
Algorithms on Strings, Trees, and Sequences
Dan Gusfield

University of California, Davis
Cambridge University Press

1997

Linear-Time Construction of Suffix Trees
We will present two methods for constructing suffix trees in detail, Ukkonen’s method
and Weiner’s method. Weiner was the first to show that suffix trees can be built in
linear time, and his method is presented both for its historical importance and for some
different technical ideas that it contains. However, lJkkonen’s method is equally fast
and uses far less space (i.e., memory) in practice than Weiner’s method - Hence
Ukkonen is the method of choice for most problems requiring the construction of a
suffix tree. We also believe that Ukkonen’s method is easier to understand. Therefore, it
will be presented first A reader who wishes to study only one method is advised to
concentrate on it. However, our development of Weiner’s method does not depend on
understanding Ukkonen’s algorithm, and the two algorithms can be read independently
(with one small shared section noted in the description of Weiner’s method).

6.1. Ukkonen’s linear-time suffix tree algorithm

Esko Ukkonen [438] devised a linear-time algorithm for constricting a suffix tree that
may be the conceptually easiest linear-time construction algorithm. This algorithm has
a space-saving improvement over Weiner’s algorithm (which was achieved first m the
development of McCreight’s algorithm), and it has a certain “on-line” property that
may be useful in some situations. We will describe that on-line property but emphasize
that the main virtue of Ukkonen’s algorithm is the simplicity of its description, proof,
and time analysis. The simplicity comes because the algorithm can he developed as a
simple but inefficient method, followed by “common-Sense” implementation tricks that
establish a better worst-case running time. We believe that this less direct exposition is
more understandable, as each step is simple to grasp.

6.1.1. Implicit suffix trees

Ukkonen’s algorithm constricts a sequence of implicit suffix trees, the last of which is
converted to a true suffix tree of the string S.

Definition An implicit suffix tree for string S is a tree obtained from the suffix tree
for S$ by removing every copy of the terminal symbol $ from the edge labels of the
tree, then removing any edge that has no label, and then removing any node that
does not have at least two children.

An implicit suffix tree for a prefix S[l..i] of S is similarly defined by taking the
suffix tree for S[1..i]$ and deleting $ symbols, edges, and nodes as above

Definition We denote the implicit suffix tree of the string S[1..i] by I i for i from 1 to
m.

The implicit suffix tree for any string S will have fewer leaves than the suffix tree for
string S$ if and only if at least one of the suffixes of S is a prefix of another suffix.

Figure 6.1: Suffix tree for string xabxa$.

Figure 6.2: Implicit suffix tree for string xabxa.

The terminal symbol $ was added to the end of S precisely to avoid this situation.
However, if S ends with a character that appears nowhere else in S, then the implicit
suffix tree of S will have a leaf for each suffix and will hence be a true suffix tree.

As an example, consider the suffix tree for sting xabxa$ shown in Figure 6.1. Suffix
xa is a prefix of suffix xabxa, and similarly the string a is a prefix of abxa. Therefore, in
the suffix tree for xabxa the edges leading to leaves 4 and 5 are labeled only with $.

Removing those edges creates two nodes with only one child each and these are then
removed as well. The resulting implicit suffix tree for xabxa is shown in Figure 6.2. As
another example, Figure 5.1 on page 91 shows a tree built for the string xabxac. Since
character c appears only at the end of the string, the tree in that figure is both a suffix
tree and an implicit suffix tree for the string.

Even though an implicit suffix tree may not have a leaf for each suffix, it does encode
all the suffixes of S— each suffix is spelled out by the characters on some path from the
root of the implicit suffix tree. However, if the path does not end at a leaf there will be
no marker to indicate the path’s end. Thus implicit suffix trees, on their own, are
somewhat less informative than true suffix trees. We will use them just as a tool in
Ukkonen’s algorithm to finally obtain the true suffix tree for S.

6.1.2. Ukkonen’s algorithm at a high level

Ukkonen’s algorithm constructs an implicit suffix tree Ii for each prefix S[1..i] of S,
tiling from I1, and incrementing i by one until Im. is built. The true suffix tree for S is

x a

$

x a b x ax a

3

2

1

x

a

$

b

$

a

x

b

a

b x a $

3

6

5
2

1

x

a

$

b

$
$

a

x

b

a

constructed from Im and the time for the entire algorithm is O(m). We will
explainUkkonen’s algorithm by first presenting an O(m3)-time method to build all trees
Ii and then optimizing its implementation to obtain the claimed time bound.

High-level description of Ukkonen’s algorithm

Ukkonen’s algorithm is divided into m phases. In phase i + 1, tree Ii+1 is constructed
from Ii. Each phase i +1 is further divided into i +1 extensions, one for each of the i +1
suffixes of S[1..i +1]. In extension j of phase i + 1,the algorithm first finds the end of
the path from the root labeled with substring S[j..i]. It then extends the substring by
adding the character S(i + 1) to its end, unless S(i + I) already appears there. So in
phase i + I, string S[1..i + 1] is first put in the tree, followed by strings S[2..i +1], S[3..i
+1],… (in extensions 1,2,3, . . - , respectively). Extension i + 1 of phase i + 1 extends the
empty suffix of S[1..i], that is, it puts the single character string S(i + 1) into the tree
(unless it is already there). Tree Ii is just the single edge labeled by character S(1).
Procedurally, the algorithm is as follows:

High-level Ukkonen algorithm
Construct tree Ii.
For i from 1 to m — 1 do
begin [phase i + 1}

For j from 1 to i + 1
begin {extension j}
Find the end of the path from the root labeled S[j..i] in the
current tree, If needed, extend that path by adding character S[i + 1),
thus assuring that string S[j. .i + 1] is in the tree.
end;

end;

Suffix extension rules

To turn this high-level description into an algorithm, we must specify exactly how to
perform a suffix extension. Let S[j..il = β be a suffix of S[1..i]. In extension j, when the
algorithm finds the end of β in the current tree, it extends β to be sure the suffix
βS(i + 1) is in the tree. It does this according to one of the following three rules:

Rule 1 In the current tree, path β ends at a leaf. That is, the path from the root labeled β
extends to the end of some leaf edge. To update the tree, character S(i + 1) is added to
the end of the label on that leaf edge.

Rule 2 No path from the end of string β starts with character S(i + 1), but at least one
labeled path continues from the end of β.

In this case, a new leaf edge starting from tbe end of β must be created and labeled
with character S(i + 1). A new node will also have to be created their if, β ends inside
an edge. The leaf at the end of the new leaf edge is given the number j.

Rule3 Some path from the end of string β starts with character S(i +1). In this case the
string βS(i + 1) is already in the current tree, so (remembering that in an implicit suffix
tree the end of a suffix need not be explicitly marked) we do nothing.

Figure 6.3: Implicit suffix tree for string axabx before the sixth character, b, is
added

Figure. 6.4: Extended implicit suffix tree after the addition of character b.

As an example, consider the implicit suffix tree for S = axabx shown in Figure
6.3. The first four suffixes end at leaves, but the single character suffix x ends inside
an edge. When a sixth character b is added to the string, the first four suffixes get
extended by applications of Rule 1, the fifth suffix gets extended by rule 2, and the
sixth by rule 3. The result is shown in Figure 6.4.

6.1.3. Implementation and speedup

Using the suffix extension rules given above, once the end of a suffix β of S[1..iJ has
been found in the current tree, only constant time is needed to execute the extension
rules (to ensure that suffix βS(i + 1) is in the tree). The key issue in implementing
Ukkonen’s algorithm then is how to locate the ends of all the + 1 suffixes of S(1..i).
 Naively we could find the end of any suffix β in O(|β|)time by walking from the root
of the current tree. By that approach, extension j of phase i + 1 would take O(i + 1- j)
time, II + 1 could be created from Ii in 0(i2) time, and Ii. could be created in 0(m3) time.
This algorithm may seem rather foolish since we already know a straightforward
algorithm to build a suffix tree in 0(m2) time (and another is discussed in the exercises),
but it is easier to describe Ukkonen’s 0(m) algorithm as a speedup of the 0(m3) method

1

4

2

3

b

bb

b

a

a

a x

x
x

x

x

x

b

5

1

4

2

3

b

bb

b

a

a

a x

x
x

x

x

x

b

b

b

above.
We will reduce the above 0(m3) time bound to 0(m) time with a few observations

and implementation tricks. Each trick by itself looks like a sensible heuristic to
accelerate the algorithm but acting individually these tricks do not necessarily reduce
the worst-case bound. However, taken together, they do achieve a linear worst-case
time. The most important element of the acceleration is the use of suffix links.

Suffix links: first implementation speedup

Definition Let xα denote an arbitrary string, where x denotes a single character and
α denotes a (possibly empty) substring. For an internal node ν with path-label, xα if
there is another node s(v) with path-label α, then a pointer from ν to s(v) is called a
suffix link.

We will sometimes refer to a suffix link from v to s(v) as the pair (v. s(v)). For
example, in Figure 6.1 (from page 95) let v be the node with path-label xα and let s(v)
be the node whose path-label is the single character α. Then there exists a suffix link
from node v to node s(v). In this case, is just a single character long.

As a special case, if α is empty, then the suffix link from an internal node with path-
label xα goes to the root node. The root node itself is not considered internal and has no
suffix link from it.

Although definition of suffix links does not imply that every internal node of an
implicit suffix tree has a suffix link from it, it will, in fact, have one. We actually
establish something stronger in the following lemmas and corollaries.

Lemma 6.1.1. If a new internal node v with path-label xα is added to the current tree
in extension j of some phase i + 1, then either the path labeled α already ends at an
internal node of the current tree or an internal node at the end of string α will be
created (by the extension rules) in extension j + 1 in the same phase i + 1.

PROOF A new internal node v is created in extension j (of phase i + 1) only when
extension rule 2 applies. That means that in extension j, the path labeled xα continued
with some character other than S(i + 1). say c. Thus, in extension j + 1, there is a path
labeled α in the tree and it certainly has a continuation with character c (although
possibly with other characters as well). There are then two cases to consider: Either the
path labeled α continues only with character c or it continues with some additional
character. When a is continued only by c, extension rule 2 will create a node s(v) at the
end of path α. When α is continued with two different characters, then there must
already be a node s(v) at the end of path α. The Lemma is proved in either case.

Corollary 6.1.1. In Ukkonen’s algorithm, any newly created internal node will have a
suffix link from it by the end of the next extension.

PROOF The proof is inductive and is true for tree Ii , since Ii contains no internal
nodes. Suppose the claim is true through the end of phase i, and consider a single phase
i + 1. By Lemma 6.1.1, when a new node v is created in extension j, the correct node
s(v) ending the suffix link from v will be found or created in extension j + 1. No new
internal node gets created in the last extension of a phase (the extension handling the
single character suffix S(i + 1)), so all suffix links from internal nodes created in phase
i + 1 are known by the end of the phase and tree Ii +1 has all its suffix links.

Corollary 6.1.1 is similar to Theorem 6.2.5, which will be discussed during the

treatment of Weiner’s algorithm, and states an important fact about implicit suffix trees
and ultimately about suffix trees. For emphasis, we restate the corollary in slightly
different language.

Corollary 6.1.2.. In any implicit suffix tree Ii, if internal node v has path-label xα, then
there is a node s(v) of Ii with path-label α,.

Following Corollary 61.1, all internal nodes in the changing tree will have suffix
links from them, except for the most recently added internal node, which will receive
its suffix link by the end of the next extension. We now show how suffix links are used
to speed up the implementation.

Following a trail of suffix links to build II + 1

Recall that in phase i + 1 the algorithm locates suffix S[j..i] of S[1..i] in extension j, for
j increasing from 1 to i + 1. Naively, this is accomplished by matching the string S[j..i]
along a path from the root in the current tree. Suffix links can shortcut this walk and
each extension. The first two extensions (for j = 1 and j = 2) in any phase i + I are the
easiest to describe.

The end of the full string S[j..i] must end at a leaf of Ii since S[1..j] is the longest
string represented in that tree. That makes it easy to find the end of that suffix (as the
trees are constructed, we can keep a pointer to the leaf corresponding to the current full
string S[1..i], and its suffix extension is handled by Rule I of the extension rules. So the
first extension of any phase is special and only takes constant time since the algorithm
has a pointer to the end of the current full string.

Let string S[l..i] be xα, where x is a single character and α is a (possibly empty)
substring, and let (v, 1) be the tree-edge that enters leaf 1. The algorithm next must find
the end of string S[2..i] α in the current tree derived from v. The key is that node v is
either the root or it is an interior node II. If it is the root, then to find the end of α the
algorithm just walks down the tree following the path labeled α as in the naive
algorithm. But if v is an internal node, then by Corollary 6.1.2 (since v was in II) v has
a suffix link out of it to node s(v). Further, since s(v) has a path-label that is a prefix of
string α, the end of string a must end it, the subtree of s(v). Consequently, in searching
for the end of α in the current tree, the algorithm need not walk down the entire path
from the root, but can instead begin the walk from node s(v). That is the main point of
including suffix links in the algorithm.

To describe the second extension in more detail, let γ denote the edge-label on edge
(v, 1) To find the end of α, walk up from leaf 1 to node v; follow the suffix link from v
to s(v); and walk from s(v) down the path (which may be more than a single edge)
labeled γ. The end of that path is the end of α (see Figure 6.5). At the end of path α, the
tree is updated following the suffix extension rules. This completely describes the first
two extensions of phase i + 1.

To extend any string S[j..i] to S[j..i + 1] for j > 2, repeat the same general idea:
Starting at the end of string S[j - 1 ..i] in the current tree, walk up at most one node to
either the root or to a node v that has a suffix link from it; let γ be the edge-label of that
edge; assuming v is not the root, traverse the suffix link from v to s(v); then walk down
the tree from s(v), following a path labeled γ to the end of S[j..i]; finally, extend the
suffix to S[j..i +] according to the extension rules.

There is one minor difference between extensions for j > 2 and the first two
extensions. In general, the end of S[j — 1..i] may be at a node that itself has a suffix link
from it, in which case the algorithm traverses that suffix link. Note that even when

extension rule 2 applies in extension j - I (so that the end of S[j - 1 ..i] is at a newly
created internal node w, if the parent of w is not the root, then the parent of w already
has a suffix link out of it, as guaranteed by Lemma 6.1.1. Thus in extension j the
algorithm never walks up more than one edge.

Figure 6.5: Extension j >1 in phase i + l. WaIk up at most one edge (labeled γ) from
the end of the path labeled S[j-1 ..i] to node v; then follow the suffix link to s(v); then
walk down the path specifying substring γ then apply the appropriate extension rule to
insert suffix S[I + 1].

Single extension algorithm SEA

Putting these pieces together, when implemented using suffix links, extension j > 2 of
phase i + 1 is:

Single extension algorithm

Begin

1. Find the first node v at or above the end of S[j - 1..i] that either has a suffix link
from it or is the root. This requires walking up at most one edge from the end of
S[j – 1..i] in the current tree. Let γ (possibly empty) denote the string between v and
the end of S[j — l..i].

2. If v is not the root, traverse the suffix link from v to node s(v) and then walk down
from s(v) following the path for string γ. If γ is the root, then follow the path for
S[j..i] from the root (as in the naive algorithm).

3. Using the extension rules, ensure that the string S[j..i]S(i + 1) is in the tree.
4. If a new internal node w was created in extension j - 1 (by extension rule 2), then by

Lemma 6.1.1, string α must end at node s(w), the end node for the suffix link from
w. Create the suffix link (w. s(w)) from w to s(w).

End.

Assuming the algorithm keeps a pointer to the current full string S[l..i], the first
extension of phase i + 1 need not do any up or down walking. Furthermore, the first

d

a
c

y

y

node v

node s(v)

d

b

a

b

c

j - 1

extension of phase i + 1 always applies suffix extension rule 1.

What has been achieved so far?

The use of suffix links is clearly a practical improvement over walking from the root in
each extension, as done in the naive algorithm. But does their use improve the worst-
case running time?

The answer is that as described, the use of suffix links does not yet improve the
time bound. However, here we introduce a trick that will reduce the worst-case time for
the algorithm to 0(m2). This trick will also be central in other algorithms to build and
use suffix trees.

Trick number 1: skip/count trick

In Step 2 of extension j + 1 the algorithm walks down from node s(v) along a path
labeled γ. Recall that there surely must be such a γ path from s(v). Directly
implemented, this walk along γ takes time proportional to |γ| the number of characters
on that path. But a simple trick, called the skip/count trick, will reduce the traversal
time to something proportional to the number of nodes on the path. It will then follow
that the time for all the down walks in a phase is at most 0(m).

Trick 1 Let g denote the length of γ, and recall that no two labels of edges out of s(v)
can start with the same character, so the first character of γ must appear as the first
character on exactly one edge out of s(v). Let g′ denote the number of characters on that
edge. If g′ is less than g, then the algorithm does not need to look at any more of the
characters on that edge; it simply skips to the node at the end of the edge. There it sets g
to g − g′, sets a variable h to g′ + 1, and looks over the outgoing edges to find the
correct next edge (whose first character matches character h of γ). In general, when the
algorithm identifies the next edge on the path it compares the current value of g to the
number of characters g′ on that edge. When g is at least as large as g′ the algorithm
skips to the node at the end of the edge, sets g to g − g, sets h to h + g′, and finds the
edge whose first character is character h of γ and repeats. When an edge is reached
where g is smaller than or equal to g′, then the algorithm skips to character g on the
edge and quits, assured that the γ path from s(v) ends on that edge exactly g characters
down its label. (See Figure 6.6).

Assuming simple and obvious implementation details (such as knowing the number
of characters on each edge, and being able, in constant time, to extract from S the
character at any given position) the effect of using the skip/count trick is to move from
one node to the next node on the γ path in constant time.1 The total time to traverse the
path is then proportional to the number of nodes on it rather than the number of
characters on it.

This is a useful heuristic, but what does it buy in terms of worst-case bounds? The
next lemma leads immediately to the answer.

Definition Define the node-depth of a node u to be the number of nodes on the path
from the root to u.

Lemma 6.1.2. Let (v , s(v)) be any suffix link traversed during Ukkonen’s algorithm.
At that moment, the node-depth of v is at most one greater than the node depth of s(v).

1 Again, we are assuming a constant-sized alphabet.

PROOF When edge (v, s(v)) is traversed, any internal ancestor of v, which has path-
label γ, has a suffix link to a node with path-label β. But xβ is a prefix of the path to v,
so β is a prefix of the path to s(v) and it follows that the suffix link from any internal
ancestor of v goes to an ancestor of s(v). Moreover, if β is nonempty then the node
labeled is an internal node. And, because the node-depths of any two ancestors of v
must each ancestor of v has a suffix link to a distinct ancestor of s(v). It follows that the
Node-depth of s(v) is at least one (for the root) plus the number of internal ancestors of
v who have path-labels more than one character long. The only extra ancestor that v
can have (without a corresponding ancestor for s(v)) is an internal ancestor whose path-
label has length one (it has label x). Therefore, v can have node-depth at most one more
that s(v).. (See Figure 6.7).

Figure 6.6: The skip/count trick. In phase i + I, substring γ has length ten. There is a
copy of substring γ of node s(v); it is found three characters down the last edge, after
four node skips are executed.

Definition As the algorithm proceeds, the current node-depth of the algorithm is the
node depth of the node most recently visited by the algorithm.

Theorem 6.1.1. Using the skip/count trick any phase of Ukkonen’s algorithm takes
0(m) time.

PROOF There are i + 1 ≤ m extensions in phase i. In a single extension the algorithm
walks up at most one edge to find a node with a suffix link, traverses one suffix link,
walks down some number of nodes, applies the suffix extension rules, and maybe adds
a suffix link. We have already established that all the operations other than the down-
walking take constant tine per extension, so we only need to analyze the time for the
down-walks. We do this by examining how the current node-depth can change over the
phase.

The up-walk in any extension decreases the current node-depth by at most one (since
it moves up at most one node), each suffix link traversal decreases the node-depth by at

a

node s(v)

α α

γ

x

c

end of suffix j

node v

end of
suffix j - 1

γ

z

x

g

e

b

f

y h

d

most another one (by Lemma 6.1.2) and each edge traversed in a down-walk moves to a
node of greater node-depth. Thus over the entire phase the current node-depth is
decremented at most 2m times, and since no node can have depth greater than m, the
total possible increment to current node-depth is bounded by 3m over the entire phase.
It follows that over the entire phase, the total number of edge traversals during down-
walks is bounded by 3m. Using the skip/count tick, the time per down-edge traversal is
constant so the total time in a phase for all the down-walking is 0(m), and the theorem
is proved.

There are m phases, so the following is immediate:

Figure 6.7: For every node ν on the path xα, the corresponding node s(v) is on the path
α. However, the node-depth of s(v) can be one less than the node-depth of v, h can be
equal, or it can be greater For example, the node labeled xab, has node-depth two
whereas the node-depth of ab is one. The node-depth of the node labeled xabcdefg is
five, whereas the node-depth of abodeig is six.

Coronary 6.1.3. Ukkonen’s algorithm can be implemented with suffix links to run in
0(m2) time.

Note that the 0(m2) time bound for the algorithm was obtained by multiplying the
0(m) time bound on a single phase by m (since there are m phases). This crude
multiplication was necessary because the time analysis was directed to only a single
phase. What is needed are some changes to the implementation allowing a time analysis
that crosses phase boundaries. That will be done shortly.

At this point the reader may be a bit weary because we seem to have made no
progress, since we started with a naive 0(m2) method. Why all the work just to come
back to the same time bound? The answer is that although we have made no progress
on the time bound, we have made great conceptual progress so that with only a few
more easy details, the time will fall to 0(m). In particular, we will need one simple
implementation detail and two more little tricks.

6.1.4. A simple Implementation detail

We next establish an 0(m) time bound for building a suffix tree. There is, however, one
immediate barrier to that goal: The suffix tree may require Θ(m2) space. As described
so far, the edge-labels of a suffix tree might contain more than Θ(m) characters in total.
Since the time for the algorithm is at least as large as the size of its output, that many
characters makes an 0(m) time bound impossible. Consider the string
S = abcdefghzjlmnopqrstuvwxyz. Every suffix begins with a distinct character; hence
there are 26 edges out of the root and each is labeled with a complete suffix, requiring
26 x 27/2 characters in all. For strings longer than the alphabet size, some characters
will repeat, but still one can construct stings of arbitrary length in so that the resulting
edge-labels have more than e(m) characters in total. Thus, an 0(m)-time algorithm for
building suffix trees requires some alternate scheme to represent the edge-labels.

Figure 6.8: The left tree is a fragment of the suffix tree for strings = abcdefabcuvw,
with the edge-labels written explicitly. The right tree shows the edge-labels
compressed. Note that that edge with label 2, 3 could also have been labeled 8, 9.

Edge-label compression

A simple, alternate scheme exists for edge labeling. Instead of explicitly writing a
substring on an edge of the tree, only write a pair of indices on the edge, specifying
beginning and end positions of that substring in S (see Figure 6.8). Since the algorithm
has a copy of string S, it can locate any particular character in S in constant time given
its position in the string. Therefore, we may describe any particular suffix tree
algorithm as if edge-labels were explicit and yet implement that algorithm with only a
constant number of symbols written on any edge (the index pair indicating the
beginning and ending positions of a substring).

For example, in Ukkonen’s algorithm when matching along an edge, the algorithm
uses the index pair written on an edge to retrieve the needed characters from S and then
performs the comparisons on those characters. The extension rules are also easily
implemented with this labeling scheme. When extension rule 2 applies in a phase i + 1,
label the newly created edge with the index pair (i + 1, i + 1), and when extension rule
1 applies (on a leaf edge), change the index pair on that leaf edge from (p, q) to (p, q +

a

b

c

d

e

f

b

c

d

e

f

uu

v

ww

y 10, 12

2, 31, 3

4, 6

4, 6 10, 12

1). It is easy to see inductively that q had to be i and hence the new label (p, i + 1)
represents the correct new substring for that leaf edge.

By using an index pair to specify an edge-label, only two numbers are written on any
edge, and since the number of edges is at most 2m - 1, the suffix tree uses only 0(m)
symbols and requires only 0(m) space. This makes it more plausible that the tree can
actually be built in 0(m) time.2 Although the fully implemented algorithm will not
explicitly write a substring on an edge, we will still find it convenient to talk about “the
substring or label on an edge or path” as if the explicit substring was written there.

2 We make the standard RAM model assumption that a number with up to log m bits can be read, written,
or compared in constant time.

6.1.5. Two more little tricks and we’re done

We present two more implementation tricks that come from two observations about the
way the extension rules interact in successive extensions and phases. These tricks, plus
Lemma 6.1.2, will lead immediately to the desired linear time bound.

Observation 1: Rule 3 is a show stopper In any phase, if suffix extension rule 3
applies in extension j, it will also apply in all further extensions (j +1 to i + 1) until the
end of the phase. The reason is that when rule 3 applies, the path labeled S[j..i] in the
current tree must continue with characters s(i + l),and so the path labeled S[j + 1..i]
does also, and rule 3 again applies in extensions j + l, j +2,.., i +l.

When extension rule 3 applies, no work needs to be done since the suffix of interest
is already in the tree. Moreover, a new suffix link needs to be added to the tree only
after an extension in which extension rule 2 applies. These facts and Observation 1 lead
to the following implementation trick.

Trick 2 End any phrase i + 1 the first time that extension rule 3 applies If this happens
in extension, then there is no need to explicitly find the end of any string S[k…i] for
k > j.

The extensions in phase i + 1 that are ‘done’ after the first execution of rule 3 are
said to be done implicitly. This is in contrast to any extension j where the end of
S[j…i] is explicitly found, An extension of that kind is called an explicit extension.

Trick 2 is clearly a good heuristic to reduce work, but it’s not clear if it leads to a
better worst-case time bound. For that we need one more observation and trick.

Observation 2: Once a leaf, always a leaf That is, if at some point in Ukkonen’s
algorithm a leaf is created and labeled j (for the suffix starting at position j of S), then
that leaf will remain a leaf in all successive trees created during the algorithm. This is
true because the algorithm has no mechanism for extending a leaf edge beyond its
current leaf. In more detail, once there is a leaf labeled j, extension rule 1 will always
apply to extension j in any successive phase. So once a leaf, always a leaf.

Now leaf 1 is created in phase 1, so in any phase i there is an initial sequence of
consecutive extensions (starting with extension 1) where extension rule 1 or 2 applies.
Let j denote the last extension in this sequence. Since any application of rule 2 creates
a new leaf, it follows from Observation 2 that ji < jI + 1 That is, the initial sequence of
extensions where rule 1 or 2 applies cannot shrink in successive phases. This suggests
an implementation trick that in phase i + 1 avoids all explicit extensions 1 through j1.
Instead, only constant time will be required to do those extensions implicitly.

To describe the trick, recall that the label on any edge in an implicit suffix tree (or a
suffix tree) can be represented by two indices p, q specifying the substring S[p..q].

Recall also that for any leaf edge of Ii, index q is equal to i and in phase + 1 index q
gets incremented to i + 1, reflecting the addition of character S(i + 1) to the end of
each suffix.

Trick 3 In phase i +1, when a leaf edge is first created and would normally be labeled
with substring S[p..i + 1], instead of writing indices (p, i + 1) on the edge, write (p. e),
where e is a symbol denoting “the current end” Symbol e is a global index that is set to
i + 1 once in each phase. In phase i + 1, since the algorithm knows that rule 1 will
apply in extensions i through j, at least, it need do no additional explicit work to
implement those ji extensions. Instead, it only does constant work to increment variable
e, and then does explicit work for (some) extensions starting with extension ji + 1.

1 2 3 4 5 6 7 8

 8 9 10 11

 11 12 13 14 15 16

 16 17

Figure 6.9: Cartoon of a possible execution of Ukkonen’s algorithm. Each line
represents a phase of the algorithm, and each number represents an explicit extension
executed by the algorithm: In this cartoon there are bur phases and seventeen explicit
extensions. In any two consecutive phases, there is at most one index where Ito same
explicit extension is executed in both phases.

The punch line
With Tricks 2 and 3, explicit extensions in phase i + 1 (using algorithm SEA) are then
only required from extension ji + I until the first extension where rule 3 applies (or until
extension i + 1 is done). All other extensions (before and after those explicit extensions)
are done implicitly. Summarizing this, phase i + 1 is implemented as follows:

Single phase algorithm: SPA

Begin

1. Increment index e to i + I (By Trick 3 this correctly implements all implicit
extensions 1 through ji)

2. Explicitly compute successive extensions (using algorithm SEA) starting at ji + 1
until reaching the first extension j* where rule 3 applies or until all extensions are
done in this phase. (By Trick 2, this correctly implements all the additional implicit
extensions j* + 1 through i + 1)

3. Set ji + 1 to j* - 1, to prepare for the next phase.

End

Step 3 correctly sets ji + 1 because the initial sequence of extensions where extension
rule 1 or 2 applies must end at the point where rule 3 first applies.

The key feature of algorithm SPA is that phase i + 2 will begin computing explicit

extensions with extension j* where j* was the last explicit extension computed in
phase i + 1. Therefore, two consecutive phases share at most one index (j*) where an
explicit extension is executed (see Figure 6.9). Moreover, phase i + 1 ends knowing
where string S[j*..j + 1] ends, so the repeated extension of j* in phase i + 2 can
execute the suffix extension rule for j* without any up-walking, suffix link traversals,
or node skipping. That means the first explicit extension in any phase only takes
constant time. It is now easy to prove the main result.

Theorem 6.1.2. Using suffix links and implementation tricks 1,2, and 3, Ukkonen‘s
algorithm builds implicit suffix trees Ii through Im, in 0(m) total time.

PROOF The time for all the implicit extensions in any phase is constant and so is 0(m)
over the entire algorithm.

As the algorithm executes explicit extensions, consider an index corresponding to
the explicit extension the algorithm is currently executing. Over the entire execution of
the algorithm, never decreases, but it does remain the same between two successive
phases.

Since there are only m phases, and is bounded by m, the algorithm therefore executes
only 2m, explicit extensions. As established earlier, the time for an explicit extension is
a constant plus some time proportional to the number of node skips it does during the
down-walk in that extension.

To bound the total number of node skips done during all the down-walks, we
consider (similar to the proof of Theorem 6.1.1) how the current node-depth changes
during successive extensions, even extensions in different phases. The key is that the
first explicit extension in any phase (after phase 1) begins with extension j*, which was
the last explicit extension in the previous phase. Therefore, the current node-depth does
not change between the end of one extension and the beginning of the next. But (as
detailed in the proof of Theorem 6.1.1), in each explicit extension the current node-
depth is first reduced by at most two (up-walking one edge and traversing one suffix
link), and thereafter the down-walk in that extension increases the current node-depth
by one at each node skip. Since the maximum node-depth is m, and there are only 2m
explicit extensions, it follows (as in the proof of Theorem 6.1.1) that the maximum
number of node skips done during all the down-walking (and not just in a single phase)
is bounded by 0(m). All work has been accounted for, and the theorem is proved.

6.1.6. Creating the true suffix tree

The final implicit suffix tree Im can be converted to a true suffix tree in 0(m) time. First,
add a string terminal symbol $ to the end of S and let Ukkonen’s algorithm continue
with this character. The effect is that no suffix is now a prefix of any other suffix, so the
execution of Ukkonen’s algorithm results in an implicit suffix tree in which each suffix
ends at a leaf and so is explicitly represented. The only other change needed is to
replace each index e on every leaf edge with the number in. This is achieved by an
0(m)-time traversal of the tree, visiting each leaf edge. When these modifications have
been- made, the resulting tree is a true suffix tree.

In summary,

Theorem 6.1.3. Ukkonen‘s algorithm builds a true suffix tree for S, along with all its
suffix links in 0(m) time.

