
$A\,Multimodal\,Human-Robot\,Interaction\,Dataset$

Pablo Azagra^{1*}, Yoan Mollard², Florian Golemo², Ana C. Murillo¹, Manuel Lopes², Javier Civera¹ ¹ DIIS-i3A, Universidad de Zaragoza, Spain. (*pazagra@unizar.es). ²Centre de Recherche Inria Bordeaux - Sud-Ouest, France.

Introduction

A framework for incremental object learning from human-robot interaction, from the robot's perspective, should contain the multiple modules shown in the figure. This work presents a public dataset for incremental object learning from human-robot interactions.

Related Work

Other datasets:

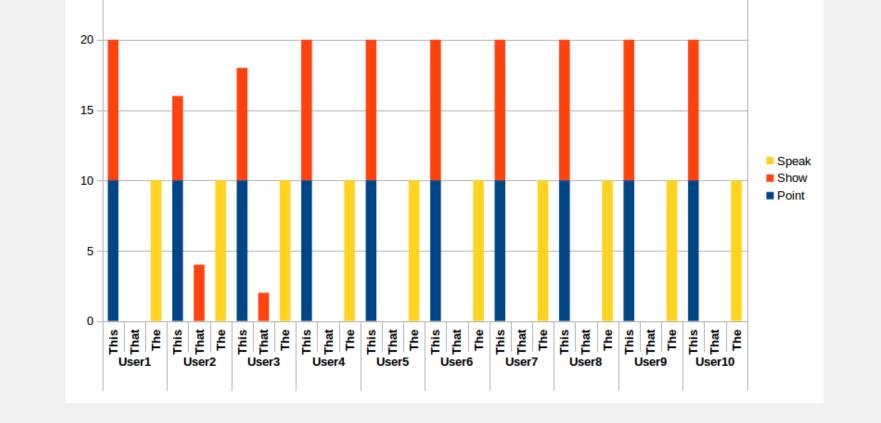
- Vatakis et al. [4] shows multimodal recording approach similar to ours, but with other purpose.
- Gong et al. [2] and Sung et al. [3] capture human interaction from a third-person POV.

Multimodal Action Recognition

SVM classifier trained with:

Language Feature: First word in the speech.

The Multimodal Human-Robot Interaction (MHRI) dataset


The MHRI dataset^a contains recordings of users teaching objects to the robot Baxter using synchronized data from the following sensors:

- Chest-Kinect. Microsoft Kinect v1.0 (640×480) . Focused on the frontal interaction with the user.
- Top-Kinect. Microsoft Kinect v1.0 (640×480) . Top global view including the user, workspace and the objects.
- Face-HDcam. 1280 \times 720 RGB camera focused on the user's face.
- Audio. Speech from the user, recorder with a USB microphone situated on the side of the table.

Summary of the contents of the dataset:

Users	10				
	10				
Interaction Types (Actions)	3	Point, Show, Speak			
Interactions per User	30	10 of each type. 1 random object per interaction.			
Objects	22	Apple, Banana, Bottle, Bowl, Cereal Box, Coke, Diet Coke, Ketchup, Kleenex, Knife, Lemon, Lime, Mug, Noodles, Orange, Plate, Spoon, Tall Mug, Tea Box, Vase			

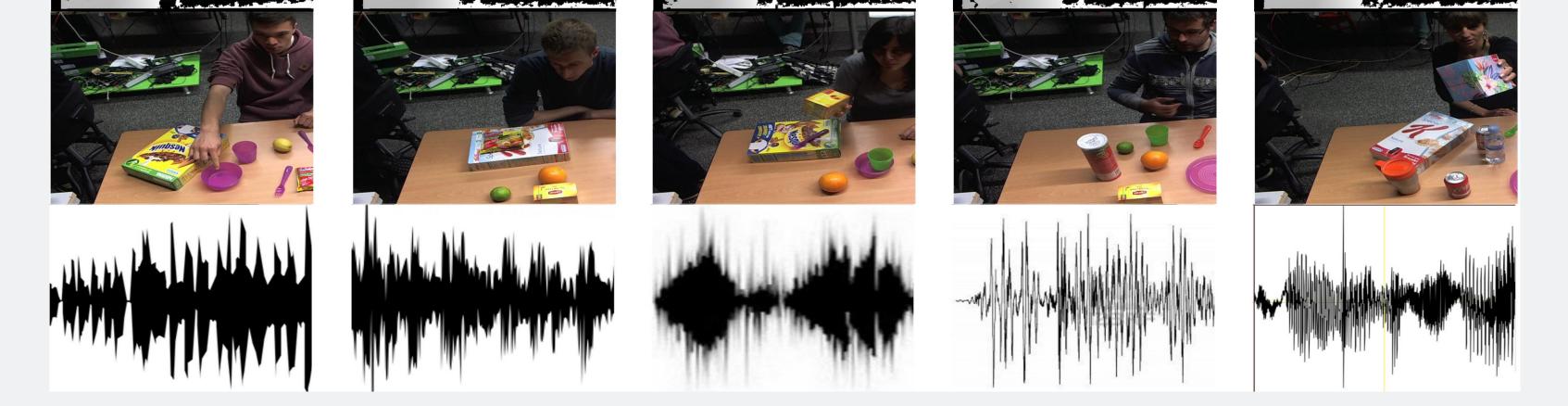
Visual Feature: SLIC [1] superpixels + skin/not skin with color and depth $+ 5 \times 5$ grid = histogram summing the skin votes.

Visual

	Point	Show	Speak
Point	72,85%	$12,\!36\%$	14,78%
Show	$76{,}01\%$	$12,\!88\%$	$11,\!11\%$
Speak	$55,\!46\%$	$20,\!00\%$	24, 54%

Visual+Language

Point Show Speak


Point	$73,\!94\%$	26,06%	$0,\!00\%$
Show	$66,\!45\%$	33,55%	$0,\!00\%$
Speak	$0,\!00\%$	$0,\!00\%$	100%

Conclusions

- Annotated **multimodal dataset for Human-Robot interaction** (Two *RGB-D* cameras, one high resolution *RGB* camera, and audio data).
- Our dataset presents **challenges** like occlusions and low object resolution.
- Simple interaction classification improved by **Multimodal data**.
- Future lines of work will extend the presented approach by working on the next steps of an **incremental and interactive learning framework**.

References

- [1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. SLIC superpixels compared to state-ofthe-art superpixel methods. *PAMI*, 2012.
- [2] W. Gong, J. Gonzàlez, J. M. R. Tavares, and F. X. Roca. A new image dataset on human interactions, pages 204–209. 2012.

^acan be downloaded at http://robots.unizar.es/IGLUdataset/

Acknowledgements

This research has been partially funded by the European Union (CHIST-ERA IGLU, PCIN-2015-122), the Spanish MINECO/FEDER projects DPI2015-67275 and DPI2015-65962, the Aragón regional government (Grupo DGA T04-FSE) and the University of Zaragoza (JIUZ-2015-TEC-03).

- [3] J. Sung, C. Ponce, B. Selman, and A. Saxena. Human activity detection from RGBD images. *AAAI workshop PAIR*, 2011.
- [4] A. Vatakis and K. Pastra. A multimodal dataset of spontaneous speech and movement production on object affordances. *Scientific Data*, 2016.

More Information

Dataset download

