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Abstract— Monocular SLAM systems have been mainly fo-
cused on producing geometric maps just composed of points or
edges; but without any associated meaning or semantic content.
In this paper, we propose a semantic SLAM algorithm that
merges in the estimated map traditional meaningless points with
known objects. The non-annotated map is built using only the
information extracted from a monocular image sequence. The
known object models are automatically computed from a sparse
set of images gathered by cameras that may be different from
the SLAM camera. The models include both visual appearance
and tridimensional information. The semantic or annotated part
of the map —the objects— are estimated using the information
in the image sequence and the precomputed object models.

The proposed algorithm runs an EKF monocular SLAM
parallel to an object recognition thread. This latest one informs
of the presence of an object in the sequence by searching
for SURF correspondences and checking afterwards their
geometric compatibility. When an object is recognized it is
inserted in the SLAM map, being its position measured and
hence refined by the SLAM algorithm in subsequent frames.

Experimental results show real-time performance for a hand-
held camera imaging a desktop environment and for a camera
mounted in a robot moving in a room-sized scenario.

I. INTRODUCTION

SLAM, standing for Simultaneous Localization and Map-
ping, aims to self-localize a robot and estimate a model of
its environment from sensory information [8]. The richer
the environment model and the higher its semantic level,
the more useful it becomes for a robot in order to perform
autonomous tasks. Currently, the map produced by most of
the SLAM algorithms is a joint estimation of geometric
entities —in most cases points or lines— without any semantic
meaning or annotations attached to it. The aim of this
paper is to enrich usual monocular SLAM maps by partially
annotating the geometric estimation with object information.

The addition of semantic content to a geometric SLAM
is done in this paper by recognizing object instances and
registering them into the estimated map. We have chosen
monocular vision as the only input for constructing the
object models, recognizing them and estimating the geo-
metric map. We believe that there are three reasons why
such a minimalistic configuration has a high potential for
robotic applications: 1) there is a large body of recognition
models from the computer vision community; 2) the Internet
is widely populated with pictures from which we could
automatically generate the recognition models in the future;
and 3) different cameras can be used at different steps.
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Cameras for building the models could be different for
cameras used in SLAM —so they are in our experiments.
That allows interoperability, that is, the capability to exploit
the same models by diverse robots.

Object recognition from visual data is experiencing an
extraordinary progress, but most of the research is directed
to recognition from just a single image. This is in fact
the right approach for some recognition applications like
content-based Internet images classification. Nevertheless,
in our opinion, the robotic scenario poses some specific
constraints that do not fit the main research line. Specifically,
there are three main issues that lead us to the combination
of local mapping plus object recognition and registration as
a feasible solution for the robotic mapping problem.

First, a robot has to interact physically with its environ-
ment and then the 3D registration of the object is a must in
order to perform any task. The sole presence of the object in
an image is not enough in most of the robotic applications
(e.g., grasping an object).

Secondly, the usual visual input of most robots is not
a single image but a sequence. The recognition algorithms
should be adapted to exploit this source of information.

Finally, every robotic task poses severe real-time con-
straints that should be taken into account. Using again the
grasping example, we are interested in the location of the
robotic arm with respect to the object at the specific grasp
moment. In our approach, the objects are registered within the
SLAM map when they are recognized and their 3D location
is then available at any moment after that. As a desirable
feature of our algorithm, once an object is recognized and
inserted into the map its position is known for task definition
at every moment —even when the object comes out from the
camera field of view.

Summing up, our work is motivated by the limitations
of both object recognition and standard geometric SLAM
for robotic tasks. On the one hand, object recognition al-
gorithms on their own are unable to register several objects
in a common 3D reference frame. On the other hand, any
standard geometric SLAM algorithm can provide an accurate
geometric registration, but cannot be used for a high-level
task definition that includes objects (for example, ‘grasp a
cup’). The semantic SLAM proposed in this paper —object
recognition, object registration and local SLAM- forms a
basic sensing capability suitable for task execution by diverse
robots.

The algorithm proposed in this paper uses the state-of-the-
art in three different areas to achieve the realization of this
idea: First, an EKF monocular SLAM provides the online
real-time estimation for the current camera location and a



sparse map of point features [6]. Second, Structure from
Motion is used to precompute a database of object models
from sparse images [24]. Third, visual recognition allows to
detect the presence of the object in an image stream [15],
[16].

The rest of the paper is organised as follows: Section II
discusses related work and section III summarizes the whole
algorithm. Next sections are devoted to further details about
the different components of the algorithm: section IV to the
object model, section V to the object recognition and VI to
the backbone point-based monocular SLAM where objects
are registered into. Finally, section VII shows experimental
results and section VIII concludes and presents lines for
future work.

II. RELATED WORK

Visual recognition has been used in robotic SLAM mostly
for scene recognition, for example loop closing in [7], [2],
relocalization in [28] and place classification in a semantic
context in [22]. Nevertheless, it has been scarcely combined
with SLAM for object recognition. [12] is one of the few
examples, using a map hierarchy together with object recog-
nition in order to obtain additional information to classify
the places where the objects are found in. A similar idea is
presented in [26], where the objects are located in the 3D
space by means of a stereo camera. Image-based recognition
was also used in [9], [17], [29] to register known objects into
a laser SLAM map. Differently from these latest works, we
do not only use the object appearance but also its estimated
geometry in the object model. As a second difference our
geometric SLAM algorithm tracks the object features after
the insertion; hence being able to refine their 3D pose.
Regarding sensors, we rely only on a monocular camera for
every step in our algorithm.

The closest approach to this paper is the work by Castle et
al. [3], [4], which registers planar objects into an EKF-based
monocular SLAM. Their research make use of SIFT features
to construct the appearance model of the objects and insert in
the SLAM map three of the boundary corners of the plane.
Compared to this approach, we are able to overcome the
planar restriction and can deal with any object geometry. Our
object model is composed by the appearance; but also by the
geometric position of salient point features over the object.
When the object is recognized, we insert in the SLAM map
the recognized points using general —non-planar— geometric
constraints.

As the word semantic may have a broad meaning, it is
worth remarking that in this paper it is referred to the labeling
of certain map features in a SLAM map. Although we find
it a promising line of research, we do not consider here the
relations between objects in a scene (as done, for example,
in [23]).

III. NOTATION AND GENERAL OVERVIEW

Given that geometric SLAM is typically faster than object
recognition, our algorithm is divided into two threads: one
dedicated to monocular SLAM and other one to object

recognition. Figure 1 gives an general overview of the
algorithm using figures from our experimental results. This
section summarizes briefly our proposal based on this figure,
and every part is detailed in next sections.

Let start at step &k — m. The image Ij;_,, is used both
in the monocular SLAM and the recogntion threads. The
monocular SLAM thread uses this image to update the
geometric state x from the previous step k — m — 1 to
the current one k — m using a standard EKF formulation.
At the same time, the SLAM state vector is augmented
with the current camera pose. Such augmentation will be
necessary every time the recognition thread starts for a
coherent object insertion. The recognition results will arrive
after some processing at step k; but the object insertion
should be made with respect to the input image Iy_,,. The
details about the state augmentation are described in section
VI-B.

We have a model for every object we want to recognize
O1,...,0p,...,0, stored in a database. Each one of these
models contains appearance and geometric information ex-
tracted from a set of images of the object. The appearance
information is composed of SURF descriptors extracted from
the images; and the geometric information is the 3D position
of these SURF points.

The object recognition thread inserts the objects from the
database in the SLAM map as follows: First, the algorithm
searches for correspondences between the image Ij,_,, and
every object O1,...,0,,...,04. SURF point features are
extracted from image Ij_,, and compared against the pre-
computed SURF descriptors for each object. RANSAC is
used to compute a consistent geometric model of each object
that maximizes the number of correspondences. If there are
enough consistent correspondences, the points are assumed
to belong to the object and inserted into the SLAM map.
Once in the SLAM map, these points are tracked and their
position refined in the rest of the sequence.

We are assuming in this paper that there are not repeated
objects nor false object detections (in fact, false object
detections did not appear in none of our experiments).
Nevertheless, the opinion of the authors is that the proposed
combination could easily handle both situations. As objects
in our system are geometrically registered, any repeated
object detection in a different location than the previous one
is a different object of the same class. The geometric object
registration also serves for the case of false detections: as
the SLAM algorithm keeps measuring the object features
once inserted, any geometric inconsistency produced by a
false detection would be rejected as spurious by the 1-point
RANSAC [6].

IV. OBJECT MODEL

Our model for an object O is based on the information
extracted from a set of images [; of it. In order to construct
the object model, SURF features [1] are extracted in first
place from the set of images I;. The SURF descriptors dlo
form the appearance model for the object. The geometric
position for the SURF points yo is computed using pairwise



Figure 1.

Overview of the algorithm using figures from our experiments.
Best seen in color.

Structure from Motion algorithms [14]: correspondences are
searched over the images [; using the SURF descriptors,
the geometry is estimated between pairs of images using
robust algorithms, and a non-linear optimization step finally
produces the 3D estimation for SURF points yo and the
relative motion between the images I;. A modern software
library called Bundler [24] has been used in this paper for
constructing this geometric part of the model.

As standard cameras usually do not capture a whole object
in an image —you never see the front and the back of an
object at the same time—, the object model is divided into
faces. We name face F' to the tuple < tg, qg, yg, dp >.
That means each face corresponds to an image augmented
with the appearance —the SURF descriptors dr— and the
geometric information —the 3D position of the SURF points
yg— needed for the object insertion. The face also includes
the position t& and orientation q2 of the image with respect
to an object reference frame O. The object reference frame
has been chosen to be the centroid of the 3D point cloud
with two axis aligned with its principal components.

Apart from the model for each face F, a global dense
point cloud 3D model is also constructed starting from the
faces and the estimated location of the object images. Multi-
View Stereo algorithms (specifically the software package
PMVS [11]) are used for this purpose. It should be remarked
that this dense model is not used for object 3D registration
nor recognition, which are done by the appearance and 3D
position of the SURF features. We think that a dense model
like this one could be of importance for robotic applications
like grasping; but in this paper it is only used for visualization
purposes.

Figure 2 shows three of the images that compose the object
model for a teddy bear, used in our first experiment. These
three images are a subset of the twenty that were used to
construct the model, covering several points of view. Each
one of these twenty images is the basis for a face. The SURF
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Figure 2. The top row and bottom left images show 3 out of the 20 images
that were used for the model of the teddy bear in our first experiment. Notice
the SURF features used for recognition superimposed over the images. The
bottom right image shows the dense 3D model that will be registered in the
SLAM map.

features that will be used for recognition are drawn in the
images as white circles. Finally, the dense 3D model that
will be inserted in the SLAM map is also displayed.

V. OBJECT RECOGNITION

The object recognition algorithm starts by extracting
SUREF features from the image [j_,,. For each object O in
the database, correspondences are calculated between [y,
and its faces F' by applying the distance ratio (NNDR)
to fast approximate nearest neighbors [19]. These corre-
spondences are then checked to be geometrically consistent.
The RANSAC algorithm is run to find a subset of at least
5 correspondences, between different SURF features, that
describe a valid transformation between the SLAM image
Iy, and the object image Ip. The Perspective-n-Point
(PnP) problem [18] is used to estimate the translation tl(j:’“”"
and orientation qgk’m that define this transformation from
the image features and 3D points. However, for planar
objects, an homography is estimated instead, using the DLT
algorithm [14].

The correspondences which are not consistent with the
transformation or the homography are rejected. If we obtain
a valid transformation between [, and a face F', we stop
searching the rest of the faces of the object O as it has
already been found.

When a face F' =< tg, qg, yg, dr > of an object
O is detected, the final pose of the object is obtained
by refining the estimated transformation with only those
correspondences which were inliers. The 3D points y9
corresponding to the matches dp are then fed into the
monocular SLAM system for insertion as detailed in section
VI-C.

VI. MONOCULAR SLAM

Our proposal builds on a state-of-the-art EKF-based
monocular SLAM. In this section the additions to the stan-
dard mode are described.



A. Standard Mode EKF

We follow the 1-point RANSAC EKF proposed in [6].
The estimated parameters are modeled as a multidimensional
Gaussian variable x, including camera motion parameters
Xc, at step k and the n point features y; that form the map.
The geometry of the detected objects will be added to this
standard system.

(x&, yi - v i)

Camera parameters X¢, at step k include camera position
tc, and orientation q¢, and also linear and angular veloc-
ities v, and wc,. Point features y; are initialized using
inverse depth parametrization and are converted to Euclidean
coordinates y; = (X Y Z) when projection equation
shows a high degree of linearity [5]. All the geometric
parameters are referred to a common frame W, that has been
ommited in the formulation for simplicity.

Robust data association relies on 1-point RANSAC EKEF,
that has proven to be an efficient implementation of a
spurious rejection into an EKF framework and shows a low
computational cost even for large number of matches and
large rates of spurious data [6].

X =

B. State Augmentation with Past Camera Pose

When the recognition thread starts at step k — m, the
monocular SLAM state has to be augmented with the current
camera location. This is done by copying camera position
tc, ,, and orientation qc, ,, into the state vector and
propagating covariances accordingly. At step & — 1, just
before the object insertion, the state vector will be then as
follows:

(%6, ¥ -oowh

Such augmentation lasts until the recognition thread fin-
ishes, which usually takes several EKF steps. If an object
from the database has been recognized the past camera
location will be used for the delayed initialization of the
recognized object. The augmented camera is not needed
anymore after the recognition has finished so the past camera
position tc, .. and orientation q¢, ,, are marginalized out
from the state.

T
Xp = te, ..

C. Object Insertion

The output of the recognition thread is a set of points y9
in an object reference frame O that are known to appear in
the monocular SLAM sequence. Also, the relative motion
tS " g™ between the SLAM camera C_,, and the
face F' from the object model has been estimated. Each point
y9 . has to be referred to the SLAM reference frame W for
its insertion; which is done as follows:

Cr—m
= Hg/k—/nl (tckfm,’qckfm) H - ygg 9 (3)

where H? stands for the homogeneous transformation
matrix encoding the motion from reference frame b to a.

w
YF,;

tc, ,, and qc, ,, are the position and orientation of the
SLAM camera when the object recognition was initiated and
were stored in the state vector x as described in section VI-
B. Hg""m represents the motion between the SLAM camera
Ck—m and the object reference frame O. It can be computed
by composition:

HG ™ = HY " (6857, dg ) HE (62.02) . @)

where t©, % are the position and orientation of the face F
in the ob_]ect frame (0] and are available from the object model
(section IV). t Fk ™.q F‘ ™ encode the motion between the
face F' and the SLAM camera Cj_,,; and are estimated
by the recognition thread (section V). Point covariances are
propagated accordingly, and points y% in the W reference
are finally inserted into the SLAM map.

T T T oowT '
Xp = (XCk Yi - Yo Yr ) . 5

As points in the object model already have a tight 3D
estimation, they are inserted in the SLAM state using their
Euclidean coordinates. After its insertion, the object points
are tracked and hence its position refined by the estandar
EKF monocular SLAM formulation [5].

D. Relocalization

In the practical use of any monocular SLAM system,
tracked features may be lost due to varied reasons: a dynamic
object covering most of the image, lost images or sudden
motions producing blur. A relocation system able to recover
the camera location with respect to a previous map is
essential for any practical system. In this paper we are using
the relocation system in [28]. In the video accompanying

qac, ., ) (2) the paper it can be observed how the EKF monocular SLAM

loses its tracked features in our first experiment (section VII-
A) and succesfully recovers after a few frames.

VII. EXPERIMENTAL RESULTS

The two experiments presented here were recorded with
the same camera, a low-cost black-and-white Unibrain cam-
era with a resolution of 320 x 240. The model of the objects
were built from images taken with a standard consumer
digital camera. The image sequences for both experiments
were gathered by the Unibrain camera at 30 frames per
second and used at this frequency as the input to our
experiments. As the computational cost of the proposed
algorithm is higher than 33 milliseconds for the map sizes
used, some of the frames may be skipped by the semantic
SLAM.

A. Desktop Environment

The sequence for this experiment has 8951 frames and
was recorded moving a hand held camera over a desktop
in one of our laboratories for about 5 minutes. The lighting
conditions are particularly bad for this sequence, as can be
observed in figure 4. The desktop contains four 3D objects
—a tetra pack of fruit juice, a replica of a Volkswagen van,



Figure 3.

Object recognition thread results, showing columnwise the specific frames where the six objects were detected. The top row shows the image

in the monocular sequence input to the semantic SLAM, the middle row shows the face of the object model, and the coloured lines are the matches. The
object is inserted in the map based on those correspondences. The bottom row shows the dense point cloud of the object over the image, proving the

correct alignment.

a packet of chewing gum and a teddy bear— and two planar
objects —two postcards. The planar model for each one of the
postcards was built from a single image, and the models of
the other four objects were constructed from several images
taken around each of them (5, 14, 15 and 20, respectively)
following the technique described in section IV.

All the six objects that compose our database are detected
along the sequence, inserted in the 3D map and tracked
the rest of the sequence. Figure 3 shows the results for
the recognition thread at the specific frames where the six
objects were recognized. The top row shows the frame in
the sequence where they were recognized; the middle row
the object face that was recognized; and the coloured lines
stand for the correspondences between the two. In the bottom
row it is displayed the reprojection of the dense point cloud
model over the top row images.

Figure 4 summarizes the results of this experiment for
several steps of the estimation. For each step it is shown
the current frame and a 3D view of the estimation. The 3D
view show the uncertainty ellipses for each point in the 3D
map, the dense point clouds modeling the objects and the
camera trajectory as a yellow line. The tracked points are
also displayed over the current frame —an ellipse shows the
search area and a square frames the actual match— in different
colours: red stands for successfully tracked points, blue for
those rejected by low patch cross-correlation, magenta for
those rejected by our 1-point RANSAC, white for points
succesfully tracked in known objects and orange for points
not matched in a known object.

Figure 4.a shows the estimation results at step #610,
when no object has been inserted yet. Figure 4.b shows
frame #1359, just after the tetra pack has been detected
and inserted. Figures 4.c, 4.d and 4.e show respectively
that the Volkswagen replica, the chewing gum packet and
the postcard have been inserted in the map and are being
tracked. Their correspondent frames in the sequence are
#2764, #4062, #4725. Figure 4.f shows the results at step

#7102, when the two latest objects —the teddy bear and the
postcard— have been inserted. In figure 4.g the camera has
gone back to the starting point (frame #8538), imaging again
the tetra pack and the Volkswagen replica. Finally, figure 4
is the last frame of the sequence, showing only the objects in
the SLAM map. We strongly recommend to watch the video
accompanying the paper for a better understanding of this
experiment !

Finally, figure 5 shows the computational time (thick blue
line) along with the state vector size (thin red line) for this
experiment. The experiment was run in an Intel Core i7 at
2.66 GHz. In the worst case, the proposed algorithm runs
succesfully at 7 Hz for a state size of around 600 and typical
hand-held camera motions.
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Figure 5. Computational cost (thick blue line) and state vector size (thin
red line) for the experiment. Notice that the algorithm runs, in the worst
case, at around 7 Hz for a state vector of size 600.

'A high resolution version of the video can be found at
http://webdiis.unizar.es/~Jjcivera/videos/irosll_
desktop.avi



Figure 4. Representative images (at the top) and 3D estimation at their respective times (at the bottom) for the desktop experiment. (a) Initial map, still
with no recognized objects. (b) The tetra pack has been recognized, inserted and is being tracked. (c), (d) and (e): the Volkswagen replica, chewing gum
packet and the postcard has been inserted. (g) The two remaining objects —postcard and teddy bear— are inserted. (h) The camera moves back close to the
starting position, revisiting all previous objects. (h) Final frame of the sequence and 3D view of the objects registered in a common reference frame.

B. Hospital Room Environment —RoboEarth Project

Before going into detail about the performance of the
semantic Monocular SLAM, the general aim of this exper-
iment should be stated. This experiment is framed into the
RoboEarth project [27]; dedicated to construct a giant net-
work and database repository for robots to share knowledge
by uploading and downloading actions and sensory data. In
this specific experiment a robot enters a hospital room and
downloads from the RoboEarth 1) the recognition models for
the objects it may encounter in the hospital room, and 2) an
action recipe consisting on the task of serving a tetra pack
juice to a patient in the bed. The semantic Monocular SLAM

algorithm described in this paper, using the downloaded tetra
pack recognition model among others, estimated the partially
annotated map that allowed the robot to succesfully grasp the
tetra pack and serve it to a patient 2.

The sequence for this experiment has 6003 frames. The
object models considered in this experiment were the cabinet,
the bed and the tetra pack of juice. The tetra pack is the
same than the one in the previous experiment. The cabinet
and bed are roughly modeled as delimited by planar faces.
Figure 6 shows several frames extracted from the experiment.

2A video of the complete RoboEarth experiment can be seen at http:
//www.youtube.com/watch?v=RUJrzJyqftU



Figure 6.

Representative images (at the top) and 3D estimation at their respective times (at the bottom) for the hospital room experiment. The tracked

features are displayed in the images as circles. The inserted objects, represented as coloured prismatic solids, are also reprojected at the images. The 3D
views show the camera trajectory up to this frame as a yellow line, the point feature uncertainties as ellipses and the inserted objects. (a), frame #34, the
cabinet has been already recognized and inserted. (b), frame #241, the robot goes forward. Notice that, although the cabinet is not seen in the image, its
3D position remains registered. (c), frame #912, the robot turns left and faces the cabinet and the tetra pack, which is detected and registered. (d), the
robot turns, recognizing and registering the bed. (e) Robot location at the end of the experiment.

Figure 6.a (top) shows the estimation at frame #34, where
the cabinet has been already recognized and inserted. Notice
the accuracy of the insertion by the overlap between the
model reprojection and the real cabinet. In the bottom it
can be seen a top view of the 3D map: the ellipses stand for
the uncertainty regions of the salient point features and the
coloured prism is the cabinet model. As every object in this
experiment is composed of planar faces, they are represented
by coloured prisms instead of the point clouds of the previous
experiment.

The following images in figure 6 stand for other frames
of the sequence temporally ordered. Notice that in figure 6.c
the tetra pack was already recognized and inserted. In figure
6.d the bed has also been recognized and registered. Finally,
figure 6.e shows the final frame of the sequence along with
the final estimation results®. For a better visualization, figure
7 shows a detail of the final map estimation and the camera
trajectory. Notice the accurate registration of the tetra pack
over the cabinet in figure 7.b.

VIII. CONCLUSIONS AND FUTURE WORKS

State-of-the-art monocular SLAM, Structure from Motion
and object recognition are combined in this paper to allow
the insertion of precomputed known objects into a standard
point-based monocular SLAM map. The only input to the
algorithm is visual information: a monocular sequence feeds
the EKF SLAM algorithm; the appearance and geometric
models for the known objects are precomputed from a set
of sparse images; and also object recognition is driven by
visual features. Experimental results show the feasibility of
the algorithm and its real-time capabilities for room-sized
scenarios.

The approach described on the paper is the first one
introducing general 3D objects in a geometric SLAM map

3A  high resolution version of the video can be found at
http://webdiis.unizar.es/~jcivera/videos/irosll_
hospital_room.avi

Figure 7. SLAM results at the end of the hospital room experiment. (a), top-
view of the camera trajectory, estimated salient point features and recognized
objects. (b), side-view of the camera trajectory and recognized objects: the
tetra pack over the cabinet, both at the left; and the bed at the right.

in real-time. But we still believe that the main value of
our paper resides on the concept behind it. On the one
hand recent research on visual object recognition allows to
robustly recognize a wide extent of objects from visual input;
but 3D information is rarely considered in those approaches.
On the other hand, monocular SLAM and Structure from
Motion currently offer real-time camera motion and 3D scene
estimation but without a semantic meaning. The combination
presented on this paper, providing a partially annotated local
map and the current robot position, could be of high value
for certain robotic tasks like grasping (as demonstrated in



the RoboEarth experiment).

Regarding the cameras used: Only the calibration for the
SLAM camera is needed, and the camera used for building
the models can be different from the SLAM one. Any robot
with a calibrated camera would be able to exploit then the
precomputed models, what makes the system interoperable.
The robot ends up with the location of the object it is
supposed to interact with under quite general circunstantes.
Finally just by recognizing an object face, the map can
incorporate information about object regions that are not
observed. This might be quite useful for tasks like robot
navigation.

Several interesting lines for future work arise from the
results on this paper. First, if would be very interesting to
increase the quality and density of the semantic annotations.
For example, the classical object recognition algorithms
used in this paper could be upgraded to the most recent
category recognition algorithms [10]. This would allow to
recognize generic categories (e.g., the category chair) instead
of objects, which are specific instantiations of a category
(e.g., a specific chair). Context-based object detection [20]
or image segmentation [13] could also help to augment the
density of the annotated objects. Second, monocular SLAM
algorithms providing with denser geometric maps [21], [25]
could be used in order to help robotic tasks like navigation
or path planning.
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