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Abstract

Asynchronously Communicating Stochastic Modules �SAM� are Petri nets that can be seen as a set
of modules that communicate through bu�ers� so they are not �yet another� Petri net subclass� but
they complement a net with a structured view� This paper considers the problem of exploiting the
compositionality of the view to generate the state space and to �nd the steady�state probabilities of a
stochastic extension of SAM in a net�driven� e�cient way�

Essentially� we give an expression of an auxiliary matrix� G� which is a supermatrix of the in�nites�
imal generator of a SAM� G is a tensor algebra expression of matrices of the size of the components
for which it is possible to numerically solve the characteristic steady�state solution equation � �G � ��
without the need to explicitly compute G� Therefore� we obtain a method that computes the steady�
state solution of a SAM without ever explicitly computing and storing its in�nitesimal generator� and
therefore without computing and storing the reachability graph of the system�

Some examples of application of the technique are presented and compared to previous approaches�

Keywords� Petri net models� Performance analysis� Structural decomposition� Kronecker algebra�

� Introduction and motivations

Stochastic Petri Nets �SPN�s� 	
�� andGeneralized Stochastic Petri Nets �GSPN�s� 	� � are well�known
interpreted extensions of autonomous Petri net �PN� models allowing the consideration of performance
aspects in the design of complex concurrent systems� in addition to the PN�s capability of functional
validation� Product�form expressions and e�cient algorithms for the computation of the steady�state
distribution are known only for some particular classes of GSPN�s 	��� 
��� so that� in general� numerical
solution of the embedded Continuous Time Markov Chain �CTMC� must be performed to get exact
performance indices� In this case the state space explosion problem may make the evaluation of large
systems intractable due to the storage cost for the in�nitesimal generator matrix and�or to the time
complexity of solution algorithms�

Net�driven techniques reduce the memory and time complexity of solution algorithms by using in�
formation extracted from the structure of the net model� Examples of net�driven techniques are the
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elimination of immediate transitions in GSPN 	
�� the exploitation of symmetries in Stochastic Well�
Formed Coloured Nets 	��� and the use of linear programming to compute performance bounds 	���
Net structure has also been used for approximation in a divide and conquer approach for the reduction

of the state explosion problem� Examples can be found in the context of approximation techniques for
the computation of throughput ofMarked Graphs �MG� 	�� or Deterministically Synchronized Sequential
Processes �DSSP� 	��� Given a net model� a net�driven decomposition of the model is implemented in
order to use a response time approximation algorithm�
Net structure also plays a relevant role in tensor algebra approaches that express the in�nitesimal

generator Q of an SPN in terms of Qi matrices computed on some components �subnets with smaller
state space� and allow the solution of the characteristic steady�state solution equation � �Q � � without
computing and storing Q 	
� 
�� 
� �� 
��� this technique allows to move the storage bottleneck from
the in�nitesimal generator matrix to the probability vector� All the works for SPN cited above were
inspired by the pioneering work of Plateau 	�
� on Stochastic Automata Networks� Since the tensor
algebra method is based on components of the net� and therefore on the structure of the net� we shall
often refer to it as a �structured solution method��
In the structured technique� a certain Cartesian product of reachable states of components is built�

leading eventually to a product space PS that includes the actual reachability set RS� the main problem
is that� in general� the product space can be much bigger than the actual state space� In other words� the
PS may contain many non�reachable states �that we shall call spurious�� According to this structured
view of the state space� a tensor expression of Q in terms of Qi matrices can be derived� Even if
spurious states appear� the tensor algebra approach leads to exact solution 	�
� 
�� Nevertheless the
storage and computational complexity may be increased in practice to the point that the advantages of
the technique are lost�
A way to overcome the creation of spurious states is to generate an abstract representation of the full

model that acts like a ��lter� of spurious solutions� The abstract model �called here basic skeleton�
constraints the product space PS� leading to a restricted product space RPS expressed as the union of
the Cartesian product of subsets of the reachability sets of the components� The Q matrix has a block
structure determined by the high level view� and a tensor expression for each block of Q in terms of
blocks of Qi can be derived�
We refer to the product space method as 	at� or single level� and to the restricted product space

method as two levels�
Two level techniques proved very e�ective in a number of cases� For certain net subclasses like MG

no spurious states are generated so that equality between RS and RPS is obtained 	�� �previously proved
for response time approximation in 	���� In 	�� the MG case is generalized to DSSP where RPS may
strictly include RS�
In this paper� the extension of the two level approach for DSSP is developed for arbitrary but

bounded SPN models for which a SAM view is given� where SAM stands for System of Asynchronously
communicating Modules� A SAM view identi�es a subset of places as bu�ers and a number of disjoint
subnets called modules� the only exchange of information among modules is through bu�ers� so that
SAM are a natural model for asynchronously communicating systems� A SAM view of the net can be
provided by the model construction process� or it can be de�ned only for solution purposes�
Technically speaking� the abstract representation required by the two level approach is constructed

using implicit places 	��� More precisely� in order to improve the e�ciency of the algorithms we use
the linear relaxation� i�e�� those places that are also structurally implicit�
The contribution of the paper is two�fold� First� by removing the storage bottleneck of the in�nitesi�

mal generator the size of systems that can be solved is signi�cantly increased� Second� by exploiting the






net structure it provides a thorough view of the relationship between net structure and solution costs
of the underlying stochastic process� The paper is based on a previous work 	�� for the restricted DSSP
class� A signi�cant improvement is that the method presented in this paper applies to arbitrary SPN
systems�
The paper is organised as follows� Section 
 reviews basic de�nitions and notations and overviews

the literature on �at and two level structured solution for SPN subclasses� Section � de�nes the SAM
view of SPN and the abstract models� The two level solution method is presented in Section � �for what
concerns reachability graph construction�� and in Section � �for what concerns the in�nitesimal generator
construction�� Complexity issues are also discussed in Section �� All the concepts are explained on a
simple running example� while a more complete set of examples is presented in Section �� that compares
single level and two level approaches� Finally� possible extensions and concluding remarks are given in
Section ��

� SPN�s and structured solution methods

In this section� we present a conceptual framework in which the �at and the two level structured solution
methods are considered� We overview di�erent tensor algebra solutions for SPN that have appeared in
the literature� with the goal of presenting them in a uni�ed framework� Readers not familiar with the
basics of tensor algebra can �nd them in the appendix� We assume that the reader is familiar with basic
concepts of Petri nets 	��� ���� therefore in the following only basic de�nitions are listed to establish
notation�

��� De�nitions

A Petri net �PN� is a ��tuple N � hP� T�Pre�Posti� where P and T are disjoint sets of places and
transitions� and Pre and Post are the pre� and post�incidence functions representing �in vector form�
the input and output arcs� Pre	p� t� � IN �Post	p� t� � IN�� Ordinary nets are Petri nets whose pre� and
post�incidence functions take values in f�� g� The incidence function of a given arc in a non�ordinary
net is called weight or multiplicity� The pre� and post�set of a transition t � T are de�ned respectively
as �t � fp j Pre	p� t� � �g and t� � fp j Post	p� t� � �g� The pre� and post�set of a place p � P are
de�ned respectively as �p � ft j Post	p� t� � �g and p� � ft j Pre	p� t� � �g� Transition t is a join
�fork� if j�tj �  �jt�j � ��
The incidence matrix of the net is de�ned as C � Post�Pre� Flows �semi	ows� are integer �natural�

annullers of C� Right and left annullers are called T � and P ��semi��ows respectively� A semi�ow is
minimal when its support is not a proper superset of the support of any other semi�ow and the greatest
common divisor of its elements is one� A net is consistent if it has a T �semi�ow x � �� A net is
conservative if it has a P �semi�ow y � ��
A function m�P � IN �usually represented in vector form� is called marking� A Petri net sys�

tem� or marked Petri net� S� is a Petri net N with an initial marking m�� A transition t � T is
enabled at marking m if �p � P � m	p� � Pre	p� t�� A transition t enabled at m can �re yielding
a new marking m� de�ned by m�	p� � m	p� � Pre	p� t�  Post	p� t� �denoted by m t

��m��� A se�
quence of transitions � � t�t� � � � tn is a �ring sequence in S if there exists a sequence of markings such
that m�

t���m�
t���m� � � �

tn��mn� In this case� marking mn is said to be reachable from m� by �ring
��denoted bym�

�
��mn�� The reachability set RS�S� of a system S � hN �m�i is the set of all markings

reachable from the initial marking� L�S� is the language of �ring sequences of a system S � hN �m�i
�L�S� � f� j m�

�
��mg��

�



A place p � P is said to be k
bounded in S if �m � RS�S�� m	p� � k� A PN system is said to be
k�bounded if every place is k�bounded� and bounded if there exists some k for which it is k�bounded�
A net is structurally bounded if it is bounded for any m�� A PN system is live when every transition
can ultimately occur from every reachable marking� A state m is called a home state if it is reachable
from every reachable marking�

State Machines �SM�s� are ordinary PN�s such that every transition has only one input and only one
output place ��t � T � j�tj � jt�j � �� SM�s allow the modelling of sequences� decisions �or con�icts��
and re�entrance �when they are marked with more than one token� but not synchronization� SM�s
marked with a single token model sequential processes� Marked Graphs �MG�s� are ordinary PN�s such
that every place has exactly one input and one output transition ��p � P � j�pj � jp�j � �� MG�s allow
the modelling of sequences and synchronization but not decisions�
We indicate with � �	� the tensor product �sum�� The tensor product of a n
m matrix by a p
 q

produces a n �p
m � q� The same is true for tensor sum� but the operator can be applied only to square
matrices�
A Stochastic Petri Net �SPN� 	
�� is a pair hS� wi � hP� T�Pre�Post�m�� wi� where S is a PN system

and w � T � IR� is a positive real function that associates to each transition t � T an exponentially
distributed �ring time of rate w�t�� We shall indicate with Q the in�nitesimal generator of the CTMC
associated to an SPN� and with � the steady�state probability vector�
In this paper we assume that transitions are of the single server type� For the solution to be feasible

the system must be bounded� In order to use extensively structural techniques� we shall assume in the
sequel that the net is conservative �thus structurally bounded��

��� Single level structured approach� using a �at view

The basic idea behind the �at technique can be explained using the model of Figure � that shows
a GSPN S that can be considered as the composition of two GSPNs S� and S� over three common
transitions T� T
 and T�� Places whose names start with letter a de�ne component S�� and those
starting with b de�ne S�� We assume that there is a sequence of n places and transitions between b

and b
n� and of m places and transitions between a� and a�m� S� has therefore m  
 states� while
S� has n 
� A product state space PS can then be de�ned as

PS � RS� 
RS�

and it is straightforward to observe that RS � PS� indeed PS has �m  
� � �n  
� states� but the
reachability set of S has only m n �
According to the techniques presented in 	
� the following matrix G of size jPSj 
 jPSj can be

constructed�

G � Q�
� 	Q�

� �
X

t�fT��T��T�g

w�t�	K��t��K��t��  
X

t�fT��T��T�g

w�t�	K�
��t��K�

��t��

where Q�
i� Ki�t�� and K

�
i�t� �for i � f� 
g� are jRSij 
 jRSij matrices that can be derived from the

in�nitesimal generator Qi of Si�
The idea behind this formula is to split the behaviour of each component into local behaviour �related

to transitions local to a single component�� and dependent behaviour �related to �synchronizing transi�
tions� T� T
� and T��� The local behaviour of each GSPN is represented by Q�

i� and since the local
behaviour is independent� the global behaviour due to local transitions can be obtained as the tensor
sum of the Q�

i matrices� The behaviour related to synchronization requires that� for a synchronization

�
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Figure � Explaining abstract views�

transition to �re� both Si must be in a state that enables the transition� Ki�t�� the correcting matrix
for transition t� has a  in each entry of the matrix that corresponds to a change of state due to t in Si�
The tensor product will indeed realize the required condition that a synchronization transition �res only
in global states whose corresponding local states in the Si enable t� The term with the K�

i�t� matrices
is used to compute the portion of the diagonal elements expression that accounts for synchronization
transitions�
By de�nition of the tensor sum and product� G is a jPSj
jPSj matrix� and it is shown in 	
� �
� how

the non null entries of the vector �� solution of the equation � �G � �� are the steady�state solution of S�
Moreover� a solution process may be devised 	�� �
� that does not require the explicit computation and
storing of G� so that the biggest memory requirement is that of the vector �� The technique is extended
to transient analysis in 	
��� The computational cost� under full matrix implementation assumption� is
smaller than the classical vector to matrix multiplication 	�
�� Recent results have shown 	�� that under
sparse matrix implementation the cost is instead bigger for matrices with a mean number of elements

per row less than K
�

K�� �K being the number of components��
The above technique produces a signi�cant storage saving whenever the size of PS� and therefore that

of �� is inferior to the number of non null elements of Q� since� otherwise� it would be better to store
Q explicitly�
The solution procedure outlined above is the basic idea behind a number of works that have appeared

in the literature� The work in 	�
� de�nes the basics of the method and applies it to networks of stochastic
automata� while classes of SPN�s for which a single level structured solution has been applied are
Superposed Stochastic Automata 	
�� and Superposed GSPN �SGSPN� 	
� �nets that can be interpreted
as the superposition over a subset of timed transitions of a set of GSPN�s��
The distance between RS and PS can limit the applicability of the technique� Nevertheless if a bit

vector of size jPSj can be allocated in memory� then a state space exploration can be performed 	
��� That
exploration� with an additional tree�like data structure of size O�jRSj � log jRSij� allows the de�nition
of multiplication algorithms that consider only reachable states �i is the index of the component whose
state space is represented in the tree leaves�� The computational overhead is at most O�log jRSj� 	���

�
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��� Two level structured approach� using a high level view

An abstract description of the system can be used to limit the number of spurious states by appropriately
pre�selecting the subsets of the states that should be combined by the Cartesian product�
For example� we can consider the net Sa of Figure 
 as an abstract representation of the one in

Figure � with place B
 �summarizing� the structure of places b
� � � � � b
n and A� �summarizing�
the structure of places a�� � � � � a�m� Sa has three reachable states� z� � �a�� b��� z� � �a��B��� and
z� � �A�� b��� The states of S� and S� can be partitioned according to the states of Sa� the m  

states of S� are partitioned in three equivalence classes� RSz��S�� � fa�g� RSz��S�� � fa�g� and
RSz��S�� � fa��� � � � � a�mg� Similarly� for S� we get� RSz��S�� � fb�g� RSz��S�� � fb��� � � � � b�ng� and
RSz��S�� � fb�g� The restricted product state space RPS can then be built as�

RPS�S� �
�

z�RS�Sa�

RSz�S��
RSz�S�� �

fa�g 
 fb�g � fa�g 
 fb��� � � � � b�ng � fa��� � � � � a�mg 
 fb�g

where
U
is the disjoint set union� We refer to methods based on a construction of a restricted state

space as two levels� Note that for this example we obtain a precise characterization of the state space�
but the union of Cartesian products can in general produce a superset of the reachable state space�
depending on the accuracy of the abstract representation�
Since the state space is no longer the Cartesian product of sets of local state spaces� but the union

of Cartesian products� we cannot expect to have for the in�nitesimal generator a tensor expression
as simple as before� we can build a matrix G� of size jRPSj 
 jRPSj� and then consider it as block
structured according to the states of Sa� Each block refers to the set of states obtained by a single
Cartesian product� and a tensor expression for each block can be derived� Diagonal blocks G�z� z� can
be expressed as�

G�z� z� � Q��z� z� 	Q��z� z�

�For simplicity we are not considering diagonal elements that can be computed on the �y or stored explicitly as
explained in Section �

�



where theQi�z� z� are the submatrices of the in�nitesimal generator of Si determined by the states whose
abstract representation is z �z � fz�� z�� z�g�� Each G�z� z�� block� with z � z�� �z� z� � fz�� z�� z�g��
describes instead the behaviour that changes the high level state� each block Q�z� z�� can be written as

G�z� z�� �
X

t�z
t

��z�

w�t�	K�
��t��z� z

���K�
��t��z� z

���

where the K�
i�t��z� z

�� are the submatrices of the in�nitesimal generator of Si whose rows �columns� are
abstractly represented by z �z��� projected to include only the contribution due to t� Observe that� in
our example� there is a single t for each given pair �z� z���
Although the approach can be applied to SGSPN� in the literature it was developed and it has been

used only in the context of the solution of �asynchronous systems� either queueing networks or SPN�
where subnets interact by exchanging customers or tokens� In 	�� and 	
� the two level method was
developed to solve hierarchical queueing networks and hierarchical colored GSPN�s� the simplest case
of hierarchy consists of one model at the top level and K leaf models� that are activated by the top
level through customers or token exchange� In 	�� the method was adapted to marked graphs where
components are de�ned through a cut �in graph sense� of the net over a set of places�
The construction of RPS for hierarchies uses the top level of the hierarchy as abstract representation

�called High Level Model �HLM� in the queueing network hierarchy and High�level coloured GSPN
�HCGSPN� in the coloured GSPN hierarchy�� The component models are instead the leaves of the
hierarchy �in the simpli�ed case of a two level hierarchy��
For marked graphs� an abstract representation of the system is not given by construction� and subnets

de�ned by a cut are open subnets� for which it is not possible to compute a reachability set to be used
in the RPS formula� Following a decomposition de�ned in the context of approximation 	��� the work
in 	�� de�nes an abstract representation called High level System �HS� �it was called Basic Skeleton�
BS in 	��� and we shall follow the original terminology�� Given BS and a cut of the MG into K subnets�
it is possible to build a set of K low level systems� LSi� in each LSi the full subnet i is completed by
the abstract representation� taken from BS� of the rest of the system� This allows the generation of the
reachability set of the low level components and a restricted product space can be de�ned as�

RPS�S� �
�

z�RS�BS�

RSz�LS��
 � � � 
RSz�LSK�

where RS�X � indicates the state space of system X � and RSz�X � is the set of markings of RS�X � with
projection over the high level behaviour equal to z� By construction of the abstract representation
RS�S� � RPS�S�� A similar formula can be devised for HCGSPN� but RS�S� � RPS�S��
The structured de�nition of RPS can be used� as in the example shown above� to express matrix G�

supermatrix of the in�nitesimal generator�
In summary� if we have a construction rule for RS as a disjoint union of Cartesian products� we

can limit the problem of the di�erence jPSj � jRSj� while still maintaining the bene�ts of the solution
in structured form as in the SGSPN case� indeed it is only necessary to organize the classical vector
by matrix multiplication � � G in terms of subvector by submatrix multiplication� Details for the
computational costs of this technique under sparse and full matrix storage scheme have been reported
in 	���
Tensor algebra techniques have been applied also for the solution of Stochastic Well�formed Nets 	���

The case of modules that interact through transition superposition is presented in 	
��� while the case
of modules that interact through bu�ers is presented in 	
��� in both cases the solution requires the
construction of component models of the low level system type� but the solution presented in the papers
is of the �at type�

�
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� SAM view� low level systems and basic skeleton

This paper is based upon a previous work of the same authors 	�� that considers Deterministically
Synchronized Sequential Processes �DSSP� 	���� DSSP can be used for the modelling and analysis of
distributed systems composed by sequential processes communicating through output�private bu�ers�
Each sequential process is modelled by a safe ��bounded� strongly connected State Machine �SM�� The
communication among them is described by bu�ers �places� which contain products�messages �tokens��
that are produced by certain processes and consumed by others� Each bu�er is output�private� it is an
input place of only one SM� A well�developed theory exists for the analysis of qualitative behaviour of
these systems 	��� ��� that allows� in particular� to e�ciently check necessary and su�cient conditions
for �niteness and ergodicity of the embedded CTMC�
An example of DSSP with two bu�ers and two state machines is depicted in Figure �� The �rst SM�

SM�� is identi�ed by places labeled with a while the second one� SM�� is identi�ed by places labeled
with c� Places b and b
 are the bu�ers� Transitions I and I
 are the interface transitions between
SM� and the bu�ers while I�� I�� I�� I� are the interface between SM� and the bu�ers� The rest of
transitions are termed internal �since they model actions that change only the internal state of the
corresponding SM��
The technique for DSSP is here extended to general P�T systems� In order to do that� a �DSSP�

like� structured view of the model is considered in which functional units �now modules with general
structure� communicate through bu�ers without any interconnection constraint� A net model with a
given structured view is referred as System of Asynchronously Communicating Modules �SAM�� Notice
that SAM is not a PN subclass �as DSSP� but just provides a structured view of a general P�T model�
In this section we de�ne SAM views and rules to build partial models� components� They are going

to be used in the next sections for the de�nition of RS and in�nitesimal generator expressions according
to the two levels method� To achieve this goal� a reduction rule for the internal behaviour of modules
of a SAM is de�ned �internal behaviour means �ring of internal transitions�� Using that reduction a
collection of low level systems and one basic skeleton are built� In each low level system� only one of
the modules of the original system is kept while the internal structure of the others is reduced� In the
basic skeleton� the internal structure of all modules is reduced�

�



��� The SAM view of general P	T nets

Consider a general P�T system that �possibly by construction� admits a structured view as a set of K
modules �disjoint P�T systems� that asynchronously communicate by means of a set of places called
bu�ers� No constraint is assumed on the interconnection between bu�ers and modules� therefore the
modelling of general situations of competition and�or cooperation among modules is possible�

De�nition � A PN system� S � hP� � � � � � PK �B�T� � � � � � TK �Pre�Post�m�i� is a System of
Asynchronously Communicating Modules view� or simply a SAM� if�

� Pi � Pj � �� �i� j � f� � � � �Kg� i � j�

�� Ti � Tj � �� �i� j � f� � � � �Kg� i � j�

�� Pi �B � �� �i � f� � � � �Kg�

�� Pre	Pi� Tj � � Post	Pi� Tj � � �� �i� j � f� � � � �Kg� i � j�

hNi�m�ii � hPi� Ti�Prei�Posti�m�ii� i � f� � � � �Kg� are called modules of S �where Prei�Posti�
and m�i are the restrictions of Pre� Post� and m� to Pi and Ti��

Places in B are called bu�ers�
Transitions belonging to the set TI � �B � B� are called interface transitions� Remaining ones

��T� � � � � � TK� n TI� are called internal transitions�

In the sequel� strong connection of the whole net is assumed since it is a necessary condition for live
and bounded systems 	��� �and we are interested in systems with such fundamental properties�� We
also assume that the net is conservative �observe that if a system is bounded� by adding complementary
places it can always be transformed into a conservative net��
The reader should notice that in fact all PN systems can be provided with SAM views varying

between the following two extreme positions�

� a single module and an empty set of bu�ers� or� in the other extreme�

� one module per transition and all places are bu�ers�

Therefore� the e�ect of the above de�nition is to assume that a partitioned view of the system into
modules connected through bu�ers is given �or known a priori� for example� coming from the net
construction process��
Let us consider the P�T system depicted in Figure �� Apart from the two extreme SAM views

mentioned above �a single module or as many modules as transitions�� three alternative SAM views
for the system could be easily considered� The �rst one considers the system partitioned into three
modules �subnets generated by places labeled with a� c� and d� respectively� connected through four
bu�ers �b� b
� b�� b��� The second one considers as a single module the subnet generated by places b�
b� and those labeled with a and c� while the subnet generated by places labeled with d is the second
module and the bu�ers are b
 and b�� The last one considers as a module the subnet generated by
places labeled with a� the second module is the subnet generated by places b
� b�� and those labeled
with c and d� Places b and b� are bu�ers� The existence of many SAM views of a net system opens
the question of which one is the best �e�g�� the more e�cient� for the computation of the solution�
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Figure �� SAM view of an SPN�

��� Decomposition according to the SAM view� basic ideas and running example

In this section we informally present the main ideas behind a reduction rule for the internal behaviour
of the modules of a SAM� Using the rule� we introduce a decomposition of SAM into a collection of low
level systems and one basic skeleton �along the lines in 	���� In each low level system� only one of the
di�erent modules of the original system is kept while the internal structure of the others is reduced as
much as possible� In the basic skeleton� the internal structure of all the modules is reduced� Low level
systems and basic skeleton are used for a structured construction of the reachability set of the original
model and also for a structured computation of its steady�state probabilities� In the next section� formal
de�nitions and technical details of the reduction process are given�
Let us come back to the example in Figure � and consider for it a SAM view that distinguishes two

modules� N� and N�� �subnets generated by places labeled with a and c� respectively� and two bu�ers�
b and b
� The �rst step is to derive in an e�cient way an extended system� ES� like that depicted
in Figure �� It consists of the original system plus the addition of some implicit places �A�� A
��
C��� and C��� that summarize information of the structure of N� and N�� An implicit place 	�� is
one whose removal does not a�ect the behaviour of the system �therefore� behaviour of the original
and of the extended systems is the same assuming interleaving semantics 	��� although the notion of
implicit place can be directly extended to cope with a step semantics 	���� Since we are considering a
Markovian interpretation of PN�s and single�server semantics of transitions� the embedded CTMC of a
system is preserved if implicit places are added or removed�
Implicit places are computed as follows� First� an equivalence relation R is de�ned over the set of

places Pi of each module� partitioning Pi into equivalence classes P
j
i � Two places of a module are related

by R if and only if there exists between them a non�directed path including only nodes of that module
but interface transitions� In the example� P� is partitioned into two equivalence classes� P

�
� � fa� a�g
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Figure �� The SAM example model with additional implicit places�

and P �
� � fa
� a�g� while P� is partitioned into P �

� � fc
� c�� c�� c�g and P �
� � fc� c�� c�g� For each

equivalence class P j
i a set H

j
i �standing for �High�level places�� of implicit places is computed� that

includes information of the behaviour on Ni� For instance� in the example� H
�
� � fC��g is the set �in

this case only one place� of implicit places corresponding to the equivalence class P �
� � fc
� c�� c�� c�g�

Low level system� LSi �i � � � � � �K�� is derived by reducing all modules Nj� j � i� to their interface

transitions and to the set of implicit Hj
i � while Ni is fully preserved� The basic skeleton� BS� is instead

derived by reducing all modules to interface transitions and implicit places� The basic skeleton de�nes
the most abstract view of the original system that we are going to consider�
Figure � shows the low level systems� LS� and LS�� and the basic skeleton� BS for the running

example� Notice that if LS� and LS� were synchronized by merging common transitions �interface
transitions� and identifying common places �bu�ers and implicit places�� the extended system �with
equivalent behaviour to the original system� would be obtained� Notice also that the basic skeleton is
the common abstraction between LS� and LS��

��� Decomposition according to the SAM view� technical aspects

Let us �rst recall the de�nitions of implicit place� marking structurally implicit place and implying
places of it� and later a result that gives a value for its initial marking�

De�nition � 	�� Let S � hP � fpg� T�Pre�Post�m�i be a P�T system� Place p is implicit i� L�S� �
L�hP� T�Pre	P� T ��Post	P� T ��m�	P �i� �i�e�� deletion of p preserves the language of �ring sequences��

In words� p is implicit if it is never the unique one to prevent the enabling of a transition�

De�nition � 	�� Let N be a net and p be a place with incidence vector lp � C	p� ��� The place p is a
marking structurally implicit place �MSIP� in N if there exists y � � such that y	p� � � and lp � y �C�
The set of places in kyk are called implying places of p �where kyk� called support of y� is the set of
non�zero components of y��

The following property provides a su�cient condition for an MSIP to be implicit whose checking
requires the solution of a linear programming problem �on real variables�� giving rise to a time complexity
that is polynomial on the net structure size�
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Figure �� The LS�� LS�� and the BS systems corresponding to the SAM of Fig� ��

Property � 	�� Let hN �m�i be a conservative net system and p an MSIP of N � If m�	p� is greater
than or equal to v then p is implicit� where v is the optimal value of the following linear programming
problem�

v � minimum y �m�  �
subject to y �C � C	p� ��

y �Pre	�� t�  � � Pre	p� t���t � p�

y � ��y	p� � �

Now� we formally de�ne the equivalence relation R that induces a partition of the places Pi of each
module of a SAM into several equivalence classes P j

i �

De�nition 	 Let S � hP� � � � � � PK �B�T� � � � � � TK �Pre�Post�m�i be a SAM view of a P�T sys�
tem� We denote by R the equivalence relation de�ned on all the places in P nB by� hp� p�i � R i� there
exists an index i such that p� p� � Pi and there exists a non�directed path ! in Ni from p to p� such
that ! � TI � � �i�e�� containing only internal transitions�� Let P j

i � j � � � � � � r�i�� be the di�erent

equivalence classes de�ned in Pi by the relation R and T j
i �

�P j
i �P

j
i

�
nTI� j � � � � � � r�i�� i � � � � � �K�

We shall substitute each P j
i by a� hopefully smaller� set of implicit places� To this goal we only

consider MSIP since the computation of MSIP may be achieved structurally� For each equivalence class
P j
i � j � � � � � � r�i�� we compute the sets H

j
i with a minimum number of MSIP�s to be added to the

module Ni that include the maximum information of the structure of Ni �i � � � � � �K�� Moreover �and
obviously� we consider a �nite subset of the in�nite number of possible MSIP�s� those places derived
from the minimal P �semi�ows of the subnet generated by P j

i � as presented in the following algorithm�






The basic idea is to apply a classical algorithm 	�� for the computation of all the minimal �support��
positive� left annullers of C	P j

i � T
j
i �� and to derive from each of these vectors y a MSIP py with incidence

vector lpy � y�C� eliminating the repeated instances of an MSIP p that could be generated from di�erent
vectors y�

Algorithm 
 Let S � hP� � � � � � PK �B� T� � � � � � TK �Pre�Post�m�i be a SAM view of a P�T
system� Let R� P j

i � and T j
i �j � � � � � � r�i�� i � � � � � �K� be as introduced in De�nition �� The

following algorithm de�nes the sets of MSIP�s Hj
i �j � � � � � � r�i�� i � � � � � �K� and their initial

markings�

input Ni and one equivalence class P
j
i of those de�ned in Pi by R�

output Set of MSIP�s Hj
i and their initial markings�

begin

Y j
i �� fy j y	P j

i � �C	P
j
i � T

j
i � � ��y	P n P j

i � � ��y � ��y has minimal supportg�

Hj
i �� fpy j py is a place with incidence vector lpy � y �Cg�

for each p � Hj
i do

compute its initial marking using Property �
end for

end

We denote by Hi �
Sr�i�
j��H

j
i the set of all MSIP�s corresponding to Ni� i �  � � � K� and H �

SK
i��Hi�

The cardinality of the Y j
i set may increase exponentially on the size of the subnet induced by P

j
i and

T j
i �indeed Y

j
i is the set of all minimal P �semi�ows of a subnet�� so that the theoretical time complexity

of the �rst step in the algorithm is exponential in the size of the subnet� The same is true for the
set Hj

i built in the second step of the algorithm �examples can be built where the cardinality of Hj
i

increases exponentially in the size of the subnet�� Anyhow� thanks to the divide and conquer approach�
the exponential increase is in the size of a part �P j

i and T
j
i � of a module �Pi and Ti�� and not in the size

of the whole original net�
Two particular cases with polynomial complexity� for which the set Hj

i contains only one place are

the following� �� the subnet P j
i includes neither fork nor join transitions �a particular case is that

of DSSP� considered in 	��� where modules are state machines�� or �
� P j
i has a single input interface

transition and a single output interface transition� In the �rst case� a weighted sum of places P j
i leads

to a unique minimal P �semi�ow� In the second case� the place in Hj
i can be easily computed �without

applying the algorithm� by imposing conservativeness of the subnet resulting after the addition of that
place to the subnet de�ned by P j

i and T j
i � the number of minimal P �semi�ows can be exponential on

the subnet size but all of them would generate the same place�
One interesting question that could be posed is whether it is necessary to consider all minimal

P �semi�ows of the subnet to derive the set Hj
i or if a base of minimal P �semi�ows would lead to a

�smaller� set of MSIP�s retaining the same behavioural information �this would made polynomial the
time complexity of the Algorithm ��� The answer is no since to consider �only� a base of minimal
P �semi	ows can lead to a reduced system that is structurally unbounded� and an example is the MG in
Figure �� Consider the module composed by places ai� i � � � � � � �� and transition T� with interface
transitions fT� T
� T�� T�g�� The equivalence relation R induces in the module a single equivalence
class� A base of minimal P �semi�ows for the same module generates three places� A possible selection of
these places is represented in Figure �� The reader can easily check that this system allows the sequence
T�T��T� to be �red an arbitrary number of times before the �ring of any other transition �making
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place H
 unbounded�� while this was not the case for the original system� If all minimal P �semi�ows
were considered instead� an additional place H� connecting T
 to T� would be added to the system
of Figure � and� in this case� the substitution of the subnet a � a
 � T� � a� � a� by the set of four
implicit places preserves exactly the functional observable behaviour of interface transitions�
An extended system ES is built from a system S by adding the sets of implicit places� Hj

i � computed
by Algorithm �� The reachability graphs of S and ES are identical �only the redundant marking of
implicit places is added in the state representation of ES��

De�nition � Let S � hP� � � � � � PK �B� T� � � � � � TK �Pre�Post�m�i be a SAM� The extended sys�
tem ES of S is obtained by adding to S all the places in Hj

i � j � � � � � � r�i�� i � � � � � �K� de�ned by
Algorithm �� with the initial marking computed by the same algorithm�

As an example� the extended system of the SAM of Figure � is depicted in Figure �� where place C��
summarizes places c
� c�� c�� and c�� place C�� summarizes places c� c�� and c�� place A� summarizes
places a and a�� and place A
� summarizes places a
 and a�� We use upper cases for implicit places�
with an index that is a composition of two of the indices of the places from which they are constructed�
The Hj

i are� H
�
� � fA�g� H�

� � fA
�g� H�
� � fC��g� and H�

� � fC��g�
K di�erent low level systems LSi can be obtained from the extended system by deleting all places in

Pj � j � i� and transitions in Tj n TI� j � i �i � � � � � �K��

De�nition � Let S � hP� � � � � � PK �B� T� � � � � � TK �Pre�Post�m�i be a SAM and ES its extended
system�

i� The low level system LSi �i � � � � � �K� of S is obtained from ES deleting all nodes in
S
j ��i�Pj �

�Tj n TI�� and their adjacent arcs�

ii� The basic skeleton BS of S is obtained from ES deleting all nodes in
S
j�Pj � �Tj nTI�� and their

adjacent arcs�

In each LSi all modules Nj � j � i� are reduced to interface transitions and to the implicit places
that were added in the extended system� while Ni is fully preserved� In the basic skeleton all modules
are reduced� Figure � shows the low level systems LS�� LS�� and the basic skeleton BS of the SAM in
Figure ��
The next property states that conservativeness of the original net is inherited by its low level system

and the basic skeleton�

Property  Let S � hN �m�i be a P�T system and LSi� i �  � � � �K� BS its low level systems and
basic skeleton corresponding to a SAM view� If N is conservative then the nets of LSi �i �  � � � �K�
and BS are conservative�

Proof�

Instead of considering LSi� we consider the net N � resulting from N after the addition of a single set
of implicit places Hj

k �for a given k � i and a given j � f� � � � � r�k�g� and the deletion of places P j
k and

transitions T j
k �and their adjacent arcs�� If we prove that N

� is conservative� then conservativeness of
the net of LSi follows by repeating the same reduction over the rest of places and internal transitions
of Nk� with k � i�
Let us prove that if N is conservative then N � is also conservative� It is su�cient to prove that �� for

each P �semi�ow of N � y � � such that y �C � �� there exists a P �semi�ow of N � that has the same
projection on the preserved places� and �
� places Hj

k in N
� can be covered by a P �semi�ow�

�



Proof of ��� If y	P j
k � � � we are done� if this is not the case� from y �C � �� by re�ordering rows and

columns� we get y	P j
k � � C	P

j
k � T

j
k � � � and y �C	P� T n T j

k � � �� Now� consider place py� as de�ned in

Algorithm � for y� �
h
y	P j

k � j �
i
� Then� it can be easily checked that vector

h
� �� � � � � � j y	P n P j

k �
i
�

where entry "� corresponds to the place py� and entries "�� correspond to the remaining places generated
by Algorithm �� is a P �semi�ow of N � that has the same projection as y on the preserved places�
Proof of �
�� Consider the net resulting from N by adding places Hj

k� It is conservative �because N
is conservative and the added places are MSIP�s�� thus it exists a P �semi�ow y that covers all places
in Hj

k� If the support of y does not include any place from P j
k � then we are done because y is also a

P �semi�ow of N � and it covers all places in Hj
k� If the support of y includes some places from P j

k � then

y	P j
k � must be such that y	P

j
k � � C	P

j
k � T

j
k � � �� i�e�� y	P j

k � is a P �semi�ow of the subnet generated by

P j
k and T j

k � Then� by construction of the set H
j
k �it contains a place for each minimal P �semi�ow of

the subnet generated by P j
k and T

j
k �� a P �semi�ow for N

� can be derived from y by deleting the entries

corresponding to places P j
k and incrementing appropriately the entries corresponding to H

j
k�

The same argument is valid for BS� by reducing all modules� �

In general� the reduction technique presented here does not remove but it can add new paths between
interface transitions �see� for instance� the path from I� to I� that is present in BS �Figure ��� but that
does not exist in the original model of Figure �� as proved by the next property�

Property �� Let S � hP� � � � � � PK �B� T� � � � � � TK �Pre�Post�m�i be a SAM� LSi its low level
systems �i � � � � � �K�� BS its basic skeleton� and L�S� the language of S� Then�

� L�S�jTi�TI � L�LSi�� for i � � � � � �K�

�� L�S�jTI � L�BS��

Proof�

Consider the extended system ES of S� By de�nition� all places in Hj
i � j � � � � � � r�i�� i � � � � � �K�

are implicit in ES� Therefore L�S� � L�ES�� Consider the system LSi for an arbitrary i� obviously�
L�ES�jTi�TI � L�LSi�� and the property follows� The same argument is valid for the basic skeleton
�statement � �� �

As a �nal comment let us remark that the reduction technique proposed here� when applied to
MG� produces a set of components that is the same as the one produced by the algorithm for MG
approximation in 	��� where Floyd�s all shortest path algorithm is used to compute Hj

i � However� it is
slightly di�erent from the one presented in 	�� where the net is split into subnets with a frontier made
of transitions� and the BS model is obtained by substituting paths between pairs of frontier transitions
with an implicit place that �summarizes� the behaviour of the path�

� The structured construction of the reachability set

The decomposition de�ned in the previous section is now used to build the restricted product space
RPS�S� of a SAM� As a �rst step the reachability sets of original �RS�S��� extended �RS�ES��� and low
level systems �RS�LSi�� are partitioned according to the projection of the marking on the places of the
basic skeleton�

�



De�nition �� Let S � hP� � � � � � PK �B� T� � � � � � TK �Pre�Post�m�i be a SAM� ES its extended
system� LSi its low level systems �i � � � � � �K�� and BS its basic skeleton� Then� the following subsets
of the reachability sets RS�S�� RS�ES�� and RS�LSi� are de�ned for each z � RS�BS��

RSz�ES� � fm � RS�ES� j mjH������HK�B � zg
RSz�S� � fm � RS�S� j �m� � RSz�ES� �m

�jP������PK�B �mg
RSz�LSi� � fmi � RS�LSi� j mijH������HK�B � zg

From the de�nition� it follows that� RS�S� �
U
z�RS�BS�RSz�S�� RS�ES� �

U
z�RS�BS�RSz�ES�� and

RS�LSi� �
U
z�RS�BS�RSz�LSi� �i � � � � � �K�� where symbol � denotes the disjoint union of sets�

Remember that� by Proposition �� reachability sets of the low level systems and of the basic skeleton
are �nite�
The following result essentially states that each reachable marking of a SAM can be expressed as a

composition of conveniently selected markings of the low level systems�

Theorem �� Let S � hP� � � � � � PK �B� T� � � � � � TK �Pre�Post�m�i be a SAM� LSi �i � � � � � �K�
its low level systems� and BS its basic skeleton� For each z � RS�BS�� let

RPSz�S� � fzjBg 
RSz�LS��jP� 
 � � � 
RSz�LSK�jPK

and
RPS�S� �

�
z�RS�BS�

RPSz�S�

then�
RS�S� � RPS�S� �

�
z�RS�BS�

RPSz�S� ��

Moreover�
RSz�S� � RPSz�S�

Proof�

First� we prove the inclusion�
Let m � RSz�S�� then there exists a sequence � such that m�

�
��m� By Property �� there exist

sequences �i with �i � �jTi�TI �i � � � � � �K� and �BS with �BS � �jTI �rable in LSi �i � � � � � �K�
and in BS� respectively� mi

�
�i��mi �i � � � � � �K� and z�

�BS��z� where mi
� �i � � � � � �K� and z� denote

the initial markings of LSi �i � � � � � �K� and BS� respectively�
Then� mijH������HK�B � z� thus mi � RSz�LSi�� i � � � � � �K �since mi

�jH������HK�B � z�� �ijTI �
�BS � and H� � � � � �HK �B � �TI � TI���
From analogous arguments� zjB �mjB �because z�jB �m�jB � �jTI � �BS � and B � �TI �TI���
Then� m � �zjB �m�jP� � � � � �mK jPK �� because m�jPi � mi

�jPi � �jTi � �ijTi � and Pi � �Ti � Ti
��

i � � � � � �K�
Now� we prove by contradiction that the union is disjoint�
Assume that there exist two di�erent states z� z� � RS�BS� such that� �zjB �m�jP� � � � � �mK jPK � �

�z�jB �m�
�jP� � � � � �m

�
K jPK �� with mi � RSz�LSi�� m

�
i � RSz��LSi� �i � � � � � �K��

Then� zjB � z�jB �obvious��mijH������HK�B � z �by de�nition of RSz�LSi�� andm
�
ijH������HK�B � z�

�by de�nition of RSz��LSi���
Since mijPi � m�

ijPi �obvious� and places Hi are implicit in LSi� mijHi
� m�

ijHi
� Therefore� zjHi

�
z�jHi

� i � � � � � �K�

�



RS of S

v� a�� b�� c�
v� a�� b�� c�
v� a�� b�� c�
v	 a�� b�� c�
v
 a�� c	
v� a�� b�� c�
v� a�� b�� c�
v a�� c�
v� a�� c�
v�� a�� c	
v�� a�� c�
v�� a�� c�
v�� a�� c�

RS of S

v�	 a�� c�� b�
v�
 a�� c�
v�� a�� c�� b�
v�� a�� b�� c�
v� a�� b�� c�
v�� a�� b�� c�
v�� a�� b�� c�
v�� a�� c�
v�� a�� c�
v�� a�� c�
v�	 a�� c�
v�
 a�� c�
v�� a�� c�

Table � RS of the SAM of Figure ��

Then� z � z� and the result follows� �

Observe that� by de�nition� the RPS of a SAM with K modules is the Cartesian product of K  
terms� since the bu�ers contribution is an isolated term �zjB�� Actually this term can be removed from
the formula by simply taking the bu�er contribution out of any LSi system� by writing RSz�LSi�jPi�B �
Concerning the example� Table  lists the reachability set of the SAM of Figure �� that consists of 
�
states� vi� Table 
 lists instead the reachability sets of BS �zi�� LS� �xj�� and LS� �yk�� respectively�
For each state of LS� �LS�� we have indicated the partition RSz�LS�� �RSz�LS��� to which the state
belongs �third column�� The elements of the partition are identi�ed by the corresponding high level
marking in BS� As proved above

RS�S� � RPS�S� �
�

z�RS�BS�

fzjBg 
RSz�LS��jP� 
RSz�LS��jP�

and in this case we actually have an equality� As an example consider the case of z�� then the cross
product of RSz��LS�� � fx��x�g �markings of LS�� and RSz��LS�� � fy��y��y�g �markings of LS��
produces the states of RPS� v��v��v��v	�v�� and v��
It is important to remember that in general RPS�S� � RS�S�� The live and bounded PN system of

Figure � is a case in which the inclusion is strict� Consider its SAM view where bi �i � � � � � � �� are
bu�ers� interface transitions are labeled with TI� and there are three modules� the �rst one contains
only TI�� the second is the subnet generated by places starting with letter a� and the third is generated
by places labeled with c� Places z� z
 are the implicit places added to de�ne the extended system�
Reachable states corresponding to the high level state 
z�� z�� are� 
z�� z�� a�� a�� c�� c��� 
z�� z�� a��
a�� c�� c��� 
z�� z�� a�� a�� c�� c��� 
z�� z�� a�� a�� c�� c��� 
z�� z�� a�� a�� c�� c��� 
z�� z�� a�� a�� c�� c���

z�� z�� a�� a�� c�� c��� and 
z�� z�� a�� a�� c�� c��� But the cross product of 
z�� z�� a�� a�� �reachable in
LS�� and 
z�� z�� c�� c�� �reachable in LS�� generates 
z�� z�� a�� a�� c�� c��� that belongs to RPS but
is non�reachable�
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RS of BS

z� A��� C��� b�
z� A��� C��
z� A��� C��� b�
z	 A��� C��

RS of LS�

x� a�� b�� C��� A�� z�
x� a�� b�� C��� A�� z�
x� a�� C��� A�� z�
x	 a�� C��� A�� z�
x
 a�� b�� C��� A�� z�
x� a�� b�� C��� A�� z�
x� a�� C��� A�� z	
x a�� C��� A�� z	

RS of LS�

y� A��� b�� c�� C�� z�
y� A��� b�� c�� C�� z�
y� A��� b�� c�� C�� z�
y	 A��� c	� C�� z�
y
 A��� c�� C�� z�
y� A��� c�� C�� z�
y� A��� c�� C�� z�
y A��� b�� c�� C�� z�
y� A��� b�� c�� C�� z�
y�� A��� b�� c�� C�� z�
y�� A��� c�� C�� z	
y�� A��� c�� C�� z	
y�� A��� c�� C�� z	

Table 
� RS�s of the SAM of Figures ��

z2

c3

c1

b2

a2

a4

a3

a1

b1

c4

c2

b4b3

z1 T4T3T2T1

TI5

TI4

TI3

TI2

TI1

Figure �� A SAM with RPS � RS�
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� The structured solution of SAM


�� Construction of the in�nitesimal generator

Given an in�nitesimal generator� a rate matrix can be obtained by simply disregarding diagonal ele�
ments� The use of the rate matrix R instead of the in�nitesimal generator Q allows for a simpler
tensorial expression� as pointed out in numerous papers 	
�� 
�� at the cost of either computing the
diagonal elements on the �y� or of explicitly storing the diagonal� In this section we de�ne the rate
matrix of a stochastic SAM in terms of matrices derived from the rate matrix of the LSi systems�
Let Q be the in�nitesimal generator of a stochastic SAM� We can rewrite Q as

Q � R�� �
�

where � is a diagonal matrix and �	i� i� �
P

k ��iQ	i� k�� The same de�nition holds for the LSi

components�
Qi � Ri ��i

If states are ordered according to the high level state z� then matrices Q and R �respectively�
Qi and Ri � can be described in terms of blocks �z� z

��� of size jRSz�S�j � jRSz��S�j �respectively�
jRSz�LSi�j � jRSz��LSi�j�� We shall indicate them with Q�z� z�� and R�z� z�� �Qi�z� z

�� and Ri�z� z
���

respectively��
Diagonal blocks Ri�z� z� have non null entries that are due only to the �ring of transitions in Ti nTI

�internal behaviour�� while blocks Ri�z� z
�� with z � z� have non null entries due only to the �ring of

transitions in TI�
Let TIz�z� with z � z�� be the set of transitions t � TI such that z t

��z� in the basic skeleton BS�
From a matrix Ri�z� z

��� with z � z� we can build additional matrices Ki�t��z� z
��� for each t � TIz�z� �

according to the following de�nition�

Ki�t��z� z
��	m�m�� �

�
 if m t

��m�

� otherwise

where m and m� are two of the states with a high level view equal to z and z� respectively�
mjH������HK�B � z� and m�jH������HK�B � z��
Matrices G�z� z�� of size jRPSz�S�j � jRPSz��S�j can then be de�ned as�

G�z� z� �
LK

i��Ri�z� z�

G�z� z�� �
P

t�TI
z�z�

w�t�
NK

i��Ki�t��z� z
��

���

The following theorem states that a stochastic SAM can be solved using the G matrix de�ned by the
G�z� z� and G�z� z�� blocks of equation ����

Theorem �� Let S � hP� � � � � � PK �B� T� � � � � � TK �Pre�Post�m�� wi be an SPN with a SAM
view� Q its in�nitesimal generator� LSi its low level systems �i � � � � � �K�� and BS its basic skeleton�
Let R be the matrix de�ned by equation ���� and G the one de�ned by equations ���� Then�

� �z and z� � RS�BS�� R�z� z�� is a submatrix of G�z� z���

�� �m � RS�S� and �m� � RPS�S� n RS�S� � G	m�m�� � ��
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Proof�

Since S and ES have the same behaviour and the same set of states� for notational convenience we use
ES instead of S� If m is a state of RS�ES� then� by Theorem 
� m can be rewritten in terms of the
bu�ers state and of the LSi states mi as

m � zjB �m�jP��H�
� � � � �mKjPK�HK

For the rest of the proof we shall rewrite a generic marking m as

m � l�� � � � � lK �b�H

where li �mjPi � b � zjB � and H � zjH������HK
�

We �rst prove that�

� m�m� � RS�ES� � R	m�m�� � � �� G	m�m�� � �

�since from m and m� the high level states z and z� are uniquely determined� we usually omit the
speci�cation of z and z���
Case z � z�� if the high level view is the same� then the change of state from m to m� can only be
due to internal transitions �i�e�� not belonging to TI�� thus belonging to a single module Ni� But� by
de�nition of

L
� G�z� z� expresses the independent composition of the stochastic processes represented

by the Ri�z� z�� which is exactly the behaviour of LSi system due to transitions local to Ni �transitions
belonging to Ti n TI��
Case z � z�� if the high level view is di�erent� the change of state from m to m� can only be due to a
transition in TI� Let t be such transition and assume� for the time being� that there is only one� so that
� � w�t�� If t is a transition in the interface� then its enabling depends on the marking of the bu�er
places� and on the places of a single module�
If t is enabled in m� then t is enabled in each �li�b�H� state of the K LSi systems� and in each

LSi system produces a change of state li�b�H
t

�� l�i�b
��H� By de�nition of Ki�t��z� z

��� we have
that �i�Ki�t��z� z

��	mi�b�H� � � and by de�nition of
N
there is a  in the corresponding entry ofNK

i��Ki�t��z� z
��� and therefore a value of w�t� in the G�z� z�� matrix�

In the expression of G�z� z�� the case in which more than one transition realizes the same change of
state is accounted for by the summation over all transitions in TIz�z� �

We now prove the second part of the theorem� that can be rewritten in terms of ES as�

�m � RS�ES���m� � RPS�S� n RS�ES� � G	m�m�� � �

As in the previous case� from m and m� the high level states z and z� are uniquely determined� and
we consider for m and m� the same decomposition in terms of modules� bu�ers� and implicit places as
before�
The proof is by contradiction assuming that G	m�m�� � �� It can be rewritten as�

G	�l�� � � � � lK �b�H�� �l
�
�� � � � � l

�
K �b

��H��� � ��
Case z � z�� by de�nition of

L
� G	m�m�� � � implies that there exists exactly one index i such that

Ri�z� z�	�li�b�H�� �l
�
i�b�H�� � �� and this change of state can be due only to the li portion of the state

�since the high level view z does not change�� Therefore� there must be a transition t � Ti n TI that
is enabled in state �li�b�H� of LSi� but then t is enabled also in state m � �l�� � � � � lK �b�H�� and its
�ring producesm� � �l�� � � � � l

�
i� � � � � lK �b�H�� thus making m

� is reachable in ES� which contradicts the
hypothesis�






Case z � z�� by de�nition of
N
� G	m�m�� � � implies that there exists a t � TI such that� for all

indices i� Ki�t�	�li�b�H�� �l
�
i�b

��H��� � � therefore t is enabled in state m of ES� and its �ring produces
state �l��� � � � � l

�
K �b

��H��� thus making m� reachable in ES� and therefore in S� which contradicts the
hypothesis� �

As a consequence of the theorem the steady state distribution of a stochastic SAM can be computed
using the G matrix given in equation ���� Indeed� as for Superposed GSPN 	
�� if we apply an iterative
solution method for � �G � �� and if the initial probability vector assigns a non�null probability only
to reachable states �for example by assigning a value of  to the initial marking�� then by the second
item of the above theorem a non�null probability is never assigned to a non reachable state�
Coming back to the example in Figure �� we can order states in RS�S� according to their projection

over BS� so that R can be written in block structured form as�

R �

�
BBBBBB�

R�z�� z�� R�z�� z�� R�z�� z�� R�z�� z��

R�z�� z�� R�z�� z�� R�z�� z�� R�z�� z��

R�z�� z�� R�z�� z�� R�z�� z�� R�z�� z��

R�z�� z�� R�z�� z�� R�z�� z�� R�z�� z��

�
CCCCCCA

By de�nition of SAM only interface transitions contribute toR�zi� zj�� when i � j� while only internal
transitions contribute to R�zi� zi�� Let us consider in more detail blocks R�z�� z�� and R�z�� z��� we
explicitly write in the matrix the state identi�er for rows and columns as pairs of states of LS� and
LS�� For example the second row corresponds to state v� of RS�S�� which is obtained as composition
of state x� of LS� and state y� of LS��
R�z�� z�� �

x�� x�� x�� x�� x�� x��

y� y� y� y� y� y�

x��y� w�T��	 w�T��	 w�Ta�	

x��y� w�Ta�	

x��y� w�Ta�	

x��y� w�T��	 w�T��	

x��y�

x��y�

R�z�� z�� �
x�� x�� x�� x�� x�� x�� x�� x��

y� y� y� y� y� y� y� y�

x��y�

x��y� w�I�	

x��y� w�I�	

x��y�

x��y� w�I�	

x��y� w�I�	







The only non null element of R��z�� z�� isR��z�� z��	x��x�� � w�Ta��� while the only non null elements
of R��z�� z�� are� R��z�� z��	y��y�� � w�T��� and R��z�� z��	y��y�� � w�T����
The change of state from z� to z� can be due only to transition I� and I�� we therefore build matrices

K��I���z�� z��� K��I���z�� z��� K��I���z�� z��� and K��I���z�� z��� K��I���z�� z�� and K��I���z�� z��
are identity matrices� K��I���z�� z��	y��y
� �  and all other elements of K��I���z�� z�� are null�
K��I���z�� z��	y��y	� �  and all other elements of K��I���z�� z�� are null�
According to equations ��� we get�

G�z�� z�� � R��z�� z��	R��z�� z��
G�z�� z�� � w�I���K��I���z�� z���K��I���z�� z��� 

w�I���K��I���z�� z���K��I���z�� z���

Since RPS�S� � RS�S�� then G�z�� z�� � R�z�� z�� and G�z�� z�� � R�z�� z���


�� Ergodicity

When the rate matrix expression is used to compute the steady�state probability distribution of mark�
ings� the associated CTMC should be marking ergodic in order for the computation to make sense� In
the case of bounded PN systems �boundedness ensures �niteness of the CTMC�� ergodicity of the mark�
ing process is equivalent to the existence of a unique ergodic class in the associated CTMC� in other
words� the RG of the PN system must have a home state� that is to say only one sink �non�transient�
strongly connected component with more than one state� Therefore� ergodicity testing can be achieved
by implementing a computation of strongly connected components of the RG and a test for the existence
of a single sink with several nodes among these components�
In 	
��� a depth��rst search exploration of the RG has been proposed that uses the structured repre�

sentation of a supermatrix of the in�nitesimal generator of SGSPN�s to avoid storing the graph matrix
of the whole RG� In a similar way� Tarjan�s algorithm 	

� for the computation of the strongly connected
components of a directed graph �based also in a depth��rst traversal of the graph� can be implemented
making use of the Kronecker expression of the blocks of the �supermatrix of the� rate matrix de�ned by
equation ���� The computational cost of this algorithm is of the order of the iterations needed for the
iterative solution of � �G � �� therefore is not signi�cant with respect to the complete solution cost�
The particular case of DSSP is specially interesting since ergodicity can be checked in a very e�cient

�alternative� way using only the incidence matrix of the net and the initial marking� this is a check that
can� and should� be done before starting the whole solution process� The testing procedure presented in
detail in 	��� consists of checking �rst structural boundedness� then checking a characterization for struc�
tural liveness and structural boundedness �rank theorem 	����� and �nally checking deadlock�freeness�
If all these conditions are satis�ed� then the system is bounded� live� and it has a home state� thus� the
associated CTMC is ergodic�


�� Hints about complexity

What is the complexity of the proposed approach with respect to the explicit generation and storage
of the in�nitesimal generator# There are clear limit cases� for example if all transitions are interface
transitions �the system is tightly coupled�� then S � BS � LSi� and it makes no sense to apply this
method�
The computational cost to solve a SAM is the sum of the cost to build the RG� the cost to build

the expression of the in�nitesimal generator of the associated CTMC� and the cost of solving the
characteristic equation � � Q � �� The proposed method has instead a cost that is due to� the


�



construction of the K  components� the construction of the RGi of each component� the construction
of the Ri�z� z

�� andKi�t��z� z
�� matrices �that may include a re�ordering of the states in the reachability

sets�� the solution of the characteristic equation � �G � �� when G is expressed as in equation ���� It
is clear that the advantages�disadvantages of the method depend on the relative size of the reachability
graphs of S� BS� and LSi�
The storage cost of the classical solution method is due to the storage of vector � of size jRS�S�j�

and of matrix Q� Usually Q is stored in sparse form� so that� disregarding the diagonal� its occupation
is of the same order as the number of arcs in RG�S�� The storage cost of the proposed approach is
instead that of a vector � of size jRPS�S�j� and of a number of matrices� all stored in sparse form� the
total number of non�null elements� disregarding the diagonal� is of the same order as the sum of the
number of arcs in the K reachability graphs RGi�LSi�� If a bit vector of size jRPS�S�j can be stored�
it is actually possible to use a vector � of size jRS�S�j 	
��� as explained in Section 
�
�
In summary� the di�erence between the number of arcs in RG�S� and the sum of the number of

arcs in the K RGi�LSi� is what makes the method applicable in cases in which a direct solution is not
possible� due to the lack of memory to store Q�

� Examples

We present three examples of the application of the technique for SAM� For each example we show the
sizes of the reachability graphs of the basic skeleton and of the low level systems� and the size of RPS
and RS� These results have been validated against the results of GreatSPN 	��� when feasible� and
with the results of SupGSPN� a tool for the analysis of SGSPN system ideated and implemented by
Kemper 	
��� We should point out that SupGSPN was ideated for the solution� using a �at approach�
of SGSPN� but it can indeed be applied to any type of SPN for which a partition of the set of places is
given� if it is possible to generate a �nite state space for the components identi�ed by the partition� Of
course we should not expect that SupGSPN performs at his best here� it was used only to show that it
is worth to have a two level technique for SAM� We have run SupGSPN with the option that uses the
computation of P �invariants to bound the places� so as to be able to produce a �nite state space also
for components that will not produce a �nite state space when considered in isolation�
As shall be shown by the examples� the SAM approach performs better when the BS is really an

abstraction of the real system �that is to say when a non trivial number of states are mapped into the
same macro state�� and it may be convenient to have more small components than few big ones� Quite
the opposite� as it may be expected� is true for the tool based on SGSPN� since a large number of
modules tends to increase the di�erence between RS and PS�
For the technique presented in this paper we have implemented only the generation of the state

space� according to the formula in equation ��� In our prototype implementation the subsystems are
generated manually �which is actually straightforward with a graphical tool like GreatSPN�� Then� the
solution program builds the tangible reachability graphs of the BS and LSi systems using GreatSPN
�modi�ed so that the bu�er places and implicit places are �rst in the state de�nition and are in the
same order in the di�erent low level systems as in the basic skeleton�� The states of each component
are sorted in lexicographical order using the sort utility of Unix� and the global state space is built at
the cost of an ordered merge of the state spaces�
In all tables reported the size of RS is computed either directly� using GreatSPN� or using the bit

vector technique of SupGSPN�
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m�c��� m�c�� � 
 m�c�� � �

BS � �� ��
LS� �� ����� ������
LS� �� ����� ������
LS� 

 �� ���

RPS ���� ����
��� ���
�����
RS ���� ����
��� no memory

PS�case A� ��
����� no memory no memory
PS�case B� � ���������� no memory

Table �� SAM technique� State spaces computed for the model of Figure ��

The �rst example is shown in Figure �� and we consider a SAM view composed of three modules�
interconnected through � bu�ers� Places b� to b� are bu�ers� while tags starting with a� c� d identify
the places of the �rst� second and third module respectively� All modules have a single input interface
transition and a single output interface transition� thus it is straightforward to compute implicit places�
since there is a single implicit place per module� as explained in Section ���� Interface transitions are
easily identi�ed� since their names start with TI� only the labels of interface transitions are shown in
the �gure�
From this SAM we have built three low level systems LS�� LS�� LS�� and one basic skeleton BS�

Table � shows the sizes of the state space of these subsystems� as well as the size of RPS and RS of
the complete system� for an initial marking with three tokens in a� and d�� and corresponding implicit
places� and of � 
� and � tokens in place c��
A straightforward comparison with SupGSPN may not be very signi�cant� since the division of the

SAM into modules may not be the best one for SGSPN� We have tried two di�erent decompositions
with SupGSPN� three components identi�ed by places starting with a or b for the �rst component� c
for the second� and d for the third �case A�� and two components identi�ed by places starting with a
or b or d for the �rst component� and c for the second �case B��
The size of the product state space is also shown in Table �� where � means that the experiment

was not performed� For the A case it was not possible to increase to 
 the number of tokens in c�� since
after the generation of the state spaces of the three components� of size ���� ���� and ���� the tool
stops� which is not surprising considering that� according to the size of the components� the cardinality
of PS is about �� � ���
The decomposition of case B is indeed more favourable� since we were able to solve also them�c�� � 


model�

The second example is shown in Figure �� and we consider a SAM view composed of three modules�
interconnected through � bu�ers� Places b� to b� are bu�ers� while places whose tag starts with a� c� d
identify the �rst� second and third modules respectively� Places that start with IP are the implicit places
computed by Algorithm � �Section ����� Due to the strong interconnections between the components
and the bu�er places� and to the high number of interface transitions �
�� the algorithm produces �
implicit places� moreover � of these places are exact replica of places of the net� therefore we should
not expect to have very �abstract� macro states� and� consequently� the advantage of the structured
approach in this case is expected to be rather limited�
For this SAM four components are built� LS� �places with tag starting with a�� LS� �tags starting
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IP14

IP13
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Figure �� The second example�

with c�� LS� �tags starting with d�� and one basic skeleton BS� Table � shows the sizes of the state
space of these subsystems� as well as the size of RPS and RS of the complete system� for eight di�erent
con�gurations of the initial marking� The �rst four columns consider initial markings with a single
token in the �rst and third component� m�b�� � � m�b�� �m�b�� � 
� and a varying number of tokens
in the second component� as shown in the table� the �fth column has a single token in the �rst and third
component� six tokens in the second component� and m�b�� � � m�b�� �m�b�� ��� the sixth column
only di�ers from the previous one for having m�b�� � 
� the seventh column represents a con�guration
in which the �rst and third components have two tokens each� the second has six� and m�b�� � 
�
m�b�� �m�b�� ��� the last column is for the case of one token in the �rst and third component� two
in the second� and m�b�� �m�b�� � ��
Using SupGSPN with only two components �we have put bu�er b�� the �rst� and third component

together�� for the same initial marking as in the fourth column of Table �� we �nd a size for the two
components of �
 and ������ and PS � 
��������� while the size of RS is ����
�� We also run the
case reported in the last column of Table �� getting �
 states for the �rst component� ������ for the
second� and a PS of �������
�� against an RS of ����
�� It is interesting to note that� by adding to the
net the two implicit places IP� and IP	� and considering them as part of the second component �thus


�



m�c�� m�c��
 m�c��� m�c��� m�b�� � � m�b�� � 
 m�a� � 
 m�b�� � �
m�b��� � m�d�� 
 m�b��� �

BS ��� ��� �
�� 
��� ���
� ��� ������ ��
�
LS� �� ���� 
���� ���� ����� ����� ����
 ���


LS� �
� 
�
�� ����� 
����� �����
 ������ ������
 �����
LS� �� ���� 
���� ���� ����� ����� ����
 ���


RPS ���� ����� ����� ����
� ����� 
�����
 ���
�
�� ����
�
RS ���� ����� ����� ����
� ����� 
�����
 ���
�
�� ����
�

Table �� SAM technique� State spaces computed for the model of Figure ��

m�c��� m�c�� � 
 m�c�� � � m�c�� � � m�c�� � �

BS �� �� ���� ���� 
�
��
LS� �� ��� ����� 

���� ������
LS� �� ���� ���
� ������ �
��

LS� �
� 
��
� ���� ����� ����
�
LS	 
� ���
 ����� 
��� �����
LS
 �� ��� ����� 

���� ������
RPS 
���
� ����
�� ��������� 
������� ����������
RS 
���
� ����
�� ��������� 
������� no memory

Table �� SAM technique� State spaces computed for the model of Figure �

making the second component a strongly connected graph�� we have got only ��
�� states in the second
component� for a PS of �������� moreover the time of the computation decreased of almost one order
of magnitude�

The third example is depicted in Figure � were we have � components� again identi�ed by the
�rst letter of the tag of the places� The results are presented in Table �� The �no memory� of the last
column is due to GreatSPN running out of memory for this initial marking� The computation of the
reachable states took some a few minutes of user time for the four tokens case� and half an hour for �ve
tokens� Considering the size of LS� in the last column� we did not experiment with a larger number of
tokens�
On this example we have also tried a di�erent decomposition� by considering the subnets a� c� and f

as a single module� with b� and b� as bu�ers� For this decomposition we only need two implicit places�
one from TI� to TI�� and the other from TI� to TI�� The size of the BS� LS� and LS� state spaces are
shown in Table �� Observe that� due to the large size of LS�� we could not solve the system for m�c��
� ��
We have also run SupGSPN on this example� with the same two decompositions as before� The

results are reported in Tables � ��ve components case�� and � �two components case��
The meaning of �no memory� on Table � is that� for m�c�� � �� the size of PS is too large� so that

not even a bit�vector of that size could be allocated�
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Figure � The third example�

m�c��� m�c�� � 
 m�c�� � � m�c�� � �

BS � � 
� ��
LS� ��� ����
 �����
 �������
LS� � ��
 �� 
�
��
RPS 
���
� ����
�� ��������� 
�������
RS 
���
� ����
�� ��������� 
�������

Table �� SAM technique� State spaces computed for the model of Figure  �decomposition into two
components��
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m�c��� m�c�� � 


GSPN � �
GSPN
 ��� ����
�
GSPN�  
GSPN�  
GSPN� � �
PS ��
�
���� ����������
RS 
���
� ����
��

Table �� State spaces computed for the model of Figure � using SupGSPN� with a decomposition into
�ve components�

m�c��� m�c�� � � m�c�� � �

GSPN 
�� ���� �����
GSPN
 ��� ����� ��
�
PS 
���
� ��������� �����
�����
RS 
���
� ��������� no memory

Table �� State spaces computed for the model of Figure � using SupGSPN� with a decomposition into
two components�

	 Conclusions

A technique for computing exact performance indices of P�T systems �observed as structured with
a SAM view� has been presented� It uses linear algebra�based structure theory for producing net
decompositions and tensor algebra to express and solve the stochastic part� The decomposition phase
builds a set of components� low level systems �in which everything is abstracted except one of the
modules� and an abstract representation of the full system� called the basic skeleton� Basic skeleton and
low level systems provide a two levels description of the model� leading to a technique that reduces the
�spurious� markings that can appear in the product space PS �Cartesian product of the state spaces
of the components�� through the construction of the restricted product space RPS �union of Cartesian
products of state subspaces��
In a way� we can consider the technique based on the basic skeleton as a method to use high level

information to cut from PS�S� states that are not reachable� and consequently� from the G matrix�
rows and columns that correspond to non�reachable states� The price we have to pay is a more complex
expression for the supermatrix of the in�nitesimal generator� and therefore a more complex storage
scheme for the matrices� but the order of complexity of the solution does not change�
The technique does not guarantee that RPS � RS� but for live and bounded nets we have encountered

a large number of cases in which RPS � RS� Moreover� for the �at �i�e�� single level� solution method
the ratio jPSj�jRSj tends to increase as we increase the number of modules� what limits in practice
the e�ciency of the divide and conquer strategy underlying the tensorial approach� For the two levels
method� the decomposition in a larger number of modules appears to be a better strategy� assuming
that the modules are anyhow �big enough� to exhibit some kind of local behaviour� In practice� and
as a rule of thumb for our approach� the system should be decomposed in several �easily tractable�
modules with the same order of magnitude for their respective state spaces� Of course� if jRSj is so large


�



that no steady�state probability vector can be allocated� then even this approach remains infeasible�
Some numerical examples have illustrated the technique and gave informal insight on the computa�

tional behaviour of the approach�
Single and two levels methods are orthogonal to net classes or views� indeed we have shown on a

small example �section 
��� how the two levels method can be applied to SGSPN� On the other side� a
�at solution for SAM can be trivially derived by considering as components of the solution only the set
of low level systems LSi� synchronized over interface transitions�
The reader should notice that we have considered stochastic PN�s without immediate transitions� a

possible way to consider the full GSPN class is to extend the approach in 	�� �that preserves vanishing
states in the solution process�� to the two levels view� Another technique could be that of removing
immediate transitions with the technique in 	
�� but this reduction process can change the input and
output arcs of bu�ers� so that for the resulting SPN it may be necessary to de�ne a di�erent SAM view�
In this paper we only considered single server transitions� but marking�dependent policies can be con�

sidered� as explained in 	�� ��� A certain attention should be paid when de�ning ES� and� consequently�
the low level systems� the addition of implicit places may change the enabling degree of transitions� and
multiple and in�nite server transitions in the original model may have to be translated into marking
dependent ones in the ES system�
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A Tensor operators

Kronecker operators are de�ned in terms of rectangular matrices� but for the sake of this presentation
we use square matrices for the Kronecker sum� and rectangular ones for the Kronecker product�
In the following we shall consider matrices on real values�

De�nition �� Let A be a n
m matrix� and B be a p
 q one� C is the tensor �Kronecker� product
of A and B and we write C � A�B i� C is a n � p
m � q matrix de�ned by�

C � fc���� � c���� � ai�j�bi�j� with $� � �i�� i��� $	 � �j�� j��g

As a simple example consider the tensor product of a 

 
 matrix� with a 

 �� We have

A �

�
a�� a��
a�� a��

	
B �

�
b�� b�� b��
b�� b�� b��

	

C � A�B �

�
BBB�

a��b�� a��b�� a��b�� a��b�� a��b�� a��b��
a��b�� a��b�� a��b�� a��b�� a��b�� a��b��
a��b�� a��b�� a��b�� a��b�� a��b�� a��b��
a��b�� a��b�� a��b�� a��b�� a��b�� a��b��

�
CCCA

In case of square matrices A and B can be interpreted as the matrices of transition probabilities of
two discrete time Markov chains� it is immediate to recognize �see Davio in 	��� that C is the transition
probabilities matrix of the process obtained as independent composition of the two original processes�
Let us now de�ne the Kronecker �or tensor� sum of two square matrices

��



De�nition �	 Let A be a n
 n matrix� and B be a p
 p one� D is the tensor �Kronecker� sum of A
and B and we write D � A	B i� D is a n � p
 n � p matrix de�ned by�

D � A	B � A� Idp  Idn �B

where Idk is the k 
 k identity matrix�

Let us consider again the two matrices A and B� where A is the same as before� and B is the same
matrix as before� but for the last column� which is missing� The computation of their tensor �Kronecker�
sum is�

A� Id� �

�
BBB�

a�� � a�� �
� a�� � a��
a�� � a�� �
� a�� � a��

�
CCCA

Id� �B �

�
BBB�

b�� b�� � �
b�� b�� � �

� � b�� b��
� � b�� b��

�
CCCA

D �

�
BBB�

a��  b�� b�� a�� �
b�� a��  b�� � a��
a�� � a��  b�� b��
� a�� b�� a��  b��

�
CCCA

Again if we considerA and B as the in�nitesimal generator of two continuous time Markovian processes�
then D is the in�nitesimal generator of the process obtained by independent composition of the two
original one� It can be observed that in D all transition rates among states that di�er by more than a
single component are set equal to zero� as it is the case when we are in a continuous�time environment�
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