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Abstract— In recent years, research on visual SLAM has
produced robust algorithms providing, in real time at 30
Hz, both the 3D model of the observed rigid scene and the
3D camera motion using as only input the gathered image
sequence. These algorithms have been extensively validated in
rigid human-made environments –indoor and outdoor– showing
robust performance in dealing with clutter, occlusions or sudden
motions.

Medical endoscopic sequences naturally pose a monocular
SLAM problem: an unknown camera motion in an unknown
environment. The corresponding map would be useful in pro-
viding 3D information to assist surgeons, to support augmented
reality insertions or to be exploited by medical robots. In this
paper we propose the combination EKF Monocular SLAM +
1-Point RANSAC + Randomised List Relocalization to process
laparoscopic sequences –abdominal cavity images–. The se-
quences are challenging due to: 1) cluttering produced by tools;
2) sudden motions of the camera; 3) laparoscope frequently goes
in and out of abdominal cavity; 4) tissue deformation caused
by respiration, heartbeats and/or surgical tools. Real medical
image sequences provide experimental validation.

I. INTRODUCTION

SLAM (Simultaneous Localization and Mapping) is a
classical problem in mobile robotics: let be a mobile sensor
following an unknown trajectory while observing an un-
known environment; the goal is to estimate simultaneously
both the environment structure and the sensor location with
respect to that map. Recent SLAM research has focused on
monocular cameras as the unique sensorial input. 30 Hz real-
time systems estimating full 3D camera motions and maps
of 3D points using commodity cameras are widely available
nowadays.

On the other hand, laparoscopic –endoscopy inside the
abdominal cavity– techniques have been one of the major
advances in surgery, entailing numerous advantages for pa-
tients (shorter hospitalization and rehabilitation time, reduced
morbidity and less aesthetic impact than traditional surgery)
and for surgeons (shorter time and safer operations). The
purpose of the paper is to apply monocular visual SLAM
methods to analyse laparoscopic images. One of the main
weakness of current SLAM methods is its dependence on
scene rigidity, this justifies the focus on laparoscopic scenes
that are mainly rigid except for temporary deformation.

EKF SLAM has been successfully applied in [1] to
deal with laparoscopic sequences without motion clutter nor
sudden camera motions, and little cavity deformation. Our
contribution is to adapt the state-of-the-art EKF monocular
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SLAM [2], [3] + 1-Point RANSAC [4] + Randomised
list relocalization [5] combination in order to cope with
real laparoscopic sequences under challenging conditions
including sudden camera motions, laparoscope extraction and
reinsertion and high spurious rate caused by temporary tissue
deformation or surgical tools cluttering. In-vivo laparoscopic
sequences of a human ventral hernia repair provide experi-
mental validation for the proposed method.

EKF based monocular SLAM proposed in [2], [3] was the
first method to show real time performance. Scene rigidity
and smooth camera motion were assumed. Experimental
performance was reported on man made rigid scenes. Inverse
depth (ID) initialization proposed in [6], [7] improved the
orientation estimation and hence the overall system per-
formance. In [8] the scene rigidity is tightly enforced by
means JCBB test (Joint Compatibility Branch and Bound)
[9], resulting in an improved robust performance and the
ability to remove a moderate level of motion clutter in
the scene. More recently, in [4] RANSAC was combined
with EKF resulting in a boost in the capability to detect
and reject a high number of spurious in real time. This is
exploited in the current paper to deal with the high spurious
rates coming from the temporal cavity deformation and tools
motion clutter.

A known weakness of EKF visual SLAM is its lack
of ability to recover from a lost of track, mainly due to
camera sudden motion. In [5] it is proposed a randomized list
approach to relocate the camera with respect to the map after
a severe track lost, this new addition greatly improved the
performance. We propose to apply this relocation method to
deal with lost of track due to sudden laparoscope motion
and also to cope with laparoscope reinsertion inside the
abdominal cavity. In [10] and [11] relocation methods based
on reduced resolution keyframe images are proposed, we find
that feature based ones such as [5] are more expensive but
with better ability to deal with scene motion clutter, what
justifies our selection.

In a seminal work [12], Burschka et al. proposed the first
monocular SLAM system that processes medical images.
The system produces a map composed of a reduced number
of points in sinus surgery, enough for registering preoperative
CT scan with the images gathered by the endoscope. In
[13] and [14] a non moving stereo endoscopes provides 3D
structure of a moving organ. Moving stereo endoscopes have
been successfully used in visual SLAM in [15] assuming
smooth camera motion and scene rigidity validated over real
sequences, no usage of spurious detection is reported. In [1]
it is used EKF+JCBB SLAM to process real moving monoc-
ular laparoscopic sequences; however, the system can not



cope with sudden camera motions or laparoscope reinsertion.
In [16], a dynamic model for coding periodic organ motion
is learnt, introducing the scene non-rigidity in the model.

Computer vision methods based on a discrete set of images
–instead of image sequences as reported above– have been
also applied to medical images, assuming scene rigidity,
in order to just compute the 3D structure of the cavity.
In [17], the classical two view RANSAC structure from
motion is applied to mannequin images to determine the
3D structure; a constraint-based factorization 3D modelling
method produces a dense 3D reconstruction in near real-
time. Finally, structure from motion is used in [18] to build
a photorealistic 3D reconstruction of the colon; in a first
stage images are processed pairwise to produce an initial 3D
map, in a second stage all the maps are joined in a unique
photorealistic 3D cavity model.

II. MONOCULAR SLAM

Our SLAM system builds on the inverse depth EKF SLAM
proposed in [7]. It is based on a probabilistic representation
of the world map and the camera location maintained in an
unique state vector modelled as a multivariate Gaussian, x,
updated by an Extended Kalman Filter (EKF).

The state vector at step k is composed of camera location
and velocity, xv , and all points in the map, yi:

x =
(
x>v ,y

>
1 ,y

>
2 , . . .y

>
n

)>
. (1)

The camera state, xv , is formed from position, rWC ,
orientation encoded in a quaternion, qWC , and linear and
angular velocities, vW and ωC :
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, where xi, yi and zi repre-
sent the 3D camera position when the feature was observed
for first time, θi and φi code the ray corresponding to the
observed point and ρi is the inverse depth along the ray.

We use a dynamic constant velocity model to code the
camera smooth motion:
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is the quaternion defined from
the rotation vector

(
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)
∆t. We assume that linear

and angular accelerations aW and αC are unknown in-
puts producing at each step an impulse of linear velocity,
VW = aW∆t, and angular velocity ΩC = αC∆t, with zero
mean and known Gaussian covariance, currently assumed as
diagonal. The scene points are coded as perfectly rigid:

yik+1
= yik (3)

The measurement model assumes a pinhole camera com-
bined with a two parameters radial distortion.

New features initialization is directed to produce geo-
metrically well conditioned maps. New features are initial-
ized within an image search window randomly located but
favouring less populated areas (image regions with few or no
map features.) The strongest FAST [19] corners are sought
inside the search window and the most distinctive one for
relocation, according with RLR classifier (see section IV),
is initialized and inserted in the map. Recently initialized
features are parametrized in ID. As the estimation evolves
and the features estimation improves, features with small
uncertainty are converted to Euclidean, what reduces the state
size and hence the EKF computation overhead.

Active search is applied to exploit the camera smooth
motion and the scene rigidity during data association by
means of the EKF prediction step. The innovation covari-
ance 3σ gate defines an elliptical search window around
the map point prediction where the match is going to be
exhaustively searched using normalized image correlation.
All map features are strongly correlated so prediction errors
are not independent. Simple active search treats each match
independently but does not ensure the global compatibility
of the correspondences thus, incompatible matches can be
fed in the EKF corrupting the map. In order to detect and
remove incompatible matches 1-Point RANSAC has been
used, details are given in next section III.

After EKF prediction step and previous to the match by
correlation, an accurate estimation of the camera location
with respect to every map point is available, this allows to
accurately synthesize an appearance patch around the map
point in the image, compensating rotation and scale what
improves the matching performance and allows long reob-
servation tracks for the map points. This patch appearance
compensation, frequent in SLAM systems, is also applied in
our experiments.

III. SPURIOUS DETECTION

Abdominal tissues suffer temporary deformations caused
by respiration, heartbeats, or surgical tools interaction. Fur-
thermore, surgical tools clutter the scene occluding map
features. These two problems result in a high spurious rate
that must be coped with in real time.

JCBB [9] within EKF framework, proposed in [8], has
been successfully used in the robotic community. However,
JCBB presents two main limitations. First, it operates over
the prediction of the measurements derived from a linearized
dynamic model, a measurement model and Gaussian assump-
tions, whereupon it does not correspond with the true state
of the system. Second, the JCBB presents an exponential
computational complexity in the number of spurious hence,
although it produces small CPU overhead with small spuri-
ous rates, it becomes intractable at high spurious rates. As we
need to cope with high spurious rate, we select the 1-point
RANSAC spurious detector [4].

In traditional RANSAC usage, model proposals are com-
puted from scratch, selecting a minimum set of measure-
ments. The complexity is exponential in the minimum set
cardinality. Instead of computing the proposal from scratch



(cardinality 5), 1-point RANSAC algorithm combines the
prior estimate produced by the Kalman filter plus just one
measurement to compute a proposal (cardinality 1). It renders
a spurious rejection low computation overhead – about 10%
of the EKF cost–, even when facing high spurious rate. The
EKF and RANSAC combination is detailed in algorithm 1.

Algorithm 1 1-Point RANSAC EKF
1: IN: x̂k−1|k−1,Pk−1|k−1 {EKF estimate at step k − 1}
2: th {Threshold for low-innovation points.}
3: OUT: x̂k|k,Pk|k {EKF estimate at step k}
4:
{A. EKF prediction and individually comp. matches}

5: [x̂k|k−1,Pk|k−1] = EKF pred(x̂k−1|k−1,Pk−1|k−1)

6: [ĥk|k−1,Sk|k−1] = measure pred(x̂k|k−1,Pk|k−1)

7: zIC = search IC matches(ĥk|k−1,Sk|k−1)
8:
{B. 1-Point hypotheses generation and evaluation}

9: zli inliers = [ ]
10: nhyp = 1000 {Initial value. Updated in the loop}
11: for i = 0 to nhyp do
12: zi = select random match(zIC)
13: x̂i = EKF state update(zi, x̂k|k−1) {Only state;

NO covariance}
14: ĥi = predict all measurements(x̂i)
15: zthi = find matches below a thres(zIC , ĥi, th)
16: if size(zthi ) > size(zli inliers) then
17: zli inliers = zthi

18: ε = 1− size(zli inliers)
size(zIC)

19: nhyp = log(1−p)
log(1−(1−ε))

20: end if
21: end for
22:
{C. Partial EKF update using low-innovation inliers}

23: [x̂k|k,Pk|k] = EKFupdate(zli inliers, x̂k|k−1,Pk|k−1)
24:
{D. Partial EKF update using high-innovation inliers}

25: zhi inliers = [ ]
26: for every match zj above a threshold th do
27: [ĥj ,Sj ] = point j pred and cov(x̂k|k,Pk|k, j)

28: νj = zj − ĥj

29: if νj>Sj−1νj < χ2
2,0.01 then

30: zhi inliers = add match to inliers(zhi inliers, zj)
31: end if
32: end for
33: [x̂k|k,Pk|k] = EKFupdate(zhi inliers, x̂k|k,Pk|k)

The 1-point RANSAC is merged with EKF to maximize
the CPU efficiency. The algorithm has four main stages.

The first stage is the classical active search, including state
and measurement EKF prediction by means the dynamic and
measurement models (section II):

x̂k|k−1 = fk(x̂k−1|k−1)

Pk|k−1 = FkPk−1|k−1F
T
k + GkQkG

T
k (4)

ĥi = hi(x̂k|k−1)

Si = HiPk|k−1H
T
i + Ri (5)

where Fk is the Jacobian of fk with respect to the
state vector xk|k−1 at step k, Qk is the covariance of the
zero-mean Gaussian noise assumed for the dynamic model
and Gk is the Jacobian of this noise with respect to the
state vector xk|k−1. Hi is the Jacobian of the measurement
hi with respect to the state vector xk|k−1 and Ri is the
covariance of the Gaussian noise assumed for each individual
measurement. These measurement predictions are used for
defining the search windows. The matches zi are sought
inside these windows. This stage produces the individually
compatible matches: zIC = (z1 · · · zn)T .

The second stage is hypotheses generation and consensus.
Updated state hypotheses, x̂i, are generated based on a single
randomly selected match, zi, out of zIC = (z1 · · · zn)T

and on the predicted state xk|k−1 ∼ N (x̂k|k−1,Pk|k−1).
A hypothesis x̂i is obtained by updating the EKF state pro-
cessing the selected match zi but without updating the state
covariance –to avoid the most expensive step–. After that,
hypothesis support is computed by projecting the updated
state into the image and counting measurements inside a
threshold defined by χ2 and the measurement covariance.
It it has been conservatively assumed that all the correlated
error is corrected by integrating the selected point and hence
all the error can be modeled as measurement error.

The third stage is the partial update using low-innovation
inliers zli inliers, those supporting the most voted hypothesis.
It is a full update including the covariance update:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)−1

x̂k|k = x̂k|k−1 + Kk(zli inliers − h′(x̂k|k−1))

Pk|k = (I−KkHk)Pk|k−1 (6)

In any case, some other inliers have been misclassified as
outliers. The fourth stage is a second active matching pro-
cess, like stage 1 but based on the last low-innovation update.
Once all high-innovation inliers are rescued, zhi inliers, a
second update including also the covariance is computed.

IV. RELOCALIZATION

Active search is one of the system strengths, it enables the
system real time operation, but it is also one of its weakness.
The system works fine provided that the mapped features are
found inside the elliptical search window. However if the
camera suffers from sudden motions, the image is blurred,
or there are large occlusions tracking will fail because no
features are matched within several frames.

The relocalization used in the paper – Randomized List
Relocalization (RLR) – proposed in [5] is based on Ran-
domized Trees [20]. The complete reference can be found in
[5], a brief summary is included with the aim of readability.

The relocalization system must detect lost of track and stop
EKF integration, to avoid map corruption due to incorrect
data associations, and then enable a recovery procedure. The
tracking is deemed lost if all attempted matches in a frame



have been unsuccessful, the camera pose uncertainty has
grown too large, or if all the predicted mapped features are
out of the predicted camera field of view. The relocalization
finds matches between the current image and the already
estimated map in a data-driven manner without assuming
priors about the camera localization with respect to the map.

The image to map matching is cast as a classification
problem. A two stage on-line training is applied for every
map feature. Firstly at feature initialization, 400 warped
versions of the texture patch around the feature are GPU
synthesised from the first image and used to train the
classifier. The second stage harvests texture patches during
EKF SLAM operation that are used for online training.
The classifier is also exploited for selecting most distinctive
features at initialization, those scoring lowest in the classifier
with respect to features already in the map. Doing so, the
map features are trackable, locally salient and also distinctive
for recognition

When the system has lost track, all FAST features detected
in the current image are fed in the classifier. As map features
can be similar to each other, multiple feature correspondence
hypotheses are considered. Then RANSAC is applied to relo-
calize the camera with respect to the map. Camera location is
hypothesized from three feature correspondences using three-
point-pose algorithm proposed in [21]. Each hypothesis is
scored according to how many other map features have been
matched in the image. Once a good pose hypothesis is found,
it is optimized before the SLAM system is reinitialized. If
the pose estimate is indeed close enough to the true estimate
then one or two fixed map EKF iterations are sufficient to
refine the camera pose.

It should be noticed that map integrity is fundamental not
only for tracking, but also for relocalization. Hence, both
a good spurious detector and a relocalization system are
essential for robust performance.

V. EXPERIMENT AND RESULTS

To prove the proposed system performance, a 874 frame
laparoscopic sequence at 360x288@25 Hz has been selected
(see the accompanying video). The sequence corresponds to
an abdominal exploration where a real human ventral hernia
(hole) can be seen. It contains some typical challenging
issues of laparoscopic sequences: sudden motions, surgical
tools clutter, temporary tissue deformation and endoscope
extraction and reinsertion into the abdominal cavity.

Endoscope intrinsic parameters were calibrated using a
standard planar pattern calibration method, based on [22],
and followed by bundle adjustment. A two parameter radial
distortion model has been applied.

The experiment was run on an Intel Core i7 processor
at 2.67 GHz. The number of features the algorithm tried to
measure in each frame was fixed to 45. In order to improve
detection and matching of features, all thresholds of feature
detection and cross-correlation were relaxed with respect to
scenes of human-made environments.

Figure 1 shows for each frame: the map size, the number
of measured features, and the number of outliers. A feature

is considered as outlier if it is matched by image correlation
inside the active search region but deemed as inconsistent by
the 1 point RANSAC. Some frames present equal or even
higher number of outliers than inliers. This demonstrates the
effectiveness of 1-Point RANSAC when facing high outlier
rates. Some of this high spurious regions correspond with
temporary tissue deformation due to tools interacting with
the tissue, or surgeons pushing the cavity from outside (see
fig. 2). When this temporary deformation happens, some
matches are not found simply because the corresponding
points are imaged out of the search window due to the severe
deformation, other matches, with smaller deformation are
imaged inside the elliptical search window, but eventually
are marked as spurious by the RANSAC algorithm.
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Fig. 1. Map size. Black, total number of map features. Red measured
features. Magenta spurious matches i.e. matches found inside the active
region search marked as spurious by 1 point RANSAC. Blue dashed
rectangle corresponds to frames where track is lost.

Fig. 2. (left), frame #375 cavity undeformed, most of the map points are
successfully reobserved. (right) frame #388 a significant number of map
points around the tool-tissue contact point are marked as outliers and hence
not measured, avoiding map corruption; green circle encloses points marked
as outliers; blue points close to the tool suffer such a big deformation that
are imaged out of the search window and hence not matched

Figure 3 presents the total cycle time budged identifying
EKF prediction, 1-Point RANSAC, EKF update, EKF update
for rescued matches, and initialization and map manage-
ment. The EKF prediction represents an almost imperceptible
share. Also it is worth noting the approximately constant
time consumed by 1-point RANSAC, about 10% of the
total budget. The low CPU time consumed by the update
for rescued matches signals that those rescued matches
are just a few however, they are very informative because
normally correspond with recently initialized points close
to the camera, producing valuable translation information.
Map management uses a significant fraction of the computing



budget and needs a more careful optimization.
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Fig. 3. Computation time budget and map size in double y-axis figure;
times are shown in milliseconds (ms) on the left axis. The map number
of features is shown on the right axis. Magenta dashed rectangle signals
frames where the tracking was lost.

Figure 4 shows the total computation time per frame as a
histogram. It can be observed the most of frames take more
than 40 ms but less than 100 ms what is coherent with the
experiments reported in [4] where 50 features were measured
in each frame. This data shows that our system is very close
to real time performance.
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Fig. 4. Histogram showing the computational cost.

During endoscopic procedures, it is frequent extracting and
reinserting the endoscope into the body, what represents an
extreme situation for relocalization. In the figure 5, four se-
lected frames illustrate the tracking lost and recovery. Before
total recovery, an unstable relocation stage is observed.

An important quality of the produced map is the point
persistence. The histogram in figure 6 shows how long map
features live. It is clear that an important fraction of the 396
initialized features die early because cannot be successfully
reobserved. However for a map of about 100 features, there
are 54 features (≈ 50%) that have survived more that 600
frames. These persistent features selected in a survival of the
fittest way are well spread over the observed cavity, locally
salient and suitable for camera relocalization (figure 7).

Fig. 5. Relocalization. Upper left, system just before tracking lost.
Upper right, endoscope partially out of the cavity. Lower left, unstable
relocalization. Lower right, system after total tracking recovery
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Fig. 6. Histogram displaying feature persistence. 396 are initialized in the
experiment, 54 of them survive for more than 600 frames. A new feature
is tested for 10 frames, if trackable is kept otherwise is removed, for this
reason persistence lower that 10 correspond to non trackable features

Fig. 7. Features surviving for more than 600 frames are surrounded by a
green circle

VI. CONCLUSIONS

This paper presents the combination EKF monocular
SLAM + 1-Point RANSAC + Randomized list Relocalization
as a suitable to build a map from laparoscopic sequences.
This combination has demonstrated to be able to cope with
typical challenges in this kind of sequences: sudden motions,
surgical tool cluttering, temporary tissue deformation and
endoscope extraction and reinsertion in the abdominal cavity.

As the system is based on an EKF filter, the computational
cost is quadratic in the map size and linear in the number
of measured features in the image. In our experiments, a
significant number of map points need to be measured to
achieve robust relocalization. In the reported experiments,



the map size was above 100 features and the number of
measured features is fixed to 45 resulting times lower than
3 times real-time (120 ms). In the current code there is still
room for further improvement so we believe 25Hz real time
performance is achievable.

We would like to stress that the proposed algorithm is able
to compute a nice summary of the scene after processing the
whole sequence. A survival of the fittest process selects what
scene features are included in the map. Only locally salient,
trackable, and distinctive for relocation points are included
in the final map. This rigid map is excellently exploited by
relocalization procedure to recover from tracking losses and
to relocate at reinsertions. The computed map might well be
the starting point for learning priors for processing sequences
corresponding to similar procedures performed to different
patients.

All results have been validated over a real sequence, so it
can be concluded that monocular SLAM in the abdominal
cavity is a valid mapping method that does not need any
additional sensor but just a standard monocular endoscope
and commodity computers.

VII. FUTURE WORK

Experimental validation has been provided for the method,
however it would be interesting to compare solution with
respect to a ground truth which might be obtained, for
example, by an external tracker on the endoscope. It would
also be worth a comparison with respect SLAM based on
keyframe+bundle adjustment methods such as those pro-
posed in [23].

It is our next goal to research how these maps can be used
in surgery, mainly to produce 3D measurements of the cavity
and for being the basis of augmented reality insertions with
the corresponding clinical validation, and to identify what
medical procedures can benefit from the proposed method.

A clear venue for research is the inclusion of elastic
models that code the tissue deformations so that the rigidity
is replaced by a more realistic model in the in-body envi-
ronment.
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