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Abstract— The so-called direct visual SLAM methods have
shown a great potential in estimating a semidense or fully
dense reconstruction of the scene, in contrast to the sparse
reconstructions of the traditional feature-based algorithms. In
this paper, we propose for the first time a direct, tightly-coupled
formulation for the combination of visual and inertial data.

Our algorithm runs in real-time on a standard CPU. The
processing is split in three threads. The first thread runs
at frame rate and estimates the camera motion by a joint
non-linear optimization from visual and inertial data given a
semidense map. The second one creates a semidense map of
high-gradient areas only for camera tracking purposes. Finally,
the third thread estimates a fully dense reconstruction of the
scene at a lower frame rate. We have evaluated our algorithm
in several real sequences with ground truth trajectory data,
showing a state-of-the-art performance.

I. INTRODUCTION

Simultaneous Localization and Mapping (usually referred
by its acronym SLAM) has become a key technology for
several potential applications like robotics, autonomous cars
and augmented and virtual reality. Its goal is to estimate,
from a stream of sensor data, a model of the surroundings
of the sensor and its egomotion with respect to it.

In the latest decades, there has been an intense research
on the use of visual sensors for SLAM, but its application
has been limited by the sparsity of the scene estimation.
The traditional techniques –denoted as feature-based– rely
on the correspondences between image point features; that
can only be reliably established for the image points that
present a high degree of saliency. [1], [2] are two open-source
examples of such feature-based monocular SLAM systems.

Recently, [3]–[5], have developed algorithms for real-time,
online and dense scene reconstruction from monocular im-
ages. These algorithms are based, in contrast to the feature-
based methods, on the direct minimization of the photometric
pixel values and on a regularization function. These so-called
direct methods are able to produce semidense and dense
reconstructions and open the doors to a wider applicability
of visual SLAM. On the other hand, their maturity is still
low. For example, it was recently shown that their current
accuracy is lower than the feature-based techniques [6].

Our contribution within direct SLAM is a novel algorithm
for the fusion of inertial and photometric data. To our knowl-
edge, this is the first algorithm that integrates the inertial
information in direct visual SLAM in a jointly manner.
The key advantage of the mono(cular)-inertial configuration
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with respect to the pure monocular one is the recovery of
the real scale of the scene and the camera motion. This
might be essential in certain applications, for example in
robotics and control. We also believe that the compactness,
low cost and low consumption of the hardware and the dense
reconstructions we achieve might be relevant for constrained
systems like quadrotors. We validated the accuracy and real-
time performance of our algorithm in real visual-inertial
sequences with Vicon ground truth for the trajectory.

The rest of the paper is organized as follows. Section II
describes the related work. Section III presents our visual-
inertial fusion for camera tracking with the Jacobians of the
optimization approach detailed in the appendix VII. Section
IV describes the mapping algorithm we use in our paper.
Finally, section V shows the experimental results and section
VI presents the conclusions.

II. RELATED WORK

SLAM from a monocular camera has a scale ambiguity
that limits its use in certain applications. A usual configura-
tion to overcome that is a stereo camera [7], [8]. However, the
accuracy of the scale is limited by the ratio between the scene
depth and the stereo baseline. Feature-based visual motion
estimation has been also combined with wheel odometry
(e.g., in [9]) and non-holonomic constraints [10], but such
combination is constrained to terrestrial robots. Visual-GPS
SLAM (e.g., [11]) also resolves the scale ambiguity, but it
is constrained to outdoors.

The visual-inertial fusion also resolves the scale ambiguity
in pure monocular SLAM. Such fusion is usually divided
into two classes. Loosely-coupled approaches model the
two inputs as independent (e.g., [12]). Tightly-coupled ones,
that estimate jointly all the states, have proven a superior
performance [13], [14] at an additional complexity in the
optimization –but still within real time in modern computers.
The recent works [15], [16] present two loosely-coupled
direct stereo visual-inertial systems. In the first system, the
inertial and stereo measurements are loosely-coupled fused
with respect to the last keyframe, and in the latest one, they
are fused in a –loosely coupled– pose-graph manner. Our
algorithm is the first tightly-coupled one for direct SLAM
methods. Also differently from [15], [16], we use monocular
vision instead of stereo vision.

III. VISUAL-INERTIAL JOINT OPTIMIZATION

The main idea is to take advantage of the fast rate of
the Inertial Measurement Unit (IMU) that provides inertial
data and propose a joint optimization where the integration
of IMU measurements is able to infer additional constraints



between camera poses. The IMU can contribute to speed up
the estimation and obtain the velocity and the absolute scale
information, which is not available using only the camera
information.

A. Integration of IMU Measurements

Let us consider, without loss of generality, that the IMU
reference frame is coincident with the camera frame.

The rotation RRRw
j , translation tttw

j and velocity vvvw
j of the

current frame j in the world reference frame w are calculated
from a previous frame i using an Euler forward integration.

RRRw
j = RRRw

i RRRi
j (1)

vvvw
j = vvvw

i + vvvw
i j (2)

tttw
j = tttw

i + tttw
i j (3)

Where RRRi
j is the relative rotation between the frames i and

j, vvvw
i j is the incremental velocity from i to j and tttw

i j is the
translation vector between i and j. These three integrate the
IMU measurements as follows

RRRi
j =

k+N−1

∏
p=k

expSO(3)
(
[ωωω (p)+bbbω (p)]∧T

)
(4)

vvvw
i j =

k+N−1

∑
p=k

(
RRRw

p (aaa(p)+bbba (p))−ggg
)

T (5)

tttw
i j = Nvvvw

i T+

1
2

k+N−1

∑
p=k

(2(k+N−1− p)+1)
(
RRRw

p (aaa(p)+bbba (p))−ggg
)

T 2

(6)

The IMU measurements at each step p are the angular
velocity ωωω ∈ R3 and the linear acceleration aaa ∈ R3 in the
local frame. These measurements are affected by the biases
bbbω ∈ R3 –for the angular velocity– and bbba ∈ R3 –for the
linear acceleration. T denotes the time step size, ggg ∈ R3

the gravity vector, k the time step of frame i and k+N the
time step of frame j. The expSO(3) operator maps an element
of so(3) to an element of SO(3). The inverse operation is
denoted with logSO(3).

The hat operator (·∧) is used to convert a 3×1 vector in
a an element of of so(3)x1

x2
x3

∧ =
 0 −x3 x2

x3 0 −x1
−x2 x1 0

 , (7)

while the opposite operation is performed using the vee
operator (·∨)  0 −x3 x2

x3 0 −x1
−x2 x1 0

∨ =
x1

x2
x3

 . (8)

The IMU biases are modeled as random walk processes
with variances ηηηa and ηηηω for the acceleration aaa and angular
velocity ωωω respectively

bbba (k+1) = bbba (k)+T ηηηa, (9)
bbbω (k+1) = bbbω (k)+T ηηηω . (10)

They frame i is assumed to be fixed and only the current
frame j is optimized. This assumption is made due to
the computational cost of direct visual SLAM. Specifically,
without this assumption, the Jacobians of the photometric
error have to be computed in every iteration and we could
not take advantage of the inverse compositional approach.

B. State vector and residual
The state vector xxx is composed of 15 variables:

xxx =
[[

logSO(3)(RRR
w
j )
∨
]>

tttw
j
> vvvw

j
> bbb>ω bbb>a

]>
, (11)

The residual rrr to minimize is divided into two parts, referred
to as the photometric rrrph and IMU –inertial– rrrimu residual

rrr =
[
rrr>ph rrr>imu

]>
(12)

The IMU residual is

rrrimu =



logSO(3)

(
RRRi>

j (RRRw
i )
>RRRw

j

)∨(
tttw

j − tttw
i j− tttw

i

)(
vvvw

j − vvvw
i j− vvvw

i

)
bbbi

ω −bbbω

bbbi
a−bbba


(13)

The intensity residual is

rrrph =
n

∑
k=1

IIIi

(
π

(
TTT i

w pppk
t

))
− III j

(
π

(
TTT j

w pppk
t

))
(14)

TTT j
w =

[
RRR j

w ttt j
w

0001×3 1

]
, (15)

where π is the pinhole camera model and pppt is each one of
the n 3D points tracked from i to j. IIIi is the image taken at
step k and III j the image taken at step k+N.

C. Visual-Inertial Direct Tracking
The visual-inertial thread minimizes the residual of eq (12)

using standard Gauss-Newton optimization

JJJ>ΛΛΛJJJδδδ =−JJJ>ΛΛΛ · rrr, (16)

where δδδ are the updates for the pose and the IMU δδδ =[
δδδ
>
P ,δδδ

>
I

]>
and ΛΛΛ is the inverse covariance. The general

Jacobian JJJ is composed of the Jacobian of the IMU residual
with respect to the IMU parameters (biases and velocity)
JJJrimu

I , the Jacobian of the IMU error with respect to the
current pose of the camera JJJrimu

P and the Jacobian of the
photometric error with respect to the current pose JJJ

rph
P . Note

than JJJ
rph
I = 0. JJJ

rph
P will be defined in section III-D and JJJrimu

I
and JJJrimu

P will be defined in the appendix (see section VII).
The full Jacobian is formed as follows

JJJ =

[
JJJrph

P 0
JJJrimu

P JJJrimu
I

]
, (17)



and reparametrized for convenience as

JJJ =
[
JJJr

P JJJr
I
]
, (18)

where JJJr
P =

[
JJJ

rph
P

JJJrimu
P

]
and JJJr

I =

[
JJJ

rph
I

JJJrimu
I

]
.

To solve it, we perform Gauss-Newton optimization and
use the Schur complement to accelerate it. The Jacobian JJJ
yields the following Hessian approximation

HHH =

[
JJJr

P
>

ΛΛΛJJJr
P JJJr

P
>

ΛΛΛJJJr
I

JJJr
PΛΛΛJJJr

I
> JJJr

I
>

ΛΛΛJJJr
I .

]
(19)

The linear system is therefore[
HHHr

PP HHHr
PI

HHHr
PI
> HHHr

II

][
δδδ P
δδδ I

]
=

[
BBBP
BBBI

]
, (20)

where BBBI =−JJJr
I
>

ΛΛΛr and BBBP =−JJJr
P
>

ΛΛΛr, δδδ I and δδδ P are the
updates for the IMU and pose parameters respectively.

The system is solved using the Schur complement rear-
rangement. The lower part of the system of the eq. (20)
results in the smaller equation system for the IMU update(

HHHII −HHHr
PI
>HHHr

PP
−1HHHr

PI

)
δδδ I = BBBI −HHHr

PI
>HHHr

PP
−1BBBP, (21)

This linear system is typically solved using Cholesky
factorization or SVD decomposition. Once the update for
the IMU parameters is found we can solve the upper system
for the pose update:

δδδ P = HHHr
PP
−1BBBP−HHHr

PP
−1HHHr

PIδδδ I . (22)

D. Visual Tracking Jacobian
The transformation from the current camera frame to the

global reference frame TTT j
w is estimated based on the photo-

metric reprojection error rrrph using the inverse compositional
approach [17]. The photometric error for the 3D points pppt is

rrrph =
n

∑
k=1

(
IIIi

(
π

(
T̂TT TTT i

w pppk
t

))
− III j

(
π

(
TTT j

w pppk
t

)))
. (23)

The tracking thread only uses a subset of image points,
composed of high-gradient points –and superpixel contours
if desired. Section IV details how the 3D position for those is
obtained. We seek to estimate the transformation T̂TT from the
closest keyframe IIIi to the current frame III j. The seed for T j

w
comes from the raw inertial readings before the optimization.

For the optimization we use a minimal parametrization for
the camera pose. The rotation RRR is mapped to the tangent
space so(3) of the rotation group SO(3) at the identity. The
increments for the camera pose –the angular increment δωωω

and the increment for the translation δ ttt– are defined as
follows:

T̂TT =

[
expSO(3)([δωωω]∧) δ ttt

0001×3 1

]
, (24)

The update for the current camera pose TTT j
w is as follows

TTT j
w = T̂TT

−1
TTT j

w. (25)

The Jacobian of the photometric residual JJJ
rph
P is obtained via

the chain rule:

JJJrph
P =

∂ rrrph

∂εεε
= JJJrph

F JJJF
T i

w
JJJT i

w
ε , (26)

where JJJ
rph
F are the image gradients of the reference

keyframe, JJJF
T i

w
is the derivative of the projection model with

respect to TTT i
w and JTTT i

w
ε is the derivative of the transformation

TTT i
w with respect to the motion εεε = (δωωω,δ ttt).
Using the inverse compositional approach the Jacobians

are always referred to the last keyframe, not being updated
until a new frame becomes a keyframe –TTT i

w, pppt and JJJ
rph
F

are constant during the optimization. This accelerates signif-
icantly the camera tracking.

To bootstrap our system we integrate the inertial mea-
surements and we estimate the first map –obtaining the
real scale– using the approach of section IV. After the
initialization, we apply the joint optimization explained in
the section III.

IV. MAPPING

A. Semidense Mapping

Rapid camera motions require high-frequency map up-
dates for the camera to be tracked successfully. Similarly to
[18]–[20], our system maintains a semidense map of high-
gradient pixels that is quickly updated and serves for camera
tracking. The semidense map is not only used for tracking,
but also for the estimation of the fully dense map described
in section IV-B.

The inverse depth ρ for every high-gradient pixel uuu∗ in a
keyframe IIIi is estimated by minimizing its photometric error
rrro

ph with respect to several overlapping views IIIo. The specific
optimization is

ρ̂ = argmin
ρ

rrro
ph, (27)

with

rrro
ph = ∑

o
‖(IIIi (sssu∗)− IIIo (G(sssu∗ ,TTT i,TTT o,ρ)))‖2

2 . (28)

sssu∗ are the pixel coordinates of the template (7x7 pixels
square) around the pixel uuu∗ and G is the function that
backprojects the template from the new keyframe IIIi to the
3D world and projects it back to each overlapping image IIIo.

The reader is referred to [20] for more details on the
semidense mapping algorithm used in this paper.

B. Superpixels Mapping

We use the algorithm in [20] to extract the piecewise
planar textureless regions to fill the semidense map of the
previous section. First, we segment a keyframe IIIi into a set
of superpixels Sk = {sss1, . . . ,sssi, . . . ,sssm} using the algorithm
of [21].

Each 3D point pppk
t from the semidense map is then pro-

jected on the keyframe u∗ = F(TTT i
w pppk

t ). The 3D points pppk
t are

assigned to the superpixels if their projections uuu∗ lie within
a threshold ξ of the superpixel contour.

The 3D points associated to the contour of every super-
pixel pppk

t ∈ C (sssi) are used to robustly fit a plane πi using
singular value decomposition.

Again, we refer the reader to [20] for more details on the
3D superpixels estimation.



V. EXPERIMENTS

A. Experimental setup

The experimental tests have been performed in the GRASP
Lab [22] at The University of Pennsylvania. The considered
working area is a volume of 5×4×5 m3. The Vicon motion
capture system1, composed of 20 T040 cameras, provides a
ground truth for our rotation and translation estimates [22].

The camera-IMU system setup is composed by Matrix
Vision mvBlueFOX-MLC2 camera and a Microstrain 3DM-
GX4-25 IMU3 as shown in Figure 1. The image processing
runs on 752× 480 pixels at 30 Hz, whereas the IMU rate
has been set to 100 Hz. The entire solution has been
developed using the ROS4 framework. The visual-inertial
direct tracking thread (section III-C) runs at 30 Hz while
the 2 mapping threads (section IV) run at a lower rate. The
computer used is a 3.5 GHz Intel Core i7-3770K processor
and 8.0 GB of RAM memory.

Fig. 1: The sensor setup used for the experiments.

B. Results

We have evaluated our algorithm in 10 different sequences
of visual and inertial data. The sequences were recorded with
a hand-held camera while the first author walked around the
room. Their duration goes from 20 to 55 seconds.

Table I shows the mean translational errors. Notice how
the errors are of the same order than those reported for direct
SLAM methods (for example, LSD-SLAM in [19] or in the
results of [6]). But in our case we are able to recover the
real scale of the scene and the trajectory thanks to the inertial
fusion. For further details, figures 2 and 3 show respectively
the angular and translational errors for each coordinate on
the 10 experiments.

Experiment 1 2 3 4 5 6 7 8 9 10
Error [cm] 6.6 6.3 11.6 6.3 9.3 10.6 7.4 3.2 10.8 6.2

TABLE I: Mean trajectory error.

Figure 4 shows the computational cost of our algorithm
–vertical axis– for every frame –horizontal axis– and for
every sequence –in different colors. 99% of the frames have

1http://www.vicon.com
2http://www.matrix-vision.com/
3http://www.microstrain.com/
4http://www.ros.org/
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Fig. 2: Angular error for our 10 sequences. Each color is a
different sequence.
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Fig. 3: Translational error for our 10 sequences. Each color
is a different sequence.

a computational cost under 33 milliseconds, which is our
frame period. We attribute the cost spikes in our results to
other high priority tasks on the processor (we do not use
a real-time OS). In any case, the sequences were played in
real time, showing that our algorithm is resilient to a few
lost frames.

Figure 5 shows some results of our algorithm. The top row
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Fig. 4: Computational cost for our 10 sequences. Each
color is a different sequence.

shows four sample images, and the bottom row several views
of the estimated reconstruction and the camera trajectory in
red.

Finally, figures 6 and 7 illustrates the difference between
the semidense and dense maps estimated by our algorithm.
The top row in both images displays again sample frames
from the sequence, and the bottom row a close view of
the semidense and dense maps estimated by our algorithm.
Notice in the figures 6(e) and 7(e) that the semidense map
only contains the high gradient regions of the images, being
of little use for some applications like robotic navigation.
Notice the higher point density of the dense map in the
figures 6(f) and 7(f) , where the textureless areas have been
reconstructed using a piecewise planar prior.

As shown in [23], a TV-regularization of a photometric
map produces low quality results in low texture scenes. We
also run a TV-regularization on the experiments of this paper
and the qualitative accuracy of the maps was lower than the
piecewise-planar approach we use.

VI. CONCLUSIONS

We have presented in this paper a tightly-coupled visual-
inertial SLAM algorithm for real-time, online, dense scene
reconstruction and camera tracking. Our main contribution is
the joint optimization of the IMU measurements and visual
data using direct methods. Our full SLAM system is divided
into 3 threads; a low-cost mapping thread produces semi-
dense reconstructions for real-time camera tracking, a camera
tracking thread responsible for the visual-inertial fusion, and
a high-quality dense mapping thread producing dense maps
at low frame rate. Our dense mapping algorithm uses a
piecewise planar approximation based on 3D superpixels.

We have validated the accuracy and real-time performance
of our approach with several real sequences, comparing
the estimated pose with respect to a Vicon motion capture
system. To our knowledge this is the first real-time, tightly-
coupled, direct visual SLAM approach. Given the low cost
and compactness of the mono-inertial hardware setting, our
approach can be relevant for low-cost, low-consumption,
lightweight robots like some quadrotors, or for augmented
and virtual reality applications.

VII. APPENDIX

A. Background

The following result relates infinitesimal increments in
so(3) with right hand-multiplications [14]:

expSO(3)
(
[θθθ +δθθθ ]∧

)
= expSO(3)

(
[θθθ ]∧

)
expSO(3)

(
[JJJr(θθθ)δθθθ ]∧

)
(29)

where JJJr(θθθ) is the SO(3) Jacobian.

JJJr(θθθ) = III− 1− cos(||θθθ ||)
||θθθ ||2

θθθ
∧+
||θθθ ||− sin(||θθθ ||)

||θθθ ||3
(θθθ∧)2 (30)

A similar first-order approximation holds for the logarithm
as shown in [14]

logSO(3)

(
expSO(3)

(
[θθθ ]∧

)
expSO(3)

(
[δθθθ ]∧

))∨
= θθθ + JJJr(θθθ)

−1
δθθθ .

(31)
The following relation holds for SO(3)

expSO(3)
(
[θθθ ]∧

)
RRR = RRRexpSO(3)

([
RRR>θθθ

]∧)
(32)

B. Jacobians
a) Jacobians of the IMU residual with respect to the

camera pose Jrrrimu
P :

Definition of the rotation error with respect to the increment

rrrimu [1]
(

RRRw
j expSO(3)

([
δθθθ j

]∧))
= logSO(3)

(
RRRi>

j RRRw
i
>RRRw

j expSO(3)

([
δθθθ j

]∧))∨
=

logSO(3)


k+N−1

∏
p=k

expso(3)

(
[ωωω (p)+bbbω (p)]∧T

)> RRRw
i
>RRRw

j expSO(3)

([
δθθθ j

]∧)
∨ (33)

By rrrimu[1] we denote the first term of the IMU error (the
rotation error in this case). Rearranging terms and using
eq. (31)

rrrimu[1]
(

RRRw
j expSO(3)

([
δθθθ j

]∧))
= rrrimu[1](RRRw

j )

+ JJJr(rrrimu[1](RRRw
j ))
−1

δθθθ j

(34)

∂ rrrimu[1]
(

RRRw
j expSO(3)

([
δθθθ j

]∧))
∂δθθθ j

= JJJr(rrrimu[1](RRRw
j ))
−1. (35)

Note that
∂ rrrimu[2]

(
RRRw

j expSO(3)

(
[δθθθ j]

∧))
∂δθθθ j

=

∂ rrrimu[3]
(

RRRw
j expSO(3)

(
[δθθθ j]

∧))
∂δθθθ j

=
∂ rrrimu[4]

(
RRRw

j expSO(3)

(
[δθθθ j]

∧))
∂δθθθ j

=

∂ rrrimu[5]
(

RRRw
j expSO(3)

(
[δθθθ j]

∧))
∂δθθθ j

= 0003×3 .
For the translation, we define the translation error rrrimu[2]

with respect to the SE(3) increment

rrrimu[2]
(

tttw
j +RRRw

j δ tttw
j

)
=
(

tttw
j +RRRw

j δ tttw
j − ttt i j− tttw

i

)
(36)

∂ rrrimu[2](tttw
j +RRRw

j δ tttw
j )

∂δ tttw
j

= RRRw
j (37)

Note that
∂ rrrimu[1]

(
tttw

j +RRRw
j δ tttw

j

)
∂δ tttw

j
=

∂ rrrimu[3]
(

tttw
j +RRRw

j δ tw
j

)
∂δ tttw

j
=

∂ rrrimu[4]
(

tttw
j +RRRw

j δ tttw
j

)
∂δ tttw

j
=

∂ rrrimu[5]
(

tttw
j +RRRw

j δ tttw
j

)
δ tttw

j
= 0003×3.



(a) Sample frame (b) Sample frame (c) Sample frame (d) Sample frame

(e) Close view. (f) Further view. (g) Top view.

Fig. 5: Sample images and views of the reconstructed scene for the largest of our experiments, covering almost the whole
GRASP Lab Vicon room. The estimated trajectory of the camera is shown in red. Notice, qualitatively, the accuracy and

density of the estimated map.

(a) Sample frame (b) Sample frame (c) Sample frame (d) Sample frame

(e) Semidense map (f) Piecewise-planar semidense map.

Fig. 6: Sample frames for one of our experiments, and close-ups of the semidense map used for camera tracking and the
piecewise planar dense map. Notice how, in the latest, the low-textured areas have been correctly reconstructed.

b) Jacobian of the IMU residual with respect to
IMU parameters Jrrrimu

I :

• Jacobian with respect to the velocity in the frame j

∂ rrrimu[3]
(

vvvw
j +δv j

)
∂δvvvw

j
= III3×3. (38)

Note that
∂ rrrimu[1](vvvw

j +δvvvw
j )

∂δvvvw
j

=
∂ rrrimu[2](vvvw

j +δvvvw
j )

∂δvw
j

=

∂ rrrimu[4](vvvw
j +δvvvw

j )

∂δvvvw
j

=
∂ rrrimu[5](vvvw

j +δvvvw
j )

∂δvvvw
j

= 0003×3.
• Jacobian of the rotation error rrrimu[1] with respect to the

angular velocity bias bbbω

rrrimu [1](bbbw +δbbbw) =

logSO(3)


k+N−1

∏
p=k

expSO(3)

(
[ωωω (p)+bbbω (p)+δbbbω ]∧T

)> RRRw
i
>RRRw

j


∨

.
(39)

Applying eq. (29) in the increments and using
eq. (32) to move the all increment terms to the



(a) Sample frame. (b) Sample frame. (c) Sample frame. (d) Sample frame.

(e) Semidense map. (f) Piecewise-planar semidense map.

Fig. 7: Sample frames for one of our experiments, and close-ups of the semidense map used for camera tracking and the
piecewise planar dense map. Notice how, in the latest, the low-textured areas have been correctly reconstructed.

right side, assuming that the increments are small
expSO(3)

(
[aaa]∧

)
expSO(3)

(
[bbb]∧

)
= expSO(3)

(
[aaa+bbb]∧

)
, re-

arranging terms and applying eq. (31) we obtain

rrrimu[1] (bbbw +δbbbω ) =

rrrimu[1]− JJJr (rrrimu[1])
−1 ∗ expSO(3)

(
[rrrimu[1]]

∧)>AAAδbbbw
(40)

where

AAA=
k+N−1

∑
p=k

[k+N−1

∏
m=p+1

expSO(3)
(
[ωωω (m)+bbbω (m)]∧T

)]>
JJJp

r ∗T


(41)

∂ rrrimu[1] (bbbω +δbbbω )

∂δbbbω

=−JJJr(rrrimu[1])−1 ∗ expSO(3)
(
[rrrimu[1]]

∧)>AAA

(42)

Where
JJJp

r = JJJr ((ωωω(p)+bbbω (p))T ) .

• Jacobian of the position error rrrimu[2] with respect to the
angular velocity bias bbbw. Applying eq. (29) in the incre-
ments and using eq. (32) to move all increment terms
to the right side, assuming that the increments are small
expSO(3)

(
[aaa]∧

)
expSO(3)

(
[bbb]∧

)
= expSO(3)

(
[aaa+bbb]∧

)
, us-

ing a first order approximation for the exponential
expSO(3)

(
[aaa]∧

)
= III3×3 +[aaa]∧ and rearranging terms we

obtain

∂ rrrimu[2] (bbbω +δbbbω )

∂δbbbω

=
1
2

k+N−1

∑
p=k

CCC (aaa(p)+bbba(p))∧BBB∗T 2

(43)

BBB =
p−1

∑
l=k

[ p−1

∏
m=l+1

expSO(3)
(
[ωωω (m)+bbbω (m)]∧T

)]>
JJJl

r ∗T


(44)

CCC =
p−1
∏

q=k
(2(k+N−1− p)+1)RRRw

i expSO(3)

(
[ωωω (q)+bbbω (q)]∧ T

)

• Jacobian of the velocity error rrrimu[3] with respect to
the angular velocity bias bbbw. Similarly to the previous
Jacobian we obtain

∂ rrrimu[3] (bbbω +δbbbω )

∂δbbbω

=
k+N−1

∑
p=k

DDD(aaa(p)+bbba (p))∧BBB∗T (45)

DDD =
p−1

∏
q=k

RRRw
i expSO(3)

[
(ωωω (q)+bbbω (q)]∧T

)
• Jacobian of the angular velocity bias error rrrimu[4] with

respect to the angular velocity bias bbbw

∂ rrrimu[4] (bbbω +δbbbω )

∂δbbbω

=−III3×3 (46)

• Jacobian of the acceleration bias error rrrimu[5] with
respect to the angular velocity bias bbbω

∂ rrrimu[5](bbbω +δbbbω )

∂δbbbω

= 0003×3 (47)

• Jacobian of the rotation error rrrimu[1] with respect to the
acceleration bias bbba

∂ rrrimu[1] (bbbω +δbbbω )

∂δbbbω

= 0003×3 (48)



• Jacobian of the position error rrrimu[2] with respect to the
acceleration bias bbba

∂ rrrimu [2] (bbba +δbbba)
∂δbbba

=− 1
2

k+N−1
∑

p=k
(2(k+N−1− p)+1)

(
RRRw

p
)

T 2 (49)

• Jacobian of the velocity error rrrimu[3] with respect to the
acceleration bias bbba

∂ rrrimu[3] (bbba +δbbba)

∂δbbba
=−

k+N−1

∑
p=k

(
RRRw

p
)

T, (50)

• Jacobian of the angular velocity bias error rrrimu[4] with
respect to the acceleration bias bbba

∂ rrrimu[4] (bbba +δbbba)

∂δbbba
= 0003×3 (51)

• Jacobian of the acceleration bias error rrrimu[5] with
respect to the acceleration bias bbba

∂ rrrimu[5] (bbba +δbbba)

∂δbbba
=−III3×3 (52)
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[19] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular slam,” in ECCV 2014, 2014, pp. 834–849.

[20] A. Concha and J. Civera, “DPPTAM: Dense piecewise-planar tracking
and mapping from a monocular sequence,” in Proceedings of the
IEEE/RSJ Conference on Intelligent Robots and Systems”, 2015.

[21] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based im-
age segmentation,” International Journal of Computer Vision, vol. 59,
no. 2, pp. 167–181, 2004.

[22] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The Grasp
Multiple Micro–UAV Test Bed,” IEEE Robotics and Automation
Magazine, vol. 17, no. 3, pp. 56–65, 2010.

[23] A. Concha, W. Hussain, L. Montano, and J. Civera, “Manhattan
and piecewise-planar constraints for dense monocular mapping,” in
Robotics:Science and Systems, 2014.


