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Abstract—This paper' presents a method for Simultaneous omnidirectional cameras [8] or inertial sensors [9] have all
Localization and Mapping (SLAM) relying on a monocular demonstrated reliable and accurate vision-based localisation
camera as the only sensor which is able to build outdoor, closed- and mapping, often in realtime and on increasingly large

loop maps much larger than previously achieved with such | AlSO | ive h b t ision-b d Vi |
input. Our system, based on the Hierarchical Map approach [1], scales. Also Impressive have been stereo vision-based visua

builds independent local maps in real-time using the EKF-SLAM 0dometry” approaches [10], [11] which match large numbers
technique and the inverse depth representation proposed in [2]. visual features in real-time over sequences and obtain highly
The main novelty in the local mapping process is the use of a accurate local motion estimates, but do not necessarily aim to
data association technique that greatly improves its robustness in build globally consistent maps

dynamic and complex environments. A new visual map matching In thi ider th t h th |
algorithm stitches these maps together and is able to detect n this paper, we consider the exireme case where the only

large loops automatically, taking into account the unobservability SENSOry input to SLAM is a single low-cost ‘webcam’, with
of scale intrinsic to pure monocular SLAM. The loop closing no odometry, inertial sensing or stereo capability for direct
constraint is applied at the upper level of the Hierarchical Map  depth perception — a camera carried by a walking person, for
in near real-time. . example. Under these conditions, successful real-time SLAM
We present experimental results demonstrating monocular approaches have been limited to indoor systems [12]-[14]

SLAM as a human carries a camera over long walked trajectories - )
in outdoor areas with people and other clutter, even in the more Which can build maps on the scale of a room. Such work

difficult case of forward-looking camera, and show the closing of on estimating motion and maps from a single moving camera

loops of several hundred meters. must also be compared with the wealth of work in visual
structure from motion. (e.g. [15]) where high quality recon-
. INTRODUCTION structions from image sequences are now routinely obtained,

Simultaneous Localization And Mapping (SLAM) is onebut requiring significant off-line optimisation processing.
of the most active research fields in robotics, with excellent Now we show that an approach which builds and joins local
results obtained during recent years, but until recently mainBLAM maps, previously proven in laser-based SLAM, can
restricted to the use of laser range-finder sensors and predé®&-used to obtain much larger outdoor maps than previously
inantly building 2D maps (see [3] [4] for a recent review)built with single camera only visual input and works in near
Under these conditions, robust large-scale indoor and outdée@l-time. The keys are the efficient and accurate building of
mapping has now been demonstrated by several groups arol@s@l submaps, and robust matching of these maps despite
the world. high localisation uncertainty. Other approaches to vision-based

It is more challenging to attempt SLAM with standard cantlosing of large loops in SLAM have used appearance-based
eras as the main sensory input, since the essential geom&gthods separated from the main mapping representation [8],
of the world does not ‘pop-out’ of images in the same walL6]. While these methods are certainly valuable, here we show
as it does from laser data. Nevertheless, the combinationtd@t under the conditions of the experiments in our paper we
detailed 3D geometric and photometric information availabRre able to directly match up local maps by photometric and
from cameras means that they have great promise for SLAB¢ometric correspondences of their member features.
applications of all types, and recent progress has been very efOne of the main difficulties of monocular visual SLAM
couraging. In particular, recent robotic SLAM systems whici$ landmark initialization, because feature depths cannot be

use odometry and single cameras [5], [6], stereo rigs [#itialized from a single observation. In this work we have
adopted the inverse-depth representation proposed by Montiel

1Submitted to the 2007 Robotics: Science and Systems Conference et al. [2], which performs undelayed initialization of point



features in EKF-SLAM from the first instant they are detected.
In that work, data association was performed by predicting
the feature locations in the next image and matching them by
correlation. In this paper we demonstrate that adding a Joint
Compatibility test [17] makes the method robust enough to
perform for the first time real-time monocular SLAM walking
with a hand-held camera in urban areas. In our experiments,
the inverse depth representation allows SLAM to benefit from
features which are far away from the camera, which are
revealed to be essential to maintaining good angular accuracy
in open areas. The joint compatibility technique is able to
successfully reject incorrect data associations which jeopardize
the operation of SLAM in repetitive or dynamic environments.
To attack the problem of mapping large areas, the technicig 1. Experimental setup: a hand-held camera, a firewire cable and a laptop.
is applied to build several independent local maps that are
integrated into the Hierarchical Map approach proposed by
Estrada et al. [1]. Two of the main factors that fundamentaljze of the local maps, the computation time required per step
limit EKF-based SLAM algorithms are (i) the processing timguring the local map building is bounded by a constant.
associated with the EKF update which(¢n?) in the number ~ The state vector of each local makf; comprises the
of map features; and (i) cumulative linearisation errors in tH#nal camera locationc? and the 3D location of all features
EKF that ultimately contribute to biased and overconfidef? - - - ¥Z), using as base referengethe camera location at
state estimates which eventually break the filter, usually Vi€ beginning of the local map. We also store the complete
poor data association. Hierachical SLAM addresses both Gmera trajectory inside each local map, that is used only for
these issues. First, by segmenting the problem into smalfégplaying results. For the state representation inside each local
chunks of bounded size, the computational time of the filter i8ap, we use the inverse-depth model proposed by Moetiel
bounded (i.eO(1)). Second, since each local map effectivelgl- [2]:
resets the base frame, linearisation errors only accumulate
within a local map and not between maps. The main difficulty x=(x f, le,ygT, e ,yf) 1)
appearing here is that the scale in pure monocular vision is

e

not observable, so the scale of the different local maps is not" vhere:
consistent. We propose a novel scale invariant map matching FBC
technique in the spirit of [18], able to detect loop closures, ¢B¢
that are imposed in the upper level of the Hierarchical Map, Ty = B (2)
obtaining a sub-optimal SLAM solution in near real time. wB
The rest of the paper is structured as follows. Section Il
describes in detail the local map building technigue proposed yi = (i yi 21 0; & pi) " ©)

and presents some experiments showing its robustness in real
environments. Section Il presents the map matching algorithmThis feature representations codes the feature state as the
and the loop optimization method used at the global level 6amera optical center locatigm; y; z;) when the feature point
the Hierarchical Map. Section IV demonstrates the techniques first observed, and the azimuth and elevati@np;) of
by mapping a courtyard by walking with the camera in hanite ray from the camera to the feature point. Finally, the depth
(see fig. 1) along a loop of several hundred meters. THealong this ray is represented by its inveyse= 1/d;. The
conclusions and future lines of research are drawn in sectigy@in advantage of the inverse-depth parametrization is that
V. it allows consistent undelayed initialization of the 3D point
features, regardless of their distance to the camera. In fact,
[I. BUILDING MONOCULAR LOCAL MAPS distant points, or even points atfinity are modelled and
processed in the same way. This is in contrast with most
current techniques that delay the use of a feature until the
To achieve scalability to large environments we haveaseline is big enough to compute its depth [8], [12].
adopted the Hierarchical Map method proposed in [1]. This The camera state, is composed of the camera position
technique builds a sequence of local maps of limited size usin§® and orientation quaterniof’ and its linear and angular
the EKF-SLAM approach [19]. We have observed that, in theelocitiesv? andw?. The process model used for the camera
case of monocular SLAM, the use of the Iterated Extendedbtion is a constant velocity model with white Gaussian noise
Kalman Filter (IEKF) [20] improves the accuracy of the majn the linear and angular accelerations. Using pure monocular
and the camera trajectory, at the price of a small increasevision, without any kind of odometry, the scale of the map is
the computational cost. In any case, by limiting the maximunmot observable. However, by choosing appropriate values for

A. EKF SLAM with inverse depth representation



the initial velocities and the covariance of the process noigdigorithm 1 Simplified Joint Compatibility:
the EKF-SLAM is able to "guess” an approximate scale foft = simplified JCBB ()
each local map, as will be shown in the experimental results.H < [trud™

if not joint_compatibility() then

B. Feature extraction and matching Best< []

, . JCBB([], 1)
Now we focus on the features selection which make up 4, — Best

the local maps. Our goal is to be able to recognize the sameyq if
features repeatedly during local map building and also for
loop closing detection and optimization. So what we need— - - T
are persistent and realiable features that ensure us with ﬁﬁgnthm 2 .R'ecursn(e' Joint Compatlbl!lty:
probability a quality tracking process. For this very purpose B (. 4) : find pairings for observatiorE;
have followed the approach of Davisen al. [12], [21], who if i = m then {Leaf nodé

showed that selecting salient image patches (11 x 11 pixels) if pairings({) > pairings(Bestthen

is useful for performing long-term tracking. Best< H

To detect salient image regions we use the Shi and Tomasi else if pairings¢t) = pairings(Bestthen
operator [22] with some modifications which result in more if D?(H) < D?*(Best)then
salient and better trackable features. The first modification is Best< H

the application of a gaussian weighted window to the hessian end if
matrix (4) which makes the response of the detector isotropic end if
and results in patches better centered around the corner oglse {Not leaf nod¢

salient point. if joint_compatibility([H true]) then

JCBB([H true], i + 1) {pairing (E;, F;) accepted

Go* (L1s) Gox (L], end if

H = ( G EI$Iy§ G E[yf:g ) 4 if pairings() + m - i > pairings(Bestthen
{Can do bettef

Apart from using the Shi and Tomasi response: ‘(]jC_EB(W false], i + 1) {star node,E; not paired

end i

end if
/\mz’n > Ath?‘eshold (5)

where Ao, and Apin are the maximum and minimumc  joint compatibility
eigenvalues of the hessian image matrix (4) respectively we

only accept as good feature points those whose two eigenvallt 18 well known that data association is one of the most
ues have similar magnitude: critical parts in EKF-SLAM, since a few association errors

may ruin the quality of an otherwise good map. The active

search strategy presented gives good feature matchiogs
Amaz [ Amin < Tati0threshold (6) of the time. However, since we are building maps of large

outdoor dynamic environments we have to deal with two

This avoids selecting regions with unidirectional patterngell differentiated problems. The first problem is that moving
that cannot be tracked reliably. Instead of using all the featurelsjects produce valid matches — in that they correspond to
that passed both tests, we have implemented a simple selectien same point on the object — which nevertheless violate
algorithm that forces a good distribution of features on thibe basic assumption of static features made by most SLAM
image. The features that pass the tests are stored in a 2&hniques. The second arises in the presence of ambiguous
spatial structure. When the number of tracked features fatfstches caused, for example, by repeated texture in the
bellow a threshold, the spatial structure is used to find tleevironment. Such ambiguous matches are more likely with
best feature (with higher Shi-Tomasi response) from the imafj@ung” features whose 3D locations (especially depth) are
region with less visible features. still uncertain, leading to large search regions.

For tracking the features on the sequence of images we us®ne approach to tackling the problems of repeated patterns
the active search approach of Davison and Murray [21]. Tl to try to avoid it altogether by selecting features that are
stochastic map is used to predict the location of each featinighly salient [16]. In this work we take the complementary
in the next image and compute its uncertainty ellipse. Tlgpproach of explicitly detecting and rejecting these matches
features are searched by correlation inside the uncertainty @$ing the notion of Joint Compatibility, as proposed in [17].
lipse using normalised sum-of-squared-differences. This givEbe idea is that the whole set of matchings accepted in one
enough robustness with respect to light condition changes anwge must bgointly consistent.
also to small viewpoint changes. As the active search gives only one candidate for each



Fig. 2. Incorrect matches successfully rejected by the joint compatibility algorithm (marked in cyan).

(a) Without Joint Compatibility (b) With Joint Compatibility

Fig. 3. Local map obtained in a dynamic outdoor environment along a U-shaped trajectory. The colored ellipses represent the uncertainty of feature localization
and the yellow line on the map corresponds to the computed camera trajectory. Red: features predicted and matched, Blue: features predicted but not found
Yellow: features not predicted.

matched feature, and the matchings are usually good, we have

implemented a simplified version of the Joint Compatibility D3y, = iy, Cythay, < X3 )
algorithm that reduces the computational cost of including o ) ) i

a backtracking algorithm at each update of the EKF (seeWhered =2 pairings(H;) , « is the desired confidence
Alg. 1). The algorithm tries first the optimistic hypothesid€Vel (0,95 by defaul)hsy; is the innovation:

‘H; that each image featureF() pairs correctly with its

corresponding map featuré?) verifying the innovation test by, =vi = zi — hy (8)
or joint compatibility using the Mahalanobis distance and the and

. S Cy, is the covariance of the joint innovation:
Chi-squared distribution:

Cu, = Hy, PH}; + Ry, 9)



Algorithm 3 Map Matching GCBB with variable scale: local maps, no information is transferred from the previous
‘H = mapmatchingGCBB (observations, features) map to the new one.

unary < computeunary constraints(features, observations) When a new map is started, the set of features currently

binary.O.distances= estimatedistances(observations) y|3|ble in the old map are'lnserte.d. into the New mameaew/
binary.F.distances estimatedistances(features) inverse-depth features, using their image locations ashe

Best.H< [] knowledge of their 3D locations. This is important since,
Best.scale— -1.0 though it may seem to be throw?ng away the .prior knowledge
variablescaleGCBB([], 0) of .the|r locations from the previous map, it is only thr_ough
H « Best doing so that the local maps remain independent, yielding

the desired O(1) update. It is, however important that there
is a group of features which are represented in adjacent maps,

. - . since only through these common features can loop-closing

This compatibility test only adds the computation of equa- : . .

. and trajectory refinement be effected. This common features

tion (7), because we are at the update phase of the Kalman .

' . are used to estimate the change on the scale factor that may

filter and so we have calculated the matrix (9) and vector : :
exists between consecutive maps.

(8). Only when the innovation test of the complete hypothe5|sAt this point, we have a series of local magsy, ..., M,,)

is not satisfied, our simplified algorithm perform the branc(r:]?ntaining the state vector defined in eq. (1) and its covariance

and bound search of the JCBB algorithm to find the larges atrix. The final camera locatiar. in mapi corresponds to

subset of jointly compatible matchings, as shown in Alg. %‘Ee base reference of mag- 1. The transformations between

Bearing in mind that our problem ha; only one pOS.S'ble Pale successive local maps and their covariances constitute the
(£}) for each measuremedt;, the solution space consists of a

binary tree of depth the number of measurementffeatures global level of the Hierarchical Map:

matched by correlation). v 2L
To verify the robustness of this technique we conducted a T} @2
mapping experiment in an outdoor populated area. Most of the hmap.z = . = . (10)
time, all matchings found by correlation were correct, and the : E
branch and bound algorithm was not executed. Figure 2 shows PA T
two typical cases where the Joint Compatibility successfully PO ... 0
rejected wrong matchings on dynamic and repetitive parts of )
the environment. Even in this cases, the computational cost hmap. P = 0 P : (11)
added is negligible. The key question is: if the number of bad : S
matchings is so small, how bad can they be for the SLAM 0O ... 0 P

process? The answer is given in figure 3. We followed a

long U-shaped trajectory walking with a hand-held Camer g.ale-invariant map matching
looking forward. Figure 3(a) shows the dramatic effect of the , i
moving people and the repetitive environment patterns. TheBY composing the camera state locatiofis™~ we are
estimated trajectory is completely wrong and the monocul@p'e to compute the current camera location and hypothesize
SLAM algorithm is trying to find in the image features that arfPOP closures. To verify the loop we have developed a map
actually well behind the camera (drawn in yellow). Runnin%;atchmg algorithm (see Algorithms 3 and 4) able to deal with
on the same dataset, the inverse-depth SLAM algorithm wifi® Presence of an unknown scale factor between the over-
the Joint Compatibility test gives the excellent map of figur@PPing maps. First, the method uses normalized correlation

3(b). To our knowledge this is the first demonstration of & find features in both maps that are compatible. Then, a
real-time SLAM algorithm walking with a camera in hand irspecialized version of the Geometric Constraints Branch and
a large outdoor environment. Bound (GCBB) algorithm [23] is used to find the maximal

subset of geometrically compatible matchings. From these
[1l. HIERARCHICAL SLAM feature matches, the homogeneous transformaz’bb*n1 and
the scale change between both maps is estimated. An example

of loop detection using this technique is shown in figure 4.
To achieve scalability to large environments, the technique

described in the previous section is used to build a sequenc&ofLOOP optimization

independent local maps of limited size that are later combinedWe have local independent maps scaled to the same refer-
using the Hierarchical Map technique [1]. In this way, thence and we also know the relation between two overlapping
computational cost of the EKF-SLAM iteration is constrainechaps that close a loop. Then, the lterated Extended Kalman
to real-time operation. Once the current map reaches thifter [20] is used for re-estimating the transformations be-
maximum number of features, it is freezed and a new locabeen the maps that from the loop, as proposed in [1]. The
map is initialized, using as base reference the current cameraasurement corresponds to the transformation estimated by
location. To maintain the statistical independence betwe#re map matching algorithm, and the measurement function is

A. Building sequences of local maps
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Loop closure detection. Matchings found between two maps (left) and aligned maps (right).

given by the compositions of all local map states that formvhen performing 6 iterations. The most expensive part is the

the hierarchical mapmap:

scale-invariant map matching algorithm that takes around one

minute in our current Matlab implementation. We expect that

p=h@) =T ' oT, o.. T

(12) an optimized C++ implementation running on background will

provide close to real time loop detection.

The intermediate calculations for obtaining the new opti-
mized hierarchical maph{nap’) are given in the Alg. 5.

IV. EXPERIMENTAL RESULTS

To validate the proposed SLAM method we have conducté§
an experiment in a large and dynamic outdoor environmeft
The experimental setup consists of a low cost Unibraff?
IEEE1394 camera with a 90 degree field of view, acquiring ®
monochrome image sequences of 320x240 resolution at 30
fps, a firewire cable and a laptop (see Fig. 1). We acquired
a real image sequence walking in a courtyard along a loop
trajectory of around 250 meters, with the camera in hand,
looking to one side. The sequence was processed with the
proposed algorithms on a desktop computer with an Intel Core®
2 processor at 2,4GHz. Figure 5(a) shows the sequence of
independent local maps obtained with the inverse-depth EKF-
SLAM using joint compatibility. As it can be seen in the
figure, the algorithm "guesses” an approximate scale that is
different for each local map. When a map is finished, it is
matched with the previous map and the relative change on the
scale is corrected, as shown in figure 5(b). When a loop is
hypothesized, the map matching algorithm is executed to find
the loop closure, and the loop constraint is applied at the upper
level of the Hierarchical Map, giving the result of figure 5(c).

The local map building process has been tested to run in
real-time (at 30Hz) with maps up to 60 point features. During *
the experiments, the joint compatibility algorithm consumed
200us at every step and, when occasionally the complete
search is executed, the computation cost increases only up
to 2ms, which is an acceptable cost for the great increase in
robustness and precision obtained.

V. CONCLUSION

In this paper we have demonstrated large scale, loop closing,
ar real time SLAM with a single camera in hand as only
nsor. We feel that the success of our system lies in the careful
mbination of the following elements:

An inverse depth representation of 3D points. It allows to
use partial information, inherent to the monocular vision
case, in a simple and stable way. All available information
from the very first moment, even from features far
away from the camera that contribute valuable orientation
information.

A branch and bound joint compatibility algorithm that
allows to detect and ignore measurements coming from
moving objects that otherwise plague and corrupt the
map. Although texture gives a powerful signature for
matching points in images, the spatial consistency that
this algorithm enforces is essential here.

A Hierarchical SLAM paradigm in which sequences of
local maps of limited size are managed, allowing the
system to work on a limited map most of the time. The
map matching algorithm for detecting loop closures can
work in background. In this way, the system can attain
real time execution.

A new map matching algorithm to detect large loops,
that takes into account the unobservability of the scale
intrinsic to pure monocular SLAM. This algorithm allows
to detect loop closures even when involved maps have
been computed with a different scale.

Future work includes improving the map matching algo-

The map matching, scale adjustment and loop optimizatioithm to reach real time performance, possibly using invariant
phases have been implemented in Matlab. The scale fadature descriptors. A current limitation of Hierarchical SLAM

estimation between two adjacent maps takes ali@Qins
and the loop optimization using the IEKF tak&®0ms

is the fact that it does not make use of matchings between
neighboring maps. We plan to investigate new large mapping
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Fig. 5. Results obtained mapping a loop of several hundred meters with a camera in hand: side view (left) and top view (right).



Algorithm 4 Recursive Modified Geometric Constraints:
variablescaleGCBB (H, 7) : find pairings for observatior;

if i > m then {Leaf nod¢
if pairings(H)> pairings( Best.H}hen
BestH< H
Best.scale= binary.scale
end if
else{Not leaf nod¢
if pairings¢{) == 0 then {This is the first pai}
for Vj | (unary(i,j) == true)do
variablescaleGCBB([H j], i+1)
end for
else if pairings¢t) == 1 then {This is the second pajr
k<{K|HK)#0}
distanceobs < binary.O.distances(i,k)
for Vj | (unary(i,j) == true)do
distancefeat < binary.F.distances(j,H(k))
if distancefeat+# 0 then
binary.scale< distanceobs - distancefeat

binary.satisfies= binary_constraints(binary.scale)

variablescaleGCBB([H |], i+1)
end if
end for
else {Normal recursion with binary constraints calculated
for Vj | ( (unary(i,j) == true) AND {Vvk | H(k) # 0 }
binary.satisfies(i, k, j, H(k})) ) do
variablescaleGCBB([H j], i+1)
end for
end if
end if
{Checking if can be done better
if pairings(H) + m - i> pairings(Best.HYhen
variablescaleGCBB([H 0], i+1) {Star node: Ei no pairef
end if

techniques that can overcome this limitation, obtaining maEQ]

closer to the optimal solution.
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Z Tg:
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