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Abstract

Asynchronously Communicating Stochastic Modules �SAM� are Petri nets that can be seen as a set
of modules that communicate through bu�ers� so they are not �yet another� Petri net subclass� but
they complement a net with a structured view� This paper considers the problem of exploiting the
compositionality of the view to generate the state space and to �nd the steady�state probabilities of a
stochastic extension of SAM in a net�driven� e�cient way�

Essentially� we give an expression of an auxiliary matrix� G� which is a supermatrix of the in�nites�
imal generator of a SAM� G is a tensor algebra expression of matrices of the size of the components
for which it is possible to numerically solve the characteristic steady�state solution equation � �G � ��
without the need to explicitly compute G� Therefore� we obtain a method that computes the steady�
state solution of a SAM without ever explicitly computing and storing its in�nitesimal generator� and
therefore without computing and storing the reachability graph of the system�

Some examples of application of the technique are presented and compared to previous approaches�

Keywords� Petri net models� Performance analysis� Structural decomposition� Kronecker algebra�

� Introduction and motivations

Stochastic Petri Nets �SPN�s� 	
�� andGeneralized Stochastic Petri Nets �GSPN�s� 	

� 
� are well�known
interpreted extensions of autonomous Petri net �PN� models allowing the consideration of performance
aspects in the design of complex concurrent systems� in addition to the PN�s capability of functional
validation� Product�form expressions and e�cient algorithms for the computation of the steady�state
distribution are known only for some particular classes of GSPN�s 	��� 
��� so that� in general� numerical
solution of the embedded Continuous Time Markov Chain �CTMC� must be performed to get exact
performance indices� In this case the state space explosion problem may make the evaluation of large
systems intractable due to the storage cost for the in�nitesimal generator matrix and�or to the time
complexity of solution algorithms�

Net�driven techniques reduce the memory and time complexity of solution algorithms by using in�
formation extracted from the structure of the net model� Examples of net�driven techniques are the
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elimination of immediate transitions in GSPN 	

�� the exploitation of symmetries in Stochastic Well�
Formed Coloured Nets 	
��� and the use of linear programming to compute performance bounds 	���
Net structure has also been used for approximation in a divide and conquer approach for the reduction

of the state explosion problem� Examples can be found in the context of approximation techniques for
the computation of throughput ofMarked Graphs �MG� 	�� or Deterministically Synchronized Sequential
Processes �DSSP� 	�
�� Given a net model� a net�driven decomposition of the model is implemented in
order to use a response time approximation algorithm�
Net structure also plays a relevant role in tensor algebra approaches that express the in�nitesimal

generator Q of an SPN in terms of Qi matrices computed on some components �subnets with smaller
state space� and allow the solution of the characteristic steady�state solution equation � �Q � � without
computing and storing Q 	
� 
�� 

� �� 
��� this technique allows to move the storage bottleneck from
the in�nitesimal generator matrix to the probability vector� All the works for SPN cited above were
inspired by the pioneering work of Plateau 	�
� on Stochastic Automata Networks� Since the tensor
algebra method is based on components of the net� and therefore on the structure of the net� we shall
often refer to it as a �structured solution method��
In the structured technique� a certain Cartesian product of reachable states of components is built�

leading eventually to a product space PS that includes the actual reachability set RS� the main problem
is that� in general� the product space can be much bigger than the actual state space� In other words� the
PS may contain many non�reachable states �that we shall call spurious�� According to this structured
view of the state space� a tensor expression of Q in terms of Qi matrices can be derived� Even if
spurious states appear� the tensor algebra approach leads to exact solution 	�
� 

�� Nevertheless the
storage and computational complexity may be increased in practice to the point that the advantages of
the technique are lost�
A way to overcome the creation of spurious states is to generate an abstract representation of the full

model that acts like a ��lter� of spurious solutions� The abstract model �called here basic skeleton�
constraints the product space PS� leading to a restricted product space RPS expressed as the union of
the Cartesian product of subsets of the reachability sets of the components� The Q matrix has a block
structure determined by the high level view� and a tensor expression for each block of Q in terms of
blocks of Qi can be derived�
We refer to the product space method as 	at� or single level� and to the restricted product space

method as two levels�
Two level techniques proved very e�ective in a number of cases� For certain net subclasses like MG

no spurious states are generated so that equality between RS and RPS is obtained 	�� �previously proved
for response time approximation in 	���� In 	�� the MG case is generalized to DSSP where RPS may
strictly include RS�
In this paper� the extension of the two level approach for DSSP is developed for arbitrary but

bounded SPN models for which a SAM view is given� where SAM stands for System of Asynchronously
communicating Modules� A SAM view identi�es a subset of places as bu�ers and a number of disjoint
subnets called modules� the only exchange of information among modules is through bu�ers� so that
SAM are a natural model for asynchronously communicating systems� A SAM view of the net can be
provided by the model construction process� or it can be de�ned only for solution purposes�
Technically speaking� the abstract representation required by the two level approach is constructed

using implicit places 	
��� More precisely� in order to improve the e�ciency of the algorithms we use
the linear relaxation� i�e�� those places that are also structurally implicit�
The contribution of the paper is two�fold� First� by removing the storage bottleneck of the in�nitesi�

mal generator the size of systems that can be solved is signi�cantly increased� Second� by exploiting the






net structure it provides a thorough view of the relationship between net structure and solution costs
of the underlying stochastic process� The paper is based on a previous work 	�� for the restricted DSSP
class� A signi�cant improvement is that the method presented in this paper applies to arbitrary SPN
systems�
The paper is organised as follows� Section 
 reviews basic de�nitions and notations and overviews

the literature on �at and two level structured solution for SPN subclasses� Section � de�nes the SAM
view of SPN and the abstract models� The two level solution method is presented in Section � �for what
concerns reachability graph construction�� and in Section � �for what concerns the in�nitesimal generator
construction�� Complexity issues are also discussed in Section �� All the concepts are explained on a
simple running example� while a more complete set of examples is presented in Section �� that compares
single level and two level approaches� Finally� possible extensions and concluding remarks are given in
Section ��

� SPN�s and structured solution methods

In this section� we present a conceptual framework in which the �at and the two level structured solution
methods are considered� We overview di�erent tensor algebra solutions for SPN that have appeared in
the literature� with the goal of presenting them in a uni�ed framework� Readers not familiar with the
basics of tensor algebra can �nd them in the appendix� We assume that the reader is familiar with basic
concepts of Petri nets 	��� ���� therefore in the following only basic de�nitions are listed to establish
notation�

��� De�nitions

A Petri net �PN� is a ��tuple N � hP� T�Pre�Posti� where P and T are disjoint sets of places and
transitions� and Pre and Post are the pre� and post�incidence functions representing �in vector form�
the input and output arcs� Pre	p� t� � IN �Post	p� t� � IN�� Ordinary nets are Petri nets whose pre� and
post�incidence functions take values in f�� 
g� The incidence function of a given arc in a non�ordinary
net is called weight or multiplicity� The pre� and post�set of a transition t � T are de�ned respectively
as �t � fp j Pre	p� t� � �g and t� � fp j Post	p� t� � �g� The pre� and post�set of a place p � P are
de�ned respectively as �p � ft j Post	p� t� � �g and p� � ft j Pre	p� t� � �g� Transition t is a join
�fork� if j�tj � 
 �jt�j � 
��
The incidence matrix of the net is de�ned as C � Post�Pre� Flows �semi	ows� are integer �natural�

annullers of C� Right and left annullers are called T � and P ��semi��ows respectively� A semi�ow is
minimal when its support is not a proper superset of the support of any other semi�ow and the greatest
common divisor of its elements is one� A net is consistent if it has a T �semi�ow x � �� A net is
conservative if it has a P �semi�ow y � ��
A function m�P � IN �usually represented in vector form� is called marking� A Petri net sys�

tem� or marked Petri net� S� is a Petri net N with an initial marking m�� A transition t � T is
enabled at marking m if �p � P � m	p� � Pre	p� t�� A transition t enabled at m can �re yielding
a new marking m� de�ned by m�	p� � m	p� � Pre	p� t�  Post	p� t� �denoted by m t

��m��� A se�
quence of transitions � � t�t� � � � tn is a �ring sequence in S if there exists a sequence of markings such
that m�

t���m�
t���m� � � �

tn��mn� In this case� marking mn is said to be reachable from m� by �ring
��denoted bym�

�
��mn�� The reachability set RS�S� of a system S � hN �m�i is the set of all markings

reachable from the initial marking� L�S� is the language of �ring sequences of a system S � hN �m�i
�L�S� � f� j m�

�
��mg��

�



A place p � P is said to be k
bounded in S if �m � RS�S�� m	p� � k� A PN system is said to be
k�bounded if every place is k�bounded� and bounded if there exists some k for which it is k�bounded�
A net is structurally bounded if it is bounded for any m�� A PN system is live when every transition
can ultimately occur from every reachable marking� A state m is called a home state if it is reachable
from every reachable marking�

State Machines �SM�s� are ordinary PN�s such that every transition has only one input and only one
output place ��t � T � j�tj � jt�j � 
�� SM�s allow the modelling of sequences� decisions �or con�icts��
and re�entrance �when they are marked with more than one token� but not synchronization� SM�s
marked with a single token model sequential processes� Marked Graphs �MG�s� are ordinary PN�s such
that every place has exactly one input and one output transition ��p � P � j�pj � jp�j � 
�� MG�s allow
the modelling of sequences and synchronization but not decisions�
We indicate with � �	� the tensor product �sum�� The tensor product of a n
m matrix by a p
 q

produces a n �p
m � q� The same is true for tensor sum� but the operator can be applied only to square
matrices�
A Stochastic Petri Net �SPN� 	
�� is a pair hS� wi � hP� T�Pre�Post�m�� wi� where S is a PN system

and w � T � IR� is a positive real function that associates to each transition t � T an exponentially
distributed �ring time of rate w�t�� We shall indicate with Q the in�nitesimal generator of the CTMC
associated to an SPN� and with � the steady�state probability vector�
In this paper we assume that transitions are of the single server type� For the solution to be feasible

the system must be bounded� In order to use extensively structural techniques� we shall assume in the
sequel that the net is conservative �thus structurally bounded��

��� Single level structured approach� using a �at view

The basic idea behind the �at technique can be explained using the model of Figure 
� that shows
a GSPN S that can be considered as the composition of two GSPNs S� and S� over three common
transitions T
� T
 and T�� Places whose names start with letter a de�ne component S�� and those
starting with b de�ne S�� We assume that there is a sequence of n places and transitions between b


and b
n� and of m places and transitions between a�
 and a�m� S� has therefore m  
 states� while
S� has n 
� A product state space PS can then be de�ned as

PS � RS� 
RS�

and it is straightforward to observe that RS � PS� indeed PS has �m  
� � �n  
� states� but the
reachability set of S has only m n 
�
According to the techniques presented in 	

� the following matrix G of size jPSj 
 jPSj can be

constructed�

G � Q�
� 	Q�

� �
X

t�fT��T��T�g

w�t�	K��t��K��t��  
X

t�fT��T��T�g

w�t�	K�
��t��K�

��t��

where Q�
i� Ki�t�� and K

�
i�t� �for i � f
� 
g� are jRSij 
 jRSij matrices that can be derived from the

in�nitesimal generator Qi of Si�
The idea behind this formula is to split the behaviour of each component into local behaviour �related

to transitions local to a single component�� and dependent behaviour �related to �synchronizing transi�
tions� T
� T
� and T��� The local behaviour of each GSPN is represented by Q�

i� and since the local
behaviour is independent� the global behaviour due to local transitions can be obtained as the tensor
sum of the Q�

i matrices� The behaviour related to synchronization requires that� for a synchronization

�
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� Explaining abstract views�

transition to �re� both Si must be in a state that enables the transition� Ki�t�� the correcting matrix
for transition t� has a 
 in each entry of the matrix that corresponds to a change of state due to t in Si�
The tensor product will indeed realize the required condition that a synchronization transition �res only
in global states whose corresponding local states in the Si enable t� The term with the K�

i�t� matrices
is used to compute the portion of the diagonal elements expression that accounts for synchronization
transitions�
By de�nition of the tensor sum and product� G is a jPSj
jPSj matrix� and it is shown in 	

� �
� how

the non null entries of the vector �� solution of the equation � �G � �� are the steady�state solution of S�
Moreover� a solution process may be devised 	
�� �
� that does not require the explicit computation and
storing of G� so that the biggest memory requirement is that of the vector �� The technique is extended
to transient analysis in 	
��� The computational cost� under full matrix implementation assumption� is
smaller than the classical vector to matrix multiplication 	�
�� Recent results have shown 	�� that under
sparse matrix implementation the cost is instead bigger for matrices with a mean number of elements

per row less than K
�

K�� �K being the number of components��
The above technique produces a signi�cant storage saving whenever the size of PS� and therefore that

of �� is inferior to the number of non null elements of Q� since� otherwise� it would be better to store
Q explicitly�
The solution procedure outlined above is the basic idea behind a number of works that have appeared

in the literature� The work in 	�
� de�nes the basics of the method and applies it to networks of stochastic
automata� while classes of SPN�s for which a single level structured solution has been applied are
Superposed Stochastic Automata 	
�� and Superposed GSPN �SGSPN� 	

� �nets that can be interpreted
as the superposition over a subset of timed transitions of a set of GSPN�s��
The distance between RS and PS can limit the applicability of the technique� Nevertheless if a bit

vector of size jPSj can be allocated in memory� then a state space exploration can be performed 	
��� That
exploration� with an additional tree�like data structure of size O�jRSj � log jRSij� allows the de�nition
of multiplication algorithms that consider only reachable states �i is the index of the component whose
state space is represented in the tree leaves�� The computational overhead is at most O�log jRSj� 	���

�
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� Explaining abstract views�

��� Two level structured approach� using a high level view

An abstract description of the system can be used to limit the number of spurious states by appropriately
pre�selecting the subsets of the states that should be combined by the Cartesian product�
For example� we can consider the net Sa of Figure 
 as an abstract representation of the one in

Figure 
� with place B
 �summarizing� the structure of places b

� � � � � b
n and A� �summarizing�
the structure of places a�
� � � � � a�m� Sa has three reachable states� z� � �a�� b��� z� � �a��B��� and
z� � �A�� b��� The states of S� and S� can be partitioned according to the states of Sa� the m  

states of S� are partitioned in three equivalence classes� RSz��S�� � fa�g� RSz��S�� � fa�g� and
RSz��S�� � fa��� � � � � a�mg� Similarly� for S� we get� RSz��S�� � fb�g� RSz��S�� � fb��� � � � � b�ng� and
RSz��S�� � fb�g� The restricted product state space RPS can then be built as�

RPS�S� �
�

z�RS�Sa�

RSz�S��
RSz�S�� �

fa�g 
 fb�g � fa�g 
 fb��� � � � � b�ng � fa��� � � � � a�mg 
 fb�g

where
U
is the disjoint set union� We refer to methods based on a construction of a restricted state

space as two levels� Note that for this example we obtain a precise characterization of the state space�
but the union of Cartesian products can in general produce a superset of the reachable state space�
depending on the accuracy of the abstract representation�
Since the state space is no longer the Cartesian product of sets of local state spaces� but the union

of Cartesian products� we cannot expect to have for the in�nitesimal generator a tensor expression
as simple as before� we can build a matrix G� of size jRPSj 
 jRPSj� and then consider it as block
structured according to the states of Sa� Each block refers to the set of states obtained by a single
Cartesian product� and a tensor expression for each block can be derived� Diagonal blocks G�z� z� can
be expressed as�

G�z� z� � Q��z� z� 	Q��z� z�

�For simplicity
 we are not considering diagonal elements
 that can be computed on the �y
 or stored explicitly
 as
explained in Section �

�



where theQi�z� z� are the submatrices of the in�nitesimal generator of Si determined by the states whose
abstract representation is z �z � fz�� z�� z�g�� Each G�z� z�� block� with z 
� z�� �z� z� � fz�� z�� z�g��
describes instead the behaviour that changes the high level state� each block Q�z� z�� can be written as

G�z� z�� �
X

t�z
t

��z�

w�t�	K�
��t��z� z

���K�
��t��z� z

���

where the K�
i�t��z� z

�� are the submatrices of the in�nitesimal generator of Si whose rows �columns� are
abstractly represented by z �z��� projected to include only the contribution due to t� Observe that� in
our example� there is a single t for each given pair �z� z���
Although the approach can be applied to SGSPN� in the literature it was developed and it has been

used only in the context of the solution of �asynchronous systems� either queueing networks or SPN�
where subnets interact by exchanging customers or tokens� In 	�� and 	
� the two level method was
developed to solve hierarchical queueing networks and hierarchical colored GSPN�s� the simplest case
of hierarchy consists of one model at the top level and K leaf models� that are activated by the top
level through customers or token exchange� In 	�� the method was adapted to marked graphs where
components are de�ned through a cut �in graph sense� of the net over a set of places�
The construction of RPS for hierarchies uses the top level of the hierarchy as abstract representation

�called High Level Model �HLM� in the queueing network hierarchy and High�level coloured GSPN
�HCGSPN� in the coloured GSPN hierarchy�� The component models are instead the leaves of the
hierarchy �in the simpli�ed case of a two level hierarchy��
For marked graphs� an abstract representation of the system is not given by construction� and subnets

de�ned by a cut are open subnets� for which it is not possible to compute a reachability set to be used
in the RPS formula� Following a decomposition de�ned in the context of approximation 	��� the work
in 	�� de�nes an abstract representation called High level System �HS� �it was called Basic Skeleton�
BS in 	��� and we shall follow the original terminology�� Given BS and a cut of the MG into K subnets�
it is possible to build a set of K low level systems� LSi� in each LSi the full subnet i is completed by
the abstract representation� taken from BS� of the rest of the system� This allows the generation of the
reachability set of the low level components and a restricted product space can be de�ned as�

RPS�S� �
�

z�RS�BS�

RSz�LS��
 � � � 
RSz�LSK�

where RS�X � indicates the state space of system X � and RSz�X � is the set of markings of RS�X � with
projection over the high level behaviour equal to z� By construction of the abstract representation
RS�S� � RPS�S�� A similar formula can be devised for HCGSPN� but RS�S� � RPS�S��
The structured de�nition of RPS can be used� as in the example shown above� to express matrix G�

supermatrix of the in�nitesimal generator�
In summary� if we have a construction rule for RS as a disjoint union of Cartesian products� we

can limit the problem of the di�erence jPSj � jRSj� while still maintaining the bene�ts of the solution
in structured form as in the SGSPN case� indeed it is only necessary to organize the classical vector
by matrix multiplication � � G in terms of subvector by submatrix multiplication� Details for the
computational costs of this technique under sparse and full matrix storage scheme have been reported
in 	���
Tensor algebra techniques have been applied also for the solution of Stochastic Well�formed Nets 	
���

The case of modules that interact through transition superposition is presented in 	
��� while the case
of modules that interact through bu�ers is presented in 	
��� in both cases the solution requires the
construction of component models of the low level system type� but the solution presented in the papers
is of the �at type�

�
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� SAM view� low level systems and basic skeleton

This paper is based upon a previous work of the same authors 	�� that considers Deterministically
Synchronized Sequential Processes �DSSP� 	���� DSSP can be used for the modelling and analysis of
distributed systems composed by sequential processes communicating through output�private bu�ers�
Each sequential process is modelled by a safe �
�bounded� strongly connected State Machine �SM�� The
communication among them is described by bu�ers �places� which contain products�messages �tokens��
that are produced by certain processes and consumed by others� Each bu�er is output�private� it is an
input place of only one SM� A well�developed theory exists for the analysis of qualitative behaviour of
these systems 	��� ��� that allows� in particular� to e�ciently check necessary and su�cient conditions
for �niteness and ergodicity of the embedded CTMC�
An example of DSSP with two bu�ers and two state machines is depicted in Figure �� The �rst SM�

SM�� is identi�ed by places labeled with a while the second one� SM�� is identi�ed by places labeled
with c� Places b
 and b
 are the bu�ers� Transitions I
 and I
 are the interface transitions between
SM� and the bu�ers while I�� I�� I�� I� are the interface between SM� and the bu�ers� The rest of
transitions are termed internal �since they model actions that change only the internal state of the
corresponding SM��
The technique for DSSP is here extended to general P�T systems� In order to do that� a �DSSP�

like� structured view of the model is considered in which functional units �now modules with general
structure� communicate through bu�ers without any interconnection constraint� A net model with a
given structured view is referred as System of Asynchronously Communicating Modules �SAM�� Notice
that SAM is not a PN subclass �as DSSP� but just provides a structured view of a general P�T model�
In this section we de�ne SAM views and rules to build partial models� components� They are going

to be used in the next sections for the de�nition of RS and in�nitesimal generator expressions according
to the two levels method� To achieve this goal� a reduction rule for the internal behaviour of modules
of a SAM is de�ned �internal behaviour means �ring of internal transitions�� Using that reduction a
collection of low level systems and one basic skeleton are built� In each low level system� only one of
the modules of the original system is kept while the internal structure of the others is reduced� In the
basic skeleton� the internal structure of all modules is reduced�

�



��� The SAM view of general P	T nets

Consider a general P�T system that �possibly by construction� admits a structured view as a set of K
modules �disjoint P�T systems� that asynchronously communicate by means of a set of places called
bu�ers� No constraint is assumed on the interconnection between bu�ers and modules� therefore the
modelling of general situations of competition and�or cooperation among modules is possible�

De�nition � A PN system� S � hP� � � � � � PK �B�T� � � � � � TK �Pre�Post�m�i� is a System of
Asynchronously Communicating Modules view� or simply a SAM� if�


� Pi � Pj � �� �i� j � f
� � � � �Kg� i 
� j�

�� Ti � Tj � �� �i� j � f
� � � � �Kg� i 
� j�

�� Pi �B � �� �i � f
� � � � �Kg�

�� Pre	Pi� Tj � � Post	Pi� Tj � � �� �i� j � f
� � � � �Kg� i 
� j�

hNi�m�ii � hPi� Ti�Prei�Posti�m�ii� i � f
� � � � �Kg� are called modules of S �where Prei�Posti�
and m�i are the restrictions of Pre� Post� and m� to Pi and Ti��

Places in B are called bu�ers�
Transitions belonging to the set TI � �B � B� are called interface transitions� Remaining ones

��T� � � � � � TK� n TI� are called internal transitions�

In the sequel� strong connection of the whole net is assumed since it is a necessary condition for live
and bounded systems 	��� �and we are interested in systems with such fundamental properties�� We
also assume that the net is conservative �observe that if a system is bounded� by adding complementary
places it can always be transformed into a conservative net��
The reader should notice that in fact all PN systems can be provided with SAM views varying

between the following two extreme positions�

� a single module and an empty set of bu�ers� or� in the other extreme�

� one module per transition and all places are bu�ers�

Therefore� the e�ect of the above de�nition is to assume that a partitioned view of the system into
modules connected through bu�ers is given �or known a priori� for example� coming from the net
construction process��
Let us consider the P�T system depicted in Figure �� Apart from the two extreme SAM views

mentioned above �a single module or as many modules as transitions�� three alternative SAM views
for the system could be easily considered� The �rst one considers the system partitioned into three
modules �subnets generated by places labeled with a� c� and d� respectively� connected through four
bu�ers �b
� b
� b�� b��� The second one considers as a single module the subnet generated by places b
�
b� and those labeled with a and c� while the subnet generated by places labeled with d is the second
module and the bu�ers are b
 and b�� The last one considers as a module the subnet generated by
places labeled with a� the second module is the subnet generated by places b
� b�� and those labeled
with c and d� Places b
 and b� are bu�ers� The existence of many SAM views of a net system opens
the question of which one is the best �e�g�� the more e�cient� for the computation of the solution�

�



a2

a3

a4

a5 a13

a12

a11

a10
d10

d11

d12

d13

d2

d3

d4

d5 d9

d8

d7

d6

d1

a9

a8

a7

a6

a1

c5

c4

c6

c3

c1

c2

b2b1

b3 b4

TI5

TI6

TI3

TI4

TI2

TI1

Figure �� SAM view of an SPN�

��� Decomposition according to the SAM view� basic ideas and running example

In this section we informally present the main ideas behind a reduction rule for the internal behaviour
of the modules of a SAM� Using the rule� we introduce a decomposition of SAM into a collection of low
level systems and one basic skeleton �along the lines in 	���� In each low level system� only one of the
di�erent modules of the original system is kept while the internal structure of the others is reduced as
much as possible� In the basic skeleton� the internal structure of all the modules is reduced� Low level
systems and basic skeleton are used for a structured construction of the reachability set of the original
model and also for a structured computation of its steady�state probabilities� In the next section� formal
de�nitions and technical details of the reduction process are given�
Let us come back to the example in Figure � and consider for it a SAM view that distinguishes two

modules� N� and N�� �subnets generated by places labeled with a and c� respectively� and two bu�ers�
b
 and b
� The �rst step is to derive in an e�cient way an extended system� ES� like that depicted
in Figure �� It consists of the original system plus the addition of some implicit places �A
�� A
��
C��� and C��� that summarize information of the structure of N� and N�� An implicit place 	
�� is
one whose removal does not a�ect the behaviour of the system �therefore� behaviour of the original
and of the extended systems is the same assuming interleaving semantics 	
��� although the notion of
implicit place can be directly extended to cope with a step semantics 	
���� Since we are considering a
Markovian interpretation of PN�s and single�server semantics of transitions� the embedded CTMC of a
system is preserved if implicit places are added or removed�
Implicit places are computed as follows� First� an equivalence relation R is de�ned over the set of

places Pi of each module� partitioning Pi into equivalence classes P
j
i � Two places of a module are related

by R if and only if there exists between them a non�directed path including only nodes of that module
but interface transitions� In the example� P� is partitioned into two equivalence classes� P

�
� � fa
� a�g
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Figure �� The SAM example model with additional implicit places�

and P �
� � fa
� a�g� while P� is partitioned into P �

� � fc
� c�� c�� c�g and P �
� � fc
� c�� c�g� For each

equivalence class P j
i a set H

j
i �standing for �High�level places�� of implicit places is computed� that

includes information of the behaviour on Ni� For instance� in the example� H
�
� � fC��g is the set �in

this case only one place� of implicit places corresponding to the equivalence class P �
� � fc
� c�� c�� c�g�

Low level system� LSi �i � 
� � � � �K�� is derived by reducing all modules Nj� j 
� i� to their interface

transitions and to the set of implicit Hj
i � while Ni is fully preserved� The basic skeleton� BS� is instead

derived by reducing all modules to interface transitions and implicit places� The basic skeleton de�nes
the most abstract view of the original system that we are going to consider�
Figure � shows the low level systems� LS� and LS�� and the basic skeleton� BS for the running

example� Notice that if LS� and LS� were synchronized by merging common transitions �interface
transitions� and identifying common places �bu�ers and implicit places�� the extended system �with
equivalent behaviour to the original system� would be obtained� Notice also that the basic skeleton is
the common abstraction between LS� and LS��

��� Decomposition according to the SAM view� technical aspects

Let us �rst recall the de�nitions of implicit place� marking structurally implicit place and implying
places of it� and later a result that gives a value for its initial marking�

De�nition � 	
�� Let S � hP � fpg� T�Pre�Post�m�i be a P�T system� Place p is implicit i� L�S� �
L�hP� T�Pre	P� T ��Post	P� T ��m�	P �i� �i�e�� deletion of p preserves the language of �ring sequences��

In words� p is implicit if it is never the unique one to prevent the enabling of a transition�

De�nition � 	
�� Let N be a net and p be a place with incidence vector lp � C	p� ��� The place p is a
marking structurally implicit place �MSIP� in N if there exists y � � such that y	p� � � and lp � y �C�
The set of places in kyk are called implying places of p �where kyk� called support of y� is the set of
non�zero components of y��

The following property provides a su�cient condition for an MSIP to be implicit whose checking
requires the solution of a linear programming problem �on real variables�� giving rise to a time complexity
that is polynomial on the net structure size�
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Figure �� The LS�� LS�� and the BS systems corresponding to the SAM of Fig� ��

Property � 	
�� Let hN �m�i be a conservative net system and p an MSIP of N � If m�	p� is greater
than or equal to v then p is implicit� where v is the optimal value of the following linear programming
problem�

v � minimum y �m�  �
subject to y �C � C	p� ��

y �Pre	�� t�  � � Pre	p� t���t � p�

y � ��y	p� � �

Now� we formally de�ne the equivalence relation R that induces a partition of the places Pi of each
module of a SAM into several equivalence classes P j

i �

De�nition 	 Let S � hP� � � � � � PK �B�T� � � � � � TK �Pre�Post�m�i be a SAM view of a P�T sys�
tem� We denote by R the equivalence relation de�ned on all the places in P nB by� hp� p�i � R i� there
exists an index i such that p� p� � Pi and there exists a non�directed path ! in Ni from p to p� such
that ! � TI � � �i�e�� containing only internal transitions�� Let P j

i � j � 
� � � � � r�i�� be the di�erent

equivalence classes de�ned in Pi by the relation R and T j
i �

�P j
i �P

j
i

�
nTI� j � 
� � � � � r�i�� i � 
� � � � �K�

We shall substitute each P j
i by a� hopefully smaller� set of implicit places� To this goal we only

consider MSIP since the computation of MSIP may be achieved structurally� For each equivalence class
P j
i � j � 
� � � � � r�i�� we compute the sets H

j
i with a minimum number of MSIP�s to be added to the

module Ni that include the maximum information of the structure of Ni �i � 
� � � � �K�� Moreover �and
obviously� we consider a �nite subset of the in�nite number of possible MSIP�s� those places derived
from the minimal P �semi�ows of the subnet generated by P j

i � as presented in the following algorithm�







The basic idea is to apply a classical algorithm 	
�� for the computation of all the minimal �support��
positive� left annullers of C	P j

i � T
j
i �� and to derive from each of these vectors y a MSIP py with incidence

vector lpy � y�C� eliminating the repeated instances of an MSIP p that could be generated from di�erent
vectors y�

Algorithm 
 Let S � hP� � � � � � PK �B� T� � � � � � TK �Pre�Post�m�i be a SAM view of a P�T
system� Let R� P j

i � and T j
i �j � 
� � � � � r�i�� i � 
� � � � �K� be as introduced in De�nition �� The

following algorithm de�nes the sets of MSIP�s Hj
i �j � 
� � � � � r�i�� i � 
� � � � �K� and their initial

markings�

input Ni and one equivalence class P
j
i of those de�ned in Pi by R�

output Set of MSIP�s Hj
i and their initial markings�

begin

Y j
i �� fy j y	P j

i � �C	P
j
i � T

j
i � � ��y	P n P j

i � � ��y � ��y has minimal supportg�

Hj
i �� fpy j py is a place with incidence vector lpy � y �Cg�

for each p � Hj
i do

compute its initial marking using Property �
end for

end

We denote by Hi �
Sr�i�
j��H

j
i the set of all MSIP�s corresponding to Ni� i � 
 � � � K� and H �

SK
i��Hi�

The cardinality of the Y j
i set may increase exponentially on the size of the subnet induced by P

j
i and

T j
i �indeed Y

j
i is the set of all minimal P �semi�ows of a subnet�� so that the theoretical time complexity

of the �rst step in the algorithm is exponential in the size of the subnet� The same is true for the
set Hj

i built in the second step of the algorithm �examples can be built where the cardinality of Hj
i

increases exponentially in the size of the subnet�� Anyhow� thanks to the divide and conquer approach�
the exponential increase is in the size of a part �P j

i and T
j
i � of a module �Pi and Ti�� and not in the size

of the whole original net�
Two particular cases with polynomial complexity� for which the set Hj

i contains only one place are

the following� �
� the subnet P j
i includes neither fork nor join transitions �a particular case is that

of DSSP� considered in 	��� where modules are state machines�� or �
� P j
i has a single input interface

transition and a single output interface transition� In the �rst case� a weighted sum of places P j
i leads

to a unique minimal P �semi�ow� In the second case� the place in Hj
i can be easily computed �without

applying the algorithm� by imposing conservativeness of the subnet resulting after the addition of that
place to the subnet de�ned by P j

i and T j
i � the number of minimal P �semi�ows can be exponential on

the subnet size but all of them would generate the same place�
One interesting question that could be posed is whether it is necessary to consider all minimal

P �semi�ows of the subnet to derive the set Hj
i or if a base of minimal P �semi�ows would lead to a

�smaller� set of MSIP�s retaining the same behavioural information �this would made polynomial the
time complexity of the Algorithm ��� The answer is no since to consider �only� a base of minimal
P �semi	ows can lead to a reduced system that is structurally unbounded� and an example is the MG in
Figure �� Consider the module composed by places ai� i � 
� � � � � �� and transition T� with interface
transitions fT
� T
� T�� T�g�� The equivalence relation R induces in the module a single equivalence
class� A base of minimal P �semi�ows for the same module generates three places� A possible selection of
these places is represented in Figure �� The reader can easily check that this system allows the sequence
T
�T��T� to be �red an arbitrary number of times before the �ring of any other transition �making
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place H
 unbounded�� while this was not the case for the original system� If all minimal P �semi�ows
were considered instead� an additional place H� connecting T
 to T� would be added to the system
of Figure � and� in this case� the substitution of the subnet a
 � a
 � T� � a� � a� by the set of four
implicit places preserves exactly the functional observable behaviour of interface transitions�
An extended system ES is built from a system S by adding the sets of implicit places� Hj

i � computed
by Algorithm �� The reachability graphs of S and ES are identical �only the redundant marking of
implicit places is added in the state representation of ES��

De�nition � Let S � hP� � � � � � PK �B� T� � � � � � TK �Pre�Post�m�i be a SAM� The extended sys�
tem ES of S is obtained by adding to S all the places in Hj

i � j � 
� � � � � r�i�� i � 
� � � � �K� de�ned by
Algorithm �� with the initial marking computed by the same algorithm�

As an example� the extended system of the SAM of Figure � is depicted in Figure �� where place C��
summarizes places c
� c�� c�� and c�� place C�� summarizes places c
� c�� and c�� place A
� summarizes
places a
 and a�� and place A
� summarizes places a
 and a�� We use upper cases for implicit places�
with an index that is a composition of two of the indices of the places from which they are constructed�
The Hj

i are� H
�
� � fA
�g� H�

� � fA
�g� H�
� � fC��g� and H�

� � fC��g�
K di�erent low level systems LSi can be obtained from the extended system by deleting all places in

Pj � j 
� i� and transitions in Tj n TI� j 
� i �i � 
� � � � �K��

De�nition � Let S � hP� � � � � � PK �B� T� � � � � � TK �Pre�Post�m�i be a SAM and ES its extended
system�

i� The low level system LSi �i � 
� � � � �K� of S is obtained from ES deleting all nodes in
S
j ��i�Pj �

�Tj n TI�� and their adjacent arcs�

ii� The basic skeleton BS of S is obtained from ES deleting all nodes in
S
j�Pj � �Tj nTI�� and their

adjacent arcs�

In each LSi all modules Nj � j 
� i� are reduced to interface transitions and to the implicit places
that were added in the extended system� while Ni is fully preserved� In the basic skeleton all modules
are reduced� Figure � shows the low level systems LS�� LS�� and the basic skeleton BS of the SAM in
Figure ��
The next property states that conservativeness of the original net is inherited by its low level system

and the basic skeleton�

Property 
 Let S � hN �m�i be a P�T system and LSi� i � 
 � � � �K� BS its low level systems and
basic skeleton corresponding to a SAM view� If N is conservative then the nets of LSi �i � 
 � � � �K�
and BS are conservative�

Proof�

Instead of considering LSi� we consider the net N � resulting from N after the addition of a single set
of implicit places Hj

k �for a given k 
� i and a given j � f
� � � � � r�k�g� and the deletion of places P j
k and

transitions T j
k �and their adjacent arcs�� If we prove that N

� is conservative� then conservativeness of
the net of LSi follows by repeating the same reduction over the rest of places and internal transitions
of Nk� with k 
� i�
Let us prove that if N is conservative then N � is also conservative� It is su�cient to prove that �
� for

each P �semi�ow of N � y � � such that y �C � �� there exists a P �semi�ow of N � that has the same
projection on the preserved places� and �
� places Hj

k in N
� can be covered by a P �semi�ow�
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Proof of �
�� If y	P j
k � � � we are done� if this is not the case� from y �C � �� by re�ordering rows and

columns� we get y	P j
k � � C	P

j
k � T

j
k � � � and y �C	P� T n T j

k � � �� Now� consider place py� as de�ned in

Algorithm � for y� �
h
y	P j

k � j �
i
� Then� it can be easily checked that vector

h

� �� � � � � � j y	P n P j

k �
i
�

where entry "
� corresponds to the place py� and entries "�� correspond to the remaining places generated
by Algorithm �� is a P �semi�ow of N � that has the same projection as y on the preserved places�
Proof of �
�� Consider the net resulting from N by adding places Hj

k� It is conservative �because N
is conservative and the added places are MSIP�s�� thus it exists a P �semi�ow y that covers all places
in Hj

k� If the support of y does not include any place from P j
k � then we are done because y is also a

P �semi�ow of N � and it covers all places in Hj
k� If the support of y includes some places from P j

k � then

y	P j
k � must be such that y	P

j
k � � C	P

j
k � T

j
k � � �� i�e�� y	P j

k � is a P �semi�ow of the subnet generated by

P j
k and T j

k � Then� by construction of the set H
j
k �it contains a place for each minimal P �semi�ow of

the subnet generated by P j
k and T

j
k �� a P �semi�ow for N

� can be derived from y by deleting the entries

corresponding to places P j
k and incrementing appropriately the entries corresponding to H

j
k�

The same argument is valid for BS� by reducing all modules� �

In general� the reduction technique presented here does not remove but it can add new paths between
interface transitions �see� for instance� the path from I� to I� that is present in BS �Figure ��� but that
does not exist in the original model of Figure �� as proved by the next property�

Property �� Let S � hP� � � � � � PK �B� T� � � � � � TK �Pre�Post�m�i be a SAM� LSi its low level
systems �i � 
� � � � �K�� BS its basic skeleton� and L�S� the language of S� Then�


� L�S�jTi�TI � L�LSi�� for i � 
� � � � �K�

�� L�S�jTI � L�BS��

Proof�

Consider the extended system ES of S� By de�nition� all places in Hj
i � j � 
� � � � � r�i�� i � 
� � � � �K�

are implicit in ES� Therefore L�S� � L�ES�� Consider the system LSi for an arbitrary i� obviously�
L�ES�jTi�TI � L�LSi�� and the property follows� The same argument is valid for the basic skeleton
�statement � �� �

As a �nal comment let us remark that the reduction technique proposed here� when applied to
MG� produces a set of components that is the same as the one produced by the algorithm for MG
approximation in 	��� where Floyd�s all shortest path algorithm is used to compute Hj

i � However� it is
slightly di�erent from the one presented in 	�� where the net is split into subnets with a frontier made
of transitions� and the BS model is obtained by substituting paths between pairs of frontier transitions
with an implicit place that �summarizes� the behaviour of the path�

� The structured construction of the reachability set

The decomposition de�ned in the previous section is now used to build the restricted product space
RPS�S� of a SAM� As a �rst step the reachability sets of original �RS�S��� extended �RS�ES��� and low
level systems �RS�LSi�� are partitioned according to the projection of the marking on the places of the
basic skeleton�
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De�nition �� Let S � hP� � � � � � PK �B� T� � � � � � TK �Pre�Post�m�i be a SAM� ES its extended
system� LSi its low level systems �i � 
� � � � �K�� and BS its basic skeleton� Then� the following subsets
of the reachability sets RS�S�� RS�ES�� and RS�LSi� are de�ned for each z � RS�BS��

RSz�ES� � fm � RS�ES� j mjH������HK�B � zg
RSz�S� � fm � RS�S� j �m� � RSz�ES� �m

�jP������PK�B �mg
RSz�LSi� � fmi � RS�LSi� j mijH������HK�B � zg

From the de�nition� it follows that� RS�S� �
U
z�RS�BS�RSz�S�� RS�ES� �

U
z�RS�BS�RSz�ES�� and

RS�LSi� �
U
z�RS�BS�RSz�LSi� �i � 
� � � � �K�� where symbol � denotes the disjoint union of sets�

Remember that� by Proposition �� reachability sets of the low level systems and of the basic skeleton
are �nite�
The following result essentially states that each reachable marking of a SAM can be expressed as a

composition of conveniently selected markings of the low level systems�

Theorem �� Let S � hP� � � � � � PK �B� T� � � � � � TK �Pre�Post�m�i be a SAM� LSi �i � 
� � � � �K�
its low level systems� and BS its basic skeleton� For each z � RS�BS�� let

RPSz�S� � fzjBg 
RSz�LS��jP� 
 � � � 
RSz�LSK�jPK

and
RPS�S� �

�
z�RS�BS�

RPSz�S�

then�
RS�S� � RPS�S� �

�
z�RS�BS�

RPSz�S� �
�

Moreover�
RSz�S� � RPSz�S�

Proof�

First� we prove the inclusion�
Let m � RSz�S�� then there exists a sequence � such that m�

�
��m� By Property 
�� there exist

sequences �i with �i � �jTi�TI �i � 
� � � � �K� and �BS with �BS � �jTI �rable in LSi �i � 
� � � � �K�
and in BS� respectively� mi

�
�i��mi �i � 
� � � � �K� and z�

�BS��z� where mi
� �i � 
� � � � �K� and z� denote

the initial markings of LSi �i � 
� � � � �K� and BS� respectively�
Then� mijH������HK�B � z� thus mi � RSz�LSi�� i � 
� � � � �K �since mi

�jH������HK�B � z�� �ijTI �
�BS � and H� � � � � �HK �B � �TI � TI���
From analogous arguments� zjB �mjB �because z�jB �m�jB � �jTI � �BS � and B � �TI �TI���
Then� m � �zjB �m�jP� � � � � �mK jPK �� because m�jPi � mi

�jPi � �jTi � �ijTi � and Pi � �Ti � Ti
��

i � 
� � � � �K�
Now� we prove by contradiction that the union is disjoint�
Assume that there exist two di�erent states z� z� � RS�BS� such that� �zjB �m�jP� � � � � �mK jPK � �

�z�jB �m�
�jP� � � � � �m

�
K jPK �� with mi � RSz�LSi�� m

�
i � RSz��LSi� �i � 
� � � � �K��

Then� zjB � z�jB �obvious��mijH������HK�B � z �by de�nition of RSz�LSi�� andm
�
ijH������HK�B � z�

�by de�nition of RSz��LSi���
Since mijPi � m�

ijPi �obvious� and places Hi are implicit in LSi� mijHi
� m�

ijHi
� Therefore� zjHi

�
z�jHi

� i � 
� � � � �K�
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RS of S

v� a�� b�� c�
v� a�� b�� c�
v� a�� b�� c�
v	 a�� b�� c�
v
 a�� c	
v� a�� b�� c�
v� a�� b�� c�
v
 a�� c�
v� a�� c�
v�� a�� c	
v�� a�� c�
v�� a�� c�
v�� a�� c�

RS of S

v�	 a�� c�� b�
v�
 a�� c�
v�� a�� c�� b�
v�� a�� b�� c�
v�
 a�� b�� c�
v�� a�� b�� c�
v�� a�� b�� c�
v�� a�� c�
v�� a�� c�
v�� a�� c�
v�	 a�� c�
v�
 a�� c�
v�� a�� c�

Table 
� RS of the SAM of Figure ��

Then� z � z� and the result follows� �

Observe that� by de�nition� the RPS of a SAM with K modules is the Cartesian product of K  

terms� since the bu�ers contribution is an isolated term �zjB�� Actually this term can be removed from
the formula by simply taking the bu�er contribution out of any LSi system� by writing RSz�LSi�jPi�B �
Concerning the example� Table 
 lists the reachability set of the SAM of Figure �� that consists of 
�
states� vi� Table 
 lists instead the reachability sets of BS �zi�� LS� �xj�� and LS� �yk�� respectively�
For each state of LS� �LS�� we have indicated the partition RSz�LS�� �RSz�LS��� to which the state
belongs �third column�� The elements of the partition are identi�ed by the corresponding high level
marking in BS� As proved above

RS�S� � RPS�S� �
�

z�RS�BS�

fzjBg 
RSz�LS��jP� 
RSz�LS��jP�

and in this case we actually have an equality� As an example consider the case of z�� then the cross
product of RSz��LS�� � fx��x�g �markings of LS�� and RSz��LS�� � fy��y��y�g �markings of LS��
produces the states of RPS� v��v��v��v	�v�� and v��
It is important to remember that in general RPS�S� 
� RS�S�� The live and bounded PN system of

Figure � is a case in which the inclusion is strict� Consider its SAM view where bi �i � 
� � � � � �� are
bu�ers� interface transitions are labeled with TI� and there are three modules� the �rst one contains
only TI�� the second is the subnet generated by places starting with letter a� and the third is generated
by places labeled with c� Places z
� z
 are the implicit places added to de�ne the extended system�
Reachable states corresponding to the high level state 
z�� z�� are� 
z�� z�� a�� a�� c�� c��� 
z�� z�� a��
a�� c�� c��� 
z�� z�� a�� a�� c�� c��� 
z�� z�� a�� a�� c�� c��� 
z�� z�� a�� a�� c�� c��� 
z�� z�� a�� a�� c�� c���

z�� z�� a�� a�� c�� c��� and 
z�� z�� a�� a�� c�� c��� But the cross product of 
z�� z�� a�� a�� �reachable in
LS�� and 
z�� z�� c�� c�� �reachable in LS�� generates 
z�� z�� a�� a�� c�� c��� that belongs to RPS but
is non�reachable�
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RS of BS

z� A��� C��� b�
z� A��� C��
z� A��� C��� b�
z	 A��� C��

RS of LS�

x� a�� b�� C��� A�� z�
x� a�� b�� C��� A�� z�
x� a�� C��� A�� z�
x	 a�� C��� A�� z�
x
 a�� b�� C��� A�� z�
x� a�� b�� C��� A�� z�
x� a�� C��� A�� z	
x
 a�� C��� A�� z	

RS of LS�

y� A��� b�� c�� C�� z�
y� A��� b�� c�� C�� z�
y� A��� b�� c�� C�� z�
y	 A��� c	� C�� z�
y
 A��� c�� C�� z�
y� A��� c�� C�� z�
y� A��� c�� C�� z�
y
 A��� b�� c�� C�� z�
y� A��� b�� c�� C�� z�
y�� A��� b�� c�� C�� z�
y�� A��� c�� C�� z	
y�� A��� c�� C�� z	
y�� A��� c�� C�� z	

Table 
� RS�s of the SAM of Figures ��

z2

c3

c1

b2

a2

a4

a3

a1

b1

c4

c2

b4b3

z1 T4T3T2T1

TI5

TI4

TI3

TI2

TI1

Figure �� A SAM with RPS 
� RS�
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� The structured solution of SAM


�� Construction of the in�nitesimal generator

Given an in�nitesimal generator� a rate matrix can be obtained by simply disregarding diagonal ele�
ments� The use of the rate matrix R instead of the in�nitesimal generator Q allows for a simpler
tensorial expression� as pointed out in numerous papers 	
�� 
�� at the cost of either computing the
diagonal elements on the �y� or of explicitly storing the diagonal� In this section we de�ne the rate
matrix of a stochastic SAM in terms of matrices derived from the rate matrix of the LSi systems�
Let Q be the in�nitesimal generator of a stochastic SAM� We can rewrite Q as

Q � R�� �
�

where � is a diagonal matrix and �	i� i� �
P

k ��iQ	i� k�� The same de�nition holds for the LSi

components�
Qi � Ri ��i

If states are ordered according to the high level state z� then matrices Q and R �respectively�
Qi and Ri � can be described in terms of blocks �z� z

��� of size jRSz�S�j � jRSz��S�j �respectively�
jRSz�LSi�j � jRSz��LSi�j�� We shall indicate them with Q�z� z�� and R�z� z�� �Qi�z� z

�� and Ri�z� z
���

respectively��
Diagonal blocks Ri�z� z� have non null entries that are due only to the �ring of transitions in Ti nTI

�internal behaviour�� while blocks Ri�z� z
�� with z 
� z� have non null entries due only to the �ring of

transitions in TI�
Let TIz�z� with z 
� z�� be the set of transitions t � TI such that z t

��z� in the basic skeleton BS�
From a matrix Ri�z� z

��� with z 
� z� we can build additional matrices Ki�t��z� z
��� for each t � TIz�z� �

according to the following de�nition�

Ki�t��z� z
��	m�m�� �

�

 if m t

��m�

� otherwise

where m and m� are two of the states with a high level view equal to z and z� respectively�
mjH������HK�B � z� and m�jH������HK�B � z��
Matrices G�z� z�� of size jRPSz�S�j � jRPSz��S�j can then be de�ned as�

G�z� z� �
LK

i��Ri�z� z�

G�z� z�� �
P

t�TI
z�z�

w�t�
NK

i��Ki�t��z� z
��

���

The following theorem states that a stochastic SAM can be solved using the G matrix de�ned by the
G�z� z� and G�z� z�� blocks of equation ����

Theorem �� Let S � hP� � � � � � PK �B� T� � � � � � TK �Pre�Post�m�� wi be an SPN with a SAM
view� Q its in�nitesimal generator� LSi its low level systems �i � 
� � � � �K�� and BS its basic skeleton�
Let R be the matrix de�ned by equation ���� and G the one de�ned by equations ���� Then�


� �z and z� � RS�BS�� R�z� z�� is a submatrix of G�z� z���

�� �m � RS�S� and �m� � RPS�S� n RS�S� � G	m�m�� � ��
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Proof�

Since S and ES have the same behaviour and the same set of states� for notational convenience we use
ES instead of S� If m is a state of RS�ES� then� by Theorem 

� m can be rewritten in terms of the
bu�ers state and of the LSi states mi as

m � zjB �m�jP��H�
� � � � �mKjPK�HK

For the rest of the proof we shall rewrite a generic marking m as

m � l�� � � � � lK �b�H

where li �mjPi � b � zjB � and H � zjH������HK
�

We �rst prove that�

� m�m� � RS�ES� � R	m�m�� � � �� G	m�m�� � �

�since from m and m� the high level states z and z� are uniquely determined� we usually omit the
speci�cation of z and z���
Case z � z�� if the high level view is the same� then the change of state from m to m� can only be
due to internal transitions �i�e�� not belonging to TI�� thus belonging to a single module Ni� But� by
de�nition of

L
� G�z� z� expresses the independent composition of the stochastic processes represented

by the Ri�z� z�� which is exactly the behaviour of LSi system due to transitions local to Ni �transitions
belonging to Ti n TI��
Case z 
� z�� if the high level view is di�erent� the change of state from m to m� can only be due to a
transition in TI� Let t be such transition and assume� for the time being� that there is only one� so that
� � w�t�� If t is a transition in the interface� then its enabling depends on the marking of the bu�er
places� and on the places of a single module�
If t is enabled in m� then t is enabled in each �li�b�H� state of the K LSi systems� and in each

LSi system produces a change of state li�b�H
t

�� l�i�b
��H� By de�nition of Ki�t��z� z

��� we have
that �i�Ki�t��z� z

��	mi�b�H� � 
� and by de�nition of
N
there is a 
 in the corresponding entry ofNK

i��Ki�t��z� z
��� and therefore a value of w�t� in the G�z� z�� matrix�

In the expression of G�z� z�� the case in which more than one transition realizes the same change of
state is accounted for by the summation over all transitions in TIz�z� �

We now prove the second part of the theorem� that can be rewritten in terms of ES as�

�m � RS�ES���m� � RPS�S� n RS�ES� � G	m�m�� � �

As in the previous case� from m and m� the high level states z and z� are uniquely determined� and
we consider for m and m� the same decomposition in terms of modules� bu�ers� and implicit places as
before�
The proof is by contradiction assuming that G	m�m�� 
� �� It can be rewritten as�

G	�l�� � � � � lK �b�H�� �l
�
�� � � � � l

�
K �b

��H��� 
� ��
Case z � z�� by de�nition of

L
� G	m�m�� 
� � implies that there exists exactly one index i such that

Ri�z� z�	�li�b�H�� �l
�
i�b�H�� 
� �� and this change of state can be due only to the li portion of the state

�since the high level view z does not change�� Therefore� there must be a transition t � Ti n TI that
is enabled in state �li�b�H� of LSi� but then t is enabled also in state m � �l�� � � � � lK �b�H�� and its
�ring producesm� � �l�� � � � � l

�
i� � � � � lK �b�H�� thus making m

� is reachable in ES� which contradicts the
hypothesis�







Case z 
� z�� by de�nition of
N
� G	m�m�� 
� � implies that there exists a t � TI such that� for all

indices i� Ki�t�	�li�b�H�� �l
�
i�b

��H��� � 
� therefore t is enabled in state m of ES� and its �ring produces
state �l��� � � � � l

�
K �b

��H��� thus making m� reachable in ES� and therefore in S� which contradicts the
hypothesis� �

As a consequence of the theorem the steady state distribution of a stochastic SAM can be computed
using the G matrix given in equation ���� Indeed� as for Superposed GSPN 	

�� if we apply an iterative
solution method for � �G � �� and if the initial probability vector assigns a non�null probability only
to reachable states �for example by assigning a value of 
 to the initial marking�� then by the second
item of the above theorem a non�null probability is never assigned to a non reachable state�
Coming back to the example in Figure �� we can order states in RS�S� according to their projection

over BS� so that R can be written in block structured form as�

R �

�
BBBBBB�

R�z�� z�� R�z�� z�� R�z�� z�� R�z�� z��

R�z�� z�� R�z�� z�� R�z�� z�� R�z�� z��

R�z�� z�� R�z�� z�� R�z�� z�� R�z�� z��

R�z�� z�� R�z�� z�� R�z�� z�� R�z�� z��

�
CCCCCCA

By de�nition of SAM only interface transitions contribute toR�zi� zj�� when i 
� j� while only internal
transitions contribute to R�zi� zi�� Let us consider in more detail blocks R�z�� z�� and R�z�� z��� we
explicitly write in the matrix the state identi�er for rows and columns as pairs of states of LS� and
LS�� For example the second row corresponds to state v� of RS�S�� which is obtained as composition
of state x� of LS� and state y� of LS��
R�z�� z�� �

x�� x�� x�� x�� x�� x��

y� y� y� y� y� y�

x��y� w�T��	 w�T��	 w�Ta�	

x��y� w�Ta�	

x��y� w�Ta�	

x��y� w�T��	 w�T��	

x��y�

x��y�

R�z�� z�� �
x�� x�� x�� x�� x�� x�� x�� x��

y� y� y� y� y� y� y� y�

x��y�

x��y� w�I�	

x��y� w�I�	

x��y�

x��y� w�I�	

x��y� w�I�	







The only non null element of R��z�� z�� isR��z�� z��	x��x�� � w�Ta��� while the only non null elements
of R��z�� z�� are� R��z�� z��	y��y�� � w�T��� and R��z�� z��	y��y�� � w�T����
The change of state from z� to z� can be due only to transition I� and I�� we therefore build matrices

K��I���z�� z��� K��I���z�� z��� K��I���z�� z��� and K��I���z�� z��� K��I���z�� z�� and K��I���z�� z��
are identity matrices� K��I���z�� z��	y��y
� � 
 and all other elements of K��I���z�� z�� are null�
K��I���z�� z��	y��y	� � 
 and all other elements of K��I���z�� z�� are null�
According to equations ��� we get�

G�z�� z�� � R��z�� z��	R��z�� z��
G�z�� z�� � w�I���K��I���z�� z���K��I���z�� z��� 

w�I���K��I���z�� z���K��I���z�� z���

Since RPS�S� � RS�S�� then G�z�� z�� � R�z�� z�� and G�z�� z�� � R�z�� z���


�� Ergodicity

When the rate matrix expression is used to compute the steady�state probability distribution of mark�
ings� the associated CTMC should be marking ergodic in order for the computation to make sense� In
the case of bounded PN systems �boundedness ensures �niteness of the CTMC�� ergodicity of the mark�
ing process is equivalent to the existence of a unique ergodic class in the associated CTMC� in other
words� the RG of the PN system must have a home state� that is to say only one sink �non�transient�
strongly connected component with more than one state� Therefore� ergodicity testing can be achieved
by implementing a computation of strongly connected components of the RG and a test for the existence
of a single sink with several nodes among these components�
In 	
��� a depth��rst search exploration of the RG has been proposed that uses the structured repre�

sentation of a supermatrix of the in�nitesimal generator of SGSPN�s to avoid storing the graph matrix
of the whole RG� In a similar way� Tarjan�s algorithm 	

� for the computation of the strongly connected
components of a directed graph �based also in a depth��rst traversal of the graph� can be implemented
making use of the Kronecker expression of the blocks of the �supermatrix of the� rate matrix de�ned by
equation ���� The computational cost of this algorithm is of the order of the iterations needed for the
iterative solution of � �G � �� therefore is not signi�cant with respect to the complete solution cost�
The particular case of DSSP is specially interesting since ergodicity can be checked in a very e�cient

�alternative� way using only the incidence matrix of the net and the initial marking� this is a check that
can� and should� be done before starting the whole solution process� The testing procedure presented in
detail in 	��� consists of checking �rst structural boundedness� then checking a characterization for struc�
tural liveness and structural boundedness �rank theorem 	����� and �nally checking deadlock�freeness�
If all these conditions are satis�ed� then the system is bounded� live� and it has a home state� thus� the
associated CTMC is ergodic�


�� Hints about complexity

What is the complexity of the proposed approach with respect to the explicit generation and storage
of the in�nitesimal generator# There are clear limit cases� for example if all transitions are interface
transitions �the system is tightly coupled�� then S � BS � LSi� and it makes no sense to apply this
method�
The computational cost to solve a SAM is the sum of the cost to build the RG� the cost to build

the expression of the in�nitesimal generator of the associated CTMC� and the cost of solving the
characteristic equation � � Q � �� The proposed method has instead a cost that is due to� the


�



construction of the K 
 components� the construction of the RGi of each component� the construction
of the Ri�z� z

�� andKi�t��z� z
�� matrices �that may include a re�ordering of the states in the reachability

sets�� the solution of the characteristic equation � �G � �� when G is expressed as in equation ���� It
is clear that the advantages�disadvantages of the method depend on the relative size of the reachability
graphs of S� BS� and LSi�
The storage cost of the classical solution method is due to the storage of vector � of size jRS�S�j�

and of matrix Q� Usually Q is stored in sparse form� so that� disregarding the diagonal� its occupation
is of the same order as the number of arcs in RG�S�� The storage cost of the proposed approach is
instead that of a vector � of size jRPS�S�j� and of a number of matrices� all stored in sparse form� the
total number of non�null elements� disregarding the diagonal� is of the same order as the sum of the
number of arcs in the K reachability graphs RGi�LSi�� If a bit vector of size jRPS�S�j can be stored�
it is actually possible to use a vector � of size jRS�S�j 	
��� as explained in Section 
�
�
In summary� the di�erence between the number of arcs in RG�S� and the sum of the number of

arcs in the K RGi�LSi� is what makes the method applicable in cases in which a direct solution is not
possible� due to the lack of memory to store Q�

� Examples

We present three examples of the application of the technique for SAM� For each example we show the
sizes of the reachability graphs of the basic skeleton and of the low level systems� and the size of RPS
and RS� These results have been validated against the results of GreatSPN 	
��� when feasible� and
with the results of SupGSPN� a tool for the analysis of SGSPN system ideated and implemented by
Kemper 	
��� We should point out that SupGSPN was ideated for the solution� using a �at approach�
of SGSPN� but it can indeed be applied to any type of SPN for which a partition of the set of places is
given� if it is possible to generate a �nite state space for the components identi�ed by the partition� Of
course we should not expect that SupGSPN performs at his best here� it was used only to show that it
is worth to have a two level technique for SAM� We have run SupGSPN with the option that uses the
computation of P �invariants to bound the places� so as to be able to produce a �nite state space also
for components that will not produce a �nite state space when considered in isolation�
As shall be shown by the examples� the SAM approach performs better when the BS is really an

abstraction of the real system �that is to say when a non trivial number of states are mapped into the
same macro state�� and it may be convenient to have more small components than few big ones� Quite
the opposite� as it may be expected� is true for the tool based on SGSPN� since a large number of
modules tends to increase the di�erence between RS and PS�
For the technique presented in this paper we have implemented only the generation of the state

space� according to the formula in equation �
�� In our prototype implementation the subsystems are
generated manually �which is actually straightforward with a graphical tool like GreatSPN�� Then� the
solution program builds the tangible reachability graphs of the BS and LSi systems using GreatSPN
�modi�ed so that the bu�er places and implicit places are �rst in the state de�nition and are in the
same order in the di�erent low level systems as in the basic skeleton�� The states of each component
are sorted in lexicographical order using the sort utility of Unix� and the global state space is built at
the cost of an ordered merge of the state spaces�
In all tables reported the size of RS is computed either directly� using GreatSPN� or using the bit

vector technique of SupGSPN�
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m�c���
 m�c�� � 
 m�c�� � �

BS 
� �� 
��
LS� 
�� ����� 
������
LS� 
�� ����� 
������
LS� 

 
�� 
���

RPS ���
� ����
���
 ��
�
����
�
RS ���
� ����
���
 no memory

PS�case A� 

��
����� no memory no memory
PS�case B� � 
���������� no memory

Table �� SAM technique� State spaces computed for the model of Figure ��

The �rst example is shown in Figure �� and we consider a SAM view composed of three modules�
interconnected through � bu�ers� Places b� to b� are bu�ers� while tags starting with a� c� d identify
the places of the �rst� second and third module respectively� All modules have a single input interface
transition and a single output interface transition� thus it is straightforward to compute implicit places�
since there is a single implicit place per module� as explained in Section ���� Interface transitions are
easily identi�ed� since their names start with TI� only the labels of interface transitions are shown in
the �gure�
From this SAM we have built three low level systems LS�� LS�� LS�� and one basic skeleton BS�

Table � shows the sizes of the state space of these subsystems� as well as the size of RPS and RS of
the complete system� for an initial marking with three tokens in a� and d�� and corresponding implicit
places� and of 
� 
� and � tokens in place c��
A straightforward comparison with SupGSPN may not be very signi�cant� since the division of the

SAM into modules may not be the best one for SGSPN� We have tried two di�erent decompositions
with SupGSPN� three components identi�ed by places starting with a or b for the �rst component� c
for the second� and d for the third �case A�� and two components identi�ed by places starting with a
or b or d for the �rst component� and c for the second �case B��
The size of the product state space is also shown in Table �� where � means that the experiment

was not performed� For the A case it was not possible to increase to 
 the number of tokens in c�� since
after the generation of the state spaces of the three components� of size 
���
� ��
�
� and ��
�
� the tool
stops� which is not surprising considering that� according to the size of the components� the cardinality
of PS is about �� � 
���
The decomposition of case B is indeed more favourable� since we were able to solve also them�c�� � 


model�

The second example is shown in Figure 
�� and we consider a SAM view composed of three modules�
interconnected through � bu�ers� Places b� to b� are bu�ers� while places whose tag starts with a� c� d
identify the �rst� second and third modules respectively� Places that start with IP are the implicit places
computed by Algorithm � �Section ����� Due to the strong interconnections between the components
and the bu�er places� and to the high number of interface transitions �

�� the algorithm produces 
�
implicit places� moreover � of these places are exact replica of places of the net� therefore we should
not expect to have very �abstract� macro states� and� consequently� the advantage of the structured
approach in this case is expected to be rather limited�
For this SAM four components are built� LS� �places with tag starting with a�� LS� �tags starting


�



IP10

IP14

IP13
c3

IP12

c7

c4

c5c6

c1

c2

d6

d5

d4

d3d2

d1

a6

a5

a4

a3 a2

a1

b1

IP1

IP2

IP3

IP4

IP5

IP6

IP7

IP8

b3
b2 b4 b5

IP9
IP11

TI12

TI11

TI10

TI9

TI8

TI7

TI6

TI5

TI4

TI3

TI2

TI1

Figure 
�� The second example�

with c�� LS� �tags starting with d�� and one basic skeleton BS� Table � shows the sizes of the state
space of these subsystems� as well as the size of RPS and RS of the complete system� for eight di�erent
con�gurations of the initial marking� The �rst four columns consider initial markings with a single
token in the �rst and third component� m�b�� � 
� m�b�� �m�b�� � 
� and a varying number of tokens
in the second component� as shown in the table� the �fth column has a single token in the �rst and third
component� six tokens in the second component� and m�b�� � 
� m�b�� �m�b�� ��� the sixth column
only di�ers from the previous one for having m�b�� � 
� the seventh column represents a con�guration
in which the �rst and third components have two tokens each� the second has six� and m�b�� � 
�
m�b�� �m�b�� ��� the last column is for the case of one token in the �rst and third component� two
in the second� and m�b�� �m�b�� � ��
Using SupGSPN with only two components �we have put bu�er b�� the �rst� and third component

together�� for the same initial marking as in the fourth column of Table �� we �nd a size for the two
components of �
 and ������ and PS � 
��������� while the size of RS is ����
�� We also run the
case reported in the last column of Table �� getting �
 states for the �rst component� ������ for the
second� and a PS of �������
�� against an RS of ����
�� It is interesting to note that� by adding to the
net the two implicit places IP� and IP	� and considering them as part of the second component �thus
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m�c��
 m�c��
 m�c��� m�c��� m�b�� � � m�b�� � 
 m�a� � 
 m�b�� � �
m�b��� � m�d�� 
 m�b��� �

BS ��� ��� 
�
�� 
��
� ���
� ���

 ������ ��

�
LS� �
� 
���� 
���� ���
� ����� 
����� ����

 ���


LS� �
� 
�
�� ����� 
����� �����
 ������ ������
 
�����
LS� �
� 
���� 
���� ���
� ����� 
����� ����

 ���


RPS 
���� ����� 
����� ����
� 
�
���� 
�����
 
���
�
�� ����
�
RS 
���� ����� 
����� ����
� 
�
���� 
�����
 
���
�
�� ����
�

Table �� SAM technique� State spaces computed for the model of Figure 
��

m�c���
 m�c�� � 
 m�c�� � � m�c�� � � m�c�� � �
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���� ���
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�
��
LS� 
�� 
���
 ����� 

���� ������
LS� �� 
���� ���
� ������ 
�
��


LS� �
� 
��
� 
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Table �� SAM technique� State spaces computed for the model of Figure 

�

making the second component a strongly connected graph�� we have got only ��
�� states in the second
component� for a PS of �������� moreover the time of the computation decreased of almost one order
of magnitude�

The third example is depicted in Figure 

� were we have � components� again identi�ed by the
�rst letter of the tag of the places� The results are presented in Table �� The �no memory� of the last
column is due to GreatSPN running out of memory for this initial marking� The computation of the
reachable states took some a few minutes of user time for the four tokens case� and half an hour for �ve
tokens� Considering the size of LS� in the last column� we did not experiment with a larger number of
tokens�
On this example we have also tried a di�erent decomposition� by considering the subnets a� c� and f

as a single module� with b� and b� as bu�ers� For this decomposition we only need two implicit places�
one from TI� to TI�� and the other from TI� to TI�� The size of the BS� LS� and LS� state spaces are
shown in Table �� Observe that� due to the large size of LS�� we could not solve the system for m�c��
� ��
We have also run SupGSPN on this example� with the same two decompositions as before� The

results are reported in Tables � ��ve components case�� and � �two components case��
The meaning of �no memory� on Table � is that� for m�c�� � �� the size of PS is too large� so that

not even a bit�vector of that size could be allocated�
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� The third example�
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 �decomposition into two
components��
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Table �� State spaces computed for the model of Figure 

� using SupGSPN� with a decomposition into
�ve components�
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Table �� State spaces computed for the model of Figure 

� using SupGSPN� with a decomposition into
two components�

	 Conclusions

A technique for computing exact performance indices of P�T systems �observed as structured with
a SAM view� has been presented� It uses linear algebra�based structure theory for producing net
decompositions and tensor algebra to express and solve the stochastic part� The decomposition phase
builds a set of components� low level systems �in which everything is abstracted except one of the
modules� and an abstract representation of the full system� called the basic skeleton� Basic skeleton and
low level systems provide a two levels description of the model� leading to a technique that reduces the
�spurious� markings that can appear in the product space PS �Cartesian product of the state spaces
of the components�� through the construction of the restricted product space RPS �union of Cartesian
products of state subspaces��
In a way� we can consider the technique based on the basic skeleton as a method to use high level

information to cut from PS�S� states that are not reachable� and consequently� from the G matrix�
rows and columns that correspond to non�reachable states� The price we have to pay is a more complex
expression for the supermatrix of the in�nitesimal generator� and therefore a more complex storage
scheme for the matrices� but the order of complexity of the solution does not change�
The technique does not guarantee that RPS � RS� but for live and bounded nets we have encountered

a large number of cases in which RPS � RS� Moreover� for the �at �i�e�� single level� solution method
the ratio jPSj�jRSj tends to increase as we increase the number of modules� what limits in practice
the e�ciency of the divide and conquer strategy underlying the tensorial approach� For the two levels
method� the decomposition in a larger number of modules appears to be a better strategy� assuming
that the modules are anyhow �big enough� to exhibit some kind of local behaviour� In practice� and
as a rule of thumb for our approach� the system should be decomposed in several �easily tractable�
modules with the same order of magnitude for their respective state spaces� Of course� if jRSj is so large


�



that no steady�state probability vector can be allocated� then even this approach remains infeasible�
Some numerical examples have illustrated the technique and gave informal insight on the computa�

tional behaviour of the approach�
Single and two levels methods are orthogonal to net classes or views� indeed we have shown on a

small example �section 
��� how the two levels method can be applied to SGSPN� On the other side� a
�at solution for SAM can be trivially derived by considering as components of the solution only the set
of low level systems LSi� synchronized over interface transitions�
The reader should notice that we have considered stochastic PN�s without immediate transitions� a

possible way to consider the full GSPN class is to extend the approach in 	
�� �that preserves vanishing
states in the solution process�� to the two levels view� Another technique could be that of removing
immediate transitions with the technique in 	

�� but this reduction process can change the input and
output arcs of bu�ers� so that for the resulting SPN it may be necessary to de�ne a di�erent SAM view�
In this paper we only considered single server transitions� but marking�dependent policies can be con�

sidered� as explained in 	�� 
��� A certain attention should be paid when de�ning ES� and� consequently�
the low level systems� the addition of implicit places may change the enabling degree of transitions� and
multiple and in�nite server transitions in the original model may have to be translated into marking
dependent ones in the ES system�
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A Tensor operators

Kronecker operators are de�ned in terms of rectangular matrices� but for the sake of this presentation
we use square matrices for the Kronecker sum� and rectangular ones for the Kronecker product�
In the following we shall consider matrices on real values�

De�nition �� Let A be a n
m matrix� and B be a p
 q one� C is the tensor �Kronecker� product
of A and B and we write C � A�B i� C is a n � p
m � q matrix de�ned by�

C � fc���� � c���� � ai�j�bi�j� with $� � �i�� i��� $	 � �j�� j��g

As a simple example consider the tensor product of a 

 
 matrix� with a 

 �� We have

A �

�
a�� a��
a�� a��

	
B �

�
b�� b�� b��
b�� b�� b��

	

C � A�B �

�
BBB�

a��b�� a��b�� a��b�� a��b�� a��b�� a��b��
a��b�� a��b�� a��b�� a��b�� a��b�� a��b��
a��b�� a��b�� a��b�� a��b�� a��b�� a��b��
a��b�� a��b�� a��b�� a��b�� a��b�� a��b��

�
CCCA

In case of square matrices A and B can be interpreted as the matrices of transition probabilities of
two discrete time Markov chains� it is immediate to recognize �see Davio in 	
��� that C is the transition
probabilities matrix of the process obtained as independent composition of the two original processes�
Let us now de�ne the Kronecker �or tensor� sum of two square matrices

��



De�nition �	 Let A be a n
 n matrix� and B be a p
 p one� D is the tensor �Kronecker� sum of A
and B and we write D � A	B i� D is a n � p
 n � p matrix de�ned by�

D � A	B � A� Idp  Idn �B

where Idk is the k 
 k identity matrix�

Let us consider again the two matrices A and B� where A is the same as before� and B is the same
matrix as before� but for the last column� which is missing� The computation of their tensor �Kronecker�
sum is�

A� Id� �

�
BBB�

a�� � a�� �
� a�� � a��
a�� � a�� �
� a�� � a��

�
CCCA

Id� �B �

�
BBB�

b�� b�� � �
b�� b�� � �

� � b�� b��
� � b�� b��

�
CCCA

D �

�
BBB�

a��  b�� b�� a�� �
b�� a��  b�� � a��
a�� � a��  b�� b��
� a�� b�� a��  b��

�
CCCA

Again if we considerA and B as the in�nitesimal generator of two continuous time Markovian processes�
then D is the in�nitesimal generator of the process obtained by independent composition of the two
original one� It can be observed that in D all transition rates among states that di�er by more than a
single component are set equal to zero� as it is the case when we are in a continuous�time environment�
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