Performance Evaluation for the Design of
Agent-based Systems: A Petri Net Approach*

José Merseguer, Javier Campos, and Eduardo Mena

Dpto. de Informatica e Ingenieria de Sistemas, University of Zaragoza, Spain
{jmerse, jcampos,emena}@posta.unizar.es

Abstract. Software design and implementation using mobile agents are
nowadays involved in a scepticism halo. There are researchers who ques-
tion its utility because it could be a new technology that does provide
new skills but it could introduce new problems. Security and performance
are the most critical aspects for this new kind of software. In this paper
we present a formal approach to analyse performance for this class of
systems. Our approach is integrated in the early stages of the software
development process. In this way, it is possible to predict the behaviour
without the necessity to carry out the complete implementation phase.
To show the approach, we model a software retrieval service system in
a pragmatic way, later, the corresponding formal model is obtained and
analysed in order to study performance.

Keywords: Software performance, Petri nets, UML, mobile agent

1 Introduction

In the last years, distributed software applications have increased their possibil-
ities making use of Internet capabilities, positioning distributed software devel-
opment as a very interesting approach. The client/server model has become the
key paradigm to support distributed software development. It is widely recog-
nised that there are four main technologies which advocate for client/server de-
velopments: relational database management systems (RDBMS), TP monitors,
groupware and distributed objects. It is well accepted that distributed objects
in conjunction with mobile agents [15, 11] technology are a very interesting ap-
proach to address certain kind of software domains like e-commerce, information
retrieval and network management and administration.

Although there are researchers who question mobile software, it takes sense
in distributed environments [9] because it is a technology with appropriate new
skills for these kind of systems. But it could introduce new problems as the in-
appropriate use of the net resources. In this way time consuming could become
a problem for users. So, we are concerned to develop new techniques and meth-
ods which minimize these problems. In this context, software performance [18]
appears as a discipline inside software engineering to deal with model perfor-
mance on software systems design. Like many people concerned about software

* This work has been developed within the project TAP98-0679 of the Spanish CICYT.

performance, we believe that the performance evaluation must be accomplished
during the early stages of the software development process.

Unified Modeling Language (UML) [2] is widely accepted as a standard no-
tation to model software systems. Unfortunately, UML lacks of the necessary
expressiveness to accurately describe performance skills. There have been sev-
eral approaches to solve this lack [19, 20, 16]. One of the goals of this paper is
the study of the performance indices in mobile agent systems, thus, we propose
a UML with performance annotations (pa-UML) to deal with performance skills
on these kind of systems. Our approach to solve the problem is as follows: we
model the problem domain using pa-UML, describing static and dynamic views
when necessary. pa-UML models will give us the necessary background to obtain
the corresponding formal model expressed as Petri nets [13]. From pa-UML, we
derive a time interpretation of Petri nets leading to Generalized Stochastic Petri
Nets (GSPN) [1]. Thus, we implicitly give a semantics for pa-UML in terms of
Petri nets. Performance indices may be computed for GSPN by applying quan-
titative analysis techniques already developed in the literature.

The rest of the paper is organised as follows. In section 2, we describe a
system, based on agents, which has been taken from [12]. In section 3, we give
our proposal to annotate system performance aspects in UML (pa-UML) and
we develop the pa-UML models for the system presented in section 2. Section 4
is dedicated to transform pa-UML diagrams into Petri nets in order to achieve
the desired formal model. Finally, some performance results and conclusions are
presented.

2 An example: the Software Retrieval Service in the
ANTARCTICA system

In this section we briefly present ANTARCTICA!. The system has been taken
from [12] and it will be used as an example along this paper to study performance
on mobile agent systems.

The goal of the system is to provide mobile computer users with different
services that enhance the capabilities of their computer. One of these services
is the Software Retrieval Service, that allows users to select and download new
software in an easy and efficient way. This service has been thought to work in
a wireless network media and provides several interesting features:

— The system manages the knowledge needed to retrieve software without user
intervention, using an ontology.

— The location and access method to remote software is transparent to users.

There is a “catalog” browsing feature to help user in software selection.

— The system maintains up to date the information related to the available
software.

In the following, we briefly describe the system paying attention in its com-
ponents. There is a “majordomo” named Alfred, which is an agent specialised in

! Autonomous ageNT bAsed aRChitecture for cusTomized mobIle Computing Assis-
tance.

user interaction. There is a Software Manager agent whose task is to create a
catalog which will help the user to select the required software. Another agent,
the Browser will help the user in selecting the software. Finally, a Salesman
agent is in charge of performing any action previous to the installation of the
selected software, like e-commerce.

The system was proposed in [12] using different technologies, namely CORBA
[14], HTTP and mobile agents. Some performance tests were applied to different
implementations, in order to select the best way of accessing remote software.
Conclusions were the following:

— Time corresponding to CORBA and mobile implementations are almost
identical for a wide range of files to be downloaded.

— Mobile agent approaches are fast enough to compete with client/server ap-
proach.

Although considering the importance and the relevance of the results of the
work [12], we would like to stress the enormous cost of implementing different
prototypes in order to evaluate the performance of the different alternatives.
In the rest of this paper, we model the system in a pragmatic way using pa-
UML, annotating consistently the system load (we have annotated the system
load taking as a basis the experiments and experience of the authors of the
cited paper). After that, we can interpret the pa-UML model in terms of Petri
nets and derive the corresponding performance model which will be properly
analysed. This analysis is used to evaluate the system.

3 Modelling the system using pa-UML

In the previous section, we have explained the general features of the target
system. Now, we focus on modelling it using pa-UML notation. We have con-
sidered UML and not the notation of methodologies such as OMT [7], OOSE
[10] or Fusion [6] because of its wider acceptance in the software engineering
community.

The system description in UML accomplishes with static and dynamic views
in order to give a complete description of the system. For the sake of simplicity
and for the convenience of our problem, we only describe the dynamic view of
the system.

Figure 1 shows the use cases needed to describe the dynamic behaviour of
the system. We deal with three different use cases, “show services”, “software
retrieval service” and “e-commerce”. Also, we can see the unique actor which
interacts with the system, the “user”. The use cases are described in the follow-
ing.

Show services use case description.
— Principal event flow: the use case goal is to show to the user the available
services that the system offers. The Software Retrieval Service is one of those
services and it is also described as a use case.

Show

Services

Software

Retrieval

Service

User -
Electronic
Commerce

Fig. 1. Use Cases

Software retrieval service use case description.

— Principal event flow: the user requests the system for the desired software.
The Browser gets a catalog and the majordomo, Alfred, shows it to the user,
who selects the software s/he needs.

— Exceptional event flow: if the user is not satisfied with the catalog presented,
s/he can ask for a refinement. This process could be repeated as many times
as necessary until the user selects a concrete piece of software.

Electronic commerce use case description.

— Principal event flow: the goal is to provide the user an e-commerce activity
and the download of the software selected.

Show services and e-commerce use cases are out of the scope of this article,
thus, we concentrate on the Software Retrieval Service.

Pragmatic object-oriented methodologies such as [6, 7, 10] do not deal with
performance skills. So, we can say that there is not an accepted method to
model and study system performance in the object-oriented software develop-
ment process. This lack implies that there is not a well-defined language or
notation to annotate system load, system delays and routing rates. On the con-
trary, formal specification languages, such as LOTOS [17], or Petri nets [13], have
considered and studied the problem in depth. Thus, there are several proposals
where we can learn from.

As we remarked, it is our objective to propose a UML extension (pa-UML) to
deal with performance on the software development process at the design stage.
We consider that our proposal must accomplish with both, the method and the
notation. First, the method will give us the process to model the system and the
relevant parameters to be taken into account. We advocate for a pattern-oriented
approximation. Lately, design patterns [8] have gained relevance in software de-
velopment due to their simplicity and flexibility. But this will be subject of future
research. Second, concerning the notation, it will be treated in this work.

In order to have a complete performance notation, the UML behavioural and
structural models must be considered. Also, performance will play a prominent
role in the implementation diagrams. In this paper, we are interested only in
behavioural aspects, concretely in the sequence diagram and the state transition
diagrams. Future works will deal with the rest of the UML diagrams to describe
behaviour (use case diagrams, activity diagrams, collaboration diagrams), struc-
tural aspects, and implementation diagrams.

The UML notation to deal with time is based on the use of time restric-
tions. This restrictions are expressed as time functions on message names,
e.g., {(messageOne.receiveTime - messageOne.sendTime) < 1 sec.}. We con-
sider more realistic to annotate the message size. In this way, we could calculate
performance for different net speeds.

3.1 Sequence diagrams

In order to understand the problem, it is interesting a more detailed description
of the Software Retrieval Service use case. Thus, a sequence diagram [2] has been
developed to treat accurately the mentioned use case, see figure 2.

% ‘ Alfred ‘ ‘ SwMana_]e(‘
.

| {1K} M |
! select_sw_Service(info) i

o

(:ug)
get_catalog(info_plus)

wy
create_catal og(info_plus) alog
{100K}
create_browser(c1) BrowserAgent

1.n {100K}
! (lOOK* show_catalog_GUI(c1)
pbserve_GUI_catalog(cl)

[no‘osgx}\ sfied]rﬁ%ﬁicale‘ og(refinement)

(1K})
refine_catalog(refinement_plus)

. b 1K..100K
satisfied] [i nr{giﬁe%d] more._i n;ormali on(}ref inement2, ci)
ci+1 {1K..100K}
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
{1K}
select_sw(name) 1K}
sa‘ ect”_sw(name)

[y
create_sdesman(info_sale) -

delete_browser |

info_sale plus {1K}

e Y

| electronic_commerce
]
i
I
I
I

{1K}
request(info_sale)

Fig. 2. Sequence diagram for the Software Retrieval Service use case

A sequence diagram represents messages sent among objects. Usually, a mes-
sage is considered as no time consuming in the scope of the modelled system.
But in a mobile agent system, we distinguish between messages sent by objects
on the same computer and messages sent among objects on different computers,
those which travel through the net. The first kind of messages will be consid-
ered as no-time consuming. The second kind will consume time as a function
of the message size and the net performance (speed). Here an annotation, in-
side braces, will be made indicating the message size. For instance, in Figure

2, select_sw_service message is labelled with {1 Kbyte}, while show_catalog_GUI
requires the movement of {100 Kbytes}. Also, it will be possible to annotate a
range for the size in the UML common way, like in more_information message,
where a {1K..100K} label appears.

In a sequence diagram, conditions represent the possibility that the message
that they have associated with could be sent. An annotation, also inside braces,
expressing the event probability success will be associated to each condition. A
range is accepted too. See, for instance, the probability {0.9} associated in Figure
2 to the condition not_satisfied. Sometimes, it is possible that the probability is
unknown when modelling. Also, it could be that the probability a message occurs
is a parameter subject to study. In our example, the condition info_need associ-
ated to the more_information message is critical for the system, because it reveals
how much intelligent the Browser is; so, we want to study it. In such situations,
we will annotate an identifier, corresponding to the unknown probability.

3.2 State Transition diagrams

Sequence diagrams show how objects interact, but to take a complete view of the
system dynamics, it is also interesting to understand the life of objects. In UML,
the state transition diagram is the tool that describes this aspect of the system.
For each class with relevant dynamic behaviour a state transition diagram must
be specified.

In a state transition diagram two elements will be considered, the activities
and the guards. Activities represent tasks performed by an object in a given
state. Such activities consume computation time that must be measured and
annotated. The annotation will be inside braces showing the time needed to
perform it. If it is necessary, a minimum and a maximum values could be an-
notated. See, for example, bold labels between braces in Figures 4, 5, 6 and 7.
Guards show conditions in a transition that must hold in order to fire the corre-
sponding event. A probability must be associated to them. It will be annotated
in the same way as guards were annotated in the sequence diagram, and the
same considerations must be taken into account. See, for instance, label {0.9}
joined to condition [not “user.satisfied] in Figure 4.

Message size may be omitted since this information appears in the sequence
diagram. In the example, we have duplicated this information to gain readability.

We now present the state transition diagrams for our system using the pa-
UML notation.

User state transition diagram. In Figure 3, the behaviour of a user is rep-
resented. The user is in the wait state until s/he activates a select_sw_service
event. This event sets the user in the waiting for_catalog state. The ob-
serve_GUI_catalog event, sent by Alfred, allows the user to examine the cat-
alog to look for the desired software, if it is in the catalog, the users selects
the select_sw event, in other case s/he selects the refine_catalog event.

Alfred state transition diagram. The example supposes that Alfred is al-
ways present in the system, no creation event is relevant for our purposes.
So the state transition diagram begins when a view_services event is sent

{1K}
“Alfred.select_sw_service(info)

Waiting for
catalog

[not sﬁiéfqgc}]"Alfred.{lefﬁ

Fig. 3. State transition diagram for the user

atal og(refinement)

{100K1
observe GU

ect_sw(name)

to the user. Alfred’s behaviour is typical for a server object behaviour. It
waits for an event requesting a service (select_sw_service, show_catalog_GUI,
refine_catalog or select_sw). For each of these requests it performs a concrete
action, and when it is completed, a message is sent to the corresponding ob-
ject in order to complete the task. After the message is sent, Alfred returns
to its wait state to serve another request. Figure 4 shows Alfred’s behaviour.
The stereotyped transition < more_services > means that Alfred may at-
tend other services that are not of interest here.

{1K} ,
ASwManager.get_catal og(info_plus)

{100K} .
show_catalog_GUI(ci)

WAIT - \Do:érlez%}e_euuc)

“user.observe_GUI_catalog(ci)
{100K}

{1k}
select_sw_service(info)

<<more_services>>

[Au{s%r.l;msned]sae{ctl Kvina

{0.9 =) {1k}
not ~user.satisfied]refine_catal og(refinement)

1
Do:.:-{dgg %nfo

1K
"browsef.{ref i}ne_catal og(refinement_plus)

Fig. 4. State transition diagram for Alfred

Software Manager state transition diagram. Like Alfred, the Software

Manager behaves as an server object. It is waiting for a request event
(more_information, get_catalog, request) to enable the actions to accomplish
the task. Figure 5 shows its state transition diagram; it is interesting to note
the actions performed to respond the get_catalog request. First, an ontology
is consulted and, after that, two different objects are created, those involved
in task management.

Browser state transition diagram. The state transition diagram in Figure

6 describes the Browser’s life. It is as follows: once the Browser is created it

i{prod} o {1K.100K} .
info_need] more_information(refinement2,ci)

{(0.5sg..50sg}
Do:get_info

{1 min}
Do: create _catalog

(1Kgl)
get_catalog(info_plus)

{1k}
“catalog.create_catalog(info_plus)

{1k}
“salesman.reply(info_sale_plus)

{1sq}
Do:add_info4

Fig. 5. State transition diagram for the Software Manager

Do: create_browser
{1sg}

{lK()
request(info_sale)

~browser.cregte_browser(ci) {1K}

must go to the MU_Place, where it invokes Alfred’s shows_catalog_GUI method
to visualize the previously obtained catalog. At this state it can attend two
different events, refine_catalog or select_sw. If the first event occurs there are
two different possibilities: first, if the Browser has the necessary knowledge
to solve the task, a refinement action is directly performed; second, if it
currently has not this background, the Browser must obtain information
from the Software Manager, by sending a more_information request or by
travelling to the software place. If the select_sw event occurs, the Browser
must create a Salesman instance and die.

[info_need_travel] Do:goto_Sw_place
{100K}
{100K} {100K} {1K}
.creae browser(c ~alfred.show_catalog_GUI cf refine_catal og(refinement_plus)
= © Do:goto_MU_P _catelog GU)WAIT -catalogl P
{1K..100K}
~SwManager.more_in-
formation(refinement2, ci)

{1K} [info_need_local]
reply {1K..100K}

1K]
select_sw(name)

1K
@ delete_browser t:sal aman.crea{tei;al esman(info_sale)

{100K}
Adlfred.show_catalog_GUI(ci+1)

[not info_need or+

[info_need_travel]

Do:goto_MU_PI
{100K..200K}

Fig. 6. State transition diagram for the Browser

Salesman State Transition Diagram. The Salesman’s goal is to give e-
commerce services, as we can see in Figure 7. After its creation it asks
the Software Manager for sale information. With this information the e-
commerce can start. This is a complex task that must be described with its
own use case and sequence diagram which is out of the scope of this paper.

The pa-UML models that we have developed are expressive enough to accom-
plish with different implementations. A necessary condition to design methods

{1k}

{1} ASWManager.re-
create,_salesman(info) (| quest(into. ssle) {1sg} begin_electronic_commerce
. Do: add_info_sale

end_electronic_commerce

Do: electronic_commerc

Fig. 7. State transition diagram for the Salesman

is their independence of final implementation decisions. In that way, we can
use these models to develop applications based on CORBA, mobile agents, etc.
But this gap between design and implementation could be undesirable in cer-
tain cases. For example, in the system that we are treating we are not sure
how many majordomos should attend requests, how many concurrent users can
use the system, etc. However, a formal modelling with Petri nets solves these
questions satisfactorily.

The design proposed in [12] deals with one user and one majordomo. Petri
nets allow to represent cases such as:

1. One user and one majordomo (the proposed system).
2. Several users served by one majordomo.
3. Many users served by many majordomos, once per request.

Thus, increasing the modelling effort, it could be possible to avoid the neces-
sity of implementing the system for predicting performance figures.

4 Modelling with Petri nets

At this point, we have modelled the system with pa-UML notation, taking into
account the load in the sequence diagram and the state transition diagrams. So,
a pragmatic approach of the system has been obtained. But this representation
is not precise enough to express our needs. Remember that we want to predict
the system behaviour in different ways. First, we want to study how the system
works with only one user served by one majordomo. On the other hand, it is
also of our interest to know the system behaviour when several users are served
by only one majordomo, or by several majordomos.

In order to obtain answers to our questions, we need to apply performance
analytic techniques to the developed pa-UML diagrams. But there is a lack in
this field because no performance model exist for UML, so the pragmatic model
is not expressive enough. Also, we need to express system concurrency, but UML
models concurrency in a very poor way. Thus, it is required a formal model of
the system with concurrency capabilities.

To solve these lacks, we have chosen Petri nets as formal model, because it
has the remarked capabilities and also there are well-known analytic techniques
to study system performance in stochastic Petri net models. Thus, we propose
some transformation rules to obtain Petri nets from pa-UML diagrams.

In the following, we model with Petri nets the first two proposed systems, the
third one will be developed in a future work. For the first system, one user and
one majordomo, GSPN have the expressive power to accomplish the task. To
study the second system, several users served by one majordomo, stochastic well-
formed coloured Petri nets [3] are of interest. Once the systems are modelled, we
use analytic techniques implemented in GreatSPN [4] tool to obtain the target
performance requirements.

4.1 Petri net model for a system with one majordomo and one user

First, we are going to obtain a Petri net for each system class, the component
nets. Obviously, every annotated state transition diagram will give us the guide,
and the following general transformation rules will be applied:

Rule 1. Two different kinds of transitions can be identified in a state transition
diagram. Transitions which do not spend net resources and transitions which
do. The first kind will be translated into “immediate” transitions (that fire in
zero time) in the Petri net. The second kind will be “timed” transitions in the
Petri net. The mean of the erponentially distributed random wvariable for the
transition firing time will be calculated as a constant function of the message
size and net speed. More elaborated proposals like those given in [5] could be
taken into account, but we have considered more important to gain simplicity.

Rule 2. Actions inside a state of the state transition diagram are considered
as time consuming, so in the Petri net model they will be consider as timed
transitions. The time will be calculated from the CPU and disk operations needed
to perform the action.

Rule 3. Guards in the state transition diagram will become immediate transi-
tions with the associated corresponding probabilities for the resolution of con-
flicts.

Rule 4. States in the state transition diagram will be places in the Petri net.
But there will be not the unique places in the net, because additional places will
be needed as an input to conflicting immediate transitions (obtained by applying

Rule 3).

Figures 8, 9, 10, 11 and 12 represent the nets needed to model our system
components taking into account the previous transformation rules. According to
GSPN notation [1], immediate transitions (firing in zero time) are drawn as bars
(filled), while timed transitions are depicted as boxes (unfilled). Timed transi-
tions are annotated with firing rates, while immediate transitions are annotated
with probabilities for conflict resolution.

The sequence diagram will be the guide to obtain a complete Petri net for
the system using the previous component nets. We must consider that UML
distinguishes, in a concurrent system, two different kind of messages in a sequence
diagram:

— those represented by a full arrowhead (wait semantics), and

alfred_refine_catalog
I

wait_for_service . wait_UserforCatalog P4
“ 1
alfred.select_sw_service
observe_GUI_catalog
mmend_ec
alfred.select_sw -
P7 €lectronic_commerce P6 begin_ec Pl%
| 1
L] 1

Fig. 8. User Petri net component

add_infol P5 Sw_Manager.getcatalog user.observe_GUI_catalog

create GUI
P36
select_sIN_servioe show_GUI_catalog
P4 | o] P3

ait_Alfred
I |
select_software refine_catalog

P6

P9 P7

browser.select_sw_browser browser.refine_cafalog add info2

d_info3

Fig. 9. Alfred Petri net component

— those represented by a half arrowhead (no-wait semantics).

The following transformation rules will be used to obtain the net system. But
first, it must be taken into account that, for every message in the sequence dia-
gram, there are two transitions with the same name in two different component
nets, the net representing the sender and the net representing the receiver.

Rule 5. If the message has wait semantics, only one transition will appear in

the complete net system; this transition will support the incoming and outcoming
arcs from both net components.

brcrwser.ri)ly_l ocal salesman.reply

browser.reply_remote 3 add_info4

more_information_remote
create_catalog

more_information_|local

browser.create_browser

Fig. 10. Software Manager Petri net component

delete_browser salesman.create_salesman Pr info_need_travel P16
g I Me 1
L)

1 i
P6 PS select_sw browser

create_browser_agent info_need_local

alfred.show_catalog_GUI wait

reply_remote

refine_catalog_browser
P8 gotg_Sw|Place
SwManager/more_information_remote
P12

N P17

1
1 . 1
not_info_t |_or_local not_info_need

goto_MU_Place2 SwManager.more_information_lgcal
info_need_travell ly_local
o info_ne " | trav o repl y_.o P13
P15 refine P9
Fig. 11. Browser Petri net component
P1 create_salesman P2 SwManager.request begin_add_info_sale
? +{] >{]
w USEr-end_ec add_info_sale
g\ user.electronic_commerce user.begin_ec
< I)
P6 P5 end_add_info_sale

Fig. 12. Salesman Petri net component

Rule 6. If the message has no-wait semantics, the two transitions will appear in
the net system and also an extra place will be added modelling the communication
buffer. This place will receive an arc from the sender transition and will add an
arc to the receiver transition.

The net system for the example is shown in Figure 13. In order to under-
stand how to apply the previous rules, we are going to explain how to obtain
the observe_GUI_catalog transition in the net system (Figure 13) from the ob-
serve_GUI_catalog message sent by Alfred to the user in the sequence diagram.
We can observe in Alfred’s net (Figure 9) and in the user’s net (Figure 8) the
presence of that transition. So, in the net system the transition appears with the
union of the incoming and outcoming arcs of the components, synchronising in
this way both objects.

Finally, we remark with an example that the concurrency expressed in UML
has been achieved in the net system by synchronising component nets. When
create_salesman transition fires one token is placed in P20 and one token is placed
in P31, allowing a concurrent execution of the request and delete_browser transi-
tions.

4.2 Petri net model for a system with one majordomo and several
users

In order to model with Petri nets the situation of several users being served

by one majordomo, we need to include several tokens in some places like, for

S0INSI0LESN 1M

QINBS MS J09feS =

ﬁ Boferes aran Bofereo 16 ol ppe
O . 1 1 wﬁ\ iy
&d H ovd 1 Tod 1 {}
9€1
% %
7 e oJui ppe pue
afes ojul ppe POV 1M -

JasSMoIq 3

6Td

JSMOIG VS 109
L)

Led

BoferreDiopesn 1em
1

~

Ve

ojui ppe”uiBeq

jeoo o ewou | a.qu
i

Lvd

e E|>\m|ouom

ajowes A|desjasmoiq

aulpl 6vd

—
Wwebyiesmolg aalo

zojuri ppe

O
Sed

(oed

9ed

(O Boero mous

_N
IND am1eld

Fig. 13. The Petri net for the whole system

instance, wait_UserforService. Since the system must distinguish between differ-
ent tokens (they represent different requests), we add a colour domain for the
requests, thus leading to stochastic well-formed coloured Petri nets [3].

Our objective now is to reach the stochastic well-formed coloured nets for the
components and for the system. Let us begin with the component nets. As in the
previous system, component nets will be obtained from the annotated state tran-
sition diagrams. We begin the translation task (from pragmatic model to formal
model) using the rules stated in the previous section. The Petri nets for Alfred
and the Software Manager will be the same because only one instance of each is
present in the system. On the contrary, the system will have as many instances
of users, browsers and salesmen as required, suppose five for the example.

Now, pay attention on Figure 14, which represents the well-formed coloured
Petri net for the user. The R colour means that the system deals with one to
five requests and the initial marking m1 in place wait_for_service denotes that all
class instances will be used. Moreover, all the places in the net have colour R
and the arcs are labeled with the identity function (<x>), in this way only one
request could be fired once a time.

Figure 15 shows the well-formed coloured Petri net for the Browser. It has
been obtained applying the transformation rules to the Browser‘s STD. Initial
marking m1 in place P1 shows that a maximum of five browsers could be created,
one for each users request. Salesman well-formed coloured Petri net (see Figure
16) has been designed in the same way.

alfred_refine_catalog

wait_for_service wait_UserforCatalog < | P4 Re
<XxX> 1 <X> request:c
x|->< alfred.select_sw_service <X> R sm

<xX> mlm
= end ec observe_GUI_catalog
- _—

> alfred.select_sw Ly
P7
<X> [] <X> <X> _ k <X>
electronic ‘commerce % R begin X glgsR

Fig. 14. User coloured Petri net component

Now, we are going to focus on the complete well-formed coloured net for the
system, see Figure 17. The transformation rules given in the previous section
will give us the guide to construct it. In addition, the following transformation
rules will be applied concerning the colours:

Rule 7. All colours and markings defined in the component nets will be inherited
by the net system.

Rule 8. The places with colour and/or markings in the components nets will
appear in the net system in the same way.

Rule 9. The arcs labelled in the component nets will appear in the net system
in the same way.

delete_browser salesman.create_sdesman select_sw_browser info_need_travel P16

<x> <> x> PS5 <x>
P1 1 R< U~ oG R:c
P6 request:c
x X Sm
create_browser_agent x> mLm
P2 afred.show_catalog_G
ot Sw_Place

oto_MU_Place2
goto_ML n_Jocal

<x>

info_need_travel1
<X> =

P18

Fig. 15. Browser coloured Petri net component

P1 create_salesman P2 SwManager.request begin_add_info_sde
<X> <X> <xX> I - - -
U R R:C
[<X> request:c
mm USEr-end_ec add_info_sale Sm
<x> i . <X> mlm
user.electronic_commerce user.begin_ec
<X> MNe <X> <X> [] <XX>
LS UR 1

R
P6 end_add_info_sale

&

Fig. 16. Salesman coloured Petri net component

Rule 10. Conflicting arcs are those that appear labelled in a component net but
not in the component net which it is synchronised. When conflicting arcs appear,
the net system must have the two arcs labelled, preserving in this way the richest
semantic.

As an example of Rule 9 see outcoming arcs for the synchronised transitions
select_sw and alfred.select_sw in Figures 9 and 14 respectively.

We remark that the complete well-formed coloured net for the system de-
scribes concurrency at the same level as the complete net for the system given
in the previous section. Moreover, it introduces a new level of concurrency. The
use of coloured tokens models concurrent user requests of a complete service, as
it can be seen in the select_sw_service transition, that can fire several tokens from
place wait_UserforService representing several user requests.

5 Performance results

The results presented in this section have been obtained from the complete nets
that model the examples; the complete net that models the case in which the
system is used by one user, who is attended by only one majordomo and the
complete net that models the case in which the system is used by several users,
which are attended by only one majordomo.

wiTw
ws
JasSMoIq 3

;1s9nbau
oy

BQINBS 10485 1M

ol

~

<> -
X 20INRBS NS e
Boeres apEal0 Bofereo b ourppe e, e
w_m,NA\ m 1 Y] 1 88d_ m S
X> L X> oﬁm.on X =78 X> =% x> UK
<X o8l o o
&w\oﬁxm m”m\me 6o
ull
bus — LULIOD P AMV 40 <X
< % - I.w.n d
es oJul ppe pue
'DI0LESN TeMm
< Hops o ppe <> (SIATE) Borered mc_»_wgo ! :
JOSMOIG NS 109 .
<X> d .mm FO=xs l=xs u.A‘V_
g0 uippe Tvd ms 1BRS X
a%e|d MS 0106 <x> — < .o_mﬁmw o800
o X> =g Qu QEsmoIg Jem
20| UoeuMOUl B10W Lvd S|
40 pAell peet Ul X>
X Y
x> ved =X th_. . Obd .
— <X
%é_ Joul oo poou oyl ROl BopeS sup] o 8
{ x> O 2% =z ..Nn_ hmﬁA . ¥ 6ed
. <X>, X
<> wwmn_.» NSO OJUTIOU Ly, _U
<X; o d X> cojul ppe
- & < e ot
w_o_o 1290 >_.»:ww q o <X 4
® 2. pesU OJUL _
o o
Cm_awkrmcﬂ_mm %n_ 55 - .bA - O] 0 P3U\oJui 10U noBopEo Mo <
D\ doup —A|dos lesmolq m:cm: 6vd omM_Q __n VN
0 - O R NN 0106 <X> 2 eys—1 = Od 30 N
1WeByesmolg a0 92 Yage\ RN 01061 led 8g) €sd Sed 1N9 amren

Fig. 17. The coloured Petri net for the whole system

It is of our interest to study the system response time in the presence of a user
request. To obtain the response time, first the throughput of the select_sw_service
transition, in the net system, will be calculated by computing the steady state
distribution of the isomorphic Continuous Time Markov Chain (CTMC) with
GreatSPN [4]; finally, the inverse of the previous result gives the system response
time. We want to know which are the bottlenecks of the system and identify their
importance. There are two possible parts which can decrease system performance.
First, the trips of the Browser from the “user place” to the “software place” (and
way back) in order to obtain new catalogs. Second, the user requests for catalog
refinements, because s/he is not satisfied with it.

In order to study the two possible bottlenecks, we have developed a test
taking into account the following possibilities:

1. When the Browser needs a new catalog (under request of the user) there are
several possibilities:

— The Browser has enough information to accomplish the task or it needs
to ask for the information. It is measured by the not_info_need transi-
tion. We have considered an “intelligent Browser” which does not need
information the 70% of the times that the user asks for a refinement.

— When the Browser needs information to perform the task, it may re-
quest it by a remote procedure call (RPC) (represented in the net sys-
tem by the info_need_local transition) or it may travel through the net to
the Software_place (represented in the net system by the info_need_travel
transition) to get the information and then travel back to the MU_Place.
In this case, we have considered two scenarios. First, a probability equal
to 0.3 to perform a RPC, so a probability equal to 0.7 to travel through
the net. Second, the opposite situation, a probability equal to 0.7 to per-
form a RPC, therefore a probability equal to 0.3 to travel through the
net.

2. To test the user refinement request, we have considered two different possi-
bilities. An “expert user” requesting a mean of 10 refinements, and a “naive
user” requesting a mean of 50 refinements.

3. The size of the catalog obtained by the Browser can also decrease the system
performance. We have used five different sizes for the catalog: 1 Kbyte, 25
Kbytes, 50 Kbytes, 75 Kbytes and 100 Kbytes.

4. The speed of the net is very important to identify bottlenecks. We have con-
sidered two cases: a net with a speed of 100 Kbytes/sec. (“fast” connection
speed) and a net with a speed of 10 Kbytes/sec. (“slow” connection speed).

Figure 18(a) shows system response time (in minutes), for the net in Fig-
ure 13, supposing “fast” connection speed, “expert user” and an “intelligent”
Browser. One of the lines represents a probability equal to 0.7 to travel and
0.3 to perform a RPC, the other line represents the opposite situation. We can
observe that there are small differences between the RPC and travel strategies.
Such a difference is due to the round trip of the agent. As the agent size does
not change, this difference is not relevant for the global system performance.
Thus, we show that the use of mobile agents for this task does not decrease the
performance.

30 7

/ 25 /x"

6
5 n
_— 2 20
4 £
__ £ /
. 15 —
~travel 0,3; |10
—~—travel 0,3;| 2 ,3;
RPCO7 | tRPC|00’77 5
~travel 0,7; ~travel G,77 T
RPCO3 | file size RPC 0,3 file size
100 100
1 Kbyte |25 Kbyte |50 Kbyte | 75 Kbyte
1Koyte | 25 Kbyte | 50 Kbyte | 75 Kbyte | Y Vi Vi Vel ovte

‘travel 0,3; RPC 0,7|3,706999 |4,326757 | 4,970673|5,663156 | 6,260957 ‘h’avel 0,3; RPC 0,7] 13,6277 | 16,7842 | 20,0803 | 23,6072 | 26,6667
‘travel 0,7; RPC 0,3]3,7470024,366431|5,011024|5,703856 |6,301197 ‘travel 0,7; RPC 0,3/ 13,8313 | 16,9895 | 20,2758 | 23,8095 | 26,8817

(a) (b)
10 40 7
9 =
. —— 35
_— $ 30
g7 —— E »
S 6 =
£ €
E 5 20 —
4 15
—~travel 0,3; 3 ~travel 0,3; 1o
RPC 0,7 2 RPC 0,7
—~travel 0,7; 1 - travel 0,7; 5
RPC 0,3 0 file size RPC 0,3 o file size
100 100
1 Kbyte |25 Kbyte |50 Kbyte|75 Kb:
yte yte yte yte Kbyte 1 Kbyte |25 Kbyte|50 Kbyte|75 Kbyte Kbyte
‘*lravel 0,3; RPC 0,7/5,63825 | 6,36862 | 7,12555 | 7,93273 | 8,6445 \otravel 0,3; RPC 0,7| 16,7001 | 20,4248 | 24,2954 | 28,4075 | 32,051
|- travel 0,7; RPC 0,3]6,03865 | 6,76956 | 7,52785 | 8,3375 [9,0432 | travel 0.7; RPC 0,3] 18,7477 | 22,4921 26,3421 30,4303 | 34,083

(©) (d)

Fig. 18. Response time for a different scenarios with an “intelligent Browser”. (a) and
(b) represent a “fast” connection speed, (c) and (d) a “slow” connection speed; (a) and
(c) an “expert user” and (b) and (d) a “naive user”.

Figure 18(b) shows system response time (in minutes), supposing “fast con-
nection”, “intelligent” Browser, “naive user”. The lines have identical meaning
than in Figure 18(a). The two solutions still remain identical.

Someone could suspect that there exist small differences because of the net
speed. So, we have decreased the net speed to 10 Kbytes/sec., (Figures 18(c)
and 18(d)). It can be seen how the differences still remain non significant.

Finally, Figure 19 represents a test for an “intelligent Browser”, an “expert”
user, a probability for RPC equal to 0.7 and equal to 0.3 to travel. Now, we
have tested the system for a different number of requests ranging from 1 to
4, thus the coloured model in Figure 17 has been used. Observe that when the
number of requests is increased, the response time for each request increases, i.e.,
tasks cannot execute completely in parallel. Alfred and the Software Manager
are not duplicated with simultaneous requests. Thus, they are the bottleneck
for the designed system with respect to the number of concurrent requests of
the service. Therefore, the next step in the performance analysis of the model
would be to consider several majordomos (we do not include here due to space
limitations).

18 §
16
14
12 4
10 5

minutes

@1 Kbyte
50 Kbytes
1100 Kbytes|

o N & o

1request | 2request | 3 request | 4 request

1 Kbyte 3,7069988 | 6,1319598 | 8,3640013 | 10,506961
W50 Kbytes | 4,970673 |7,2605823 | 9,5529232 | 11,862396

1100 Kbytes| 6,2609567 |9,2157405| 12,30315 |15,500271

Fig. 19. Response time for an “intelligent Browser”, an “expert user”, a “fast” con-
nection and also different number of request.

6 Conclusions and further work
The main goal of this paper was to present an approximation to evaluate perfor-

mance in design mobile agent software. We have used as test a system designed
for providing mobile computer users with a software retrieval service. We sum-
marise the contributions in the following items:

— A model to evaluate software performance has been integrated in the software
life cycle. It has been done in the early stages of the modelling process. Thus,
when performance or functional requirements change, it will be easy and less
expensive to assume them. Moreover, the approach will permit to obtain the
performance figures in an automatic way: Starting from the pa-UML models,
the component Petri nets are systematically achieved, and from these the
net system, finally the net system allows performance evaluation.

— In order to apply any technique to analyse rigorously system performance,
the use of a formal model is crucial. So, we have used Petri nets to design
software, avoiding the UML ambiguity.

— Concurrency is ambiguously expressed in UML, but when the translation
to Petri nets is performed, a concurrent well-defined model is gained, so
different kinds of concurrent systems can be analysed.

— The modelled example presents a complex system which is expensive to im-
plement. Our approach offers an analytic way of evaluating such kind of
systems without having to implement several prototypes. The results coin-
cide with those obtained by the ANTARCTICA designers. Their results were
obtained with implemented prototypes.

Concerning future work, we are interested in the following objectives:

— Software design is a complex task. So, we advocate for the reuse of the
knowledge acquired in the application domain. In this way, patterns will be
introduced to design software using agents. Each design pattern will deal
with its own performance skills. So, we will have a pattern design library
with the proper use of the performance parameters.

— As we have said, UML semantics is not defined formally, so our approach
brings a formal semantics based on Petri nets to model the system. In this
article, we have proposed rules to obtain the Petri nets. We will work in
this line to get a formal translation from the pa-UML notation to Petri nets
semantics.

References

[1]

[13]
[14]
[15]
[16]

[17]

(18]

[19]

[20]

M. Ajmone Marsan, G. Balbo, and G. Conte, A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems, ACM Transactions
on Computer Systems 2 (1984), no. 2, 93-122.

G. Booch, 1. Jacobson, and J. Rumbaugh, OMG Unified Modeling Language spec-
ification, June 1999, version 1.3.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad, Stochastic well-formed
coloured nets for symmetric modelling applications, IEEE Transactions on Com-
puters 42 (1993), no. 11, 1343-1360.

G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo, GreatSPN 1.7: GRaphical
Editor and Analyzer for Timed and Stochastic Petri Nets, Performance Evaluation
24 (1995), 47-68.

J. Dilley, R. Friedrich, T. Jin, and J. Rolia, Web server performance measurement
and modeling techniques, Performance Evaluation (1998), no. 33, 5-26.

D. Coleman et Al., Object oriented development. the Fusion method, Object Ori-
ented, Prentice Hall, 1994.

J. Rumbaugh et Al., Object oriented modeling and design, Prentice-Hall, 1991.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
reusable object-oriented software, Addison-Wesley, 1995.

C. Harrison, D. Chess, and A. Kershenbaum, Mobile agents: are they a good idea?,
Mobile Object Systems: Towards the Programmable Internet, 1997, pp. 46—48.

I. Jacobson, M. Christenson, P. Jhonsson, and G. Overgaard, Object-oriented soft-
ware engineering: A use case driven approach, Addison-Wesley, 1992.

E. Kovacs, K. Rohrle, and M. Reich, Mobile agents OnTheMove -integrating an
agent system into the mobile middleware, Acts Mobile Summit (Rhodos, Grece),
June 1998.

E. Mena, A. Illarramendi, and A. Godi, Customizable software retrieval facility
for mobile computers using agents, Proceedings of the 7th International Confer-
ence on Parallel and Distributed Systems (ICPADS’2000), Workshop International
Flexible Networking and Cooperative Distributed Agents (FNCDA’2000) (Iwate
(Japan)), IEEE Computer Society, July 2000.

T. Murata, Petri nets: Properties, analysis, and applications, Proceedings of the
IEEE 77 (1989), no. 4, 541-580.

Object Management Group, The common object request broker: Architecture and
specification, June 1999, Revision 2.3.

E. Pitoura and G. Samaras, Data management for mobile computing, Kluwer Aca-
demic Publishers, 1998.

R. Pooley and P. King, The unified modeling language and performance engineer-
ing, IEE Proceedings Software, IEE, March 1999.

N. Rico and G.V. Bochman, Performance description and analysis for distrib-
uted systems using a variant of LOTOS, 10th International IFIP Symposium on
Protocol Specification, Testing an Validation, July 1990.

C. U. Smith, Performance engineering of software systems, The Sei Series in Soft-
ware Engineering, Addisson—Wesley, 1990.

G. Waters, P. Linington, D. Akehurst, and A. Symes, Communications software
performance prediction, 13th UK Workshop on Performance Engineering of Com-
puters and Telecommunication Systems (Ilkley), Demetres Kouvatsos Ed., July
1997, pp. 38/1-38/9.

M. Woodside, C. Hrischuck, B. Selic, and S. Bayarov, A wide band approach to in-
tegrating performance prediction into a software design environment, Proceedings
of the 1st International Workshop on Software Performance (WOSP’98), 1998.

