each submap.

As can be seen in the figure, the only connection be-
tween the set of nodes (xA, za) and (xB , zb) is through node
xC , i.e., both subgraphs are d-separated given xC (Bishop,
2006). This implies that nodes xA and za are condition-
ally independent of nodes xB and zb given node xC . Intu-
itively this means that if xC is known, submaps 1 and 2 do
not carry any additional information about each other. This
property is what we call the submap conditional independence
(CI) property, which can be stated as

p(xA|xB, xC, za, zb) = p(xA|xC, za),

p(xB |xA, xC, za, zb) = p(xB |xC, zb). (2)

The process of building two consecutive CI submaps can be
summarized in four steps:

1. Build the first submap, obtaining

p(xA, xC |za). (3)

2. Start the second map with the result of marginalizing
out the noncommon elements:

p(xC |za) =
∫

p(xA, xC |za) dxA. (4)

3. Continue building the second submap, adding new fea-
tures xB and observations zb to it, obtaining

p(xB, xC |za, zb). (5)

4. Update the first submap using the following back-
propagation equations:

p(xA, xC |za, zb) = p(xA|xC, za, zb)p(xC |za, zb)

= p(xA|xC, za)p(xC |za, zb), (6)

where the second equality comes from submap CI prop-
erty (2). Observe that the first factor can be obtained
from the first submap (3) by conditioning, whereas the
second factor is obtained from the second submap (5) by
marginalization.

Note that the second map is initialized up to date by con-
struction in the second step and is maintained updated dur-
ing the third step. After applying the fourth step, both maps
are up to date without having to join them. Observe as well
that the fourth step (updating the first submap) can be ap-
plied at any moment. This allows us to schedule the back-
propagation in moments with low CPU loads or to delay it
until a loop closure is detected.

Journal of Field Robotics DOI 10.1002/rob



Piniés et al.: CI-Graph SLAM • 567

3.2. Definition of CI-Graph

To work with complex topologies, the algorithm pro-
posed is based on building an undirected graph of the CI
submaps. An undirected graph is defined as a pair G =
(N , EG), where N are the nodes of G and EG its undirected
edges (Cormen, Leiserson, & Rivest, 2001). In our graph,
N is the set of CI submaps mi with i = 1 . . . N . An edge
connecting two nodes is created either because the robot
makes a transition between the corresponding submaps or
because being the robot in a submap, it observes a feature
that belongs to another submap.

In addition, the algorithm builds a spanning tree
T (N , ET ) of the graph G with certain properties, where
ET ⊂ EG . A spanning tree T of a connected undirected
graph G is defined as a subgraph of G that is a tree (it con-
tains no cycles) and connects all the nodes. Our algorithm
ensures that by construction, any pair of submaps (mi , mj )
that are adjacent in T have a conditionally independent
structure as shown in Figure 1, sharing some vehicle and
feature states. Each edge in ET will be labeled with the cor-
responding shared states (Figure 1, bottom). Given any pair
of submaps, mi and mj , there is a unique path in T connect-
ing them. This path will allow us to transmit information
from map to map without losing the conditional indepen-
dence property between submaps. In all graph figures of
the paper, spanning tree edges ET will be depicted using a
continuous line and the remaining edges of G, i.e., EG\ET ,
will be traced with a dashed line.

To perform exact inference in the graph, the corre-
sponding spanning tree has to accomplish the following
properties:

1. Any pair of neighboring submaps in the tree are con-
ditionally independent given the common elements be-
tween them. This allows us to share elements between
maps and to update each submap taking into account
all observations without having to join them.

2. The submap where the robot is currently located is al-
ways maintained up to date, containing the marginal
probabilities of the submap variables given all measure-
ments. All previous maps are then updated backward
from the current map using the backpropagation equa-
tions of CI submaps.

Let us now explain how both properties can be fulfilled
during tree construction in more detail.

To accomplish property 1 in a pure exploratory tra-
jectory, we have to follow only the steps explained in Sec-
tion 3.1 for building consecutive conditionally independent
submaps. However, when a loop-closing event occurs (a
feature from a previous map is reobserved or the robot relo-
calizes in a map) this requirement is violated. To avoid this
inconsistency, we define the following rule: if two maps share
an element in common, all maps in the unique path between them
(we are in a tree) must have a copy of that element.

Figure 2 depicts this process. At the top we can see
the structure of three submaps before a loop-closing event
takes place. At this moment the spanning tree built (which
in this simple example it is just a single branch) perfectly
accomplishes all the properties: all pairs of neighboring
maps are conditionally independent given its common el-
ements, and the current submap (submap 3) is up to date
by construction. In the second row of the figure, the robot
at position x7 closes a loop by observing feature f1 through
measurement z7. As can be observed, property 1 is not ful-
filled anymore because there is an alternative path through
feature f1 between submaps 3 and 2, so they are not d-
separated anymore. To rectify this problem, we apply our
correction rule and include a copy of the common element
f1 between submaps 1 and 3 in all maps along the loop. Us-
ing this rule, we successfully restore the CI property as can
be observed in the third row of Figure 2.

Property 2 is guaranteed by construction in ex-
ploratory trajectories. However, when the robot revisits
a previous map, this requirement is not accomplished
anymore because the revisited map is out of date. To fulfill
property 2 in this case, we define the following rule: when
the robot revisits a previous map i from the current map j , we
first make an update of all maps in the path between j and i (i in-
cluded) using the backpropagation equations (6). By this rule we
guarantee that the revisited map, which is going to become
the current map, is up to date. Finally we copy the robot
along the path between both maps in order to accomplish
property 1 and switch to the revisited map.

Observe that the method proposed is independent of
both the particular distribution of the probability densities
and the optimization or estimation method implemented
to obtain a model of the environment. The decomposition
in submaps performed in CI-Graph depends only on gen-
eral probabilistic concepts and the intrinsic structure of the
SLAM problem. The actual implementation of the algo-
rithm developed in this paper is based on a filter paradigm
and, in particular, on the EKF. This means that we are intrin-
sically making a linear–Gaussian approximation of the cor-
responding submap marginals. The corresponding back-
propagation equations for Gaussian distributions can be
found in Appendix A. To reduce the effect of linearization
errors and obtain better consistency properties, we imple-
ment the CI submaps using local coordinates. The needed
transformation is explained in Appendix B.

3.3. CI-Graph Algorithm Description

Two operational levels can be distinguished in the al-
gorithm: local operations that are applied only to the
current submap mi and graph operations that are per-
formed through the graph involving at least two submaps.
Most of the time, the operations carried out when the
robot moves inside a CI submap are local operations
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Figure 2. Loop-closing example. Row 1: before closing the loop, maps accomplish the required properties by construction. Row 2:
when a previous feature is reobserved, the CI requirement is violated because there is a new path through f1 that connects submaps
2 and 3. Row 3: by copying the common feature f1 along the path from submap 1 to submap 3, the CI property is restored. Row 4:
CI-Graph and spanning tree of the three submaps after loop closing.

corresponding to standard EKF–SLAM equations. Graph
operations are more sporadic and can be considered as the
interface between CI submaps. In the following sections,
the graph operations are explained in detail as presented
in Algorithm 1.

3.3.1. Starting a New Submap

Suppose that the robot is in submap mi . In our cur-
rent implementation, the decision to start a new submap
mj is based on both a maximum number of fea-
tures per map and a threshold on the maximum angle
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Figure 3. Example using CI-Graph SLAM. The figure is divided into three rows that show information about the state of a
simulated experiment at three different instants of time (columns). In the first row, the map of the simulated environment with
the current robot position is shown. In the second row, the graph of relations between submaps is created according to the state
of the estimation. In the last row we show the state vectors of the estimated submaps at different moments of time. The red boxes
highlight which variables are introduced in the common part between maps at each time stamp.

uncertainty allowed. The steps in the algorithm are as
follows:

• Add mj to N .
• Add edge 〈mi , mj 〉 to ET .
• Copy robot pose and last seen features from mi to mj

(properties 1 and 2 are accomplished by construction).

In fact, the robot pose is copied twice in submap mj .
The first copy will represent the current robot position,

which changes as the robot moves through the new map.
The second copy will represent the initial position of the
robot when it entered the map. This initial pose remains
fixed as a common element with map mi .

An example can be seen in Figure 3. At time k2,
submaps m1 and m2 have already been explored and
a new submap m3 is being created. Nodes m1 and m2
share in common a robot position Rk1 and a feature f4.
Submap 3 is initialized with robot Rk2 and feature f6 from
submap 2.
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Algorithm 1 CI-Graph SLAM

z0, R0 = getObservations
m0 = initMap(z0, R0)
[G,T ] = initGraph(m0) {G(N = m0,EG = ∅)}
i = 0 {i for current submap}
for k = 1 to steps do

uk−1, Qk−1 = getOdometry
mi = ekfPrediction(mi , uk−1, Qk−1)
zk, Rk = getObservations
DAk = dataAssociation(mi , zk, Rk)
loopClosing = False
if reobserved f �∈ mi & f ∈ mj then
{Subsection 3.3.2}
for 〈mk, ml〉 in path(mj , mi ) do

copyFeat(f, mk, ml)
end for
addEdge(〈mj , mi〉,EG\ET )
loopClosing = T rue

end if
mi = ekf Update(mi , zk, Rk,DAk)
if loopClosing & revisiting mj then
{Subsection 3.3.3}
for 〈mk, ml〉 in path(mi , mj ) do

backPropagation(mk, ml)
copyRobot(mk, ml)

end for
addEdge(〈mi , mj 〉,EG\ET )
i = j {Map change}

else if newMap mj then
{Subsection 3.3.1}
addNode(mj ,N )
addEdge(〈mi , mj 〉,ET )
copyRobot(mi , mj )
copyActiveFeat(mi , mj )
i = j {Map change}

end if
mi = addNewFeatures(mi , zk, Rk,DAk)

end for
{Subsection 3.3.4}
updateAllMaps(mi ,T ) {Updates T starting from mi}

3.3.2. Reobserving a Feature from a Different Map

This situation occurs when the robot is at submap mi and
observes for the first time a feature that is already included in
a previous submap mj . A loop closure algorithm running
in parallel flags CI-Graph when a previous image presents
high similarity with the current image (see Section 6). The
process is as follows:

• Copy the feature from mj to mi along all nodes of the
path in T (to restore property 1).

• Add 〈mj , mi〉 to EG\ET .

If 〈mk , ml〉 ∈ T represents an edge in the path, to copy
the feature from mk to ml , the feature is first updated with

the information contained in ml using backpropagation equa-
tions (A.10)–(A.13) and the correlations with the elements
of ml are calculated with Eq. (A.15). After the reobserved
features are fetched, the update step of the EKF closes the
loop in the current submap. Observe that new informa-
tion obtained after the loop-closing event is deferred and
not transmitted to the rest of the loop. A backpropagation
takes place only when the robot revisits a previous map
(property 2).

Figure 3 at time k3 − 1 shows an example of this case.
Feature f3, which belongs to submap m1, is measured by
the robot when it is traversing submap m3. Because edge
〈m1, m3〉 �∈ T , f3 is transmitted along the path 〈m1, m2〉,
〈m2, m3〉 that connects both nodes. Observe that the feature
is replicated in all intermediate nodes. Finally, edge 〈m1,
m3〉 is included in EG\ET .

3.3.3. Revisiting a Previous Submap

After closing a loop in map mi by reobserving a feature
from a different map mj , the algorithm starts revisiting
mj if the updated robot position is inside this map. In this
case, the transition from the current submap mi to mj is as
follows:

• Update all nodes in the path from mi to mj (to accom-
plish property 2).

• Copy the current robot pose along all nodes of the path
(to accomplish property 1).

• Add 〈mi , mj 〉 to EG\ET .

As in the preceding section, to update submaps in the path
we use the backpropagation equations (A.10)–(A.13), and to
copy the current robot pose correlations with submaps,
elements are calculated with Eq. (A.15).

Figure 3 at time k4 shows an example of this operation.
When the robot makes a transition between submaps m4
and m1, the current robot position Rk4 is replicated along
all nodes that are in the path, i.e., along m3, m2, and m1.
Finally, edge 〈m4, m1〉 is added to EG\ET and submap m1
becomes the current map.

3.3.4. Updating All Maps from the Current Submap

Using the graph operations just described, we can ensure
that the current submap is always updated with all avail-
able information (property 2). In addition, the CI property
between submaps is preserved (property 1). An interesting
characteristic of the backpropagation equations is that they
can be applied at any moment. They work correctly even
if we backpropagate twice the same information: the terms
inside the parentheses in Eqs. (A.12) and (A.13) will be zero
and the maps will remain unchanged. This allows us to
schedule the backpropagation in moments with low CPU
loads or when graph operations are required. If the whole
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map has to be updated, the backpropagation equations are
recursively applied, starting from the current node and fol-
lowing the spanning tree.

3.4. Relationship to Junction Trees

Given a graph with cycles that represents the relationship
between a set of variables, a junction tree is a tree having
two properties (Wainwright & Jordan, 2008):

• Covering: Every clique in the graph is contained in at
least one of the tree nodes.

• Running intersection: for any two clique nodes C1 and
C2, all nodes on the unique path joining them contain
the intersection C1 ∩ C2.

A junction tree allows exact belief propagation by passing
forward and backward messages along the tree instead of
using approximate loopy belief propagation in the origi-
nal graph. This technique, along with some approximations
to reduce the number of edges in the graph, was used for
SLAM in Paskin (2003).

Our technique, although developed using only the
concept of conditional independence between submaps, is
related to junction trees. In fact, it can be seen that our span-
ning tree is a junction tree, because all the cliques between
the SLAM variables are contained in a local map, and the
technique used for restoring the conditional independence
after a loop closure ensures the running intersection prop-
erty. However, there are two main differences. First, junc-
tion trees are typically obtained through a process of mor-
alization and triangulation of the original graph, whereas
in our approach the spanning tree corresponds to submaps
and is directly obtained by the CI-Graph algorithm. Sec-
ond, general junction trees compute potentials for each tree
node that are updated using forward and backward propa-
gations along the tree, whereas in our technique the current
map always contains the marginals of the submap variables
given all previous information. This ensures that an old
submap can be updated when desired by a single one-way
propagation from the current map to the old submap along
the spanning tree. This operation is needed only when the
robot revisits a map and at the end of the experiment, to
recover the marginals of the whole map.

4. SIMULATION RESULTS

CI-Graph SLAM was tested using a simulated environment
that emulates a Manhattan world, similar to the one pro-
posed in Dellaert and Kaess (2006), with 2,420 point fea-
tures lying on the walls of a 11 × 11 matrix of building
blocks. For this 2D example, the total space is divided into
submaps using a grid cell. When the robot crosses the bor-
der between two cells for the first time, a new submap is
initialized. If the arriving cell has already been traversed,
we consider that a previous submap is revisited.

Figure 4. CI-Graph SLAM execution on a simulated environ-
ment of a 5 × 5 matrix of building blocks of a Manhattan world
(top). The environment is divided up into 36 submaps (nodes)
using a cell grid. The darker red line represents the estimated
trajectory. Ellipses also show the estimated feature uncertain-
ties. The final CI-Graph contains direct links (continuous lines)
that form the spanning tree between nodes (bottom). Indirect
links are shown as dashed lines such that they represent mu-
tual information seen between adjacent nodes. Thus, there ex-
ists a path formed by direct links through which the informa-
tion can be transmitted.

In the Manhattan environment, the vehicle performs
a randomly chosen trajectory of 1,600 steps of 1 m.
Figure 4, top, shows a smaller 5 × 5 example to give the
reader an idea of the experiment. Each time the vehicle
reaches a block corner (circles), a control input is applied
randomly. This kind of motion allows the robot to perform
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Figure 5. Average running time per step for 300 random
runs in 11 × 11 Manhattan world experiment. The size of the
mapped environment ranges from n = 947 to n = 2,199 point
features. Also, in each run, the submap size does not exceed
200 features on average.

any trajectory: the robot can move from one map to its
neighbor and perform any large loops. The motion model
noises are assumed to be Gaussian with, respectively, σx =
σy = 0.05 m and σθ = 0.3 deg standard deviation. As the
robot moves, the graph of CI submaps is created on the fly.
Figure 4, bottom, shows an example of the resulting span-
ning tree with nodes numerated in the order they were cre-
ated.

In this simulated experiment, Monte Carlo runs are
particularly suitable to evaluate the CI-Graph SLAM effi-
ciency. We ran 300 samples of our algorithm implemented
in MATLAB on an Intel Core 2 Quad at 2.83 GHz. Note that
each sample represents a different random trajectory and
so a different spanning tree. For the same reason, the num-
ber of total mapped features varies although the environ-
ment remains unmodified. Figure 5 shows the mean run-
ning time per step. We can see that for this extremely loopy
environment, the algorithm presents a close-to-linear run-
ning time.

5. WORKING WITH MULTIPLE CAMERAS

The performance of CI-Graph SLAM in 3D environments
is evaluated using a trinocular camera mounted on a
mobile robot. To make the algorithm more general, we
implemented two alternative motion models depending
on whether odometry information is available. When no
odometry is available, we suppose that the camera moves
smoothly in three dimensions and we apply a constant ve-
locity model in which 12 parameters are used to represent
the camera location in the state vector: three Euclidean co-
ordinates to represent the camera pose, three Euler angles

for the camera orientation, and six parameters for linear
and angular velocities. When odometry readings are avail-
able, we switch to a simpler model. In such a case, the state
vector is reduced to six parameters, avoiding the estimation
of both linear and angular velocities.

Regarding the map, we maintain the same scheme
used in our previous work in which the state vector con-
tains feature points represented either as ID (Civera et al.,
2008) or as 3D Euclidean features. The reason is that the
range of depth values that can be extracted with an array of
cameras is limited: for close objects observable from more
than one camera, depth and bearing information can be
successfully obtained and the scale of the environment ob-
served. On the contrary, the depth of far points cannot be
computed straightforwardly and observations taken from
distant camera locations are required to triangulate. Never-
theless, distant points still provide useful bearing informa-
tion to compute the attitude of the system.

In Paz et al. (2008a), we took advantage of the dis-
parity information provided by the stereo system in order
to disambiguate between close and distant regions from
the camera. Therefore, features were initialized as 3D Eu-
clidean points using disparity if a Gaussian test to evaluate
the linearity of the reconstruction was accomplished. Oth-
erwise, features were initialized as ID. In our current work,
on the contrary, each camera of the multicamera array is
treated independently by the algorithm, allowing the sys-
tem to easily scale with an arbitrary number of cameras.
This means that we do not make any assumption about the
existence of disparity information.

The only interaction between cameras is when a new
feature is initialized. One camera is selected as the reference
camera to initialize new features; in our implementation
this is the right-hand camera of the trinocular system. Be-
cause no depth information is available, this feature is
first included in the state vector using ID parameteriza-
tion. Using the known extrinsic calibration between cam-
eras, the recently introduced feature is predicted in the
other camera images, where we perform an active search
over the uncertainty region yielded by the image projection
of the innovation covariance. The rigid transformation be-
tween cameras allows us to obtain the depth information
of nearby features. For the rest of the steps of the SLAM
algorithm, each camera predicts and updates features
independently.

We briefly summarize the distinct processes associated
with the construction of a local submap in the multicamera
framework.

5.1. State Representation

We describe the map state vector as composed of the ref-
erence camera location xr together with feature poses xf1:n ,
both with respect to a local map base reference B that is
usually chosen as the initial camera location. Because no
depth information is available when a point is initialized,
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all map features xID are first coded using the ID parameteri-
zation (the process is detailed in Section 5.2):

xB =
[

xr

xf1:n

]
=

[
xr

xID

]
. (7)

To be coherent with our real experiments when odometry
readings are available, the camera location is given by six
elements: three Euclidean coordinates for camera pose r
and three Euler angles for camera attitude ψ . To propagate
the camera motion, we use relative transformations with a
zero mean Gaussian noise associated with the six camera
parameters. Equation (8) resumes the propagation of the
motion on the camera location using homogeneous com-
positions (Castellanos & Tardós, 1999):

x̂rt+1 = x̂rt
⊕ x̂rt rt+1 =

[
rt+1
�t+1

]
, (8)

x̂rt rt+1 = xrt rt+1 + ν, (9)

ν ≈ N (0, Q); (10)

Q = diag(σx, σy, σz, σϕ, σφ, σθ ). (11)

Given the camera location xri
at instant i, an ID point seen

from this position is defined as

xID =

⎡
⎢⎢⎣

ri

θi

φi

ρi

⎤
⎥⎥⎦ , (12)

where ri represents the optical center of the camera from
which the feature was first observed, θi (azimuth) and φi

(elevation) define the direction of the ray passing through
the image point, and ρi = 1/di is the ID (Civera et al.,
2007).

5.2. Selection, Management, and Tracking
of Map Features

We use the Shi–Tomasi detector to select trackable image
points from 640 × 480 images. For each image point, we as-
sign a 15 × 15 surrounding patch as descriptor. We use a
uniform distribution of image points by splitting the im-
age of the reference camera (right camera) in a regular grid.
Then, the point with the best Shi–Tomasi response per grid
cell is selected as shown in Figure 6. In this way, we guar-
antee that only very informative points are observed from
the scene, which will increase their tracking stability. Dur-
ing the following steps, those cells that become and remain
empty for a given time are monitored as candidates to ini-
tialize new features. The approach is accompanied by a fea-
ture management strategy that deletes nonpersistent fea-
tures to avoid an unnecessary growth in population.

Once an image point is selected, it must be introduced
as a new feature into the state vector. This adding process
is described as follows:

1. Adding a new feature as an ID point. At instant t , a
feature xfi

is first initialized in the reference camera. Be-
cause no depth information is available, this feature is
included in the map state vector using ID parameteriza-
tion (Civera et al., 2008). In our application we chose the
right camera as the main reference frame r .

2. Predicting map features on the multicamera array. For
each camera c in the trinocular array, we predict initial-
ized map features and look for image pairings that will
be used to update the map estimate using the EKF. The
extrinsic calibration that relates the camera c to the ref-
erence camera r is used as a perfect pose measurement.
This relative pose xrc is required to predict the map fea-
tures by using the measurement equation:

zc
ID = hc

ID(xr , xrc, xID) + υ

= projection[�(xr ⊕ xrc), xID] + υ. (13)

For each projected feature, we perform a standard ac-
tive search to find a match z. In this process, normal-
ized cross correlation is carried out with the correspond-
ing feature patch. When all match candidates for each
image feature are found, the randomized joint com-
patible (RJC) algorithm is applied to calculate a con-
sistent pairing hypothesis Hrc. The resulting innova-
tion v = (zc

ID − hc
ID)H allows us to update the map state

vector.
3. Transforming points from ID to 3D Euclidean cod-

ing. To reduce the memory and computational complex-
ity, ID features are transformed into 3D Cartesian pa-
rameterization [Eq. (14)] whenever possible according
to the parallax index explained in Civera, Davison, and
Montiel (2007). The measurement equation used to pre-
dict the 3D point in the current location of the camera is
given in Eq. (15):

x3D = ID to 3D(xID) = ri + 1
ρi

m(θi , φi ), (14)

zc
3D = hc

3D(xr , xrc, x3D) + υ

= projection[�(xr ⊕ xrc) ⊕ x3D] + υ. (15)

To track map features at each subsequent instant t , we ap-
ply a process similar to the one described in steps (2) and
(3). The difference is that the features must also be predicted
on the reference camera r . All the details about how to cal-
culate the measurement equations for ID and 3D points are
available in Paz (2008).

Figure 6 shows an example of the system when build-
ing a local map along a university library of the indoor ex-
periment from which the data set is obtained. We can see
how features in the map are predicted and searched over
right, left, and top images in order to update the state vec-
tor. A reconstruction is also shown in both top and lateral
views for the resulting submap.
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Figure 6. Top: SLAM system performing trinocular tracking. Large ellipses are produced after projecting recently initialized map
features using the corresponding extrinsic calibration. Bottom: top and lateral views of the local submap reconstruction.

6. APPEARANCE-BASED LOOP CLOSING

We use an algorithm based on appearance to solve the
loop closure problem because this approach has proved to
be very successful (Cummins & Newman, 2008; Williams
et al., 2009). This method consists of three stages: First,
an image is acquired from one of the cameras, and its
appearance-based representation is obtained. Then, in pos-
terior steps we periodically check whether the current scene
was seen before, so that a loop can be detected. Finally,
when a loop is detected, the current image is actively
searched for features from the old image to close the loop.
These processes are detailed in the following sections.

6.1. Appearance-Based Representation

To obtain an appearance-based representation of an image,
we build a visual bag of words in an offline scheme train-
ing (Sivic & Zisserman, 2003). This technique represents an
image by using a numeric vector that is created from local

features. In our implementation we use the SURF detector
(Bay, Ess, Tuytelaars, & Van Gool, 2008) to obtain invariant
image features. Each SURF feature has associated a real 64-
dimensional descriptor that summarizes the distribution of
the intensity content within the point neighborhood.

The bag-of-words method consists of clustering the
image descriptor space (the 64-dimensional SURF space, in
our case) into a fixed number C of clusters. The centers of
the resulting clusters are named visual words; after cluster-
ing, a visual vocabulary is obtained. Now, a set of image fea-
tures can be represented in the visual vocabulary by means
of a vector v of length C. For that, each feature is associ-
ated to its closest visual word; then, each component vi is
set to a value in accordance with the relevance of the ith
word in the vocabulary and the given set or 0 if that word
is not associated to any of the image descriptors. In gen-
eral, the more a word appears in the data used to create the
visual vocabulary, the lower its relevance is. The vector v

is the bag-of-words representation of the given set of image
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descriptors. This way, the appearance of an image can be
simply described by a numeric vector.

This method is suitable for managing big amounts of
images; moreover, Nister and Stewenius (2006) present a
hierarchical version that improves efficiency. In this ver-
sion, the descriptor space clustering is done hierarchically,
obtaining a visual vocabulary arranged in a tree structure,
with a branching factor k and L depth levels. Then, the
comparisons for converting an image descriptor into a vi-
sual word need to be done only in a branch and not in the
whole discretized space, reducing the search complexity to
logarithmic. We use an implementation of this technique.

6.2. Loop Detection

To detect a loop, one of the captured images is analyzed ev-
ery second (1 Hz). An image obtained at time t is converted
into a vector vt according to its bag-of-words representa-
tion. This vector is compared with the set of all the vectors
of the images obtained before, W , to check whether any of
them is similar enough to consider both scenes the same. If
there is a satisfactory match with some vector wt ′ ∈ W ac-
quired at time t ′ ≤ t − T , a loop may be found. To confirm
this, there must be consistency with the images previously
matched. The parameter T is the minimum length of the
loop; matches occurring in the last T seconds are ignored.
This is necessary because of the overlap between consecu-
tive images. Its value depends on the expected variability of
the scenes. We use T = 20 s for indoor routes and T = 30 s
for outdoor environments. Note that if T is very high, small
loops may be missed. Finally, the current vector vt is added
to W , and features from its image are stored in case they
can be used in a future loop-closing event.

To make vector similarity comparisons faster, an in-
verted index is maintained (Nister & Stewenius, 2006). This
index stores in which vectors each visual word is present.
This way, when the vector vt is compared with vectors from
W , comparisons are made only with those vectors wt ′ ∈ W
that have at least one visual word in common with vt . When
the vector vt is added to W , the inverted index is updated
by including vt in the lists of the visual words it contains.

The similarity between two vectors is scored when
they are compared. This score grows as the resemblance be-
tween the two images is higher. Given two image vectors vt

and wt ′ ∈ W , the score of its match is related to the normal-
ized distance between the two vectors (Nister & Stewenius,
2006):

s(vt , wt ′ ) = 1 −

∥∥∥∥∥ vt

|| vt || − wt ′

|| wt ′ ||

∥∥∥∥∥
2

. (16)

We use the L1 norm to compute this score, so that it is de-
fined between 0 (completely different words) and 1 (per-
fect match). When vt is compared against all the vectors
wt ′ ∈ W , a list of matches 〈vt , wt ′ 〉 associated to their scores
s(vt , wt ′ ) is obtained. Low-score matches are discarded from

this list. The score range depends on the number of features
each image contains. For this reason, a score is considered
low by comparing it to the maximum expected score for a
certain image (denoted λt ). Because our images are taken
from a video sequence, we approximate λt with s(vt , vt−1).
If images separated by 1 s are not similar (e.g., if the robot is
turning), this approximation is not reliable and λt is small.
Therefore, we remove the matches 〈vt , wt ′ 〉 with λt < 0.1
or whose score s(vt , wt ′ ) does not achieve αλt . Here, α is
the minimum confidence expected for a loop closure candi-
date and determines the precision and recall of the method.
We can select the confidence level according to the envi-
ronment. For example, indoor scenes tend to show repeti-
tive structures, causing perceptual aliasing. In this case, a
stricter value may be desirable.

To reliably detect loops and to avoid mismatches, we
impose temporal and geometrical constraints. To accept a
match found by the bag-of-words technique between the
current image and an old image, we require that the im-
ages corresponding to the last N seconds also find matches
with old images separated by time gaps not bigger than G

seconds. This gap implicitly defines the expected accuracy
of bag-of-words matches. The constant N defines how long
the scenes of a loop closure must overlap to accept it. High
values increase the detection reliability but prevent some
loops from being found. Small values, on the contrary, al-
low us to find more loops but are also prone to produce
false positives. After some testing, we have fixed the values
G = 2 and N = 3 s for all our experiments.

The geometric consistency of the loop is verified by
computing the fundamental matrices Fl and Fr between
the current images from the left and right cameras and the
matched image. The eight-point algorithm (Hartley, 1997)
is used on the correspondences of SURF points obtained
from these images, filtering the outliers with RANSAC. If
there are enough inliers and the computation of the funda-
mental matrices is well conditioned, the loop detection is
accepted.

6.3. Loop Closing

Although loop detection is performed using SURF features,
the building of local maps use instead Harris corners, be-
cause they can be tracked with better accuracy (Tuytelaars
& Mikolajczyk, 2008). When a candidate loop between
robot poses xt and xt ′ is detected, the fundamental matrices
Fl and Fr between the images are passed to the CI-Graph
SLAM algorithm. This allows us to search for correspon-
dences for the old Harris features along the corresponding
epipolar lines of the current left and right camera images.
To find robust matches, searched features must be present
in both images and consistent positions. This condition is
checked by using the known fundamental matrix between
the cameras in the trinocular rig. If only a few matchings
are found, the loop is considered wrong and it is finally
discarded. On the contrary, when enough robust features
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are available, these yield data association between features
taken at times t ′ and t , enabling CI-Graph to close the loop
in the current submap by applying the steps described in
Section 3.3.2.

7. EXPERIMENTS AND RESULTS

The core of our CI-Graph algorithm for multicamera SLAM
was implemented in MATLAB running on an Intel Core 2
Quad at 2.83 GHz. The visual relocation algorithm was im-
plemented in C++ using the OpenCV library and run in
a separate thread. The proposed techniques were tested in
two real experiments with image sequences gathered in in-
door and outdoor environments (RAWSEEDS 2009). These
public data sets have recently been proposed as bench-
marks for SLAM algorithms.

The indoor data set consists of 26,335 trinocular im-
age frames (79,005 images to be processed) collected during
30 min at 15 frames per second along a path of some 760 m
inside a university building (Bicocca data set) where around
100 m corresponds to fragments of revisited trajectory. The
use of this data set is convenient to evaluate our algorithms
because an indoor ground truth (GT) solution is available.
The nature of the GT solution relies on a fixed system
formed by a bunch of cameras located in the area where
the vehicle starts its trajectory and that is several times re-
visited. From this initial GT solution an extended GT solu-
tion on the full trajectory is obtained using the pose-graph–
based optimization algorithm developed by Grisetti, Stach-
niss, and Burgard (2009). Laser scans are used to build the
pose-based graph in which manual inspection and selec-
tion of scans are performed to guarantee a highly accurate
solution that matches the initial GT. The details about this
extended GT are public and available at RAWSEEDS (2009).
We consider this data set particularly challenging due to the
intrinsic difficulty of extracting features in several places
with lack of distinctive texture. In addition, the vehicle per-
forms rough rotations in very narrow corners. In this data
set it is possible to identify around six loops.

The outdoor data set consists of 34,173 trinocular
frames (102,519 images to be processed), acquired in
38 min. During this time the vehicle travels across the
surroundings of a university campus (Bovisa data set)
describing a trajectory of 1.365 km with nine main loops
identified (five loops smaller than 50 m and four loops
larger than 100 m). This data set is also evaluated against
the partial GT available from a global positioning system
(GPS) device with a precision of 0.9 m. The difficulty of
this data set stems from the little variability of the image
background. This causes most of the features to lie in dis-
tant objects. In addition, part of the trajectory is performed
in a rough terrain.

7.1. Appearance-Based Loop Detection

To evaluate the efficacy of our appearance-based method
for loop closure, we built a hierarchical vocabulary with

branching factor k = 9 and tree depth L = 5 and using the
k means++ clustering algorithm (Arthur & Vassilvitskii,
2007). This vocabulary was created from an indepen-
dently selected set of 1,300 images from an indoor–outdoor
RAWSEEDS data set. The resulting vocabulary is finally
composed of 57,855 words. The proposed loop detec-
tion method (hereafter BoW) is compared with FAB-MAP
(Cummins & Newman, 2008), a well-known state-of-the-
art technique, thanks to an implementation made available
by the authors. FAB-MAP has proved to be very success-
ful in detecting loops in long trajectories for which it deliv-
ers very few false positives. The FAB-MAP implementation
available online provides two vocabularies: one was cre-
ated from an indoor image sequence and consists of 10,000
words; the other contains 10,987 words calculated from an
outdoor image sequence. Given the current image, FAB-
MAP returns the probabilities of being in one of the previ-
ous locations or in a new one. To select the matched image,
we take the case with the highest probability, if it is above
a certain threshold p, to avoid mismatches. As with BoW,
matches that are close in time are ignored. Because the vo-
cabulary we built for our system differs from those used
by FAB-MAP, in both size and origin of training images,
we also built a second vocabulary. This is used to make
a comparison between results yielded by BoW and FAB-
MAP when they use vocabularies of similar characteristics.
The size of this second vocabulary was k = 10, L = 4, re-
sulting in 10,000 words, and it was created from 1,074 im-
ages collected in New College, Oxford, publicly available
thanks to the authors of FAB-MAP.

We ran both BoW and FAB-MAP in the indoor and
outdoor data sets. To compare their results, we do not ap-
ply any epipolar constraint to the calculated matches at
this moment. Figure 7 shows the precision-recall curves ob-
tained by varying the parameters α for BoW (defined in
Section 6.2) and p for FAB-MAP. We also show the curve
when using our second vocabulary. In both cases, the shape
of the BoW precision-recall curves is similar using either
our RAWSEEDS vocabulary (k = 9, L = 5) or the Oxford
one (k = 10, L = 4). We can also see that BoW outper-
forms FAB-MAP in these data sets when using the Oxford
vocabulary. This suggests that the size of the vocabular-
ies and the origin of the training images are not decisive
when comparing BoW and FAB-MAP. We see that in the
indoor data set both methods attain 100% precision (all the
loops present in the trajectory are found), but this decreases
quicker with FAB-MAP. The outdoor case is more challeng-
ing due to lighting conditions and the little variability of the
background. Here, the performance of FAB-MAP drops, as
shown in Figure 7(b). This leads us to guess that FAB-MAP
is affected by the configuration of our cameras.

The FAB-MAP model considers the environment as “a
collection of discrete and disjoint locations.” For that rea-
son, in Cummins and Newman (2008), images were taken
perpendicular to the motion of the robot, so that the overlap
was negligible.
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Figure 7. Precision-recall curves of our BoW method for detecting loop closures, with two vocabularies, and FAB-MAP in both
data sets. The chosen working values of α and p of each method are also highlighted.

Figure 8. Examples of successful loop detections.
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Figure 9. Match correctly discarded by BoW in the indoor data set with α = 50%. A strict value of α allows rejection of several
perceptual aliasing cases like this one.

Figure 10. Loops detected by our BoW method with α = 50% and 25% and FAB-MAP with p = 97% in both data sets. Black lines
and triangles denote the actual trajectory of the robot; light red lines, loops from GT, and dark blue lines, places matched.
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Figure 11. Example of mismatch obtained by FAB-MAP in the outdoor data set with p = 97%.

However, because our three cameras face forward, far-
off objects (e.g., buildings) persist for many frames, thus
making scenes overlap and be less discriminative.

It is easier for BoW to overcome those cases because
our matching acceptance threshold (αλt ) is different for
each scene and takes into account the similarity between
consecutive frames.

These may be the reasons why performance of FAB-
MAP is below the performance of BoW with our two vo-
cabularies in Figure 7.

In our final system we use BoW with the RAWSEEDS
95 vocabulary, and we set different values of α for each
data set. Figure 8 shows two examples of loops correctly
detected in both data sets. In the outdoor data set, α = 25%
exhibits a good precision-recall balance. Indoors, a stricter
value α = 50% is required to avoid mismatches caused by
perceptual aliasing in several similar-looking corridors, as
shown in Figure 9. With these configurations and apply-
ing the epipolar constraint, we detect the loops shown in
Figure 10. GT matches are marked in red, whereas the
detected loop closure positions are highlighted with blue
lines on the trajectory path. We also present the matches
obtained by FAB-MAP with the working value p = 97%,
where it attains its higher precision rate (see Figure 7).
We can see that BoW yields no mismatches in the indoor
data set and that most of the loop closures are detected.
Outdoors, the largest loops are found several times, al-
though recall is smaller. There are also two matches be-
tween close positions, with no loop, on the right-hand side
of the map [see Figure 10(b)]. When the loop-closing algo-
rithm delivers the fundamental matrices to CI-Graph, the
process performed to select robust features (detailed in Sec-
tion 6.3) makes it able to discard those mismatched loops.
In general, BoW detects more loop closures than FAB-

MAP. Figure 11 shows one of the mismatches present in
Figure 10(d).

7.2. Running Time Evaluation

We ran CI-Graph SLAM on both data sets, obtaining 86
indoor and 117 outdoor CI submaps, respectively. To con-
trol the growth of the state vector, we imposed a bound
between 100 (indoor) and 150 (outdoor) features per each
local submap. Additionally, we fixed a maximum uncer-
tainty bound of 3 deg (indoor) and 5 deg (outdoor) on the
main angle of rotation, yaw, so that a new map is also ini-
tialized when the estimated uncertainty on this variable
goes beyond the bound, to reduce the effect of lineariza-
tion errors. Each time that BoW detects a loop closure, the
geometrical constraints given by the fundamental matri-
ces are applied on the current images. If the matching pro-
cess obtains eight successful pairings, the algorithm closes
the loop by copying the reobserved features in the cur-
rent submap along the tree path. Afterward, if the robot
pose is inside the region of the old map, the robot switches
to it. A total map obtained for each data set is shown in
Figure 12, where each local submap is drawn in absolute
coordinates.

Figure 13, second row, details the cost per step to
carry out each of the main processes involved in the CI-
Graph algorithm. For example, the corresponding indoor
time plot (left) shows that performing EKF updates, data
association, and addition of new features during the local
submap building process (dark solid line) requires most of
the time less than 2 s. A similar behavior is observed for
the outdoor data set when building a local submap. When
revisiting a previously built submap, some old features
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Figure 12. Final maps obtained after running CI-Graph
SLAM. A total of 86 local submaps were built when the vehicle
traversed the indoor environment (top). In contrast, 117 local
submaps were delivered by CI-Graph SLAM when running on
a larger outdoor experiment (bottom).

are reobserved but we allow the initialization of new fea-
tures in the environment. This increases temporarily the
cost of updating the local state vector until the vehicle ex-
its from the submap. This effect can be seen in the time

plots. Also, we can see that CI-Graph cost (blue stems)
grows with the number of maps in the path that is traversed
in the tree to bring common features. Notice that updat-
ing all submaps with a final backpropagation step requires
7.28 s (indoors) and 12.4 s (outdoors) in our MATLAB
implementation.

The loop-closing thread runs in real time, at 0.57 s
per frame on average. The maximum peak was 1.25 s
on the data sets tested. This time includes extract-
ing SURFs, inspecting the bag-of-words tree, applying
the loop detection algorithm, and calculating the fun-
damental matrices. The most demanding step is the
SURF extraction, that takes about 0.41 s per stereo im-
age on average, whereas calculating the fundamental
matrices takes 0.13 s. We use the OpenCV implementa-
tion (OpenCV, 2009) for these purposes. On the other hand,
converting SURF features into words and maintaining the
inverted index can be done in 28 ms with our own im-
plementation of the hierarchical vocabulary of Nister and
Stewenius (2006).

7.3. Accuracy Evaluation

The accuracy of CI-Graph SLAM is evaluated by compar-
ing the filtered trajectory to the GT solution whenever this
is available. That is, the errors at instant t are calculated
by comparing the GT with the solution given by the EKF
at that instant. This means that the trajectory error gets
reduced drastically after a loop-closing event, as can be
observed for the indoor experiment in Figure 13 at t ≈
1,400 s. Figure 13, first row, shows the CI-Graph trajec-
tory estimate (blue solid line), the odometry (green dashed
line), and the GT solution (red line). They are aligned
using a nonlinear optimization algorithm that calculates
the most reliable transformation between the GT solution
and CI-Graph trajectory. Time-stamp-solution interpolation
is also performed to generate the same number of pose
samples in both pose sets. We compute the absolute er-
ror produced by CI-Graph in the translation and orien-
tation components as shown in Figure 13, third row, ex-
cept for the outdoor experiment in which the GPS does
not provide GT for heading. In this figure, some jumps
are noticeable when the robots improves its pose estima-
tion after a loop closure. For better illustration, all posi-
tion errors are accumulated in a histogram (see Figure 13,
fourth row) identifying the 2σ error bounds. According to
the results, CI-Graph delivers a good precision for the in-
door data set, achieving a mean absolute error of 1.64 m
and ∼1.66 deg. In the outdoor experiment, after travers-
ing 1.36 km, CI-Graph delivers a mean absolute error of
6.96 m and a maximum error of ≈17 m. These errors are
mainly due to a loop closure that is missed at the end of the
experiment.
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Figure 13. CI-Graph results for real indoor (left) and outdoor (right) experiments. First row: CI-Graph estimate of the filtered
trajectory compared with GT and odometry. Second row: running times in each time step required to perform all the local submap
operations (black solid line); blue stems represent the time of revisiting a previously built map, and the last red stem represents
the time of updating all the CI submaps, except the current one, which is always up to date. Third row: absolute robot pose error.
Fourth row: robot pose error histograms with 2σ error bounds.
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8. CONCLUSIONS

In this paper we have presented CI-Graph, a novel
submapping algorithm that allows us to efficiently solve
complex map/trajectory topologies, reducing the computa-
tional cost of EKF–SLAM without introducing approxima-
tions other than the inherent linear–Gaussian approxima-
tion of the EKF. CI-Graph models the SLAM process as a
Gaussian graph that evolves over time. Nodes of the graph
correspond to CI submaps, and links between nodes reveal
submap relations due to either robot transitions or covisi-
ble features. By building a spanning tree of the graph, we
have shown that information can be shared and transmitted
from map to map without losing the conditional indepen-
dence property between submaps.

One of the advantages of using CI-Graph with respect
to other approaches is its ability to reduce memory require-
ments when exploring an environment as it does not need
to maintain all covariance matrix entries (correlation terms
in EKF–SLAM). We have also shown with simulations the
efficiency of CI-Graph SLAM to perform updates in ex-
tremely loopy environments. In the presented simulations,
we have obtained an average cost per step close to linear
time.

Our experimental results using a trinocular camera
have shown that CI submaps are very adequate for vi-
sual SLAM. Sharing feature and camera states between CI
submaps gives much better results than techniques using
independent submaps, which start each new submap from
scratch. The algorithm implemented treats each camera in-
dependently, which allows us to easily process as many
cameras as required.

We have also presented a novel technique based on a
bag of words, which runs independently of the rest of the
system, to detect potential loop-closing candidates. Our re-
sults have shown that for vocabularies of similar origin and
size, our technique outperforms FAB-MAP. We conjecture
that this is probably due to the use of frontal cameras in
our experiments.

Finally, we want to emphasize that the decomposition
in submaps performed in CI-Graph is based on the intrin-
sic structure of the SLAM problem, independently of the
underlying probability distributions or the estimation tech-
nique used. In future work, we plan to extend the CI-Graph
framework to nonlinear optimization techniques such as
bundle adjustment, given their superior accuracy (Stras-
dat, Montiel, & Davison, 2010) and increasing importance
in current algorithms.

9. APPENDIX A: GAUSSIAN SUBMAPS

In this Appendix we describe the case when the proba-
bility densities of the CI submaps are Gaussians repre-
sented in covariance form. Suppose that we have built two

submaps:

p(xA, xC |za) = N
([

x̂Aa

x̂Ca

]
,

[
PAa

PACa

PCAa
PCa

])
, (A.1)

p(xC, xB |za, zb) = N
([

x̂Cab

x̂Bab

]
,

[
PCab

PCBab

PBCab
PBab

])
, (A.2)

where uppercase subindexes are for state vector compo-
nents and lowercase subindexes describe which observa-
tions z were used to obtain the estimate. For example, in
the first submap, common elements xC were estimated us-
ing only observations za ; hence, the mean and covariance
estimates are denoted by x̂Ca

and PCa
, respectively.

The joined global map would be represented by

p(xA, xB, xC |za, zb)

= N

⎛
⎝

⎡
⎣x̂Aab

x̂Cab

x̂Bab

⎤
⎦ ,

⎡
⎣PAab

PACab
PABab

PCAab
PCab

PCBab

PBAab
PBCab

PBab

⎤
⎦

⎞
⎠ . (A.3)

9.1. Backpropagation

From the submap CI property, we know that

p(xA|za, zb, xC ) = p(xA|za, xC ) = N (x̂A|C, PA|C ). (A.4)

The conditional distribution p(xA|za, zb, xC ) can be ob-
tained from the global map by marginalizing out xB and
conditioning on xC , obtaining

x̂A|C = x̂Aab
+ PACab

P −1
Cab

(xC − x̂Cab
), (A.5)

PA|C = PAab
− PACab

P −1
Cab

PCAab
. (A.6)

The conditional probability p(xA|za, xC ) can also be ob-
tained from the first map by conditioning on xC , which
gives

x̂A|C = x̂Aa
+ PACa

P −1
Ca

(xC − x̂Ca
), (A.7)

PA|C = PAa
− PACa

P −1
Ca

PCAa
. (A.8)

Because Eqs. (A.5) and (A.7) must be equal for all xC , this
means that

PACa
P −1

Ca
= PACab

P −1
Cab

, (A.9)

we will call this equality K .
From K we can calculate the value of PACab

and from
Eqs. (A.5) and (A.7) the updated value of the mean x̂Aab

.
Finally, from previous results and by equating Eqs. (A.6)
and (A.8), we can calculate the updated value of PAab

. As a
result, we obtain the following backpropagation equations:

K = PACa
P −1

Ca

= PACab
P −1

Cab
(A.10)

PACab
= KPCab

, (A.11)
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Figure B.1. Bayesian network that illustrates the process followed to generate a local map with its own base reference.

PAab
= PAa

+ K(PCAab
− PCAa

), (A.12)

x̂Aab
= x̂Aa

+ K(x̂Cab
− x̂Ca

), (A.13)

which allows us to obtain an update of xA, PA and PAC

without having to join the maps or calculate PAB .

9.2. Computing the Correlation between Submaps

If we want to calculate the correlation term PABab
, we can

do the following. We first obtain the expression of the co-
variance of p(xA, xB |za, zb, xC ) by conditioning the global
map on xC :[

PAab
− PACab

P −1
Cab

PCAab
PABab

− PACab
P −1

Cab
PCBab

PBAab
− PBCab

P −1
Cab

PCAab
PBab

− PBCab
P −1

Cab
PCBab

]
.

(A.14)
Owing to the submap CI property, we know that xA and xB

are conditionally independent given xC and, therefore, the
correlation term in Eq. (A.14) must be zero, which gives the
following expression for the correlation term:

PABab
= PACab

P −1
Cab

PCBab

= KPCBab
. (A.15)

10. APPENDIX B: IMPLEMENTATION
OF LOCAL MAPS

In this Appendix we describe how to build sequences of
conditionally independent local maps, each with its own lo-
cal base reference. Let us return to the example of Figure 1.
With absolute maps, the last vehicle position x3 and feature
f3 were chosen to initialize submap 2 in order to represent
both maps with respect to the same reference and take ad-
vantage of the available estimation of the vehicle and the
feature. Instead, we now want to represent submap 2 with
respect to a local reference given by the current vehicle po-
sition x3 and still use the information about feature f3 in
submap 2. For doing so in a consistent way, a copy of fea-
ture f3 expressed in the new reference must be calculated
and included in submap 1. In the following, a prime will be
used to denote entities relative to the new base reference:

f′
3 = �x3 ⊕ f3. (B.1)

After this process, the pdf that describes submap 1 is

p(x1:3, f1:3, f′
3|z1:2, u1:2). (B.2)

The new local map will start with robot position x′
3 being

exactly zero. Obviously this variable is completely indepen-
dent of submap 1. By marginalizing Eq. (B.2), we obtain the
pdf that describes the initial state of submap 2:

p(f′
3|z1:2, u1:2). (B.3)

Once the vehicle has traversed the second submap and has
incorporated all observations gathered in it, the pdf associ-
ated with the final estimate of submap 2 is

p(x′
4:5, f′

3:5|z1:4, u1:4). (B.4)

Figure B.1 shows the Bayesian network that corresponds to
the new algorithm. As can be seen, the structure of the net-
work is the same as in Figure 1, bottom. The only difference
is that the part shared by both maps xC corresponds in this
case to the local representation of feature f′

3. As a conse-
quence, the submap CI property is valid for local submaps
as well as for absolute submaps.
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