
1Juan D. Tardós

Visual SLAM
Course Slides

Juan D. Tardós
Universidad de Zaragoza, Spain

robots.unizar.es/SLAMLAB

With contributions from:
Raúl Mur, Carlos Campos, Richard Elvira,

Juan J. Gómez Rodríguez and José M. M. Montiel

© 2022. This work is openly licensed via CC BY 4.0

69156 - Simultaneous Localization and Mapping (SLAM), Part II

robots.unizar.es/SLAMLAB
https://creativecommons.org/licenses/by/4.0/

2Juan D. Tardós

Content
4. Visual SLAM

4.1 Introduction
4.2 Tracking
4.3 Mapping
4.4 Place Recognition
4.5 Accuracy

5. Optimization in SLAM
5.1 Optimization Algorithms
5.2 Lie Groups
5.3 Optimization in Visual SLAM

6. Visual-Inertial and Multi-Map
6.1 Visual-Inertial SLAM
6.2 Multi-Map SLAM

1Juan D. Tardós

Lesson 4. Visual SLAM

Juan D. Tardós
Universidad de Zaragoza, Spain

robots.unizar.es/SLAMLAB

69156 - Simultaneous Localization and Mapping (SLAM)

robots.unizar.es/SLAMLAB

2Juan D. Tardós

Lesson 4. Visual SLAM

1. Introduction to Visual SLAM
2. Tracking
3. Mapping
4. Place Recognition
5. Accuracy

3Juan D. Tardós

Readings
• Raúl Mur-Artal, J.M.M. Montiel and Juan D. Tardós

ORB-SLAM: A Versatile and Accurate Monocular SLAM System,
IEEE Trans. Robotics 31(5): 1147-1163, Oct. 2015

• Raúl Mur-Artal, and Juan D. Tardós.
ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo
and RGB-D Cameras,
IEEE Trans. Robotics 33(5): 1255-1262, Oct. 2017

• C Campos, R Elvira, JJ Gómez Rodríguez, JMM Montiel, JD Tardós
ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-
Inertial and Multi-Map SLAM.
IEEE Trans. Robotics, 37(6): 1874-1890, Dec. 2021

• D. Gálvez-López, J.D. Tardós
Bags of Binary Words for Fast Place Recognition in Image
Sequences, IEEE Trans. Robotics 28(5):1188-1197, Oct. 2012

https://arxiv.org/abs/1502.00956
https://arxiv.org/abs/1610.06475
https://arxiv.org/abs/2007.11898
http://doriangalvez.com/papers/GalvezTRO12.pdf

4Juan D. Tardós

ORB-SLAM Team

Dorian
Gálvez

Raúl
Mur José M.M.

Montiel

Richard
Elvira

Carlos
Campos Juanjo

Gómez

Mingo
Tardós

5Juan D. Tardós

Lesson 4. Visual SLAM

1. Introduction to Visual SLAM
a. Concept and Applications
b. Feature-Based Visual SLAM
c. A Complete System: ORB-SLAM3

Readings:
- Sections I, II & III of ORB-SLAM3 paper

https://arxiv.org/pdf/2007.11898.pdf

6Juan D. Tardós

SLAM with Laser and EKF, 2002

The SLAM problem:

• a robot moving in an
unknown environment

Use sensor data to:

• build a map of the
environment

• and at the same time
• use the map to compute

the robot location (image: Paul Newman)P. Newman, J.J Leonard, J.D. Tardos, J. Neira:
Explore and return: Experimental validation of
real-time concurrent mapping and localization.
IEEE Int. Conf. Robotics and Automation, 2002

7Juan D. Tardós

First Monocular SLAM: Lines and EKF, 1997

J. Neira, M.I. Ribeiro, J.D. Tardós,
Mobile Robot Localization and Map
Building using Monocular Vision,
Symp. Intell. Robotics Systems, 1997

8Juan D. Tardós

First Stereo SLAM with EKF, 2001

A.J. Davison, N. Kita: 3D Simultaneous Localisation and
Map-Building using Active Vision for a Robot Moving on
Undulating Terrain, CVPR 2001.

9Juan D. Tardós

Monocular SLAM with Multi-Map EKF, 2007

L.A. Clemente, A.J. Davison, I.D. Reid, J. Neira, J.D. Tardós, Mapping
Large Loops with a Single Hand-Held Camera, RSS 2007

10Juan D. Tardós

PTAM: Keyframe-Based SLAM, 2007

G. Klein and D. Murray, Parallel Tracking and Mapping for
Small AR Workspaces, ISMAR 2007

11Juan D. Tardós

ORB-SLAM: Visual SLAM, 2015

12Juan D. Tardós

Applications: Autonomous Vehicles

13Juan D. Tardós

• Robot Navigation based on ORB-SLAM2

• ORB-SLAM2 on mobile devices

Applications: Robotics and 3D Modelling

14Juan D. Tardós

Applications: AR/VR
• Obtain in real time the camera trajectory
• And build a map of the environment
• To add virtual elements to the environment

15Juan D. Tardós

Deformable SLAM Inside the Human Body

16Juan D. Tardós

4.1.b Feature-Based Visual SLAM

Reprojection error Projection Function

Coordinates of point j

Pose of camera i

Observation of point j
from camera i

States

Measurements

17Juan D. Tardós

Projection of point j on camera i (1)

Rotation matrix

Translation vector

Coordinates of point j w.r.t. camera i

18Juan D. Tardós

Projection of point j on camera i (2)
!

Optical
Axis!Camera i

x! y!

z!

x!

y!z!
W!

World
Reference ! T!iw!

x!
y!

f!

Image Plane !

u!
v!

!
!

horizontal focal
length (pixels)

focal length (mm)

principal point

• In summary:

19Juan D. Tardós

States

Coordinates of point j

Orientation of camera i

Position of camera i

Observation of point j
from camera i

Measurements

Feature-Based Visual SLAM as BA

Bundle Adjustment

Reprojection error
Non-Linear

Optimization

20Juan D. Tardós

Structure of the SLAM problem

T1 T2

x1 x2 x3

T3 T4

x4 x5

z11

u1

z12 z13 z35z34z33z32z23z22z21z14 z45z44z43

u2 u3

Vehicle

Environment
features

Odometry

Observations
Bayesian
Network

T1 T2

x1 x2 x3

T3 T4

x4 x5

Markov
Random Field

Map
variables

Vehicle
variables

• The problem size grows with time
• The set of relationships is sparse

SLAM Problem
p(T1:k , x1:n | z1:k , u1:k)

21Juan D. Tardós

Maps with Thousands of Features?
• Original SLAM problem

• EKF approach (MonoSLAM, 2003)
– Marginalizes past poses
– O(n2) with the number of features
– Limited to 200-300 features in real-time
– One-shot linearization à errors

• Keyframe approach (PTAM, 2007)
– Keeps only a few poses: keyframes
– Can handle thousands of points
– Given the same computational effort is

more accurate than EKF-SLAM
– Non-linear optimization (BA)

T1 T2

x1 x2 x3

T3 T4

x4 x5

T1 T2

x1 x2 x3

T3 T4

x4 x5

Hauke Strasdat, J. M. M. Montiel, Andrew J. Davison, Real-time Monocular SLAM:
Why Filter?. IEEE Int. Conf. Robotics and Automation, ICRA 2010.

Sparse
Problem

Dense
Problem

Still
Sparse

T1 T2

x1 x2 x3

T3 T4

x4 x5

22Juan D. Tardós

Bundle Adjustment in Real Time?

• The problem is sparse
– Not all cameras see all points!

• But still not feasible in real time
– example: 500 Keyframes and 15k points à 6s

• Local BA or sliding-window BA
– example: 30 Keyframes and 3k points à 200ms

• BA requires very good initial solutions to converge

23Juan D. Tardós

Classical .vs. Keyframe-Based Visual SLAM
Classical Visual SLAM
• EKF
• Vehicle state: last pose
• Accumulates linearization

errors
• Computes covariance

(dense matrix)
• Matching using

Mahalanobis distance
• Scaling: Local maps

Keyframe Visual SLAM
• Non-linear Optimiz. (BA)
• Vehicle state: all poses
• Re-linearizes observations

around current estimation
• Avoids covariance

(maintains sparsity)
• Matching using visual

appearance
• Scaling: Local BA

24Juan D. Tardós

BA + Keyframes, what else do I need?
• Which features will I use?
• How to match them?
• How to start when the map is empty?
• How to track the camera pose?
• How to add new points to the map?
• How to make it run in real time?

– Which information to keep, what to throw away?

• What if objects or people move?
• What if I get lost?
• How to detect a loop?
• How to correct drift after a loop?

25Juan D. Tardós

4.1.c A Complete System: ORB-SLAM3

26Juan D. Tardós

ORB-SLAM3 Highlights
• Visual and Visual-Inertial SLAM
• Pin-hole and Fish-eye lens models
• Multi-Map and Multi-Session
• Real-time operation in large environments
• Data association with ORB features:

– Short term DA: match with previous images
– Mid-term DA: match with local map
– Long term DA: Relocation, Loop Closing & Map Merging

C Campos, R Elvira, JJ Gómez Rodríguez, JMM Montiel, JD Tardós
ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-
Inertial and Multi-Map SLAM.
IEEE Trans. Robotics, 37(6): 1874-1890, Dec. 2021

Visual Odometry

27Juan D. Tardós

Visual Odometry and Visual SLAM Systems

1Juan J. Gómez & Juan D. Tardós

4.2 Visual SLAM: Tracking

Juan D. Tardós, Juan J. Gómez
Universidad de Zaragoza, Spain

robots.unizar.es/SLAMLAB

69156 - Simultaneous Localization and Mapping (SLAM)

robots.unizar.es/SLAMLAB

2Juan J. Gómez & Juan D. Tardós

Lesson 4. Visual SLAM
2. Tracking

a. Overview
b. Feature Extraction
c. Feature Matching
d. Feature Tracking
e. Camera Model
f. Pose Tracking

Readings:
• Sections III, IV & V of ORB-SLAM paper
• Section IV of ORB-SLAM3 paper

https://arxiv.org/pdf/1502.00956.pdf
https://arxiv.org/pdf/2007.11898.pdf

3Juan J. Gómez & Juan D. Tardós

4.2.a Overview: ORB-SLAM3
10-30 fr/s

0.5-2 Kf/s

0.5-2 Kf/sWhen loop/merging

When loop

200-500 Hz

4Juan J. Gómez & Juan D. Tardós

Data Association
Short–term DA Mid–term DA

Long–term DA

5Juan J. Gómez & Juan D. Tardós

Camera Tracking

• Camera tracking is performed at the Tracking thread
• Works at frame rate (typ. 10-30 frames per second)

Main goals:
• Find feature matchings
• Compute the camera pose

6Juan J. Gómez & Juan D. Tardós

Tracking Requirements
• Monocular, Stereo, RGB-D, Visual-inertial
• Pin-hole and Fisheye lenses
• Automatic map initialization
• Short-term and Mid-term data association
• Relocalization after tracking failure

Mid term Short
term

7Juan J. Gómez & Juan D. Tardós

• Prepare each incoming image to be used in the
SLAM pipeline (build a Frame object):

– Convert images to grayscale (if needed)
– Extract FAST features in an image pyramid
– Compute ORB descriptors

Image Processing

8Juan J. Gómez & Juan D. Tardós

4.2.b Feature Extraction
Local Features, Interest points, Keypoints

• Detector: find local maxima of a certain operator

• Descriptor: to recognize the feature in new images

Harris detector
(corner-like)

DoG detector
(blob-like)

original Image

9Juan J. Gómez & Juan D. Tardós

Feature Requirements
• Repeatability
• Accuracy
• Invariance

– Illumination
– Position
– In-plane rotation
– Viewpoint
– Scale

• Efficiency

10Juan J. Gómez & Juan D. Tardós

Corner detectors
• Harris Matrix or Moments Matrix:

– Ix Iy: Image gradients
– w: circular weights (uniform or Gaussian)
– < >: sum over the image patch (u,v), weighted with w

• Harris detector:

• Shi-Tomasi detector:

11Juan J. Gómez & Juan D. Tardós

Shi-Tomasi points
Predict position in next image (@10-30 Hz)
Search by normalized correlation with a 11x11 patch

Good for Tracking using Correlation
RIGHT Image

50 100 150 200 250 300

50

100

150

200

12Juan J. Gómez & Juan D. Tardós

FAST corner detector

– Find pixel p surrounded by n consecutive pixels all brighter (or
darker) than p

– Much faster than other detectors

E Rosten, T Drummond , Machine learning for high-speed corner detection,
European Conf. on Computer Vision 2006

13Juan J. Gómez & Juan D. Tardós

Blob detector using LoG
• Gaussian Filter (scale t)
• Laplacian of Gaussian (LoG)
• Normalized LoG

• Feature detector:

– Strong response for blobs of size

t =1

-2

-1.5

-1

-0.5

0

0.5

-4 -2 0 2 4

14Juan J. Gómez & Juan D. Tardós

SIFT detector: Difference of Gaussians
• LoG ≈ Difference of Gaussians DoG:

.

Search for maxima in
space and scale

15Juan J. Gómez & Juan D. Tardós

Automatic Scale Selection

16Juan J. Gómez & Juan D. Tardós

SIFT Descriptor
¡ Histogram of 8 gradient orientations in 16 areas of 4x4

pixels around the detected keypoint

ö 128 bytes (floats): 16 areas x 8 histogram bins

17Juan J. Gómez & Juan D. Tardós

Binary Descriptors: BRIEF
• Computed around a FAST corner

18Juan J. Gómez & Juan D. Tardós

Popular Features for Visual SLAM

• ORB: Oriented FAST and Rotated Brief
– Detect FAST and compute orientation (gradient direction)
– Rotate the Brief pattern and obtain 256-bit binary descriptor
– Fast to extract and match (Hamming distance)
– Good for tracking, relocation and loop detection

Detector Descriptor Rotation
Invariant

Automatic
Scale

Accuracy Relocation
& Loops

Efficiency

Harris Patch No No ++++ - ++++

Shi-Tomasi Patch No No ++++ - ++++

SIFT SIFT Yes Yes ++ ++++ +

SURF SURF Yes Yes ++ ++++ ++

FAST BRIEF No No +++ +++ ++++

FAST ORB Yes No +++ +++ ++++

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G.
ORB: an efficient alternative to SIFT or SURF, ICCV 2011

19Juan J. Gómez & Juan D. Tardós

Multi-scale ORB detection
– Goal: match features when they move

farther or closer to the camera
– Pyramid of scales (Gaussian filtered)
– 8 scales with a scale factor of 1.2

(aprox. 2 octaves)
– This can be parametrized in the

calibration file
– ORB features may appear at the same

pixel on several scales

Feature Extraction and Description

20Juan J. Gómez & Juan D. Tardós

Distribute Features in the Image

FAST th=7, too many features

FAST th=20-7, better distribution

FAST th=20, many empty areas

21Juan J. Gómez & Juan D. Tardós

4.2.c Feature Matching

• Compare descriptors to get putative matchings
– SIFT: Euclidean distance; ORB: Hamming distance
– Improves using ratio to second neighbor

• Remove spurious matchings
– Search for consensus with a robust technique: RANSAC

22Juan J. Gómez & Juan D. Tardós

The Problem of Spurious Matchings
• Least-squares is very sensitive to spurious data
• A single spurious match may to ruin the estimation
• Leverage point:

– Removing the points with higher residuals DOES NOT SOLVE
THE PROBLEM

23Juan J. Gómez & Juan D. Tardós

RANSAC: RANdom SAmpling Consensus
RANSAC (P) return M and S
-- P: set of potential matches
-- M: alignment model found (requires at least k matchings)
-- S: set of supporting matches
for i = 1..max_attempts

Si ß choose randomly k matchings from P
Mi ß compute alignment model from Si
Si* ß matchings in P that agree with Mi (with tolerance ε)
if #(Si*) > consensus_threshold

Mi* ß compute alignment model from Si* (using least squares)
return Mi* and Si*

end if
endfor
return failure

24Juan J. Gómez & Juan D. Tardós

• Vectors t = c1 – c0 , p - c0 , p – c1 must be coplanar

• Epipolar constraint:

• Essential Matrix:

Two View Model: Epipolar Constraint

!" !# =!
"
! !"!

[] !!"# !
"

"
"

−
−

−
== ×

!"

!#

"#

$$
$$
$$

25Juan J. Gómez & Juan D. Tardós

• Find E:
– 5pt or 8pt algorithm

• E à Ri,ti
– 4 solutions

• Triangulate points
– Choose good solution

Matchings in 2 Frames à 3D Points and Motion

Monocular à Unknown Scale!

26Juan J. Gómez & Juan D. Tardós

Matching Problems

Problem Inputs Model to find Basic
Equation

d.o.f. Min. # of
matches

Minimal
solution

Camera
Location

Pose
6 3

P3P
PnP

Initialize
3D scene

Essential Matrix
5 5 5-point

8-point
Initialize
2D scene

Homography
8 4

27Juan J. Gómez & Juan D. Tardós

Limitations of Feature Matching
• Features extracted and matched in every frame

– FAST features are not totally repeatable
– ORB descriptors have some noise à Flickering matches

28Juan J. Gómez & Juan D. Tardós

4.2.d Feature Tracking (Lucas-Kanade)
• Goal: robust and stable feature tracks

29Juan J. Gómez & Juan D. Tardós

Optical Flow
• Estimate apparent motion between succesive images:

𝑑 = (𝑑!, 𝑑")

30Juan J. Gómez & Juan D. Tardós

Optical Flow

• Assuming brightness constancy:

• Assuming small motion:

• Optical Flow Equation:

• or: 1 equation per pixel
2 unknowns

31Juan J. Gómez & Juan D. Tardós

Lucas-Kanade Method
• Stack equations for n pixels in a window (qi):

à Assumes same motion Vx Vy
à Assumes no camera rotation

• System of equations:

Metodo de Lucas-Kanade
• Seguimiento de ventanas de píxeles en lugar

de pixeles aislados.

• Cada pixel en la ventana aporta una ecuación
de Flujo Óptico.

!10

Asumiendo que los píxeles de la ventana sufren el mismo
flujo óptico, se pueden apilar todas las ecuaciones para
resolver el sistema:

[
dx
dy]

G =
xp+ωx

∑
x=xp−ωx

yp+ωy

∑
y=yp−ωy

[
I2
x (x, y) Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) I2
y (x, y)]

b =
xp+ωx

∑
x=xp−ωx

yp+ωy

∑
y=yp−ωy

[
−Ix(x, y)It(x, y)
−Iy(x, y)It(x, y)]

= G−1 ⋅ b

Gradient

32Juan J. Gómez & Juan D. Tardós

Lucas-Kanade Method
• Solution:

• With weighted window (typ. Gaussian weights) :

Harris Matrix

33Juan J. Gómez & Juan D. Tardós

Lucas-Kanade method
• Pyramidal processing to

estimate large motions
• At each level, iterative

solution for window flow
• Able to get subpixel accuracy

34Juan J. Gómez & Juan D. Tardós

Lucas-Kanade for SLAM?
Main hypothesis

• Small displacements

• Brightness constancy

• No camera rotation

KLT Pyramidal
Processing

35Juan J. Gómez & Juan D. Tardós

Failure of Brightness Constancy

36Juan J. Gómez & Juan D. Tardós

Example using KLT from OpenCV

37Juan J. Gómez & Juan D. Tardós

• Basic optical flow

• Brightness changes:

• SLAM pose estimation à Homography
– Compensates patch rotation and scale change

Changes of Brightness, Orientation and Scale

38Juan J. Gómez & Juan D. Tardós

• Modified optical flow

• Iterative solution:

Modified Lukas-Kanade Method

39Juan J. Gómez & Juan D. Tardós

Example

Brightness Compensation Brightness and Rotation

OpenCV

40Juan J. Gómez & Juan D. Tardós

SLAM Example using KLT
Juan José Gómez, Robust tracking of visual features for medical image

sequences in ORB-SLAM2, Ms. Thesis, Univ. Zaragoza, 2019

41Juan J. Gómez & Juan D. Tardós

Features: Matching .vs. Tracking
• Feature Matching (using descriptors)

– Extracts features in all frames
– Some features fail to be extracted or matched
– Good for short-term, mid-term and long-term data association

• Feature Tracking (optical flow)
– Extracts features only in keyframes
– Gives more stable tracks
– Good for short-term data association à Visual Odometry

42Juan J. Gómez & Juan D. Tardós

4.2.e Camera Model
1. Visual sensor setups:

– Monocular cameras
– Stereo cameras (rectified images)
– RGB-D cameras (implemented as a virtual stereo)

2. Projection models:
– Perspective (Pin-hole, or standard projection)
– Fish-eye (Kannala-Brandt model)

43Juan J. Gómez & Juan D. Tardós

• Different Camera Models can be supported abstracting
the functions required by the SLAM pipeline:

– Projection, unprojection and Jacobians

• Example: Pinhole and Kannala-Brandt

Camera Model Abstraction

GeometricCamera.h

project(point3D) : point2D

unproject(point2D) : point3D

projectJac(point3D) : matrix2x3

Interface

Pinhole.h/.cpp

project(point3D) : point2D
unproject(point2D) : point3D

projectJac(point3D) : matrix2x3

KannalaBrandt8.h/.cpp

project(point3D) : point2D
unproject(point2D) : point3D

projectJac(point3D) : matrix2x3

implementation

44Juan J. Gómez & Juan D. Tardós

– Monocular: extract ORB
features

– Stereo: extract ORB features in
both images and match them.
Compute disparity

– RGB-D: extract ORB features.
Use Depth image to compute a
virtual stereo image

Monocular, Stereo and RGB-D

45Juan J. Gómez & Juan D. Tardós

Monocular, Stereo and RGB-D (ideal pin-hole)

the left image lies on the same row in the right image. The projection function for a rectified
stereo camera ⇡s : R3 ! R3 is defined as follows:

x = ⇡s (XC) =

2

664

fx
X

Z
+ cx

fy
Y

Z
+ cy

fx
X�b

Z
+ cx

3

775 , XC = [X, Y, Z]T , x = [uL, vL, uR]
T (1.2)

where (uL, vL) are the coordinates in the left image and uR is the horizontal coordinate in
the right image. The vertical coordinates in both image are the same, vR = vL.

1.2.3 RGB-D Camera

RGB-D cameras are the combination of a monocular RGB camera and a depth sensor, based
on structured light or time of flight. By knowing the intrinsic calibration of the camera
and extrinsic calibration between the camera and depth sensor, the measured depth can be
registered into a depth map with 1:1 pixel correspondences to the RGB image. That implies
that for every pixel in the image we know its depth without needing to perform a stereo
matching as in the case of the stereo camera. However due to the nature of the depth sensor
their use is restricted to indoors and there is a limited depth range.

1.2.4 Inertial Measurement Unit

Inertial Measurement Units (IMU) are proprioceptive sensors composed of a gyroscope that
measures the angular velocity, and an accelerometer that measures the linear acceleration
of the sensor. While vision measures the external world, an IMU provides information of
self-motion, which makes both sensors complementary. IMU can be used to estimate the
motion between camera frames or to estimate the metric scale of monocular SLAM. Gravity
can also be estimated which makes absolute pitch and yaw observable.

The IMU, whose reference we denote with B, measures the acceleration aB and angular
velocity !B of the sensor at regular intervals �t, typically at hundreds of Herzs. Both
measurements are a↵ected, in addition to sensor noise, by slowly varying biases ba and bg

of the accelerometer and gyroscope respectively. Moreover the accelerometer is subject to
gravity gW and one needs to subtract its e↵ect to compute the motion. The discrete evolution
of the IMU orientation RWB 2 SO(3), position WpB and velocity WvB, in the world reference W,
can be computed as follows [6]:

Rk+1
WB = Rk

WB Exp
��
!k

B � bk
g

�
�t

�

Wv
k+1
B = Wv

k

B + gW�t+Rk

WB

�
ak

B � bk
a

�
�t

Wp
k+1
B = Wp

k

B + Wv
k

B�t+
1

2
gW�t2 +

1

2
Rk

WB

�
ak

B � bk
a

�
�t2

(1.3)

In order to fuse IMU and vision, both sensors should ideally be hardware synchronized
so measurements from both sensors are timestamped with the same clock and without drift.
Moreover both sensor has to be extrinsically calibrated to know the transformation TCB =
[RCB|CpB] between the reference of the camera and the IMU sensor [7].

13

1.2.1 Monocular Camera

Monocular cameras are mainly composed of the image sensor and lens. We assume that the
camera can be accurately modeled as a pinhole camera [1], once lens distortion has been
removed, so that a 3D point XC 2 R3 in camera coordinate system reference C is projected
into 2D pixel coordinates x with the projection function ⇡m : R3 ! R2:

x = ⇡m (XC) =

"
fx

X

Z
+ cx

fy
Y

Z
+ cy

#
, XC = [X, Y, Z]T , x = [u, v]T (1.1)

where fx and fy are the horizontal and vertical focal length, and cx and cy the horizontal and
vertical coordinates of the principal point. These are intrinsic calibration parameters that
can be computed from several images of a known calibration pattern. The projection function
⇡ assumes no distortion introduced by the lens. In practice distortion e↵ects exist and have
to be modelled so that one can transform from distorted to undistorted coordinates. Well
known software and libraries likeMatlab or OpenCV include toolboxes for camera calibration,
including distortion. In this thesis we focus on cameras having a field of view (FOV) up
to ⇠ 100�, for omnidirectional cameras and fisheye with very wide FOV, there exist more
sophisticated mathematical models [2]. The projection function (1.1) also assumes the image
is captured with global shutter, that is the whole image is captured at the same instant.
Global shutter cameras are common in industry and those especially designed for computer
vision, but consumer cameras are typically rolling shutter cameras, where either pixel rows
or columns are captured at di↵erent time instants. Rolling shutter cameras produce artifacts
when the camera or elements in the scene are moving, and reduce the accuracy of Visual
SLAM if not properly modeled. Modeling rolling shutter e↵ect is out of the scope of this
thesis, and we refer the reader to recent works as [3] or [4].

Monocular cameras cannot observe the true scale of the world, and therefore monocular
SLAM can only estimate the map and camera trajectory up to scale. In addition scale can
drift and make distant portions of the map to be at di↵erent scales. Additional sources of
information like IMU or known distances in the map are required to scale the solution.

1.2.2 Stereo Camera

Stereo cameras are composed of two rigidly attached cameras. Ideally both cameras are
hardware synchronized so that image capturing is triggered at the same time. Depth can
be estimated from just one stereo frame by finding correspondences between left and right
pixels. To this end, in addition to intrinsic calibration of both cameras, the rotation and
translation between both cameras has to be calibrated by processing several stereo frames
of a calibration pattern. OpenCV also has a module for stereo calibration. The distance
between both cameras, known as the baseline b, along with focal length and image resolution
will determine the depth range at which depth estimation is accurate. As a rule of thumb
depth can be accurately estimated if it is less than 40 times the baseline [5]. In order to
facilitate stereo matching, images are typically rectified, removing distortion and rotating
them so that the epipolar lines are horizontal or vertical, i.e. the correspondence of a pixel in

12

• Monocular:

• Stereo:

• RGB-D:

• BA:

links any two keyframes observing common points and a minimum spanning tree connecting
all keyframes. These graph structures allow to retrieve local windows of keyframes, so that
Tracking and Local Mapping operate locally, allowing to work on large environments, and
serve as structure for the pose-graph optimization performed when closing a loop.

The system uses the same ORB features [16] for tracking, mapping and place recognition
tasks. These features are robust to rotation and scale and present a good invariance to camera
auto-gain and auto-exposure, and illumination changes. Moreover they are fast to extract
and match allowing for real-time operation and show good precision/recall performance in
bag-of-word place recognition, as shown in Chapter 3.

In the rest of this section we present how stereo/depth information is exploited and which
elements of the system are a↵ected.

6.1.1 Monocular, Close Stereo and Far Stereo Keypoints

ORB-SLAM2 as a feature-based method preprocess the input to extract features at salient
keypoint locations, as shown in Fig. 6.1b. The input images are then discarded and all
system operations are based on these features, so that the system is independent on the
sensor being stereo or RGB-D. Our system handles monocular and stereo keypoints, which
are further classified as close or far.

Stereo keypoints are defined by three coordinates xs = (uL, vL, uR), being (uL, vL) the
coordinates on the left image and uR the horizontal coordinate in the right image. For stereo
cameras, we extract ORB in both images and for every left ORB we search for a match in
the right image. This can be done very e�ciently assuming stereo rectified images, so that
epipolar lines are horizontal. We then generate the stereo keypoint with the coordinates of
the left ORB and the horizontal coordinate of the right match, which is subpixel refined
by patch correlation. For RGB-D cameras, we extract ORB features on the image channel
and, as proposed by Strasdat et al. [39], we synthesize a right coordinate ur for each feature,
using the associated depth value d in the registered depth map channel, and the baseline
brgbd between the structured light projector and the infrared camera, which for Kinect and
Asus Xtion cameras we approximate to 8cm:

ur = u� fxbrgbd
d

(6.1)

where u is the undistorted horizonatal coordinate of the keypoint in the image and fx is the
horizontal focal length.

A stereo keypoint is classified as close if its associated depth is less than 40 times the
stereo/RGB-D baseline, as suggested in [5], otherwise it is classified as far. Close keypoints
can be safely triangulated from one frame as depth is accurately estimated and provide scale,
translation and rotation information. On the other hand far points provide accurate rotation
information but weaker scale and translation information. We triangulate far points when
they are supported by multiple views.

Monocular keypoints are defined by two coordinates xm = (uL, vL) on the left image
and correspond to all those ORB for which a stereo match could not be found or that have
an invalid depth value in the RGB-D case. These points are only triangulated from multiple

81

46Juan J. Gómez & Juan D. Tardós

Some details

• Assumption: the camera has been calibrated
– Focal lengths and principal point are known
– Distortion parameters à Image rectification

• robust cost function (i.e. Huber cost) to
downweight wrong matchings

• std. dev. typically = 1 pixel * scale

Ideal Pin-hole

47Juan J. Gómez & Juan D. Tardós

Close and Far Points

Figure 6.2: Tracked points in a highway. Green points have a depth less than 40 times the
stereo baseline, while blue points are further away. In this kind of sequences it is important to
insert keyframes often enough so that the amount of close points allows for accurate transla-
tion estimation. Far points contribute to estimate orientation but provide weak information
for translation and scale.

and the geometric validation and pose-graph optimization no longer require dealing with scale
drift and are based on rigid body transformations instead of similarities.

In ORB-SLAM2 we have incorporated a full BA optimization after the pose-graph to
achieve the optimal solution. This optimization might be very costly and therefore we perform
it in a separate thread, allowing the system to continue creating map and detecting loops.
However this brings the challenge of merging the bundle adjustment output with the current
state of the map. If a new loop is detected while the optimization is running, we abort
the optimization and proceed to close the loop, which will launch the full BA optimization
again. When the full BA finishes, we need to merge the updated subset of keyframes and
points optimized by the full BA, with the non-updated keyframes and points that where
inserted while the optimization was running. This is done by propagating the correction of
updated keyframes (i.e. the transformation from the non-optimized to the optimized pose)
to non-updated keyframes through the spanning tree. Non-updated points are transformed
according to the correction applied to their reference keyframe.

6.1.5 Keyframe Insertion

ORB-SLAM2 follows the policy introduced in monocular ORB-SLAM of inserting keyframes
very often and culling redundant ones afterwards. The distinction between close and far
stereo points allows us to introduce a new condition for keyframe insertion, which can be
critical in challenging environments where a big part of the scene is far from the stereo sensor,
as shown in Fig. 6.2. In such environment we need to have a su�cient amount of close points
to accurately estimate translation, therefore if the number of tracked close points drops below
⌧t and the frame could create at least ⌧c new close stereo points, the system will insert a new
keyframe. We empirically found that ⌧t = 100 and ⌧c = 70 works well in all our experiments.

83

• Green points: depth <= 40 x baseline
– Essential to compute camera translation

• Blue points: depth > 40 x baseline
– Good to obtain camera orientation

48Juan J. Gómez & Juan D. Tardós

Fish-Eye Lenses

Typical FOV: 90º-100º Can reach FOV > 180º
- Robust to occlusions
- Faster mapping

49Juan J. Gómez & Juan D. Tardós

Fish-Eye Lenses

50Juan J. Gómez & Juan D. Tardós

Fisheye Rectification?

Fish-eye image, FOV = 190º Rectified to f = 220, FOV = 118º

Rectified to f = 100, FOV = 150º

Problems of rectification:
• Loss of effective FOV
• Difficult to match features

– Objects near corners are
enlarged!

51Juan J. Gómez & Juan D. Tardós

SLAM with the Original Fisheye Images

52Juan J. Gómez & Juan D. Tardós

SLAM with the original Fisheye Images
• Faster and more accurate mapping

53Juan J. Gómez & Juan D. Tardós

• Equidistant projection + polynomic angle distortion

Kannala-Brandt Model

Projection: Unprojection:

54Juan J. Gómez & Juan D. Tardós

1. If SLAM is not initialized:
– Automatic map creation

2. If tracking failed in last image:
– Relocalisation or new map creation

3. Normal tracking:
– Pose estimation from last frame (short-term DA)
– Track local map: pose correction (mid-term DA)
– New Keyframe decision

4.2.f Pose Tracking

55Juan J. Gómez & Juan D. Tardós

• Monocular:
– Homography / Fundamental matrix computed from 2 views
– Up-to-scale map

• Stereo and RGB-D :
– Initialization from 1 image with sensor depths
– Real-scale map

Map Initialization

56Juan J. Gómez & Juan D. Tardós

Monocular Map Initialization

• From 2 Frames, match ORB features (brute force)
• Compute in parallel an Homography and a Fundamental matrix with RANSAC:

• Select model according to the following score:
• Reconstruct cameras and map points
• Run a Bundle Adjustment

57Juan J. Gómez & Juan D. Tardós

Monocular Map Initialization

O
R

B
-S

LA
M

PT
A

M

Model Selection

Homography
(Planar, Low Parallax)

Fundamental Matrix
(General)

58Juan J. Gómez & Juan D. Tardós

Pose Estimation: 2 Steps

First step:
Track from

previous Frame

Second step:
Match points from

the local map

Local
MapPoints

Short-term
Data Association

Mid-term
Data Association

Not used by
VO systems!!

59Juan J. Gómez & Juan D. Tardós

First estimation of the current camera pose:
• Predict the current camera pose using IMU integration

or constant velocity model
• Project points seen in last frame and search for ORB

matches (15-30 pixels window & Hamming < 100)
• Run first pose-only optimization

Pose Estimation: 1) from Last Frame

60Juan J. Gómez & Juan D. Tardós

Pose Estimation: 2) Track Local Map

Second step to refine the camera pose:
• Find points in local map that can be visible in the current

frame but have not been tracked
• Project them in the current frame and search for ORB

matches (4 pixels window & Hamming < 100)
• Run second pose-only optimization

• For inliers, update median ORB descriptor

61Juan J. Gómez & Juan D. Tardós

Tracking: Occlusion Handling

O
R

B
-S

LA
M

PT
A

M

Covisibility Graph

Track only a local map
(potentially visible)

Point Viewing Direction

Do not project if
further than 60º

62Juan J. Gómez & Juan D. Tardós

When the camera tracking fails, enter relocalisation mode:
• Search the Bag-of-Words database with the current

Frame, to find the most similar Keyframe
• Match ORB features between Frame (2D points) and

Keyframe (3D points)
• Run PnP with RANSAC to recover the camera pose
• If a pose is found, run pose-only optimization
• And track local map

Tracking Failure: Relocalisation

63Juan J. Gómez & Juan D. Tardós

We solve de PnP problem with the MLPnP algorithm:
• Independent of the camera model
• Uses projection rays to solve the camera pose

– Valid for pinhole and fisheye cameras

Tracking Failure: Relocalisation

S. Urban, J. Leitloo, S. Ninz: MLPnP – A Real-Time Maximum Likelihood
Solution to the Perspective-n-Point Problem, Arxiv preprint, 2016

64Juan J. Gómez & Juan D. Tardós

ORBSLAM Robust Tracking

1Juan J. Gómez

4.3 Visual SLAM: Mapping

Juan D. Tardós, Juan J. Gómez
Universidad de Zaragoza, Spain

robots.unizar.es/SLAMLAB

69156 - Simultaneous Localization and Mapping (SLAM)

robots.unizar.es/SLAMLAB

2Juan J. Gómez

Lesson 4. Visual SLAM
3. Tracking

a. Overview
b. KeyFrame & MapPoint creation
c. KF & Point management
d. Local Bundle Adjustment
e. Running and tuning

Readings:
• Sections III, & VI of ORB-SLAM paper

https://arxiv.org/pdf/1502.00956.pdf

3Juan J. Gómez

4.3.a Overview

4Juan J. Gómez

• Frames are the basic data structure to store image
information: features, descriptors, camera pose, …

• The map is composed by two elements:
– Map Points: represents a 3D landmark
– Key Frames: a Frame that carries high visual innovation

Map Components

Map.h/cc

MapPoints
Keyframes

...

...

MapPoint.h/cc

3D position
...

...
KeyFrame.h/cc

CameraPose
...

...

5Juan J. Gómez

• Local Mapping is the task in charge of:
– Inserting new KeyFrames
– Triangulate new MapPoints
– Some map managing operations:

» Recent MapPoints culling
» Local KeyFrame Culling

– Refine the local map by running a local Bundle
Adjustment

• This thread runs at KeyFrame frequency
(typically 0.5 - 2 KF/s)

Local Mapping Overview

6Juan J. Gómez

4.3.b KeyFrame & MapPoint Creation

If the tracking was successful,
decide if promoting the current
Frame to Keyframe
• Insert as many Keyframes

as possible to make the
tracking robust to fast
camera motions

• Redundant Keyframes will
be removed later

Insert a Keyframe if:
• Tracking is weak (low

number of tracked
points) or

• More than a certain
number of frames
have passed from last
Keyframe or

• Local Mapping is idle

7Juan J. Gómez

• Add KeyFrame to the map
• Compute its Bag of Words and insert it into

the recognition database to be used for
future loop closing and relocation

KeyFrame Insertion

8Juan J. Gómez

• As KeyFrames carry novel visual information,
try to add points to the map

• Match features in the new Keyframe with
features in covisible KeyFrames

• And triangulate new MapPoints
• Checks for new points:

– enough parallax
– positive depth
– small reprojection error

New MapPoints Creation

9Juan J. Gómez

• Every time a new KeyFrame is inserted,…
• Try to keep the local map as small as possible:

– Removing duplicated or unused MapPoints due to
bad feature matching

– Removing redundant KeyFrames due to the fast
KeyFrame insertion policy

4.3.c Point & KF Managing

10Juan J. Gómez

• A MapPoint is considered unused if:
– It has not been seen in the 2 following

KeyFrames after its triangulation
– It has not been matched in at least 25% of

Frames that should see the point (the point lies
inside the Field of View of the camera)

• A KeyFrame is considered redundant if:
– At least a 90% of its matched MapPoints are

seen by at least 3 other KeyFrames in the same
or finer scale

Point & KF Managing

11Juan J. Gómez

• After point creation, perform a Local Bundle
Adjustment to refine KeyFrame poses and
point positions

• The local map is composed by the current
KeyFrame, its covisible KeyFrames and all
the points they see

• The rest of the map remains fixed to avoid
drift

• Local BA complexity depends on KeyFrame
density, not in the total map size!!

4.3.d Local Bundle Adjustment

12Juan J. Gómez

Local Mapping

13Juan J. Gómez

Covisibility Graph and Essential Graph
θ: number of common points

θmin = 15 θmin = 100

Used for Local BA,
instead of sliding window

Used for Loop Correction

14Juan J. Gómez

Local Bundle Adjustment

Local Bundle Adjustment (BA)

Current Keyframe & Covisibles

Points seen by (in red)

Rest of Keyframes that see

Local Map:

Variable Constant, they anchor the map

15Juan J. Gómez

ORBSLAM3 Tracking & Mapping Times (ms)

Intel Core i7-7700 @3.6 GHz, 32 GB

30-40 fps

3-5 KFs/s

16Juan J. Gómez

• Create a main file where you define
the SLAM system:

– Create an ORB_SLAM3::System object
– Input images to the system with one of the

following methods:
» TrackMonocular(image)
» TrackStereo(image)
» TrackRGBD(image)

– These methods return the camera pose
prediction

• You must provide a calibration file
according to your camera calibration

4.3.e Running and Tuning

System.h/cc

...

...
TrackMonocular(image) : SE(3)
TrackStereo(image) : SE(3)
TrackRGBD(image) : SE(3)

Examples

mono_tum.cc
mono_kitti.cc

….

Monocular

mono_tum.cc
mono_kitti.cc

….

Stereo

…

17Juan J. Gómez

These .yaml files contains:
• Camera parameters:

– Type of camera model
– Calibration parameters
– Etc…

• ORB parameters:
– Number of features to extract
– Number of scales
– Scale factor

• Some visualization parameters

Adjust them according to your needs!

Calibration Files

Examples

TUM1.yaml
KITTI.yaml

….

Monocular

TUM1.yaml
KITTI.yaml

….

Stereo

…

18Juan J. Gómez

Apart from the calibration file, you can tune up:
• Minimum parallax required to triangulate a point
• KeyFrame insertion policy
• ORB matching thresholds
• Number of iterations of the Bundle Adjustments
• Criteria for deleting MapPoints and KeyFrames
• …

Things that can be Tuned up

1Richard Elvira

4.4 Visual SLAM: Place Recognition

Juan D. Tardós, Richard Elvira
Universidad de Zaragoza, Spain

robots.unizar.es/SLAMLAB

69156 - Simultaneous Localization and Mapping (SLAM)

robots.unizar.es/SLAMLAB

2Richard Elvira

Lesson 4. Visual SLAM
4. Place Recognition

a. Overview
b. Bag of Words
c. Relocation
d. Loop closing

Readings:
• DBoW2 paper
• Section VII of ORB-SLAM paper
• Section VI of ORB-SLAM3 paper

http://doriangalvez.com/papers/GalvezTRO12.pdf
https://arxiv.org/pdf/1502.00956.pdf
https://arxiv.org/pdf/2007.11898.pdf

3Richard Elvira

4.4.a Place Recognition

Do I know
this place?

4Richard Elvira

Uses of Place Recognition
1. Relocalization (when tracking is lost)

ØFrame vs KeyFrame (2D-3D matches)
ØCompute camera pose with PnP algorithm

2. Loop Closing (correct the accumulated drift)
ØKeyFrame vs KeyFrame (3D-3D matches)
Ø If monocular align KeyFrames with Sim3 (scale and pose)
ØElse, align KeyFrames with SE3 (pose)

3. Map Merging (merge independent maps)
ØKeyFrame vs KeyFrame (3D-3D matches)
Ø If monocular align KeyFrames with Sim3 (scale and pose)
ØElse, align KeyFrames with SE3 (pose)

5Richard Elvira

Why is Place Recognition Difficult?
• Is this a loop closure?

YES TRUE POSITIVE
Likely algorithm answer:

YES

6Richard Elvira

Why is Place Recognition Difficult?
• Is this a loop closure?

YES FALSE POSITIVE
Likely algorithm answer:

NO
Perceptual aliasing is common in indoor scenarios

7Richard Elvira

ORB-SLAM3: Multi-Map (Atlas)

8Richard Elvira

ORB-SLAM3: Bag of Words

9Richard Elvira

4.4.b Bag of Words Approach
Binary Features

BRIEF, ORB

Inverse Index
Direct Index

10Richard Elvira

Scalable Recognition with a Vocabulary Tree

David Nistér, Henrik Stewénius
CVPR 2006

11Richard Elvira

Vocabulary Tree

12Richard Elvira

13Richard Elvira

DBoW2
• Similarity between two BOW vectors:

• Normalized similarity (comparised with previous image):

D. Gálvez-López, J.D. Tardós: Bags of Binary Words for Fast Place
Recognition in Image Sequences, IEEE Trans. Robotics 28(5):1188-1197,
2012 (DBow2 software)

https://github.com/dorian3d/DBoW2

14Richard Elvira

• ORB-SLAM predefined vocabulary:
– Tree levels: 6
– Branching factor: 10
– 106 words

Vocabulary + Direct & Inverse Indexes

15Richard Elvira

Examples with DBoW2 using ORB features

16Richard Elvira

Uses of Place Recognition
1. Relocalization (when tracking is lost)

ØFrame vs KeyFrame (2D-3D matches)
ØCompute camera pose with PnP algorithm

2. Loop Closing (correct the accumulated drift)
ØKeyFrame vs KeyFrame (3D-3D matches)
Ø If monocular align KeyFrames with Sim3 (scale and pose)
ØElse, align KeyFrames with SE3 (pose)

3. Map Merging (merge independent maps)
ØKeyFrame vs KeyFrame (3D-3D matches)
Ø If monocular align KeyFrames with Sim3 (scale and pose)
ØElse, align KeyFrames with SE3 (pose)

17Richard Elvira

4.4.c Relocalization
0.- Camera tracking was lost
1.- Extract ORB features in current frame

?

18Richard Elvira

Relocalization

2.- Retrieve most similar KF using DBoW2
and a set of candidate matches

3D pose
in map?

19Richard Elvira

Relocalization

3.- Find inliers and pose from DBoW2 matches
(PnP with RANSAC)

20Richard Elvira

Relocalization

4.- Guided matching with coarse pose estimation
5.- Non-linear camera pose optimization

21Richard Elvira

Relocalization

DBoW2
candidates

PnPSolver
with RANSAC

Guided matching
and pose

optimization
Enough

matches?

YesPutative
2D-3D matches

Inliers
& Pose

Guided Matches
& Refined Pose

No

22Richard Elvira

Relocalization Examples

23Richard Elvira

Uses of Place Recognition
1. Relocalization (when tracking is lost)

ØFrame vs KeyFrame (2D-3D matches)
ØCompute camera pose with PnP algorithm

2. Loop Closing (correct the accumulated drift)
ØKeyFrame vs KeyFrame (3D-3D matches)
Ø If monocular align KeyFrames with Sim3 (scale and pose)
ØElse, align KeyFrames with SE3 (pose)

3. Map Merging (merge independent maps)
ØKeyFrame vs KeyFrame (3D-3D matches)
Ø If monocular align KeyFrames with Sim3 (scale and pose)
ØElse, align KeyFrames with SE3 (pose)

24Richard Elvira

4.4.d Loop & Merging detection

25Richard Elvira

Loop & Merging detection

LoopClosing.h/cc

...

...
NewDetectCommonRegions() :

bool

KeyFrameDatabase.h/cc

...

...
DetectNBestCandidates(KeyFrame*,

vector<KeyFrame*>, vector<KeyFrame*>,
int) : void

SearchByBoW(KeyFrame*,
KeyFrame*, vector<MapPoint*>&)

: int

ORBMatcher.h/cc

...

...

Putative
3D-3D matches

26Richard Elvira

Loop & Merging Detection

LoopClosing.h/cc

...

...
NewDetectCommonRegions() :

bool

KeyFrameDatabase.h/cc

...

...
DetectNBestCandidates(KeyFrame*,

vector<KeyFrame*>, vector<KeyFrame*>,
int) : void

SearchByBoW(KeyFrame*,
KeyFrame*, vector<MapPoint*>&)

: int

ORBMatcher.h/cc

...

...

...

Sim3Solver.h/cc

...

iterate() : Sim3

Putative
3D-3D matches

Pose
& inliers

27Richard Elvira

Loop & Merging Detection

LoopClosing.h/cc

...

...
NewDetectCommonRegions() :

bool

KeyFrameDatabase.h/cc

...

...
DetectNBestCandidates(KeyFrame*,

vector<KeyFrame*>, vector<KeyFrame*>,
int) : void

SearchByBoW(KeyFrame*,
KeyFrame*, vector<MapPoint*>&)

: int

ORBMatcher.h/cc

...

...

...

Optimizer.h/cc

...

OptimizeSim3(…) : int

...

Sim3Solver.h/cc

...

iterate() : Sim3 SearchByProjection(KeyFrame*,
Sim3, vector<MapPoint*>&,…) :

int

ORBMatcher.h/cc

...

...

Putative
3D-3D matches

Pose
& inliers

Refined pose
& guided matches

28Richard Elvira

Loop & Merging Detection

LoopClosing.h/cc

...

...
NewDetectCommonRegions() :

bool

KeyFrameDatabase.h/cc

...

...
DetectNBestCandidates(KeyFrame*,

vector<KeyFrame*>, vector<KeyFrame*>,
int) : void

SearchByBoW(KeyFrame*,
KeyFrame*, vector<MapPoint*>&)

: int

ORBMatcher.h/cc

...

...

...

Optimizer.h/cc

...

OptimizeSim3(…) : int

...

Sim3Solver.h/cc

...

iterate() : Sim3 SearchByProjection(KeyFrame*,
Sim3, vector<MapPoint*>&,…) :

int

ORBMatcher.h/cc

...

...

Geometric
Validation:
3 covis. KFs
that confirm
the solution?

Yes

No

Putative
3D-3D matches

Pose
espurious-free

matches

29Richard Elvira

Loop Correction

30Richard Elvira

Loop Correction

• Mono: 7 DoF graph optimization, to correct scale drift
• Stereo and Visual-Inertial: 6 DoF graph optimization
• And Full BA in a separated thread

31Richard Elvira

Loop Correction

HallHall Corridor 1

Corridor 2

Stairs 1Stairs 2

Office

32Richard Elvira

Loop Correction

LoopClosing.h/cc

...

...
CorrectLoop() : void

HallHall Corridor 1

Corridor 2

Stairs 1Stairs 2

Office

33Richard Elvira

Loop Correction

LoopClosing.h/cc

...

...
CorrectLoop() : void

LoopClosing.h/cc

...

...
SearchAndFuse(map<KeyFrame,

Sim3>, vector<MapPoint>) : void

Hall Corridor 1

Corridor 2

Stairs 1Stairs 2

Office

34Richard Elvira

Loop Correction

LoopClosing.h/cc

...

...
CorrectLoop() : void

LoopClosing.h/cc

...

...
SearchAndFuse(map<KeyFrame,

Sim3>, vector<MapPoint>) : void

Optimizer.h/cc

...

...
OptimizeEssentialGraph(…) : void
OptimizeEssentialGraph4DoF(…) : void

Hall Corridor 1

Corridor 2

Stairs 1Stairs 2

Office

35Richard Elvira

Loop Correction

LoopClosing.h/cc

...

...
CorrectLoop() : void

LoopClosing.h/cc

...

...
SearchAndFuse(map<KeyFrame,

Sim3>, vector<MapPoint>) : void

Optimizer.h/cc

...

...

LoopClosing.h/cc

...

...
RunGlobalBundleAdjustment(Map,

Frame_id) : void

OptimizeEssentialGraph(…) : void
OptimizeEssentialGraph4DoF(…) : void

Hall Corridor 1

Corridor 2

Stairs 1Stairs 2

Office

36Richard Elvira

Examples of Loop Correction

37Richard Elvira

ORBSLAM3 Loop Closing Times (ms)

Intel Core i7-7700 @3.6 GHz, 32 GB

Once per KF

Once per Loop

4th Thread

1Juan J. Gómez & Juan D. Tardós

4.5 Visual SLAM: Accuracy

Juan D. Tardós
Universidad de Zaragoza, Spain

robots.unizar.es/SLAMLAB

69156 - Simultaneous Localization and Mapping (SLAM)

robots.unizar.es/SLAMLAB

2Juan J. Gómez & Juan D. Tardós

Lesson 4. Visual SLAM
5. Accuracy

a. Measuring accuracy
b. Monocular results
c. Stereo & RGB-D results
d. Conclusions

Readings:
• ORB-SLAM paper
• ORB-SLAM2 paper
• ORB-SLAM3 paper

https://arxiv.org/pdf/1502.00956.pdf
https://arxiv.org/pdf/1610.06475.pdf
https://arxiv.org/pdf/2007.11898.pdf

3Juan J. Gómez & Juan D. Tardós

4.5.a Measuring SLAM Accuracy
• Requires ground-truth (GT) from some external sensor
• Map accuracy

– Useful in dense SLAM methods
– Ground truth: dense 3D model of the environment

» Stereo or multi-view reconstruction
» 3D Laser scanner (very expensive!)

• Trajectory accuracy
– Bad trajectory => bad map
– Useful in all SLAM methods
– Trajectory ground-truth

» Outdoors: GPS
» Indoors: motion capture

system, total station,…

EuRoC
Dataset

4Juan J. Gómez & Juan D. Tardós

ATE: Absolute Translation Error (RMSE)
SLAM trajectory GT trajectory

Find the best 6-DOF alignment
between SLAM and GT

Interpolate GT at
SLAM timestamps

Different reference Different timestamps

5Juan J. Gómez & Juan D. Tardós

ATE: Monocular case
SLAM trajectory GT trajectory

Find the best 7-DOF alignment
between SLAM and GT

Interpolate GT at
SLAM timestamps

Different reference
AND SCALE

Different timestamps

6Juan J. Gómez & Juan D. Tardós

ATE in Keyframe-Based SLAM
• Keyframes are better estimated than frames

– Computing ATE with the frame trajectory is more realistic

• During tracking, store the pose of each frame relative to
its previous KF:

• KFs are optimized during mapping and loop closing.
• At the end of SLAM, save the corrected frame trajectory:

7Juan J. Gómez & Juan D. Tardós

RPE: Relative Pose Error

• Translation: position error / trajectory length (%)

• Rotation: angular error / trajectory length (degrees / m)

8Juan J. Gómez & Juan D. Tardós

4.5.b Monocular Results, Indoors

9Juan J. Gómez & Juan D. Tardós

ORB-SLAM Indoors: TUM RGB-D Dataset

10Juan J. Gómez & Juan D. Tardós

TUM RGB-D Benchmark

ATE RMS (cm)

RGB-D SLAM results taken
from the benchmark website

11Juan J. Gómez & Juan D. Tardós

Monocular Outdoors: Kitti Dataset

12Juan J. Gómez & Juan D. Tardós

Trajectory and Map Obtained

13Juan J. Gómez & Juan D. Tardós

ORB-SLAM: Kitti Dataset

14Juan J. Gómez & Juan D. Tardós

Scale drift! Ground Truth
Estimation

KITTI 08

ORB-SLAM Monocular
• With pure monocular, scale is not observable

15Juan J. Gómez & Juan D. Tardós

4.5.c Stereo and RGB-D

16Juan J. Gómez & Juan D. Tardós

RGB-D Point Cloud Reconstructions

17Juan J. Gómez & Juan D. Tardós

RGB-D Point Cloud Reconstruction

18Juan J. Gómez & Juan D. Tardós

Accuracy in TUM RGB-D Dataset

• BA gives better accuracy than ICP
• And is less computationally expensive

19Juan J. Gómez & Juan D. Tardós

Accuracy in the KITTI DatasetTable 6.1: Comparison of accuracy in the KITTI Dataset.

ORB-SLAM2 (Stereo) Stereo LSD-SLAM
Error trel rrel tabs trel rabs tabs
(Units) (%) (deg/100m) (m) (%) (deg/100m) (m)

00 0.70 0.25 1.3 0.63 0.26 1.0
01 1.39 0.21 10.4 2.36 0.36 9.0
02 0.76 0.23 5.7 0.79 0.23 2.6
03 0.71 0.18 0.6 1.01 0.28 1.2
04 0.48 0.13 0.2 0.38 0.31 0.2
05 0.40 0.16 0.8 0.64 0.18 1.5
06 0.51 0.15 0.8 0.71 0.18 1.3
07 0.50 0.28 0.5 0.56 0.29 0.5
08 1.05 0.32 3.6 1.11 0.31 3.9
09 0.87 0.27 3.2 1.14 0.25 5.6
10 0.60 0.27 1.0 0.72 0.33 1.5

Figure 6.3: Estimated trajectory (black) and ground-truth (red) in KITTI 01, 05, 07 and 08.

85

Table 6.1: Comparison of accuracy in the KITTI Dataset.

ORB-SLAM2 (Stereo) Stereo LSD-SLAM
Error trel rrel tabs trel rabs tabs
(Units) (%) (deg/100m) (m) (%) (deg/100m) (m)

00 0.70 0.25 1.3 0.63 0.26 1.0
01 1.39 0.21 10.4 2.36 0.36 9.0
02 0.76 0.23 5.7 0.79 0.23 2.6
03 0.71 0.18 0.6 1.01 0.28 1.2
04 0.48 0.13 0.2 0.38 0.31 0.2
05 0.40 0.16 0.8 0.64 0.18 1.5
06 0.51 0.15 0.8 0.71 0.18 1.3
07 0.50 0.28 0.5 0.56 0.29 0.5
08 1.05 0.32 3.6 1.11 0.31 3.9
09 0.87 0.27 3.2 1.14 0.25 5.6
10 0.60 0.27 1.0 0.72 0.33 1.5

Figure 6.3: Estimated trajectory (black) and ground-truth (red) in KITTI 01, 05, 07 and 08.

85

Table 6.1: Comparison of accuracy in the KITTI Dataset.

ORB-SLAM2 (Stereo) Stereo LSD-SLAM
Error trel rrel tabs trel rabs tabs
(Units) (%) (deg/100m) (m) (%) (deg/100m) (m)

00 0.70 0.25 1.3 0.63 0.26 1.0
01 1.39 0.21 10.4 2.36 0.36 9.0
02 0.76 0.23 5.7 0.79 0.23 2.6
03 0.71 0.18 0.6 1.01 0.28 1.2
04 0.48 0.13 0.2 0.38 0.31 0.2
05 0.40 0.16 0.8 0.64 0.18 1.5
06 0.51 0.15 0.8 0.71 0.18 1.3
07 0.50 0.28 0.5 0.56 0.29 0.5
08 1.05 0.32 3.6 1.11 0.31 3.9
09 0.87 0.27 3.2 1.14 0.25 5.6
10 0.60 0.27 1.0 0.72 0.33 1.5

Figure 6.3: Estimated trajectory (black) and ground-truth (red) in KITTI 01, 05, 07 and 08.

85

Table 6.1: Comparison of accuracy in the KITTI Dataset.

ORB-SLAM2 (Stereo) Stereo LSD-SLAM
Error trel rrel tabs trel rabs tabs
(Units) (%) (deg/100m) (m) (%) (deg/100m) (m)

00 0.70 0.25 1.3 0.63 0.26 1.0
01 1.39 0.21 10.4 2.36 0.36 9.0
02 0.76 0.23 5.7 0.79 0.23 2.6
03 0.71 0.18 0.6 1.01 0.28 1.2
04 0.48 0.13 0.2 0.38 0.31 0.2
05 0.40 0.16 0.8 0.64 0.18 1.5
06 0.51 0.15 0.8 0.71 0.18 1.3
07 0.50 0.28 0.5 0.56 0.29 0.5
08 1.05 0.32 3.6 1.11 0.31 3.9
09 0.87 0.27 3.2 1.14 0.25 5.6
10 0.60 0.27 1.0 0.72 0.33 1.5

Figure 6.3: Estimated trajectory (black) and ground-truth (red) in KITTI 01, 05, 07 and 08.

85

20Juan J. Gómez & Juan D. Tardós

ORB-SLAM2 Stereo: Challenging Lighting

21Juan J. Gómez & Juan D. Tardós

ORB-SLAM2 Stereo in EuRoC dataset

22Juan J. Gómez & Juan D. Tardós

Accuracy in the EuRoC DatasetTable 6.2: EuRoC Dataset. Comparison of Translation RMSE (m).

ORB-SLAM2 (Stereo) Stereo LSD-SLAM
V1 01 easy 0.035 0.066
V1 02 medium 0.020 0.074
V1 03 di�cult 0.048 0.089
V2 01 easy 0.037 -
V2 02 medium 0.035 -
V2 03 di�cult X -
MH 01 easy 0.035 -
MH 02 easy 0.018 -
MH 03 medium 0.028 -
MH 04 di�cult 0.119 -
MH 05 di�cult 0.060 -

Figure 6.4: Estimated trajectory (black) and groundtruth (red) in EuRoC V1 02 medium,
V2 02 medium, MH 03 medium and MH 05 di�cutlt.

87

Table 6.2: EuRoC Dataset. Comparison of Translation RMSE (m).

ORB-SLAM2 (Stereo) Stereo LSD-SLAM
V1 01 easy 0.035 0.066
V1 02 medium 0.020 0.074
V1 03 di�cult 0.048 0.089
V2 01 easy 0.037 -
V2 02 medium 0.035 -
V2 03 di�cult X -
MH 01 easy 0.035 -
MH 02 easy 0.018 -
MH 03 medium 0.028 -
MH 04 di�cult 0.119 -
MH 05 di�cult 0.060 -

Figure 6.4: Estimated trajectory (black) and groundtruth (red) in EuRoC V1 02 medium,
V2 02 medium, MH 03 medium and MH 05 di�cutlt.

87

Table 6.2: EuRoC Dataset. Comparison of Translation RMSE (m).

ORB-SLAM2 (Stereo) Stereo LSD-SLAM
V1 01 easy 0.035 0.066
V1 02 medium 0.020 0.074
V1 03 di�cult 0.048 0.089
V2 01 easy 0.037 -
V2 02 medium 0.035 -
V2 03 di�cult X -
MH 01 easy 0.035 -
MH 02 easy 0.018 -
MH 03 medium 0.028 -
MH 04 di�cult 0.119 -
MH 05 di�cult 0.060 -

Figure 6.4: Estimated trajectory (black) and groundtruth (red) in EuRoC V1 02 medium,
V2 02 medium, MH 03 medium and MH 05 di�cutlt.

87

Table 6.2: EuRoC Dataset. Comparison of Translation RMSE (m).

ORB-SLAM2 (Stereo) Stereo LSD-SLAM
V1 01 easy 0.035 0.066
V1 02 medium 0.020 0.074
V1 03 di�cult 0.048 0.089
V2 01 easy 0.037 -
V2 02 medium 0.035 -
V2 03 di�cult X -
MH 01 easy 0.035 -
MH 02 easy 0.018 -
MH 03 medium 0.028 -
MH 04 di�cult 0.119 -
MH 05 di�cult 0.060 -

Figure 6.4: Estimated trajectory (black) and groundtruth (red) in EuRoC V1 02 medium,
V2 02 medium, MH 03 medium and MH 05 di�cutlt.

87

23Juan J. Gómez & Juan D. Tardós

ORB-SLAM3: Visual Results

Short & Mid-term DA Long-term DA With IMU

24Juan J. Gómez & Juan D. Tardós

ORB-SLAM3: Comparison

25Juan J. Gómez & Juan D. Tardós

4.5.d Conclusions
• Monocular SLAM

– Scale is unobservable
– Scale drift produces innacuracy
– Less robust: needs two views with parallax to initialize points

» Avoid pure rotation during exploration
» Avoid fast motions

• Stereo & RGB-D SLAM
– Obtains true scale
– More accurate
– More robust: point initialization from one view

• Mono-Inertial & Stereo Inertial (see Lesson 6)
– Obtains true scale
– Excellent accuracy and robustness

1Juan D. Tardós

Lesson 5. Optimization in SLAM

Juan D. Tardós
Universidad de Zaragoza, Spain

robots.unizar.es/SLAMLAB

69156 - Simultaneous Localization and Mapping (SLAM)

robots.unizar.es/SLAMLAB

2Juan D. Tardós

Lesson 5. Optimization in SLAM

1. Optimization algorithms
2. Lie groups
3. Optimization in Visual SLAM

– Bundle Adjustment
– Pose-graph

3Juan D. Tardós

Standing on the Shoulders of Giants

Sophus Lie
1842 – 1899

Carl F. Gauss
1777 – 1875

Isaac Newton
1643 – 1727

Peter J. Huber
1934 –

Kenneth Levenberg
1919 – 1973

Donald W. Marquardt
1929 – 1997

4Juan D. Tardós

Lesson 5. Optimization in SLAM
1. Optimization algorithms

a. Newton method
• Levenberg-Marquardt

b. Gauss-Newton
c. Robust cost functions

• Huber, Cauchy

Readings:
• B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon

Bundle Adjustment — A Modern Synthesis,
in Vision Algorithms: Theory andPractice, Springer, 2000

https://hal.inria.fr/file/index/docid/590128/filename/Triggs-va99.pdf

5Juan D. Tardós

States

Coordinates of point j

Orientation of camera i

Position of camera i

Observation of point j
from camera i

Measurements

Feature-Based Visual SLAM as BA

Bundle Adjustment

Reprojection error
Non-Linear

Optimization

6Juan D. Tardós

5.1 Optimization Algorithms: Notation

• Residual:

» with m = dim(z), n = dim(x)

• Cost function: dim(f) = 1

– Gradient n x 1

– Hessian n x n

• Jacobian: m x n

Observations Predicted
Observations

Current State
Estimation

7Juan D. Tardós

• 2nd order approximation of the cost function:

• At the minimum:

• Newton Step:

5.1.a Newton Method

= 0

8Juan D. Tardós

Convergence of Newton Method
• If the cost is exactly a quadratic function of the state, it

converges in one step (as in the Kalman Filter)
• Quadratic asymptotic convergence:

– Close to the optimum, the state error is squared at each iteration
– It converges in 5-6 steps to double accuracy (3 steps in practice)

0 1 2 3 4 5 6
Iterations

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

R
ep

ro
je

ct
io

n
er

ro
r (

pi
xe

ls
)

Pose-Only BA (G-N)

SE3L

0 1 2 3 4 5 6
Iterations

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Po
si

tio
n

er
ro

r (
m

)

Pose-Only BA (G-N)

SE3L

With Noise

9Juan D. Tardós

But, if we are Far from the Minimum….

-1000 -800 -600 -400 -200 0 200 400
0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20
Iterations

100

101

102

103

104

R
ep

ro
je

ct
io

n
er

ro
r (

pi
xe

ls
)

Pose-Only BA (G-N)

SE3L

-100 0 100 200 300 400 500
-800

-600

-400

-200

0

200

400

0 2 4 6 8 10 12 14 16 18 20
Iterations

103

R
ep

ro
je

ct
io

n
er

ro
r (

pi
xe

ls
)

Pose-Only BA (G-N)

SE3L

10Juan D. Tardós

Properties of Newton Method
• Needs a suitable step control policy to guarantee

convergence when far from the minimum
• In a dense system, inverting the Hessian is O(n3)

– But Visual SLAM and BA are sparse problems!!!
– Take profit from the sparsity of Hessian!!!

• For very large problems, approximate 1st order systems
can be used, but they have linear convergence.

• Computing Hessian is not trivial (high implementation
and computational costs)

– Gauss-Newton method (analytical approximation of H)
– Numerical approximations of H (Krylov methods)

11Juan D. Tardós

Step Control
• Newton method can fail:

– It can converge to a saddle point
– For large steps, the 2nd order cost prediction is inaccurate
– No guarantee that the actual cost will decrease

• To guarantee cost decrease:
– Follow a gradient descent direction
– And make reasonable progress in that direction (step control)

» Too little, and it will converge slowly
» Too much, and it will overshoot the minimum

12Juan D. Tardós

Damped Newton Methods
• Instead of:

• Solve:

– Small lambda à Newton direction (faster)
– Big lambda à Gradient descent direction (safer)

• Trust-region methods: choose lambda to limit the step to
a maximum dynamic size

• Levenberg-Marquardt (L-M) methods: perform heuristic
changes of lambda:

– Bad convergence: increase lambda à Gradient descent
– Good convergence: decrease lambda à Newton direction

W: weight matrix,
identity or diag(H)

13Juan D. Tardós

An Implentation of Levenberg-Marquardt

From F. Dellaert & M Kaess: Factor Graphs for Robot Perception, 2017

14Juan D. Tardós

Line-Search Methods
• Once you have obtained a descent direction solving:

• Perform a 1D search in that direction to minimize the cost
function:

– Most techniques use a quadratic or cubic 1D cost model

15Juan D. Tardós

5.1.b Gauss-Newton (Weighted Least Squares)
• Non linear weighted SSE cost function:

• Gauss-Newton approximation:
– Good if prediction error is small
– Or if the observation is almost linear

• Gauss-Newton or normal equation:

16Juan D. Tardós

Relationship to EKF
• Measurement equation:

• Stacking measurements:

• Using as weight matrix:

• G-N cost function = Mahalanobis distance

17Juan D. Tardós

Relationship to EKF
State prediction:
Measurements:
Cost function:

Gauss-Newton equation:

Using matrix inv. lema:

We get EKF update:

Hessian =
Information Matrix

18Juan D. Tardós

EKF .vs. Gauss-Newton
One-shot: Iterate:

• EKF performs just one Gauss-Newton iteration
• Followed by past state marginalization

– Reduces the state dimension
– But correlates all the features, losing sparsity

• Iterated EKF re-linearizes the current observation, but
cannot correct linearization errors in past observations

• The Hessian of Gauss-Newton can be inverted to obtain
the covariances of the state variables

– But it’s expensive, usually avoided
– Use visual clues for data association, instead of covariances

19Juan D. Tardós

5.1.c Robust Cost Functions
• To down-weight large errors (spurious data)

– where: is an increasing function
– with:
– for standard SSE:

• Examples:

20Juan D. Tardós

• Robustified Gauss-Newton approximation:

• Some methods just use:

– Reweighted Least-Squares: using instead of

Robustified Gauss-Newton

1Juan D. Tardós

5.2 Lie Groups

Juan D. Tardós
Universidad de Zaragoza, Spain

robots.unizar.es/SLAMLAB

69156 - Simultaneous Localization and Mapping (SLAM)

Figure credit: (Sola et al. 2020)

robots.unizar.es/SLAMLAB

2Juan D. Tardós

Lesson 5. Optimization in SLAM
2. Lie Groups

a. Lie Group theory
b. Rotations: SO(3)
c. Motions: SE(3)
d. Jacobians in SE(3)
e. Sim(3)

Readings:
• Joan Solà, Jeremie Deray, Dinesh Atchuthan

A micro Lie theory for state estimation in robotics, arXiv 2020
• Hauke Strasdat

Local accuracy and global consistency for efficient visual SLAM,
PhD Thesis, Imperial College, 2012 (chapters 2, A, B)

https://arxiv.org/pdf/1812.01537.pdf
https://www.doc.ic.ac.uk/~ajd/Publications/Strasdat-H-2012-PhD-Thesis.pdf

3Juan D. Tardós

5.2.a Lie Group theory
• Group: a set with an operation such that:

• Some examples:
– Translations R3: tAC = tAB + tBC
– Rotation Matrices SO(3): RAC = RAB RBC

– Rigid Motions SE(3): TAC = TAB TBC

4Juan D. Tardós

Manifolds and Tangent Space
• A Manifold is a smooth surface that is locally similar to Rn

– A 3D sphere belongs to R3, but is locally similar to R2

– A rotation matrix belongs to R9, but is locally similar to R3

– A rigid motion matrix belongs to R16, but is locally similar to R6

Credit: (Sola et al. 2020)

Manifold

Tangent
vector space

5Juan D. Tardós

State Estimation in Manifolds
• In robotics and computer vision, many state variables live

in manifolds, that are groups: orientations, poses,…
• If we update their estimations using a vectorial sum:

the estimation will “fly away” from the manifold
• Solution:

– Compute updates in a local tangent space,
– Map the update to the manifold,
– And update the state using the manifold’s composition.

» As it is a group, the state will always stay in the manifold!

6Juan D. Tardós

Lie Group
• A Lie Group is a group that is also a smooth manifold

• Velocities belong to the tangent space:

• Examples of Lie groups:
– SO(3): Special Orthogonal Group 3D (Rotation Matr. 3x3)
– SE(3): Special Euclidean Group 3D (Homog. Transf. 4x4)
– Sim(3): Similarity Transformation (motion + scale change)
– S3: 4D Unit sphere (quaternions)
– Their 2D versions: SO(2), SE(2), Sim(2)

7Juan D. Tardós

Lie Algebra
• The tangent space of a Lie Group represents velocities

• The Lie Algebra is the tangent space at the identity

– The Lie Algebra is a vector space, isomorphic to
» m : degrees of freedom of the group

– The Lie Algebra is used to represent velocities or displacements

Basis of

Basis of

8Juan D. Tardós

Form of the Lie Algebra
• The Lie Algebra of a Lie Group can be obtained by

differentiating the group constraint
• For a multiplicative group:

• The elements of the Lie Algebra are:

• Differential equation:

• Solution:

Belongs to the
Lie Group

9Juan D. Tardós

Exp and Log Maps

Credit: (Sola et al. 2020)

10Juan D. Tardós

Adjoint Matrix
• Vectors of the tangent space at can be

transformed to the tangent space at the identity

• As it is a linear operation, we will use its matrix form:

– Or, defining as composition with Exp

11Juan D. Tardós

5.2.b Rotation Group SO(3)
• Lie Group SO(3):

– Differentiating the constraint:

• Lie Algebra so(3):

• Is isomorphic to the vector space:

Must be
anti-symmetric
(a skew matrix)

Angular Velocity

12Juan D. Tardós

• so(3) is the tangent space of SO(3) at the origin:

• It’s elements are:

• They represent angular velocity or a (small) rotation

Lie Algebra so(3)

13Juan D. Tardós

• Differential equation:

• It’s solution is:

– Note that successive rotations are expressed in the rotated
frames, not in W:

Understanding the Exponential Map

14Juan D. Tardós

• Taking into account:

• Exponential map (Rodrigues formula):

• Logarithmic map:

• Derivative of Exp:

Exponential and Logarithmic Maps

15Juan D. Tardós

5.2.c Rigid Motion Group SE(3)
• Lie Group SE(3):

• Lie Algebra se(3):

• Isomorphic to:

Angular VelocityLinear Velocity

16Juan D. Tardós

• se(3) is the tangent space of SE(3) at the origin
• Its vector basis is:

– se(3) represents linear and angular velocities or (small) motions

Lie Algebra se(3)

17Juan D. Tardós

• Solution of differential equation:

– Note that successive motions are expressed in the transformed
frames, not in W:

Exponential Map

18Juan D. Tardós

• Vector space:

• Exponential map:

• Logarithmic map:

Exponential and Logarithmic Maps in SE(3)

Watch out!

19Juan D. Tardós

A Simplified Notation

• Overloading the composition with implicit Exp / Log:

20Juan D. Tardós

• Same rotational part, different translations:

Other ways to Represent Perturbations

21Juan D. Tardós

Perturbations on the Right or on the Left?
Wrong question!

NEVER AT THE ORIGIN.
Rotations around the origin

produce big translations
when far from the origin!!!

Define perturbations in a
LOCAL REFERENCE:
robot, camera, IMU,…

GOOD! BAD!

22Juan D. Tardós

5.2.d Jacobians
Jacobian of a Transformation (Adjoint Matrix)

• Allows to change velocities or perturbations from one
side of a transformation to the other side:

23Juan D. Tardós

• Left:
• Right:

• Relationship:

• Computation:

Jacobians: Composition

(Barfoot & Furgale, TRO 2014)
(Sola et al., arXiv 2020)

24Juan D. Tardós

• Point composition:

• Lie groups make differentiation easy:

• Jacobians:

Jacobians: Point Composition

25Juan D. Tardós

Jacobians of Point Observation
• A point observed by a camera:

• Jacobian of projection:

• Jacobians:

• If the state is the robot pose instead of the camera pose:

26Juan D. Tardós

5.2.e Similarity Transformations Sim(3)
• Useful in monocular SLAM (to optimize scale drift)
• Lie group Sim(3):

• Lie algebra sim(3):

• Exp:

• Log:

(Strasdat PhD 2012, Chapter 5)

1Juan D. Tardós

5.3 Optimization in Visual SLAM

Juan D. Tardós
Universidad de Zaragoza, Spain

robots.unizar.es/SLAMLAB

69156 - Simultaneous Localization and Mapping (SLAM)

robots.unizar.es/SLAMLAB

2Juan D. Tardós

Lesson 5. Optimization in SLAM
3. Optimizations in Visual SLAM

a. Bundle Adjustment
b. Pose-graph

Readings:
• B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon Bundle

Adjustment — A Modern Synthesis,
in Vision Algorithms: Theory andPractice, Springer, 2000

• R Kümmerle, G Grisetti, H Strasdat, K Konolige, W Burgard,
g2o: A general framework for graph optimization, ICRA 2011

• Hauke Strasdat
Local Accuracy and Global Consistency for Efficient Visual SLAM,
PhD Thesis, Imperial College, 2012 (chapters 5 and B.6)

https://hal.inria.fr/file/index/docid/590128/filename/Triggs-va99.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.482.2483&rep=rep1&type=pdf
https://www.doc.ic.ac.uk/~ajd/Publications/Strasdat-H-2012-PhD-Thesis.pdf

3Juan D. Tardós

Local Bundle Adjustment

5.3.a Local Bundle Adjustment (BA)

Current Keyframe & Covisibles

Points seen by (in red)

Rest of Keyframes that see

Local Map:

Variable Constant, they anchor the map

4Juan D. Tardós

Representation with a Factor Graph
• Bipartite graph: variables (cameras and points) and

constraints between them (observations or priors):

• Represents the map posterior pdf as a product of factors:

• The Maximum a Posteriori (MAP) solution is:

x1 x2 x3 x4 x5 x7x6 x8 x9

T1 T2 T3 T4

Assuming Gaussian noise

5Juan D. Tardós

Putting Everything Together
• Observations:

• Reproject. error:
• Robust cost:

• Estate:
• Jacobians:

• Levengerg-Marquardt:

se(3)

6Juan D. Tardós

Reprojection error
Mahalanobis distance
Robust cost funtion

Compute Jacobians

Build linear system

Solve system (Levengerg-Marquardt)

Update Keyframes using
Lie Group SE(3)

Update Points in R3

7Juan D. Tardós

Sparsity of Visual SLAM
• Each camera does not see all the points

• The Jacobian is very sparse:

x1 x2 x3 x4 x5 x7x6 x8 x9

T1 T2 T3 T4

0 10 20 30 40 50
camera & point states

0

5

10

15

20

25

30

ob
se

rv
at

io
ns

J

Cameras Points

u23

8Juan D. Tardós

And only some blocks of H:
You don’t need to build J,
instead, build H and b:

Sparsity of Visual SLAM

0 10 20 30 40 50
camera & point states

0

5

10

15

20

25

30

35

40

45

50

ca
m

er
a

&
po

in
t s

ta
te

s

H = JT J

Hcc

Hpp

Hcp
u23

0 10 20 30 40 50
camera & point states

0

5

10

15

20

25

30

ob
se

rv
at

io
ns

J

Cameras Points

u23

9Juan D. Tardós

The Schur Complement

Schur complement of D

Solve reduced system for x1
And then, solve for x2

10Juan D. Tardós

Reduced Camera System

0 10 20 30 40 50
camera & point states

0

5

10

15

20

25

30

35

40

45

50

ca
m

er
a

&
po

in
t s

ta
te

s

H = JT J

Hcc

Hpp

Hcp

0 5 10 15 20 25
camera states

0

5

10

15

20

25

ca
m

er
a

st
at

es

Hcc - Hcp Hpp -1 HcpT

Reduced Camera Matrix
(6n x 6n)

~ Covisibility

1) Solve reduced camera system

2) Substitute dc to find dp

Schur
complement
of the points

Cameras 1 & 2
have seen some
common points

11Juan D. Tardós

Solving the Reduced Camera System
• Cholesky decomposition of a positive definite matrix A:

• Linear system:

• Solution:

• The camera matrix is positive definite and sparse
– Use a sparse Cholesky library

» CSparse, CHOLMOD,…
– Best case: long and thin problems à O(n)
– Worst case: high covisibility à O(n3)

0 5 10 15 20 25
camera states

0

5

10

15

20

25

ca
m

er
a

st
at

es

Hcc - Hcp Hpp -1 HcpT

L: lower triangular matrix

Forward substitution
Back substitution

12Juan D. Tardós

Gauge Freedoms
SLAM is based on relative measurements of features from
the on-board sensors

– The absolute pose of the map is NOT observable
– 6 gauge freedoms: 3 position + 3 orientation
– Hessian has a rank deficiency of 6

• Solution: select an arbitrary pose for the 1st camera, and
exclude it from the set of variables to estimate

– Full rank Hessian (except in degenerate cases)

In pure monocular SLAM, scale is also not observable
– 7 gauge freedoms: 3 position + 3 orientation + 1 scale
– Fix the 1st camera, and an arbitrary scale

• Solution:
– Initialize with arbitrary scale and use L-M:
– Or fix the distance between 1st and 2nd camera

Avoids rank-deficiency

13Juan D. Tardós

5.3.b Pose-Graph Optimization
• When performing SLAM, the relative pose between

neighboring keyframes is very accurate
• But drift is accumulative
• In a long loop, the accumulated drift will be large

• With large errors, BA is problematic:
– BA is non-convex, and can converge to local minima
– Far from the optimum, convergence can be very slow

• Solution: correct loop with pose-graph optimization
– Optionally followed by full BA in a separate thread

14Juan D. Tardós

Pose-Graph Optimization

Credit: (H. Strasdat PhD, 2012)

15Juan D. Tardós

ORB-SLAM uses the Essential Graph
θ: number of common points

θmin = 15 θmin = 100

Used for Local BA,
instead of sliding window

Used for Loop Correction

16Juan D. Tardós

Pose-Graph Optimization
• Use the relative pose between pairs of close keyframes

before the loop closure as an observation (constant):

• After loop correction the residual of this observation will
be:

• Pose-Graph optimization:
Can be obtained by

point marginalization,
or simply use I6

17Juan D. Tardós

Jacobians of Pose-Graph
• We will estimate perturbations for each pose:

• The required Jacobians are:

• At the end, correct the cameras and the map points:

More details:
(Strasdat PhD, 2012)

Compute point j relative to KF i
Correct KF i
Correct point j

18Juan D. Tardós

Monocular Pose-Graph
• Correcting scale drift in a monocular loop closure:

• Pose-graph optimization in sim(3):

• Loop correction:
Corrects scale drift for
poses and map points

(Strasdat-PhD 2012, Chapter 5)

19Juan D. Tardós

Example of Sim(3) vs. SE(3) Optimization

(Strasdat-PhD 2012)

20Juan D. Tardós

Take-Home Messages
• SLAM is a non-linear least-squares problem
• With good seeds, G-N or L-M converge in a few iterations
• Robust cost functions take care of spurious matchings
• Optimization in a manifold

– It is essential to use local perturbations
– Lie groups provide a nice theoretical framework

• SLAM is a sparse problem
– Use Schur complement and sparse Cholesky decomposition

• Loops can be corrected with pose-graph
– With 6 dof in stereo or visual-inertial settings
– With 7 dof in pure monocular setting, to correct scale drift

• Libraries for SLAM optimization: g2o, Ceres, GTSAM

https://github.com/RainerKuemmerle/g2o
http://ceres-solver.org/
https://gtsam.org/

1

Lesson 6: Visual-Inertial and
Multi-Map SLAM

Juan D. Tardós, Carlos Campos, Richard Elvira
Universidad de Zaragoza, Spain

robots.unizar.es/SLAMLAB

69156 - Simultaneous Localization and Mapping (SLAM)

robots.unizar.es/SLAMLAB

2

Lesson 6. Visual-Inertial and Multi-Map
1. Visual-Inertial SLAM

a) IMU Sensor & Preintegration
b) IMU initialization
c) Visual-Inertial Tracking
d) Visual-Inertial Mapping
e) Loop-Closing and Map Merging with IMU
f) Visual-Inertial SLAM result

Readings:
• C Campos, R Elvira, JJ Gómez Rodríguez, JMM Montiel, JD Tardós:

ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-
Inertial and Multi-Map SLAM. IEEE Trans. Robotics, 2021.

• C Campos, JMM Montiel, JD Tardós, Inertial-Only Optimization for
Visual-Inertial Initialization, ICRA 2020

https://arxiv.org/abs/2007.11898
https://arxiv.org/pdf/2003.05766.pdf

3

Monocular SLAM Works Nicely…

4

…but Scale is NOT Observable

Scale drift!

Ground Truth
Estimation

5

Visual-Inertial SLAM
• Camera:

– 3D localization
– Environment Mapping
– Place Recognition

• IMU (Inertial Measurement Unit)
– Angular velocity
– Linear acceleration + gravity

à Short-term motion prediction
à Absolute roll and pitch
à True scale estimation

6

IMU in Tracking, Mapping and Loop Closing

100-1000 Hz

10-30 Hz

7

• IMU measures angular velocity and linear acceleration in
the body reference

• Difficulties:
– Measurement noise
– Accelerometer and gyroscope biases
– Direction of gravity unknown
– Initial velocity unknown

6.1.a IMU Sensor

Additional states
to be estimated

Noise Bias

GravityInitial Velocity

8

Visual-Inertial Bundle Adjustment

Extra variables:
1. Camera velocities
2. IMU Biases

Visual-Inertial SLAM: The Big Difference

Visual Bundle Adjustment

Variables:
1. Camera poses
2. Map-Point positions

Residuals:
1. Reprojection error

Extra residuals:
1.IMU measurements

9

IMU Sensor: References

From calibration

• Several sensors references
• A single optimizable

reference: (IMU/Body)

https://github.com/ethz-asl/kalibr

Intrinsic and Extrinsic parameters
can be calibrated with Kalibr:

W

Cam 1 Cam 2

IMU

gravity

State

10

• Measures angular velocity (rad/s) in body frame:

IMU Sensor: Gyroscope

Bias random walk

Measurement noise

Two consecutive IMU orientations
are related by:

: Takes 3 angles and returns
a rotation matrix

Dropping W&B
subindexes

EuRoC.yaml
IMU.NoiseGyro: 1.7e-4
IMU.GyroWalk: 1.93e-5

11

• Measures linear acceleration (m/s2) in body frame,
affected gravity, bias and noise:

• Two consecutive velocities and positions:

IMU Sensor: Accelerometer

Bias random walk

Measurement noise

Dropping
W&B

EuRoC.yaml
IMU.NoiseAcc: 2.0e-3
IMU.AccWalk: 3.0e-3

12

IMU Preintegration: Why?

Computations for
each measurement

when Frame/KF
states change

High
computational

burden

A lot of IMU
measurement

between Frames/KF

100-1000 Hz

10-30 Hz

SOLUTION:
Summarize IMU

measurements in a
single precomputed

term
PREINTEGRATION

When Frame/KF state change,
we only need to update a

single preintegrated term

"On-Manifold Preintegration..." Forster et al, TRO 2016
"Visual-inertial-aided navigation...", Lupton et al, TRO 2011

13

IMU Preintegration: Details

ImuTypes.h/.cc
Preintegrated::dR;
Preintegrated::dV;
Preintegrated::dP;
Preintegrated::IntegrateNewMeasurement()

Preintegrated terms are computed at:

1. Preintegrated rotation :

Expressions and further details: http://rpg.ifi.uzh.ch/docs/RSS15_Forster_Supplementary.pdf

2. Preintegrated velocity :

3. Preintegrated position :

Preintegrated terms relate (i,j) frames/keyframes as follows:

Remark: Preintegrated terms depend on bias

http://rpg.ifi.uzh.ch/docs/RSS15_Forster_Supplementary.pdf

14

Preintegrated residual terms:

IMU Preintegration: Residuals

Moving back to our
Visual-Inertial BA...

How do we use preintegrated
measurements to define

residuals?
Maps rotation matrix to 3 angles vector

j-KF
estimation

j-KF prediction from i-KF
estimation and IMU preintegration

Bias random walk residual:

15

IMU Preintegration: Residuals in g2o
Edge for Inertial preintegration

Expressions and further details: http://rpg.ifi.uzh.ch/docs/RSS15_Forster_Supplementary.pdf

G2oTypes.h/cc
EdgeInertial;
VertexPose;

VertexVelocity;
VertexGyroBias;
VertexAccBias;

Edge for bias random walk
G2oTypes.h/cc

EdgeGyroRW;
EdgeAccRW;

VertexGyroBias;
VertexAccBias;

http://rpg.ifi.uzh.ch/docs/RSS15_Forster_Supplementary.pdf

16

6.1.b IMU Initialization

Goal: Find initial estimation
for inertial parameters:
1. Velocities

2. Biases

3. Map scale

4. Gravity direction

17

ORB-SLAM3: Visual-Inertial SLAM

Initialization steps:

18

Approach: Split initialization process into small blocks.

IMU Initialization

1. Visual
Initialization

Find initial
Motion and
3D points

2. Monocular
Visual SLAM

Compute
trajectory

up-to-scale
(for 2s)

4. Visual-
Inertial
SLAM

3. Inertial
Initialization

Find inertial
parameters:

Scale, gravity, biases
and velocities

LocalMapping.h/cc
InitializeIMU()

19

IMU Initialization: MAP Approach

IMU Initialization: Inertial-Only optimization1. Visual
Initializatio

n

2.
Monocular

Visual
SLAM

4. Visual-
Inertial
SLAM

3. Inertial
Initializati

on

Equivalent MAP problem:

Equivalent MAP problem:

• Only inertial measurements
• Only inertial variables
• Scale not estimated for stereoOptimizer.h/cc

InertialOptimization()

1. Visual
Initializatio

n

2.
Monocular

Visual
SLAM

4. Visual-
Inertial
SLAM

3. Inertial
Initializati

on Visual Initialization and SLAM
Visual

observations

Inertial
observations

20

IMU Initialization: Inertial-Only Optimization

G2oTypes.h/cc
EdgeInertialGS;
VertexGDir;
VertexScale;

Residuals w.r.t up-to-scale poses and
velocities, scale and gravity direction:

1. Visual
Initializatio

n

2.
Monocular

Visual
SLAM

4. Visual-
Inertial
SLAM

3. Inertial
Initializati

on

• Levenberg-Marquardt
• Optimization converges in 10 ms
• Map is rotated and scaled after opt.

Solve optimization:

21

IMU Initialization: Inertial-Only Optimization

Solve final joint visual-Inertial Optimization.

1. Visual
Initializatio

n

2.
Monocular

Visual
SLAM

4. Visual-
Inertial
SLAM

3. Inertial
Initializati

on

Finally, just after 2 seconds, launch Visual-Inertial SLAM

Remark: IMU measurements do not use robust
cost function since missassociations do not exist.

Visual measurements in the body
reference:

G2oTypes.h/cc
EdgeMono;
EdgeStereo;

22

• Video goes here

IMU initialization Example

23

IMU Initialization: Practical Tips

AVOID:
• No motion
• Pure rotational motion
• Pure translational

motion
• Constant velocity

motion
• Rotation only around

one axis

IMU needs to be excited during initialization (first 2 seconds)
to properly estimate initial parameters:

TRY TO:
• Combine rotations with

translations
• Make sure gravity points in

different directions in IMU
reference

• 8-shaped trajectories are a
good choice

24

6.1.c Visual-Inertial Tracking

Main differences w.r.t.
visual tracking:
• Initial pose estimation
• Local map tracking
• Lost case &

new Keyframe
decision

25

VI Tracking: Initial Pose Estimation

Preintegrated IMU

Previous
Frame

Current
predicted
frame

Local map to be projected

Found
matches

• Predict pose using
IMU preintegration
instead of using
pose-only BA

• Project into smaller
windows

26

• If map is not updated, optimize w.r.t.
previous frame and marginalize it.

VI Tracking: Local Map Tracking
Optimize current frame state
from found visual matches
and preintegrated IMU:

"ORB-SLAM VI..." Mur et al. 2017

• If map is updated, optimize w.r.t.
previous key-frame

Optimizer.h/cc
PoseInertialOptimizationLastKeyFrame();
PoseInertialOptimizationLastFrame();

27

When tracked Map Points
drop below 15, system passes
to RECENTLY_LOST state:

VI Tracking: Tracking Loss & Keyframe Decision

•Project local map points to find
new matches (larger search window)
•Create keyframes for triangulating
new points.

System robust to fast rotations
or short occlusions

System robust to long losses
(Multimap system)

• If tracking remains for
more than 5 seconds in this
state, system changes to
LOST state

• Continue estimating
pose with IMU for 5 seconds.

•Relocalization
•Create new map

New keyframe decision:
•Same as visual
•Insert a keyframe at least every 0.5s

28

Differences w.r.t.
visual mapping:
• Local Visual-Inertial

BA
• Local Keyframe

Culling
• Scale/Gravity

refinement

6.1.d Visual-Inertial Mapping

29

• Covisible keyframes to local
window are added but remain
fixed during optimization

VI Mapping: Local Visual-Inertial BA

LocalMapping.h/cc
LocalInertialBA();

30

Since we are using a temporal window, scale or gravity
direction errors outside the window may not be corrected by
Local-Inertial BA

VI Mapping: Scale/Gravity Refinement and
Keyframe Culling

All keyframes included,
but fixed.

Very efficient, only 3
variables.

Keyframe culling: same as
visual, but…
- Two consecutive KF are not
more distant than 3s.
- Merge inertial preintegrations:

1 2 3

1 3

ImuTypes.h/cc
Preintegrated::MergePrevious();

LocalMapping.h/cc
ScaleRefinement();

31

6.1.e Loop-Closing and Map-Merging with IMU

32

Loop Closing with IMU

1. IMU increases robustness of loop-closing detection:
• When loop closing candidates are found, check gravity
direction change:

• If > 0.5 degree à Discard loop

G2oTypes.h/cc
Edge4DoF;
Vertex4DoF;

Optimizer.h/cc
OptimizeEssentialGraph4DoF;

2. IMU makes pose-graph more efficient:
• Pitch and Roll are observable
• Optimize poses with only 4 Degrees of Freedom

3. Thanks to lower visual-inertial drift, Global
BA after loop-closing is not required

33

Map Merging with IMU

Optimizer.h/cc
MergeInertialBA();

Similar to visual case,
but…
• Gravity check
• 4DoF optimizations
• Temporal windows

for stored and active
map in merging BA.

Map Points

{

{

 Keyframes from
and observing
local MapPoints

Stored Map

Active Map

34

• Video goes here

6.1.f Results: EuRoc Dataset

35

ORB-SLAM3: Visual Results

36

ORB-SLAM3: Visual-Inertial Results

37

Visual-Inertial Results: EuRoC

• IMU renders system
more accurate

• Comparison for different
sensor configurations.

• IMU renders system
more robust

EuRoC Dataset
RMSE ATE (m)

Visual Visual-Inertial

38

Visual-Inertial Results: TUM VI Benchmarck

39

Visual-Inertial Results: TUM VI Benchmarck

• ORB-SLAM3 gets best results for
indoor sequences:

– Mid-term data association.

TUM-VI Dataset
• Comparison against SOTA

(mono/stereo) in a public dataset.

• ORB-SLAM3 gets best results for
outdoor sequences:

– Exploratory trajectories (No loops)

• ORB-SLAM3 gets competitive
results for challenging
sequences.

40

Computational Cost

Better performance for free

41

Visual-Inertial SLAM: Conclusions

Using a small, cheap and simple IMU sensor improves

visual SLAM:

• Robust to short occlusions or lack of visual features

• More accurate

• Gets true scale in the monocular case

• Gets body pose at a higer rate than camera

• No extra computational cost

1

6.2: Multi-Map SLAM

Juan D. Tardós, Richard Elvira
Universidad de Zaragoza, Spain

robots.unizar.es/SLAMLAB

69156 - Simultaneous Localization and Mapping (SLAM)

robots.unizar.es/SLAMLAB

2

Lesson 6. Visual-Inertial and Multi-Map
2. Multi-Map SLAM

a) New Map Creation
b) Map Merge Detection
c) Map Merging
d) Multi-Map Results

Readings:
• C Campos, R Elvira, JJ Gómez Rodríguez, JMM Montiel, JD Tardós:

ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-
Inertial and Multi-Map SLAM. IEEE Trans. Robotics, 2021.

• R Elvira, JD Tardós, JMM Montiel: ORBSLAM-Atlas: A Robust and
Accurate Multi-map System, IROS 2019

https://arxiv.org/abs/2007.11898
https://arxiv.org/pdf/1908.11585.pdf

3

ORB-SLAM3 Highlights
• Visual and Visual-Inertial SLAM
• Pin-hole and Fisheye lens models
• Multi-Map and Multi-Session
• Real-time operation in large environments
• Data association with ORB features:

– Short term: from previous images
– Mid-term: from local map
– Long term: for Relocalization, Loop closing and Map Merging

C Campos, R Elvira, JJ Gómez Rodríguez, JMM Montiel, JD Tardós
ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-
Inertial and Multi-Map SLAM.
IEEE Transactions on Robotics 37 (6), 1874-1890, Dec 2021

4

ORB-SLAM3: Multi-Map (Atlas)

5

6.2.a Map Creation

• At the start of a mapping sessions
• If camera tracking is lost for more that 5 seconds

6

6.2.b Map Merge Detection: Place Recognition
1. Relocalization problem (tracking lost)

ØFrame vs KeyFrame (2D-3D matches)
ØCompute camera pose with PnP algorithm

2. Loop Closing problem (correct the accumulated drift)
ØKeyFrame vs KeyFrame (3D-3D matches)
ØAlign KeyFrames with Sim3 (scale, rotation and position)
ØAlign KeyFrames with SE3 (rotation and position)

3. Map Merging problem (merge independent maps)
ØKeyFrame vs KeyFrame (3D-3D matches)
ØAlign KeyFrames with Sim3 (scale, rotation and position)
ØAlign KeyFrames with SE3 (rotation and position)

7

ORB-SLAM3: Loop & Merging Detection

8

ORB-SLAM3: Loop & Merging Detection

LoopClosing.h/cc

...

...
NewDetectCommonRegions() :

bool

KeyFrameDatabase.h/cc

...

...
DetectNBestCandidates(KeyFrame*,

vector<KeyFrame*>, vector<KeyFrame*>,
int) : void

SearchByBoW(KeyFrame*,
KeyFrame*, vector<MapPoint*>&)

: int

ORBMatcher.h/cc

...

...

...

Optimizer.h/cc

...

OptimizeSim3(…) : int

...

Sim3Solver.h/cc

...

iterate() : Sim3 SearchByProjection(KeyFrame*,
Sim3, vector<MapPoint*>&,…) :

int

ORBMatcher.h/cc

...

...

Geometric
Validation:
3 cov. KFs

that confirm
the solution?

Yes

No

Putative
3D-3D matches

Pose
espurious-free

matches

9

6.2.c Map Merging in ORB-SLAM3

10

Map Merging in ORB-SLAM3
Place recognition has matched Ka in the active map Ma,
with Km in a stored map Mm, and has computed Tma

1. Transform Ka, its points and its neighbors to Mm

2. Fuse duplicated points, covisibility and essential graphs
3. Perform a Welding BA in the local area of both maps
4. The stored map becomes the active map, and starts

being used for tracking
5. Transform the rest of Ma to Mm and perform pose-graph

optimization in the essential graph of the fused map
6. Launch full BA in a separated thread

11

Welding Bundle Adjustment

Map Points
Keyframes from

observing local MapPoints

Stored Map

Active Map

{

{

...

...

...

...

Neighbors of Km
in covisib. graph

Neighbors of Ka
in covisib. graph

12

Map Merging

Active map
Non-active map

Hall Corridor 1Stairs 2 HallCorridor 3

Stairs 1

Corridor 2

13

Map Merging

LoopClosing.h/cc

...
MergeLocal() : void

Non-active map
Active map

Hall Corridor 1Stairs 2 HallCorridor 2

Stairs 1

Corridor 2

14

Map Merging

LoopClosing.h/cc

...

...
MergeLocal() : void

LoopClosing.h/cc

...

...
SearchAndFuse(map<KeyFrame*,

Sim3>, vector<MapPoint*>&) : void

Optimizer.h/cc

...

...

MergeLocal() : void

Non-active map
Active map

Hall Corridor 1Stairs 2Corridor 3

Stairs 1

Corridor 2

LocalBundleAdjustment(…) : void
MergeInertialBA(…) : void

15

Map Merging

LoopClosing.h/cc

...

...
MergeLocal() : void

LoopClosing.h/cc

...

...
SearchAndFuse(map<KeyFrame,

Sim3>, vector<MapPoint>) : void

Optimizer.h/cc

...

...
OptimizeEssentialGraph(…) : void
OptimizeEssentialGraph4DoF(…) :

void

Optimizer.h/cc

...

...
LocalBundleAdjustment(…) : void

MergeInertialBA(…) : void

Active map

Hall Corridor 1Stairs 2Corridor 3

Office

16

6.2.d Multi-Map Results

17

ORB-SLAM3: Map Merging Timing

18

Visual-Inertial and Multi-Map Example

19

Visual-Inertial and Multi-Map Example

20

Multi-Map Summary
• Improves robustness to tracking failures

– When lost, start a new map
– Fuse with the previous map when revisiting it

• Allows multi-session mapping
– Effective reuse of previous maps (the goal of SLAM!)

• Maps are fused seam-less
– Similar results if mapping in one or several sessions

• Open issues
– Map maintenance (long-term mapping)

21

Summary
• Visual SLAM is better than Visual Odometry

– Mid-term DA: Zero drift in mapped areas
– Long-term DA: Relocation, Loop Closure and Multi-Mapping

• ORB-SLAM3 is the most complete SLAM system
– Mono, stereo, mono-inertial and stereo-inertial
– Pinhole and fisheye camera models
– Multi-map and Multi-session

• Visual SLAM accuracy
– Mono: robustness issues and scale unknown
– Stereo: good robustness and accuracy
– Mono-inertial: excellent robustness and accuracy
– Stereo-inertial: excellent+ robustness and accuracy

	4.1 Visual_SLAM_index
	4.1 Visual_SLAM
	4.2 Tracking
	4.3 Mapping
	4.4 Place_Recognition
	4.5 Accuracy
	5.1 Optimization
	5.2 Lie_Groups
	5.3 Optimization_in_SLAM
	6.1 Visual_Inertial
	6.2 Multi_Mapping

