
A short course in data structures analysis

University of Torino, June 2008

Javier Campos
University of Zaragoza (Spain)

Data Structures Analysis - Javier Campos 2Data Structures Analysis - Javier Campos 2

Outline

A short course in data structures analysis…

• Worst case analysis:
– Red-black trees

• Average case analysis:
– Lexicographical trees
– Skip lists

• Amortized analysis
– Splay trees

• Data structures for computational biology
– Suffix trees

… it is also an intermediate course in dictionary abstract data type

Data Structures Analysis - Javier Campos 3

Basic bibliography
• On algorithms (and data structures):

[CLRS01]
Cormen, T.H.; Leiserson, C.E.; Rivest, R.L., Stein, C.:
Introduction to Algorithms (Second edition),
The MIT Press, 2001.

• On data structures (and algorithms):
[MS05]

Mehta, D.P. and Sahni, S.:
Handbook of Data Structures and Applications,
Chapman & Hall/CRC, 2005.

• On… everything:
[Knu73]

Knuth, D.E.: The Art of Computer Programming: Sorting and
Searching (vol. 3), Addison-Wesley, 1973.

• Additional material (bibliography, papers, applets…):
http://webdiis.unizar.es/asignaturas/TAP/

http://webdiis.unizar.es/asignaturas/TAP/
http://books.google.es/books?id=NLngYyWFl_YC&printsec=frontcover&dq=Introduction+to+Algorithms+(Second+edition)&ei=y0nyR7X2DoWwzgS-wMCfDQ&sig=Srhx-N4Epco04I3Wo-TZqxKEAGQ
http://books.google.es/books?id=_EBO6lhh35sC&printsec=frontcover&dq=Handbook+of+Data+Structures+and+Applications&ei=G0ryR4TgEpPcygS0g4WlDQ&sig=U_056_DC96vy4MmhXwzoFP7WLD8
http://books.google.es/books?id=5oJQAAAAMAAJ&q=The+Art+of+Computer+Programming&dq=The+Art+of+Computer+Programming&ei=h0ryR825NILgywSwwOjRBA&pgis=1

Data Structures Analysis - Javier Campos 4

Dictionary ADT

• Abstract Data Type (ADT):
– Definition of a data type independently of concrete

implementations
– Specify the set of data and the set of operations that

can be performed on the data
– Formal definition (algebraic specification)

• Dictionary ADT:
– An abstract data type storing items, or values. A value

is accessed by an associated key. Basic operations are
new, insert, find and delete.

Data Structures Analysis - Javier Campos 5

Worst case, best case, average case

• Best, worst and average cases of a given algorithm
express what the resource usage is at least, at most and on
average, respectively. Usually the resource being
considered is running time, but it could also be memory
or other resource (like number of processors).

• In real-time computing, the worst-case execution time is
often of particular concern since it is important to know
how much time might be needed in the worst case to
guarantee that the algorithm would always finish on time.

Data Structures Analysis - Javier Campos 6

Asymptotic notation
• Running time is expressed as a funtion in terms of a measure of the

problem size (size of input data): T(n).
• In the general case, we have no a priori knowledge of the problem

size. But, if it can be shown that TA(n) ≤ TB(n) for all n ≥ 0, then
algorithm A is better than algorithm B regardless of the problem size.

• Usually functions T(n) that we obtain are strange and difficult to
compare. Then we study their asymptotic behaviour (very large
problem sizes), compared with the asymptotic behaviour of well-
known functions like linear, logarithmic, quadratic, exponential, etc).

• Big Oh notation:
– Consider a function f(n) which is

non-negative for all integers n ≥ 0.
We say that “f(n) is big oh g(n)”,
which we write f(n) = O(g(n)),
if there exists an integer n0 and a
constant c>0 such that for all
integers n ≥ n0, f(n) ≤ cg(n).

)(ncg

)(nf

0n
n

Data Structures Analysis - Javier Campos 7Data Structures Analysis - Javier Campos 7

Outline

A short course in data structures analysis…

• Worst case analysis:
– Red-black trees

• Average case analysis:
– Lexicographical trees: tries & Patricia
– Skip lists

• Amortized analysis
– Splay trees

• Data structures for computational biology
– Suffix trees

… and also an intermediate course in dictionary abstract data type

Data Structures Analysis - Javier Campos 88

• What is used for?
They are a type of “balanced” binary search trees
(maximum height = logarithmic order on # nodes)
to guarantee a worst case cost in O(log n) for the basic
dictionary operations (find, insert, delete).

Remember:
- binary search trees (BST)
- AVL (balanced BST)

Red-black trees

http://webpages.ull.es/users/jriera/Docencia/AVL/AVL tree applet.htm

Data Structures Analysis - Javier Campos 99

Red-black trees

• Definition:
– Binary Search Tree with an additional bit per node, its

colour, that can be either red or black.
– Certain conditions on the node colours to guarantee

that there is no leaf whose depth is more than twice
the depth of any other leaf (the tree is “somehow
balanced”).

– Each node is a record with: colour (red or black), key
(for finding), and 3 pointers to children (l, r) and
father (f).
We will represent NULL pointers also as (leaves)
nodes (to simplify presentation).

Data Structures Analysis - Javier Campos 1010

Red-black trees

• Red-black conditions:
RB1 – Every node is either red or black.
RB2 – Every leaf (NULL pointer) is black.
RB3 – If a node is red, both children are black.

(can’t have 2 consecutive reds on a path)
RB4 – Every path from node to descendent leaf contains

the same number of black nodes.
(every “real” node has 2 children)

[RB5 – The root is always black. not necessary]
• Terminology:

– Black-height of node x, bh(x): # black nodes on path to
leaf (excluding x).

– Black-height of a tree: black-height of its root.

Data Structures Analysis - Javier Campos 1111

Red-black trees

10

17 41

14 21 30 47

26

16 19 23 28 38

7 12 15 20 35 39

3

NIL NIL

NIL NIL NIL NIL NIL

NIL NIL NIL NIL NIL NIL

NIL NIL NIL NIL

NILNIL

1

1 1 1 1 1 1

2 1 1 1 1 1

1222

3 2

3

NIL NIL

Data Structures Analysis - Javier Campos 1212

Red-black trees

• Lemma: The height of a red-black tree with n
internal nodes is less than or equal to 2 log(n+1).
Proof:
– The subtree with root x has at least 2bh(x)-1 internal

nodes. By induction on the height of x, h(x):
• Case h(x)=0: x is a leaf (NULL), and its subtree has 2bh(x)-1 =

20-1 = 0 internal nodes.
• Induction step: consider an internal node x with 2 children; its

children have black-height bh(x) ó bh(x)-1, depending on its
colour (red or black, respectively).
By induction hypothesis, the 2 children of x have at least
2bh(x)-1-1 internal nodes. Thus the subtree with root x has at
least (2bh(x)-1-1)+(2bh(x)-1-1)+1= 2bh(x)-1 internal nodes.

Data Structures Analysis - Javier Campos 1313

Red-black trees

Proof (cont.):
– [The subtree with root x has at least 2bh(x)-1 internal

nodes (already proved).]
– Let h be the height of the tree.

By definition (RB3: If a node is red, both children are
black), at least half of the nodes in a path from the root
to a leaf (excluding the root) must be black.
Then, the black-height of the root is at least h/2, thus:

n ≥ 2h/2-1 ⇒ log(n+1) ≥ h/2 ⇒ h ≤ 2 log(n+1).

Data Structures Analysis - Javier Campos 1414

Red-black trees

• Consequences of lemma:
– “Find” operation (of dictionary ADT) can be

implemented to have worst-case execution time in
O(log n) for red-black trees with n nodes.

– Also “Minimum”, “Maximum”, “Successor”,
“Predecessor”…

• And insertion? and deletion?
– In the sequel we see that insertion and deletion can be

also implemented to have worst-case execution time in
O(log n) preserving red-blackness of the tree.

Data Structures Analysis - Javier Campos 1515

Red-black trees

• Rotations:
– Local changes of the binary search tree structure that

preserve the same data and the “search property”.

7

4 11

3 6

2

9 18

14 19

12 17 22

20

x

y

7

4 18

3 6

2

11

9 14

12 17

19

22

20

x

y

left_rotation(x)

Data Structures Analysis - Javier Campos 1616

Red-black trees
algorithm left_rot(A,x)
begin
y:=r(x);
r(x):=l(y);
if l(y)≠NULL then p(l(y)):=x fi;
p(y):=p(x);
if p(x)=NULL then
root(A):=y

else
if x=l(p(x)) then
l(p(x)):=y

else
r(p(x)):=y

fi
fi;
l(y):=x;
p(x):=y

end

(Right rotation is
symmetric)

Data Structures Analysis - Javier Campos 1717

Red-black trees

• Insertion:
– First a usual insertion in binary search tree is done

(ignoring the colour of nodes).

– If after insertion any of the RB1-5 conditions is
violated, the structure of the tree must be modified
using rotations changing the colour of nodes.

– We will not worry about RB5, it will be trivially
preserved.

Data Structures Analysis - Javier Campos 1818

Arboles rojinegros
algorithm insert(A,x)
begin
1 insert_bst(A,x);
2 colour(x):=red;
3 while x≠root(A) and colour(p(x))=red do
4 if p(x)=l(p(p(x))) then
5 y:=r(p(p(x)));
6 if colour(y)=red then
7 colour(p(x)):=black;
8 colour(y):=black;
9 colour(p(p(x))):=red;
10 x:=p(p(x))
11 else
12 if x=r(p(x)) then x:=p(x); left_rot(A,x) fi;
13 colour(p(x)):=black;
14 colour(p(p(x))):=red;
15 right_rot(A,p(p(x)))
16 fi
17 else [the same, changing l/r]
18 fi
19 od;
20 colour(root(A)):=black
end

Insertion

Case 1

Case 2

Case 3

1º) what is broken in
red-black tree def.
in lines 1-2?

2º) what is the goal
of loop 3-19?

3º) what we do in
each case?

Cases 4, 5 & 6

Data Structures Analysis - Javier Campos 1919

Arboles rojinegros
algorithm insert(A,x)
begin
1 insert_bst(A,x);
2 colour(x):=red;
3 while x≠root(A) and colour(p(x))=red do
4 if p(x)=l(p(p(x))) then
5 y:=r(p(p(x)));
6 if colour(y)=red then
7 colour(p(x)):=black;
8 colour(y):=black;
9 colour(p(p(x))):=red;
10 x:=p(p(x))
11 else
12 if x=r(p(x)) then x:=p(x); left_rot(A,x) fi;
13 colour(p(x)):=black;
14 colour(p(p(x))):=red;
15 right_rot(A,p(p(x)))
16 fi
17 else [the same, changing l/r]
18 fi
19 od;
20 colour(root(A)):=black
end

Insertion

1º) what is broken in
red-black tree def.
in lines 1-2?

RB1: every node is
red or black.

RB2: every leaf
(NULL) is black.

RB3: if a node is
red, both children
are black.

RB4: every path
from node to
descendent leaf
contains the same
number of black
nodes.

Data Structures Analysis - Javier Campos 2020

Arboles rojinegros
algorithm insert(A,x)
begin
1 insert_bst(A,x);
2 colour(x):=red;
3 while x≠root(A) and colour(p(x))=red do
4 if p(x)=l(p(p(x))) then
5 y:=r(p(p(x)));
6 if colour(y)=red then
7 colour(p(x)):=black;
8 colour(y):=black;
9 colour(p(p(x))):=red;
10 x:=p(p(x))
11 else
12 if x=r(p(x)) then x:=p(x); left_rot(A,x) fi;
13 colour(p(x)):=black;
14 colour(p(p(x))):=red;
15 right_rot(A,p(p(x)))
16 fi
17 else [the same, changing l/r]
18 fi
19 od;
20 colour(root(A)):=black
end

2º) what is the goal
of loop 3-19?

to solve the above
problem, like the
case in the figure
(insertion of red x, as
a child of another
red), making the red
colour move up to
the root

x

Insertion

11

2 14

1 157

5 8

4

Data Structures Analysis - Javier Campos 2121

Arboles rojinegros
algorithm insert(A,x)
begin
1 insert_bst(A,x);
2 colour(x):=red;
3 while x≠root(A) and colour(p(x))=red do
4 if p(x)=l(p(p(x))) then
5 y:=r(p(p(x)));
6 if colour(y)=red then
7 colour(p(x)):=black;
8 colour(y):=black;
9 colour(p(p(x))):=red;
10 x:=p(p(x))
11 else
12 if x=r(p(x)) then x:=p(x); left_rot(A,x) fi;
13 colour(p(x)):=black;
14 colour(p(p(x))):=red;
15 right_rot(A,p(p(x)))
16 fi
17 else [the same, changing l/r]
18 fi
19 od;
20 colour(root(A)):=black
end

Insertion

Case 1

x

y

11

2 14

1 157

5 8

4 Case 1

11

2 14

1 157

5 8

4

x

3º) what we do in
each case?

Data Structures Analysis - Javier Campos 2222

Arboles rojinegros
algorithm insert(A,x)
begin
1 insert_bst(A,x);
2 colour(x):=red;
3 while x≠root(A) and colour(p(x))=red do
4 if p(x)=l(p(p(x))) then
5 y:=r(p(p(x)));
6 if colour(y)=red then
7 colour(p(x)):=black;
8 colour(y):=black;
9 colour(p(p(x))):=red;
10 x:=p(p(x))
11 else
12 if x=r(p(x)) then x:=p(x); left_rot(A,x) fi;
13 colour(p(x)):=black;
14 colour(p(p(x))):=red;
15 right_rot(A,p(p(x)))
16 fi
17 else [the same, changing l/r]
18 fi
19 od;
20 colour(root(A)):=black
end

Insertion

x

y

11

2 14

1 157

5 8

4
Case 2

Case 2

11

7 14

2 158

51

4

x

Data Structures Analysis - Javier Campos 2323

Arboles rojinegros
algorithm insert(A,x)
begin
1 insert_bst(A,x);
2 colour(x):=red;
3 while x≠root(A) and colour(p(x))=red do
4 if p(x)=l(p(p(x))) then
5 y:=r(p(p(x)));
6 if colour(y)=red then
7 colour(p(x)):=black;
8 colour(y):=black;
9 colour(p(p(x))):=red;
10 x:=p(p(x))
11 else
12 if x=r(p(x)) then x:=p(x); left_rot(A,x) fi;
13 colour(p(x)):=black;
14 colour(p(p(x))):=red;
15 right_rot(A,p(p(x)))
16 fi
17 else [the same, changing l/r]
18 fi
19 od;
20 colour(root(A)):=black
end

Insertion

Case 3

x

y
11

7 14

2 158

51

4

Case 3 7

2 11

1 145

4 15

8

Data Structures Analysis - Javier Campos 2424

Red-black trees

• Cost of insertion:
– The height of a red-black tree with n nodes is

O(log n), then “insert_bst” is O(log n).
– Loop is repeated only if case 1 arises, and in that case

pointer x goes up in the tree.
Then, the maximum number of loop iterations is
O(log n).

– Notice also that more than 2 rotations are never
performed
(the loop ends if case 2 or 3 is run).

Data Structures Analysis - Javier Campos 2525

Red-black trees

• Deletion:
– We will see that it can also be done in worst case cost

in O(log n).
– To simplify the algorithm, we will use the sentinel

representation for NULL nodes:

null

black
‘house’

null

null

red
‘horse’
null

A

black
‘house’

null

red
‘horse’

null

black
‘null’
null

null

black
‘null’
nullnull

black
‘null’
null

A

Data Structures Analysis - Javier Campos 2626

Red-black trees

• Deletion: similar to deletion in “bst”
algorithm delete(A,z) --z is pointer to node to delete
begin
1 if key(l(z))=‘null’ or key(r(z))=‘null’ then
2 y:=z
3 else
4 y:=successor_bst(z) -- in-order successor of z
5 fi;
6 if key(l(y))≠‘null’ then x:=l(y) else x:=r(y) fi;
7 p(x):=p(y);
8 if p(y)=‘null’ then
9 root(A):=x
10 else
11 if y=l(p(y)) then l(p(y)):=x else r(p(y)):=x fi
12 fi;
13 if y≠z then key(z):=key(y) fi;
14 if colour(y)=black then fix_deletion(A,x) fi
end

Data Structures Analysis - Javier Campos 2727

Red-black trees

• Deletion: step by step description

Lines 1-5: selection of node y to put in place of z.
Node y is:

• The same node z (if z has at the most 1 child), or
• the successor of z (if z has 2 children)

algorithm delete(A,z) --z is pointer to node to delete
begin
1 if key(l(z))=‘null’ or key(r(z))=‘null’ then
2 y:=z
3 else
4 y:=successor_bst(z) -- in-order successor of z
5 fi;

. . .

Data Structures Analysis - Javier Campos 2828

Red-black trees
• Deletion: step by step description

Line 6: x is child of y, or it is NULL if y has not children.
Lines 7-12: connection with y, modifying pointers in p(y) and in x.
Line 13: if the successor of z has been the linked node, the content

of y is moved to z, deleting its previous content (in the algorithm
only the key is copied, but if y had other fields, they should be
also copied).

. . .
6 if key(l(y))≠‘null’ then x:=l(y) else x:=r(y) fi;
7 p(x):=p(y);
8 if p(y)=‘null’ then
9 root(A):=x
10 else
11 if y=l(p(y)) then l(p(y)):=x else r(p(y)):=x fi
12 fi;
13 if y≠z then key(z):=key(y) fi;

. . .

Data Structures Analysis - Javier Campos 2929

Red-black trees

• Deletion: step by step description

Line 14: if y is black, “fix_deletion” is used to change
the colours and to make rotations needed to restore the
properties RB1-5 of red-black tree.
If y is red, properties RB1-5 hold (black-height of the
nodes did not change and two red nodes were not put
adjacent).
Node x (argument of the algorithm) was the unique
child of y before y was linked, or it was the sentinel of
NULL in the case that y had no children.

. . .
14 if colour(y)=black then fix_deletion(A,x) fi
end

Data Structures Analysis - Javier Campos 3030

Red-black trees

• Deletion: fixing properties RB1-5
– Problem: If node y in the algorithm was black, after

its deletion, all paths passing through it have one black
node less, then RB4 fails

“Every path from node to descendent leaf contains the same
number of black nodes”

for every ancestor of y
– Solution: to interpret that node x has an “extra black”

colour, then RB4 “holds”, i.e., when node y is deleted,
“its blackness is pushed to its child” x

– New problem: now x can be “twice black”, then RB1
fails

– Solution: to execute algorithm “fix_deletion” to
restore RB1

Data Structures Analysis - Javier Campos 31

• Deletion: fixing properties RB1-5

31

algorithm fix_deletion(A,x)
begin
1 while x≠root(A) and colour(x)=black do
2 . . .
. . . .
28 od;
29 colour(x):=black
end

Red-black trees

Objective of the loop: to move up the “extra black” until
1) x is red, and there is no problem, or
2) x is the root, and the “extra black” “desappears” (itself)

Inside the loop, x is a black node, different from the root, and with an
“extra black”.

Data Structures Analysis - Javier Campos 3232

Red-black trees

• Inner part of the loop:
. . .

2 if x=l(p(x)) then
3 w:=r(p(x));
4 if colour(w)=red then
5 colour(w):=black;
6 colour(p(x)):=red;
7 left_rot(A,p(x));
8 w:=r(p(x))
9 fi; {goal: to get a black

. . . brother for x}

Case 1

• x is a left child
• w is the brother of x
• x is “double black” ⇒
⇒ key(w) ≠ NULL
(otherwise, # blacks
from p(x) to leaf w
would be less than
blacks from p(x) to x)

B

A D

ECα β

χ δ ε φ

x w

D

B E

CA ε φ

α β χ δ

x
new w

Case 1• w must have a black child
• change colour of w and p(x)

and exec. “left_rot” with p(x)
• the new brother of x, one of

the children of w, is black,
so we go to another case (2-4)

Data Structures Analysis - Javier Campos 3333

Red-black trees

• Inner part of the loop (cont.):
. . .

10 if colour(l(w))=black and colour(r(w))=black then
11 colour(w):=red;
12 x:=p(x)
13 else

. . .

Case 2

• Node w (brother of x) and the children of w are black.
• We remove a black of x and “another” of w (x is now black and w is red).
• We add a black to p(x).
• Repeat loop with x:=p(x).
• If we entered to this case

from case 1, the colour
of the new x is red
and loop ends.

Case 2B

A D

ECα β

χ δ ε φ

x w

c B

A D

ECα β

χ δ ε φ

c
new x

Data Structures Analysis - Javier Campos 3434

Red-black trees

• Inner part of the loop (cont.):
. . .

14 if colour(r(w))=black then
15 colour(l(w)):=black;
16 colour(w):=red;
17 right_rot(A,w);
18 w:=r(p(x))
19 fi;

. . .

Case 3

Case 3B

A D

ECα β

χ δ ε φ

x w

c B

A C

D

E

α β

ε φ

δ

χ

c

new wx

• w and r(w) are black
• l(w) is red
• Change the colour of

w and l(w) and execute
“right_rot” over w.

• New brother w of x is
now black with right child
red, and this is case 4.

Data Structures Analysis - Javier Campos 3535

• Inner part of the loop (cont.):

Red-black trees

. . .
20 colour(w):=colour(p(x));
21 colour(p(x)):=black;
22 colour(r(w)):=black;
23 left_rot(A,p(x));
24 x:=root(A)
25 fi
26 else [like 3-25, swapping l/r]
27 fi

. . .

Case 4

Case 4B

A D

ECα β

χ δ ε φ

x w

c

c’

D

B E

CA ε φ

α β χ δ

c

c’

• w is black and r(w) is red
• We change some colours

and exec. “left_rot” over
p(x), thus the “extra black”
of x is deleted.

Data Structures Analysis - Javier Campos 3636

Red-black trees

• Cost of deletion:
– Cost of algorithm without considering the call to

“fix_deletion” is O(log n), since that is the height of
the tree.

– In “fix_deletion”, cases 1, 3 & 4 end after a constant
number of colour changes and up to 3 rotations.

– Case 2 is the only one that can cause reentering the
loop, and in that case node x is moved up in the tree
up to O(log n) times and without executing rotations.

– Then, “fix_deletion”, and also the complete deletion,
are O(log n) and execute up to 3 rotations.

Data Structures Analysis - Javier Campos 37Data Structures Analysis - Javier Campos 37

Outline

A short course in data structures analysis…

• Worst case analysis:
– Red-black trees

• Average case analysis:
– Lexicographical trees
– Skip lists

• Amortized analysis
– Splay trees

• Data structures for computational biology
– Suffix trees

… and also an intermediate course in dictionary abstract data type

Data Structures Analysis - Javier Campos 38

Lexicographical trees

• Tries: motivation…
– Central letters of the word “retrieval”

(information retrieval ≈ the science of searching)
– Pronounced [tri] ("tree"), although some encourage the use of

[traɪ] ("try") in order to distinguish it from “tree”.
– Dictionary of english words in Unix (e.g., ispell): 80.000 words

and 700.000 characters more than 8 characters per word in
average…
There is a lot of redundant information:

bestial bestir bestowal bestseller bestselling
– To save space:

group common prefixes
– To save time:

shorter words faster search

best
---- i

---- - al
---- - r
---- owal

---- sell
---- ---- er
---- ---- ing

Data Structures Analysis - Javier Campos 39

Lexicographical trees

• Trie: formal definition
– Let Σ={σ1, …, σm} be a finite alphabet (m > 1).
– Let Σ* be the set of words (or sequences) of symbols

of Σ, and X a subset of Σ* (i.e., X is a set of words).
– The trie associated to X is:

• trie(X) = ∅, if X = ∅
• trie(X) = <x>, if X = {x}
• trie(X) = <trie(X \ σ1), …, trie(X \ σm)>, if |X| > 1, where

X \ σ represents the subset of all the words in X beginning
with σ deleting from them the first letter.

– If the alphabet includes an order relation of symbols
(usual case), the trie is called lexicographical tree.

Data Structures Analysis - Javier Campos 40

Lexicographical trees

• Then, a trie is tree of prefixes:
bestial bestir bestowal bestseller bestselling

best

besti bestowal bestsell

bestial bestir bestseller bestselling

best

i owal sell

al r er ing

Data Structures Analysis - Javier Campos 41

Lexicographical trees

• Utility of trie:
– Supports operations to search words:

– Also insertions and deletions can be easily
implemented dictionary ADT

best

i owal sell

al r er ing

best

i owal sell

al r er ing

ride

Data Structures Analysis - Javier Campos 42

Lexicographical trees

• Also unions and intersections set ADT
• And strings comparisons texts processing,

computational biology…
• A small problem, they cannot contain a word that

is a prefix of another contained word… but the
problem can be solved if needed by using an
ending character

“tries are
one of the most important

general purpose data structures”

Data Structures Analysis - Javier Campos 43

Lexicographical trees

• Implementations of tries:
– Node-array: each node is an array of pointers to

access to the subtrees

c j r

uar a

u ai fv q

s z n uai

e

l

$

$

$

$

$

$

cris, cruz, javi, juan, rafa, raquel

Too costly in space!

Data Structures Analysis - Javier Campos 44

Lexicographical trees

– Node-list: each node is a linked list (with pointers)
containing the roots of subtrees

(child - next sibling representation)

cris, cruz, javi, juan, rafa, raquel

c j r

r

i

s

u

z

a

v

i

u

a

n

a

f

a

q

u

e

l
Less space cost, but more time to search!

Data Structures Analysis - Javier Campos 45

Lexicographical trees

– A precision about the previous implementations:
when a certain node is the root of a subtrie containing
a single word, that word (suffix) can be directly stored
in an external node (thus saving space, even if we are
forced to handle pointers to different data types…)

r

a

f

a

quel

Data Structures Analysis - Javier Campos 46

Lexicographical trees
– Node-BST: (BST=binary search tree) the structure is

also called ternary search tree.
Each node contains:

• Two pointers to left and right children (like in BST).
• One pointer, central, to the root of the trie that the node points

at.
Goal: to combine the time efficiency of tries with the
space efficiency of BST’s.

• A search compares the present character in the searched
string against the character stored in the node.

• If the searched character is (alphabetically) smaller, the
search continues towards the left child.

• If the searched character is bigger, search continues towards
the right child.

• If the character is equal, we go towards the central child, and
go head searching the next character of the searched string.

Data Structures Analysis - Javier Campos 47

Lexicographical trees

Ternary search tree storing the words…
as at be by he in is it of on or to

In a BST:

In a trie (representation array or node-list):

Data Structures Analysis - Javier Campos 48

Lexicographical trees

In a ternary search tree:

Data Structures Analysis - Javier Campos 49

Lexicographical trees

• Digital search trees:
– Binary case (m = 2, i.e., using only 2 symbols):

• Store complete keys in the nodes, and use their bits to decide
following the search towards the left or right subtree.

• Example, using MIX code (D.E. Knuth)

0 00000 I 9 01001 R 19 10011
A 1 00001 J 11 01011 S 22 10110
B 2 00010 K 12 01100 T 23 10111
C 3 00011 L 13 01101 U 24 11000
D 4 00100 M 14 01110 V 25 11001
E 5 00101 N 15 01111 W 26 11010
F 6 00110 O 16 10000 X 27 11011
G 7 00111 P 17 10001 Y 28 11100
H 8 01000 Q 18 10010 Z 29 11101

Data Structures Analysis - Javier Campos 50

Lexicographical trees

– Digital search trees (binary case):

The 31 most frequent english words,
inserted by descendant frequency order.

Careful! It is a search tree but considering the
binary codification of the keys (MIX code).

THE

AND OF

A IN TO WITH

AS FOR IS NOT ON THAT WAS YOU

ARE

AT

BE

BY

BUT

FROM OR THIS WHICHI

HIS IT

HE

HAVE

HAD HER

(10111…)

(10000…)
1st

2nd3rd

4th5th 6th

7th8th

9th

10th

11th12th

13th

14th

15th

16th

17th

18th

19th

20th

21st

22nd

23rd24th

25th

26th

27th28th

29th

30th
31st

(00001…)

(10111…)(00001…)
(01001…)

Data Structures Analysis - Javier Campos 51

Lexicographical trees

– The search in the previous tree is binary, but can be
easily extended to m-ary (m > 2), for an alphabet with
m symbols.

THE1st

OF2nd
AND
3rd

TO4th

A
5th

IN6th

THAT
7th

IS
8th

I
9th

IT
10th

FOR11th

AS
12th

WITH13th

WAS
14th

HIS15th

HE
16th

BE17th NOT
18th

BY
19th

BUT
20th

HAVE
21st

YOU
22nd

WHICH
23rd

ARE
24th

ON
25th

OR
26th

HER
27th

HAD28th

AT
29th

FROM
30th

THIS31st

The same keys than before, inserted in the same order,
but in a digital search tree of order 26.

Data Structures Analysis - Javier Campos 52

Lexicographical trees

• Patricia (Practical Algorithm To Retrieve Information Coded In
Alphanumeric)

– Problem of tries: if |{keys}| << |{potential keys}|,
most of internal nodes in the tree have a single child

space cost grows
– Idea: binary trie, but avoiding branches with only one

direction.
– Patricia: compact representation of a trie where each

node with a single child “is joined” with its child.
– Application example: IP Routing Lookup Algorithms

(routing tables in routers, looking for destination
address = longest prefix matching)

Data Structures Analysis - Javier Campos 53

Lexicographical trees
– Patricia example:

• We start from (not a Patricia):
– A binary trie with

keys stored in its
leaves and compacted
(each internal node
has 2 children).

– Label inside internal nodes
is the bit used to branch the search.

• In Patricia, keys are stored in internal nodes.
– Since there is one less internal node

than # keys, 1 more node
is added (the root).

– Each node still stores the
number of bit used to branch.

– That number distinguishes if
pointer goes up or down
(if > parent’s, down).

1

3 2

4 40001 0011

1000 1001 1100 1101

0 1

0001

0011

1000

1001

1100

1101

0

1

3 2

4 4

Data Structures Analysis - Javier Campos 54

Lexicographical trees
– Searching a key in Patricia:

• Bits of the key are used, from left to right.
Going down in the tree.

• When the followed pointer
goes up, the searched key is
compared with the key in the node.

• Example, searching key 1101:
– We always start going to left child of root.
– The pointer goes down (we know that because

the bit labelling the node 1101, 1, is greater than parent’s, 0).
– Search according to the value of bit 1 of the key, since it is 1,

we go to the right child (1001).
– The number of bit in the reached node is 2, we go down

according to that bit, since the 2nd bit of the searched key is 1,
we go to the right child (1100).

– Now the 4th bit of the key is used, since it is 1, we follow the
pointer to right child and arrive to key 1101.

– Since the number of bit is 1 (<4) we compare its key with the
searched key, since they are equal, we end with success.

0001

0011

1000

1001

1100

1101

0

1

3 2

4 4

Data Structures Analysis - Javier Campos 55

Lexicographical trees

– Inserting a key in Patricia:
• We start from empty tree (no key).
• We insert key 0000101.
• Now, we insert key 0000000.

Searching that key we arrive to the root and
see that it is different. We see that the
first bit where they differ is the 5th.
We create left child labelled
with bit 5 and store the key in it. Since 5th bit of inserted key
is 0, left pointer of that node points to itself. And right pointer
points to root node.

• We insert now 0000010.
Search ends at 0000000.
First bit where they differ is 6th…

0000101 0

0000101 0

0000000 5

0000101 0

0000000 5

0000010 6

Data Structures Analysis - Javier Campos 56

Lexicographical trees

– General strategy to insert (from the 2nd key on):
• Search the key C to insert; search ends at a node with key C’.
• Compute number b = the leftmost bit where C and C’ differ.
• Create a new node with new key inside, labelled with

previous bit number, and insert it in the path from the root to
node with C’ in such a way that the labels with bit number
are in ascending order in the path.

• That insertion has broken a pointer from node p to node q.
• Now the pointer goes from p to the new inserted node.
• If bit number b of C is 1, the right child of the new node will

point to the same node, otherwise, the left child will be the
“self-pointer”.

• The other child will point to q.
yyyyyyyy x

Data Structures Analysis - Javier Campos 57

Lexicographical trees

– Inserting a key in Patricia (cont.):
• We insert key 0001000.

Search ends at 0000000.
The first bit where they differ is 4.
Create a new node with label 4
and put the new key inside.
Insert the new node in the path from root to node 0000000
in such a way that bit number labels are in ascending order,
i.e., we put it as the left child of the root.
Since 4th bit of inserted key is 1,
the right child of
the new node is a self-pointer.

0000101 0

0000000 5

0000010 6

0000101 0

0001000 4

0000000 5

0000010 6

Data Structures Analysis - Javier Campos 58

Lexicographical trees

– Inserting a key in Patricia (cont.):
• Now, we insert key 0000100.

Search ends at the root.
First bit they differ is 7th.
Create a new node
with label 7.

Insert the new node in the search path in such a way that bit
number labels are in ascending: right child of 0000000.
Bit 7 of new key is 0, then its left
child becomes a self-pointer.

0000101 0

0001000 4

0000000 5

0000010 6

0000101 0

0001000 4

0000000 5

0000010 6 0000100 7

Data Structures Analysis - Javier Campos 59

Lexicographical trees

– Inserting a key in Patricia (cont.):
• Insert key 0001010.

Search ends at 0001000.
First bit they differ is 6th.
Create a new node
with label 6.
Insert the new node
in the search path in such a way that bit number labels are in
ascending order: right child of 0001000.
Bit 6 of the new key is 1, thus its right
child becomes a self-pointer.

0000101 0

0001000 4

0000000 5

0000010 6 0000100 7

0000101 0

0001000 4

0000000 5

0000010 6 0000100 7

0001010 6

Data Structures Analysis - Javier Campos 60

Lexicographical trees
– Deletion of a key:

• Let p be the node with key to delete; two cases:
– p has a self-pointer:

» if p = root, it is the unique node, delete it empty tree
» if p is not the root, we change the pointer going from p’s

parent to p and now it points to the child of p (the one that
is not a self-pointer.)

– p has not a self-pointer :
» search node q that has a pointer going up to p

(the node from where we arrived to p in the search of the
key to delete)

» move the key in q to p and delete node q
» to delete q, search node r having a pointer going up to q

(just searching the key in q)
» change the pointer from r to q and make it point to p
» pointer going down from q’s parent to q is changed to

point to the q’s child that was used to locate r

Data Structures Analysis - Javier Campos 61

Lexicographical trees

• Analysis of algorithms:
– It is obvious that the cost of search, insert and delete

operations is in linear order in the height of the tree,
but… how much is that?

– Case of binary tries (m = 2, i.e., alphabet with 2
symbols)…

– There is a curious relation between this kind of trees
and a sorting algorithm, “radix-exchange”, so let us
quickly review radix sorting methods

Data Structures Analysis - Javier Campos 62

Lexicographical trees

• Post office method, also known as bucket sort
– If we need to sort letters by provinces, we put a box or

bucket per each province and we perform a sequential
traverse of all the letters storing them at the
correxponding box very efficient!

– If letters must be sorted by postal code (like 10149),
we need 100.000 boxes (and a big office) the
method is only (very) useful if the number of potential
different elements is small.

– In general, if n elements must be sorted and they can
take values in a set of m different values (boxes), the
cost in time (and space) is O(m+n).

Data Structures Analysis - Javier Campos 63

Lexicographical trees

• First idea to naturally extend bucket sort method:
in the case of sorting letters by postal code…
– First phase: we use 10 boxes to sort letters by the first

digit of its code
• each box may contain now 10.000 different codes
• the cost in time for this phase is O(n)

– Second phase: proceed in a similar way for each box
(using the next digit)

– There are five phases…

Data Structures Analysis - Javier Campos 64

Lexicographical trees

• A more elaborated extension: radix sort
“Once upon a time, computer programs were written in

Fortran and entered on punched cards, about 2000 to a tray. Fortran code
was typed in columns 1 to 72, but columns 73-80 could be used for a
card number. If you ever dropped a large deck of cards you were really
in the poo, unless the cards had been numbered in columns 73-80. If
they had been numbered you were saved; they could be fed into a card
sorting machine and restored to their original order.

The card sorting machine was the size of three or four large
filing cabinets. It had a card input hopper and ten output bins, numbered
0 to 9. It read each card and placed it in a bin according to the digit in a
particular column, e.g. column 80. This gave ten stacks of cards, one
stack in each bin. The ten stacks were removed and concatenated, in
order: stack 0, then 1, 2, and so on up to stack 9. The whole process was
then repeated on column 79, and again on column 78, 77, etc., down to
column 73, at which time your deck was back in its original order!

The card sorting machine was a physical realisation of the
radix sort algorithm.”

http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Radix.html

Data Structures Analysis - Javier Campos 65

Lexicographical trees

• Radix sort:
– A (FIFO) queue of keys is used to implement each

“box” (as many of them as the used numeration base,
any base is valid).

– Keys are classified according to its rightmost digit (the
less significant), i.e., each key is placed in the queue
corresponding to its rightmost digit.

– All the queues are concatenated (ordered according to
the rightmost digit).

– Repeat the process, classifying according to the
second from the right digit.

– Repeat the process for all digits.

Data Structures Analysis - Javier Campos 66

Lexicographical trees
algorithm radix(X,n,k) {pre: X=array[1..n] of keys,

each one with k digits; post: X sorted}
begin
put the elements of X in queue GQ {X can be used};
for i:=1 to d do {d = used numeration base)
emptyqueue(Q[i])

od;
for i:=k downto 1 do
while not isempty(GQ) do
x:=front(GQ); dequeue(GQ);
d:=digit(i,x); enqueue(x,Q[d])

od;
for t:=1 to d do insertQueue(Q[t],GQ) od

od;
for i:=1 to n do
X[i]:=front(GQ); dequeue(GQ)

od
end

Data Structures Analysis - Javier Campos 67

Lexicographical trees

• Analysis of radix sort method:

– In time: O(kn), i.e., considering that the number of bits
(k) of each key is a constant, it is a linear time method
on the number (n) of keys

– Notice that the bigger numeration base, the lower cost

– In space: O(n) additional space
(It is possible to do it in situ, with additional space on
O(log n) to store array indices)

Data Structures Analysis - Javier Campos 68

Lexicographical trees

• Some few history:
origins of radix sort

– USA, 1880: census of previous
decade cannot be finished
(specifically, problem to count the
number of single inhabitants)

– Herman Hollerith (under contract
for the US Census Bureau) invents
an electric tabulating machine
to solve the problem; essentially,
an implementation of radix sort

Data Structures Analysis - Javier Campos 69

Lexicographical trees

• Some few history: origins of radix sort (cont.)

– 1890: about 100 Hollerith machines are used
to tabulate the census of the decade
(an expert operator processed 19.071 cards
in a working journey of 6’5 hours,
about 49 cards by minute)

– 1896: Hollerith starts the
Tabulating Machine Company

Data Structures Analysis - Javier Campos 70

Lexicographical trees

• Some few history: origins of radix sort (cont.)
– 1900: Hollerith solves another

federal crisis inventing a
new machine with automatic
card-feed mechanism
(in use, with a few variations,
until 1960)

– 1911: Hollerith’s firm
merged with others to create
Calculating-Tabulating-
Recording Corporation (CTR)

– 1924: Thomas Watson renames
CTR to
International Business Machines (IBM)

Data Structures Analysis - Javier Campos 71

Lexicographical trees

• Some few history: origins of radix sort (cont.)
– The rest of history is well known… until:
– 2000: USA Presidential Election Crisis

Data Structures Analysis - Javier Campos 72

Lexicographical trees

• Some few history: origins of radix sort (cont.)
– That was a joke. This is the real one:

Data Structures Analysis - Javier Campos 73

Lexicographical trees

• Radix-exchange sorting method:
(version by D. Knuth in his Book)

– Supose keys are stored in its binary representation
– Instead of comparing keys, we compare bits

• Step 1: keys are sorted according to its most significative bit
– Find the leftmost key ki with its first bit equal to 1 and

the rightmost key kj with its first bit equal to 0, exchange
both keys and repeat the process until i > j

• Step 2: sequence of keys is splitted into two parts and step 1
is applied to each part recursively

– Sequence of keys has been splitted into two: those
starting with 0 and the rest staring with 1; previous step
is applied recursively to both subsequences of keys, but
now taking into consideration the second most
significative bit, etcetera.

Data Structures Analysis - Javier Campos 74

Lexicographical trees

• Radix-exchange and quicksort are very similar:
– Both are based in the partition idea.
– Keys are exchanged until sequence is splitted intto

two parts:
• Left subsequence, where all keys are less than or equal to a

given key K and right subsequence where all keys are greater
than or equal to K.

• Quicksort takes as key K an existing key in the sequence
while radix-exchange takes an artificial key based on the
binary representation of keys.

– Historically, radix-exchange was published one year
before quicksort (in 1959).

Data Structures Analysis - Javier Campos 75

Lexicographical trees

• Analysis of radix-exchange:
– The asymptotic analysis of radix-exchange is…

let us say… a non-trivial matter!

According to Knuth(*), the average sorting time is

910*173|)(| that such function strange" quite"a)(and
constant Euler the5772150 with

),1()(
2
1

2ln
1log

−<

=

+⎟
⎠
⎞

⎜
⎝
⎛ +−

−
+=

nfnf
...,γ

OnfnnnUn
γ

(*) Requires infinite series manipulation and their approximation,
complex-variable mathematical analysis (complex integrals, Gamma function)…

Data Structures Analysis - Javier Campos 76

Lexicographical trees

• Relation with cost analysis of tries (binary case):
– The number of internal nodes in a binary trie that

stores a set of keys is equal to the number of partitions
achieved with radix-exchange sorting method to sort
the same set of keys.

– The average number of bit queries to find a key in a
binary trie with n keys is 1/n times the number of bit
queries needed to sort those n keys using
radix-exchange.

Data Structures Analysis - Javier Campos 77

Lexicographical trees

– Example: with 6 keys, the letters in ‘ORDENA’
|l|r|bit

1| 10000 10011 00100 00101 01111 00001 |1|6|1
2| 00001 01111 00100 00101 ¦ 10011 10000 |1|4|2
3| 00001 00101 00100 ¦ 01111 ¦ 10011 10000 |1|3|3
4| 00001 ¦ 00101 00100 ¦ 01111 ¦ 10011 10000 |2|3|4
5| 00001 ¦ 00101 00100 ¦ 01111 ¦ 10011 10000 |2|3|5
6| 00001 ¦ 00100 ¦ 00101 ¦ 01111 ¦ 10011 10000 |5|6|2
7| 00001 ¦ 00100 ¦ 00101 ¦ 01111 ¦ 10011 10000 |5|6|3
8| 00001 ¦ 00100 ¦ 00101 ¦ 01111 ¦ 10011 10000 |5|6|4
9| 00001 ¦ 00100 ¦ 00101 ¦ 01111 ¦ 10000 ¦ 10011 | | |_

8 partitions: internal nodes of the tree
correspond to partitions (the k-th node
in a pre-order traversal of the tree
corresponds to the k-th partition).

The number of bit queries at a partition
level is equal to the number of keys
in the subtree of the corresponding node.

(keys coded using MIX code, pág. 49)

0

100001 0

0

10

00101
1

00100

01111
1

10000 10011

0

0

0

10 1

2

3

4
5

6
7

8

Data Structures Analysis - Javier Campos 78

Lexicographical trees

• Then, the average cost of searching in a binary
trie with n keys is:

• The average number of nodes of a binary trie
with n keys is:

9

1

10*173|)(| that such function strange" quite"a)(and
constant Euler the5772150 with

),()(
2
1

2ln
1log

−

−

<

=

++−
−

+=

nfnf
...,γ

nOnfnUn
γ

)(like function, negligiblea)(with

),1()(
2ln

nfng

Onngn
++

Data Structures Analysis - Javier Campos 79

Lexicographical trees

• Analysis of m-ary tries:
– The analysis is as difficult (or even more) as the

binary case…, leading to:
• The average number of nodes needed to randomly store n

keys in a m-ary trie is approximately n/ln m
• The number of digits or characters examinated in an average

key search operation is approximately logm n

• The analysis of digital search trees and Patricia
leads to very similar results

• According to Knuth, the analysis of Patricia
includes…

“… possibly the hardest asymptotic nut
we have yet had to crack…”

Data Structures Analysis - Javier Campos 80

Average cost of a search operation

Successful search Unsuccessful
search

Search in a trie log n + 1,33275 log n – 0,10995

Search in a digital
tree

log n – 1,71665 log n – 0,27395

Search in Patricia log n + 0,33275 log n – 0,31875

Data Structures Analysis - Javier Campos 81Data Structures Analysis - Javier Campos 81

Outline

A short course in data structures analysis…

• Worst case analysis:
– Red-black trees

• Average case analysis:
– Lexicographical trees
– Skip lists

• Amortized analysis
– Splay trees

• Data structures for computational biology
– Suffix trees

… and also an intermediate course in dictionary abstract data type

Data Structures Analysis - Javier Campos 82

Skip lists

• They are “probabilistic data structures”.

• They are a good alternative for balanced search
trees (AVL, 2-3, red-black,…) to store
dictionaries with n keys with an average basic
operations cost in O(log n).

• They are much more easy to implement than, for
instance, AVL or red-black trees.

Data Structures Analysis - Javier Campos 83

Skip lists

• Linked list (sorted):

– The worst-case cost for searching a key is linear on
the number of nodes.

• But, adding a pointer to each even node…

– Now, the number of nodes examinated during a search
is, at most, ⎡n/2⎤ + 1.

82 10 11 13 19 20 22 23 29

82 10 11 13 19 20 22 23 29

Data Structures Analysis - Javier Campos 84

Skip lists

• And adding another pointer to each node in a
multiple of 4 position …

– Now, the number of nodes examinated during a search
is, at most, ⎡n/4⎤ + 2.

82 10 11 13 19 20 22 23 29

Data Structures Analysis - Javier Campos 85

Skip lists
• And finally, the limit case: each node in a multiple of 2i

position, points to the node sited 2i places ahead
(for all i ≥ 0):

– The total number of pointers is doubled (with respect to the initial
linked list).

– Now, the time for a search is bounded above by ⎡log2 n⎤, because
searching consists on going ahead to the next node (using the
highest pointers) or going down to next level of pointers and go
ahead…

– Essentially, it is a binary search.
– Problem: insertion and deletion are too difficult!

82 10 11 13 19 20 22 23 29

Data Structures Analysis - Javier Campos 86

Skip lists

• In particular…

– If we call “height k-node” to that with k pointers, the
following property holds (thus, it is a weaker property
than the “limit case” definition):

The i-th pointer of any height k-node (k ≥ i) points to the next
height i-node or higher (i.e. height j-node with j >i).

– We adopt this as definition of skip list (together with a
random selection of height assigned to a new node).

82 10 11 13 19 20 22 23 29

Data Structures Analysis - Javier Campos 87

Skip lists

• An example of skip list:

• How to implement the search of a key?
– We start from the higest pointer in the head node.
– Go ahead in the same level until a key greater than the

searched key is found (or NULL), then go down 1
level and go ahead in the new level.

– When advance stops at level 1, either we are in front
of searched key or it does not exist in the list.

82 10 11 13 19 20 22 23 29

20?

Data Structures Analysis - Javier Campos 88

Skip lists

• And insertion? (deletion is similar)
– First: to insert a new element, the height of its

corresponding node must be decided.

• In a “limit case” list, half of the nodes have height 1, 1/4 of
nodes have height 2 and, in general, 1/2i nodes have heigth i.

• Height of a new node is selected according to those
probabilities: throw a coin until you get heads, the total
number of needed throwings is selected as heigth of the node.

– Geometric distribution with parameter p = 1/2.
(In fact, an arbitrary parameter can be selected, p, then
we could select the more suitable value for p)

Data Structures Analysis - Javier Campos 89

Skip lists

– Second: we need to know where to insert
• Proceed as in a search, keeping the trace of nodes where we

go one level down.

• Decide randomly the height of the new node and insert it,
linking the pointers conveniently.

82 10 11 13 19 20 23 29

82 10 11 13 19 20 22 23 29

22

Data Structures Analysis - Javier Campos 90

Skip lists

• An a priori estimation of the length of the list is
needed (as in hash tables) to determine the
maximum heigth of the nodes.

• If such estimation is not available, a “big”
number may be assumed or a rehashing–like
technique can be used (reconstruction).

• Experimental results seem to show that skip lists
are so efficient as many balanced search tree
implementations, and they are easier to
implement.

Data Structures Analysis - Javier Campos 91

Skip lists
function search(list:skip_list; searched_key:keytype)

return valuetype
begin
x:=list.head;
{invariant: x↑.key<searched_key}
for i:=list.heigth downto 1 do

while x↑.next[i]↑.key<searched_key do
x:=x↑.next[i]

od
od;
{x↑.key<searched_key≤x↑.next[1]↑.key}
x:=x↑.next[1];
if x↑.key=searched_key then

return x↑.value
else

failure of the search
fi

end

Data Structures Analysis - Javier Campos 92

Skip lists
algorithm random_height return natural
begin
height:=1;
{random function returns a uniform value [0,1)}
while random<p and height<MaxHeight do
height:= height+1

od;
return height

end

MaxHeight is selected as log1/p N, where N = upper bound of list length.
For instance, if p = 1/2, MaxHeight = 16 is perfect for lists with up to
216 (= 65.536) elements.

Data Structures Analysis - Javier Campos 93

Skip lists

algorithm insert(list:skip_list; k:keytype; v:valuetype)
variable trace:array[1..MaxHeight] of pointer
begin
x:=list.head;
for i:=list.heigth downto 1 do

while x↑.next[i]↑.key<k do
x:=x↑.next[i]

od;
{x↑.key<k≤x↑.next[i]↑.key}
trace[i]:=x

od;
x:=x↑.next[1];
if x↑.key=k then

x↑.value:=v
else {insertion}
. . .

Data Structures Analysis - Javier Campos 94

Skip lists

. . .
else {insertion}
height:=random_height;
if height>list.height then
for i:=list.height+1 to height do
trace[i]:=list.head

od;
list.height:=height

if;
x:=new(height,k,v);
for i:=1 to height do
x↑.next[i]:=trace[i]↑.next[i];
trace[i]↑.next[i]:=x

od
fi

end

Data Structures Analysis - Javier Campos 95

Skip lists

algorithm delete(list:skip_list; k:keytype)
variable trace:array[1..MaxHeight] of pointer
begin
x:=list.head;
for i:=list.height downto 1 do
while x↑.next[i]↑.key<k do
x:=x↑.next[i]

od;
{x↑.key<k≤x↑.next[i]↑.key}
trace[i]:=x

od;
x:=x↑.next[1];
if x↑.key=k then {deletion}
. . .

Data Structures Analysis - Javier Campos 96

Skip lists

. . .
if x↑.key=k then {deletion}
for i:=1 to list.height do
if trace[i]↑.next[i]≠x then break fi;
trace[i]↑.next[i]:=x↑.next[i]

od;
dispose(x);
while list.height>1 and

list.head↑.next[list.height]=NULL do
list.height:=list.height-1

od
fi

end

Data Structures Analysis - Javier Campos 97

Skip lists

• Analysis of cost in time:
– The time needed for searching, insertion and deletion

is dominated by the time to search an element.
– To insert/delete, there is an additional cost that is

proportional to the height of the node inserted/deleted.
– The time needed for searching is proportional to the

length of the search path.
– The length of the search path is determined by the list

structure, i.e., by the pattern of heights of nodes in the
list.

– The list structure is determined by the number of
nodes and by the results in the random generation of
the heights of nodes.

Data Structures Analysis - Javier Campos 98

Skip lists

• Analysis of cost in time (details):
– We analyze the length of the search path from right to

left, i.e., starting from the position immediately before
the searched element

• First: how many pointers do we need to visit to move upward
from height 1 (of the element just before the searched one) to
height L(n) = log1/p n?

– we assume that we reach the height L(n); that hypothesis
is like assuming that the list is infinitely large to the left

– suppose that, during the climb, we are at i-th pointer of a
certain node x

– the height of x must be at least i, and the probability for
the height of x to be greater than i is p

Data Structures Analysis - Javier Campos 99

Skip lists
• Climb from height 1 to height L(n)…

– Climb to the height L(n) can be interpreted as a series of
independent Bernoulli trials, calling “success” to an upwards
movement and “failure” to a leftward movement.

– Then, the number of leftward movements in the climb up to
height L(n) is the number of failures until the (L(n)-1)-th
success of the experiment series, i.e., it is a negative binomial
random variable NB(L(n)-1,p).

– The number of movements upward is exactly L(n)-1, then:
the cost of climbing to the height L(n) in a list with infinite
length is =prob (L(n)-1) + NB(L(n)-1,p)
Note: X =prob Y if Pr{X>t} = Pr{Y>t}, for all t
and also, X ≤prob Y if Pr{X>t} ≤ Pr{Y>t}, for all t.

– The infinity hypothesis for the length of the list is pessimistic,
i.e.: the cost of climbing to the height L(n) in a list of length n
≤prob (L(n)-1) + NB(L(n)-1,p)

Data Structures Analysis - Javier Campos 100

Skip lists
• Second: once in the height L(n), how many leftwards

movements are needed to reach the head of the list?
– It is bounded by the number of elements of heigth L(n)

or higher in the list. This number is a binomial random
variable B(n,1/np).

• Third: once in the head of the list, we need to climb to the
highest heigth.

– M = random variable “max. heigth in a list with n
elements”
Pr{height of a node>k} = pk ⇒ Pr{M>k} = 1-(1-pk)n <
npk

– Then we have: M ≤prob L(n) + NB(1,1-p) +1
Proof: Pr{NB(1,1-p)+1>i} = pi ⇒
Pr{L(n)+NB(1,1-p)+1>k} = Pr{NB(1,1-p)+1>k-L(n)} =
1/2k-L(n) = npk.
Then: Pr{M>k} < Pr{L(n)+NB(1,1-p)+1>k} for all k.

Data Structures Analysis - Javier Campos 101

Skip lists

– Putting all together:
Number of comparisons in the search =

= length of the search path + 1 ≤prob

≤prob L(n) + NB(L(n)-1,p) + B(n,1/np) + NB(1,1-p) + 1
And its average value is

L(n)/p + 1/(1-p) +1 = O(log n)
Selecting p…

p searching time
(normalized for 1/2)

Average number of
pointers by node

1/2 1 2
1/e 0,94… 1,58…
1/4 1 1,33…
1/8 1,33… 1,14…
1/16 2 1,07…

Data Structures Analysis - Javier Campos 102

Skip lists

• Comparison with other data structures:
– The cost of the operations is in the same order of

magnitude than for balanced search trees (AVL) and
for self-organizing trees (we will see them…).

– Operations are easier to implement than for balanced
or self-organizing trees.

– Constant factors make the difference:
• these factors are fundamental, especially for sub-linear

algorithms (like here):
if A and B solve the same problem in O(log n) but B is twice
faster than A, then during the time in which A solves a
problem of size n, B solves another problem of size n2.

Data Structures Analysis - Javier Campos 103

Skip lists
• “Complexity” (in the sense of difficulty to implement)

inherent to an algorithm usually fixes a lower bound to the
constant factor of any implementation of that algorithm.

– For instance, self-organizing trees are continuously
arranging while a search is done, while the innermost
loop in the deletion procedure for skip lists is compiled
into only 6 instructions in a 68020 CPU.

• If a given algorithm is “difficult”, programmers will postpone
(… or they will never do) possible optimizations in the
implementation.

– For instance, insertion and deletion algorithms for
balanced search trees are usually implemented
recursively, with the additional cost that this fact means
(in each recursive call…). However, due to the inner
difficulty of those algorithms, iterative solutions are not
usually implemented

Data Structures Analysis - Javier Campos 104

Skip lists

implementatiun search insertion deletion

Skip list 0,051 ms (1,0) 0,065 ms (1,0) 0,059 ms (1,0)

AVL non-recurs. 0,046 ms (0,91) 0,10 ms (1,55) 0,085 ms (1,46)

2-3 tree recurs. 0,054 ms (1,05) 0,21 ms (3,2) 0,21 ms (3,65)

self-organ. tree:

downward adjust. 0,15 ms (3,0) 0,16 ms (2,5) 0,18 ms (3,1)

upward adjust. 0,49 ms (9,6) 0,51 ms (7,8) 0,53 ms (9,0)

• All the implementations were optimized.
• Refer to CPU time in a Sun-3/60 and using a data structure

with 216 (= 65.536) integer keys.
• Values in brackets are relative, normalized for skip lists.
• Insertion and deletion times do NOT include the time required

to manage dynamic memory (“new” and “dispose”).

Data Structures Analysis - Javier Campos 105Data Structures Analysis - Javier Campos 105

Outline

A short course in data structures analysis…

• Worst case analysis:
– Red-black trees

• Average case analysis:
– Lexicographical trees
– Skip lists

• Amortized analysis
– Splay trees

• Data structures for computational biology
– Suffix trees

… and also an intermediate course in dictionary abstract data type

Data Structures Analysis - Javier Campos 106

Amortized analysis

• Amortized analysis
– Computation of average cost of an operation, obtained

by dividing the worst-case cost for the execution of a
sequence of operations (not necessarily of the same
type) divided by the number of operations

• Utility:
– It is possible that the worst-case cost for the isolated

execution of an operation is very high while if the
operation is considered in a complete sequence of
operations the average cost reduces drastically

• Note:
– It is NOT an average-cost analysis like the usual one,

e.g. that computed for skip lists (probability space for
input data does not appear now)

Data Structures Analysis - Javier Campos 107

Amortized analysis

• Actually, amortized cost of an operation is an
“accounting trick” that has no relation with the
actual cost of the operation.
– Amortized cost of an operation can be defined as

anything with the only condition that considering a
sequence of n operations:

where A(i) and C(i) are the amortized cost and the
exact cost, respectively, of the i-th operation in the
sequence.

∑≥∑
==

n

i

n

i
iCiA

11
)()(

Data Structures Analysis - Javier Campos 108

Amortized analysis

Aggregated analysis:
• Consists in computing the total worst-case cost

T(n) for a sequence of n operations, not
necessarily of the same type, and computing the
average cost or amortized cost of a single
operation in the sequence as T(n)/n.

• The next method that we will consider
(accounting method / potential method) computes
an amortized cost specific for each type of
operation.

Data Structures Analysis - Javier Campos 109

Amortized analysis

• Example: stack with multiPop operation
– Consider a stack represented with a linked list (using

pointers) of records with the typical operations of
createEmpty, push, pop and isEmpty.

– The real cost of all these operations is Θ(1), thus, the
cost of a sequence of n operations of push and pop is
Θ(n).

– Now we add the multiPop(s,k) operation, that deletes
the k top elements in stack s, if there are so many,
or empties the
stack otherwise.

algorithm multiPop(s,k)
begin
while not isEmpty(s) and k≠0 do
pop(s); k:=k-1

od
end

Data Structures Analysis - Javier Campos 110

Amortized analysis

– The exact cost of multiPop is, obviously, Θ(min(h,k)),
where h is the height of the stack before the operation.

– What is the cost of a sequence of n operations of push,
pop or multiPop?

• The maximum height of the stack can be in O(n), then the
maximum cost of a multiPop operation in that sequence can
be in O(n).

• Then, the maximum cost of a sequence of n operations is
bounded by O(n2).

• The above computation is correct, but the bound O(n2),
obtained considering the worst case for each operation in the
secquence, is not tight.

• Aggregated analysis considers the worst case for the
execution of the sequence as a whole…

Data Structures Analysis - Javier Campos 111

Amortized analysis

– Aggregated analysis for the sequence of operations:
• Each element present in the stack can be popped at the most

only once in the whole sequence of operations.
• Then, the maximum number of times that pop operation can

be executed in a sequence of n operations (including the calls
in multiPop) is equal to the maximum number of times that
push operation can be executed, and that is n.

• Therefore, the total cost of any sequence of n operations of
push, pop or multiPop is O(n).

• And the amortized cost of each operation is the average:
O(n)/n = O(1).

Data Structures Analysis - Javier Campos 112

Amortized analysis
Accounting method (and potential method)
• Imagine the amortized cost of each operation as a prize

asigned to the operation and that can be greater, equal or
less than the real cost of the operation.

• When the prize of an operation exceeds its real coste, the
resulting credit can be later used to pay other operations
whose prize is less than its real cost.

• A potential function, P(i), [the balance] can be defined
for each operation in the sequence:

P(i) = A(i) – C(i) + P(i – 1), i = 1, 2, …, n
where A(i) and C(i) are the amortized cost and the exact
cost, respectively, of the i-th operation.

• The potential for each operation is interpreted as the
credit available to pay the rest of the sequence.

Data Structures Analysis - Javier Campos 113

Amortized analysis

• By adding the potential of all the operations:

• Therefore, a prize must be assigned to each
operation such that the available credit is always
non negative.

• Potential method: similar to this one (define first
a positive potential function and then derive the
prizes A(i), i=1,…,n).

()

() ()

() 0)0()()()()0()(

)()()1()(

)1()()()(

1

11

11

≥−⇒∑ −=−⇒

∑ −=∑ −−⇒

∑ −+−=∑

=

==

==

PnPiCiAPnP

iCiAiPiP

iPiCiAiP

n

i

n

i

n

i

n

i

n

i

∑≥∑
==

n

i

n

i
iCiA

11
)()(

(by definition of
amortized cost)

Data Structures Analysis - Javier Campos 114

Amortized analysis

• Comming back to the stack example with
multiPop operation
– Remember the real cost:

• C(push) = 1
• C(pop) = 1
• C(multiPop) = Θ(min(h,k))

– We assign (arbitrarily) the amortized cost (prize) of
each operation as:

• A(push) = 2
• A(pop) = 0
• A(multiPop) = 0

– To see if the above definition of amortized cost is
correct we only have to prove that the credit (potential
function) is always non negative.

Data Structures Analysis - Javier Campos 115

Amortized analysis

– That is, we need to prove that P(n) – P(0) ≥ 0, ∀n.
– When each element is pushed, with prize 2, we pay

the real cost of one unit corresponding to push
operation and another unit is left over as credit.

• At each time instant we have 1 credit unit per each element
stored in the stack.

• That unit is the pre-pay to pop that element later.

– When popping, the prize of the operation is 0 and the
real cost of operation is paid with the credit associated
to the popped element.

– In this way, paying a few more per pushing (2 instead
of 1) we do not need to pay per popping neither per
multiPopping.

Data Structures Analysis - Javier Campos 116

Splay trees

• Basic ideas:
– Binary search tree for storing a set of elements of a

domain with an order relation defined, with usual
operations of searching, inserting, deleting…

– Renounce to a “strict” balancing after each operation
as in AVL, in 2-3, in B, or in red-black trees.

– They are NOT balanced; height can reach n – 1
• The fact that the worst-case cost of an operation with a binary

search tree is O(n) is not so bad…
… as long as that happens rarely!

– After the execution of each operation, the tree tends to
improve its balance, in such a way that the amortized
cost of each operation is O(log n).

Data Structures Analysis - Javier Campos 117

Splay trees

• Observe that:
– If an operation, e.g. searching, can have a worst-case cost in

O(n), and we want to get an amortized cost in O(log n) for all the
operations, then it is essential that the nodes visited during the
search operation will move after the searching.

• Otherwise, we could repeat the same search operation m times and
we would get a total amortized cost in O(mn), then we would NOT
get and amortized in O(log n) per each operation.

– Therefore, after visiting a node, we push it upward the root using
rotations (similars to those used for AVL or red-black trees)

• The restructuration depends only on the path traversed in the access
to the searched node

• With that restructuration, the subsequent accesses (to the same
node) will be faster

Specially usefull for the case of temporal locality of reference

Data Structures Analysis - Javier Campos 118

Splay trees

• Basic operation: splay
– splay(i,S): reorganizes the tree S in such a way that the

new root is:
• either the element i if i belongs to S, or
• max{k ∈ S | k < i} or min{k ∈ S | k > i}, if i does not belong

to S

• The other operations:
– search(i,S): tell us if i belong to S
– insert(i,S): inserts i in S (if it not was in)
– delete(i,S): deletes i from S (it it was)
– append(S,S’): joins S and S’ in a single tree, assuming

that (precondition) x < y for all x ∈ S and all y ∈ S’
– split(i,S): splits S into S’ and S’’ such that x ≤ i ≤ y for

all x ∈ S’ and for all y ∈ S’’

Data Structures Analysis - Javier Campos 119

Splay trees

• All the previous operations can be implemented
with a constant number of splays plus a constant
number of “atomic” operations (comparisons,
pointers assignments…)
– Example: append(S,S’) can be implemented with

splay(+∞,S) that puts the maximum of S in its root and
the rest in its left subtree, and then putting S’ as the
right subtree of the root of S.

– Another example: delete(i,S) can be implemented with
splay(i,S) to put i in the root, then we delete i and
execute append to join left and right subtrees.

Data Structures Analysis - Javier Campos 120

Splay trees

• Implementation of splay operation
– Remember rotations:

• Preserves the “search structure” of the search tree

x

y

A B

C

x

y

A

B C

rotate(x)

rotate(y)

Data Structures Analysis - Javier Campos 121

Splay trees
– A first possibility to move upward a node i to the root is rotating

it repeatedly
• Not useful: it may cause other nodes go down too much
• We con prove that there is a sequence of m operations requireing
Ω(mn):

– create a tree inserting keys 1, 2, 3, …, n in an empty tree, then
move the last inserted node to the root by means of rotations

» the nodes in the obtained tree only have left child
» the total cost till here is O(n)

– searching key 1 takes n comparisons, then key 1 is moved to
the root with rotations (n – 1 rotations)

– search key 2 takes n comparisons and then n – 1 rotations
– iterating the process, a sorted search of all the keys takes

– after that, the tree goes back to its original shape, so repeating
the sorted search sequence, we get Ω(mn) for m operations.

)(21
1 nin

i Ω=∑ −
=

Data Structures Analysis - Javier Campos 122

Splay trees

– The good solution (to move x upward to the root) is:

• Case 1: if x has parent but has not grandparent, execute
rotate(x) (with its parent)

• Case 2: if x has parent (y) and also grandparent, and x and y
are both left child or both right child, then se execute rotate(y)
and then rotate(x) (with its parent in both cases)

• Case 3: if x has parent (y) and also grandparent, and x and y
are one right child and the other left child, then execute
rotate(x) and then rotate(x) again (with its parent in both
cases)

Data Structures Analysis - Javier Campos 123

Splay trees

– Example: splay(1,S), with S a degenerate tree

1
2

3
4

5
6

7
8

9
10

1
2

3

4
5

6
7

8
9

10

52
3

4
1

6
7

8
9

10

52
3

4 7
6

1
8

9
10

52
3

4 7
6 9

8
1

10

52
3

4 7
6 9

8

1
10

Case 2 Case 2 Case 2

Case 2 Case 1

Data Structures Analysis - Javier Campos 124

Splay trees

– Example (cont.): splay(2,S) to the previous result…

• Note that the tree is more and more balanced after each splay

52
3

4 7
6 9

8

1
10

5

2

3
4

7

6
9

81
10

Data Structures Analysis - Javier Campos 125

Splay trees

• Analysis of the cost of splay using accounting
method:
– Each node x has a credit associated with it
– When node x is created, the prize of that creation is

associated with x as credit, and will be used for
subsequent restructurations

– Let S(x) be the subtree with x as root and |S| its
number of nodes

– Let μ(S) = ⎣(log |S|)⎦ and μ(x) = μ(S(x))
– We require the following credit invariant:
Node x has always a credit greater than or equal to μ(x).

Data Structures Analysis - Javier Campos 126

Splay trees

– Lemma: each splay operation requires at most
3(μ(S) – μ(x)) + 1

units of credit to be executed and preserve the credit
invariant.
Proof:
• Let y be the parent of x and z, if it exists, the parent of y.
• Let μ and μ’ be the values of μ before and after splay.
• There are three cases:

(a) z does not exist
(b) x and y are both left child or both right child
(c) x and y are one right child and the other left child

Data Structures Analysis - Javier Campos 127

Splay trees
• Case 1: z does not exist

– That is the last rotation in the splay operation
– We execute rotate(x) to get:

μ’(x) = μ(y)
μ’(y) ≤ μ’(x)

– To preserve the credit invariant we spend:
μ’(x) + μ’(y) – μ(x) – μ(y) = μ’(y) – μ(x)
≤ μ’(x) – μ(x) ≤ 3(μ’(x) – μ(x)) = 3(μ(S) – μ(x))

– We add a credit unit due to the constant cost operations
(comparisons and pointers manipulation)

– Therefore, we pay at most
3(μ’(x) – μ(x)) + 1

credit units per rotation

x

y

A B

C

x

y

A

B C

Data Structures Analysis - Javier Campos 128

Splay trees
• Case 2: x and y are both left child or both right child

– Execute rotate(y) and then rotate(x)

– First, we will see that the prize of these 2 rotations to
preserve the invariant is not greater than 3(μ’(x) – μ(x))

– After, if a sequence of rotations is done to move x up to
the root, a telescopic sum arises, and the total cost is not
greater than 3(μ(S) – μ(x)) +1 (the ‘+1’ comes from
the last rotation)

x

y

A B

C

z

D

y

x

A B

z

C D

y

x

A

B

z

C D

Data Structures Analysis - Javier Campos 129

Splay trees
– Prize of the 2 rotations:

» To preserve the invariant we need
μ’(x) + μ’(y) + μ’(z) – μ(x) – μ(y) – μ(z) units (*)

» Since μ’(x) = μ(z), we have:
μ’(x) + μ’(y) + μ’(z) – μ(x) – μ(y) – μ(z)

= μ’(y) + μ’(z) – μ(x) – μ(y)
= (μ’(y) – μ(x)) + (μ’(z) – μ(y))
≤ (μ’(x) – μ(x)) + (μ’(x) – μ(x))
= 2(μ’(x) – μ(x))

– Even μ’(x) – μ(x) units are left in order to pay the
elementary operations of both rotations (comparisons
and pointers manipulation), unless μ’(x) = μ(x) …

Data Structures Analysis - Javier Campos 130

Splay trees
– We see that in this case (μ’(x) = μ(x)) the amount needed

to preserve the invariant (*) is negative, therefore we
preserve the invariant “for free”:
μ’(x) = μ(x)
μ’(x) + μ’(y) + μ’(z) ≥ μ(x) + μ(y) + μ(z)

In effect: μ(z) = μ’(x) = μ(x)
⇒ μ(x) = μ(y) = μ(z)

Then: μ’(x) + μ’(y) + μ’(z) ≥ 3μ(z) = 3μ’(x)
⇒ μ’(y) + μ’(z) ≥ 2μ’(x)

And since μ’(y) ≤ μ’(x) y μ’(z) ≤ μ’(x) then
μ’(x) = μ’(y) = μ’(z)

And since μ(z) = μ’(x) then
μ(x) = μ(y) = μ(z) = μ’(x) = μ’(y) = μ’(z)

contradiction

Data Structures Analysis - Javier Campos 131

Splay trees
But μ(x) = μ(y) = μ(z) = μ’(x) = μ’(y) = μ’(z) is
impossible by definition of μ and μ’…

» In effect, if a = |S(x)| and b = |S’(z)|, then we would
get
⎣log a⎦ = ⎣log (a + b + 1)⎦ = ⎣log b⎦

and assuming that a ≤ b (the other case is similar),
⎣log (a + b + 1)⎦ ≥ ⎣log 2a⎦ = 1 + ⎣log a⎦ > ⎣log a⎦

Therefore we reach a contradiction.

x

y

A B

C

z

D

y

x

A

B

z

C D

Data Structures Analysis - Javier Campos 132

Splay trees
• Case 3: x and y are one right child and the other left child

– Execute rotate(x) twice

– As in the previous case, the prize of these 2 rotations to
preserve the invariant is not greater than 3(μ’(x) – μ(x))

– The proof is similar

x

y

A B

z

C D

y

x D

A

z

B C

y

x

A B

C

D

z

Data Structures Analysis - Javier Campos 133

Splay trees

• In summary:
– The prize of each splay operation is bounded by

3⎣log n⎦ + 1, with n the number of keys in the tree
– The reminder operations can be implemented with a

constant number of splays plus a constante number of
elementary operations (comparisons and pointers
assignments)

– Therefore: the total time required to execute a
sequence of m operations with a self-organizing tree is
in O(m log n), with n the number of insertion and
append operations

Data Structures Analysis - Javier Campos 134

Splay trees

• Implementation details
– Even if splay was described as a bottom-up operation,

the most convenient implementation achieves it top-
down

• While we are searching a key, or the position to insert it, we
can proceed doing splay along the path

• That implementation is called top-down splay trees
• Can be found for instance in M.A. Weiss book

(Data Structures and Algorithm Analysis in Java, 2nd Ed.,
Addison-Wesley, 2007)

http://www.cs.fiu.edu/~weiss/dsaajava2/code/SplayTree.java

Data Structures Analysis - Javier Campos 135Data Structures Analysis - Javier Campos 135

Outline

A short course in data structures analysis…

• Worst case analysis:
– Red-black trees

• Average case analysis:
– Lexicographical trees
– Skip lists

• Amortized analysis
– Splay trees

• Data structures for computational biology
– Suffix trees

… and also an intermediate course in dictionary abstract data type

Data Structures Analysis - Javier Campos 136

Data structures for computational biology

• Basic problem: exact string matching
– Given a text or string with m characters

S = ‘t1 t2 … tm’
and a pattern with n characters (m≥n)

P = ‘p1 p2 … pn’
finding one or, more generally, all the occurrences of
P in S (i.e., finding the position(s) of P in S)

– Critical statement to measure the efficiency of
possible solutions:

• number of comparisons between pairs of characters

Data Structures Analysis - Javier Campos 137

Data structures for computational biology

• Importance of the problem:
– Indispensable in a large number of applicacions:

• text editors and processors,
• utilities like grep in unix,
• information retrieval,
• searching in catalogs of digital libraries,
• internet searching,
• news readers in internet,
• electronic journals,
• telephone directories,
• electronic encyclopedias,
• searching in DNA / RNA sequences databases,
• …

– Well-solved problem in some particular cases but…

Data Structures Analysis - Javier Campos 138

Data structures for computational biology
“We used GCG

(a very popular interface to search DNA and proteins in data banks;
http://www-biocomp.doit.wisc.edu/gcg.shtml)

to search in Genbank
(the largest database of DNA in USA;
http://www.ncbi.nlm.nih.gov/Genbank/)

a string (pattern) with 30 characters
(small size problem for that application domain)

and it took 4 hours using a local copy of the database to determine that
the pattern did not appear in the database…”

“We repeted later the same test using Boyer-Moore algorithm and the
search took less than 10 minutes (and most of time was due to the
movement of data from disk to memory, since the actual search took less
than 1 minute)…”

D. Gusfield’s book:
Algorithms on Strings, Trees, and Sequences. Computer Science and
Computational Biology, Cambridge University Press, 1997.

http://www-biocomp.doit.wisc.edu/gcg.shtml
http://www.ncbi.nlm.nih.gov/Genbank/
http://books.google.es/books?hl=es&id=STGlsyqtjYMC&dq=Algorithms+on+Strings,+Trees,+and+Sequences+gusfield+pdf&printsec=frontcover&source=web&ots=kiLduyD5qa&sig=KMoxHR6iVLll7Q04Z7ZtDjEpzdM

Data Structures Analysis - Javier Campos 139

Data structures for computational biology

• Importance of the problem (cont.)
– String matching problems have not yet a so efficient

and universal solution making the researchers lose the
interest in the problem.

• Databases’ size will continue growing up and string matching
will always be a necessary subtask in many applications.

– In addition, the problem and the known or new
solutions are interesting in itself.

• Solutions for the problem can give new ideas to solve more
difficult problems related with strings and with important
practical interest.

Data Structures Analysis - Javier Campos 140

Data structures for computational biology

• Direct (naïve) method
function substring(S,P:string; m,n:nat) ret natural
{Returns r if the 1st occurrence of P in S starts in
position r (i.e. r is the smallest integ. such that Sr+i-1=Pi
for i=1,2,…,n), and returns 0 if P is not substring of S}
variables ok:boolean; i,j:natural
begin
ok:=false; i:=0;
while not ok and i≤m-n do
ok:=true; j:=1;
while ok and j≤n do
if P[j]≠S[i+j] then ok:=false else j:=j+1 fi

od;
i:=i+1;

od;
if ok then return i else return 0 fi

end

Data Structures Analysis - Javier Campos 141

Data structures for computational biology

• Analysis of direct method:
– Tries to find pattern P at each position of S.
– Worst case:

• Makes n comparisons at each position to test if it has found
the pattern.
E.g.: S = ‘aaaaaaab’ P = ‘aaab’

• Total number of comparisons is

Ω(n(m-n))

i.e., Ω(nm) if m is substantially greater than n.

Data Structures Analysis - Javier Campos 142

Data structures for computational biology

• A pleiade of methods that significatively improve
the cost of the previous direct method
– Knuth-Morris-Pratt (1977), O(m) (with m = length of

text)
– Boyer-Moore (1977), O(m) (with m = length of text),

in practice, sublinear
– Etc.
– For instance, the book (& applets) by Charras and

Lecroq
Handbook of extact string-matching algorithms

http://www-igm.univ-mlv.fr/%7Elecroq/string/string.pdf

the applets:
http://www-igm.univ-mlv.fr/%7Elecroq/string/

http://www-igm.univ-mlv.fr/~lecroq/string/string.pdf
http://www-igm.univ-mlv.fr/~lecroq/string/

Data Structures Analysis - Javier Campos 143

Suffix trees

• What is a suffix tree?
– A data structure useful to store a string with important

pre-processed information about its internal structure.
– That information is useful, for instance, to solve the

the exact string matching problem in linear time on the
pattern length:

• Let S be a text with length m
• It is pre-processed (a suffix tree is built) in time O(m)
• To search a pattern P of length n takes O(n).

This bound is not reached by KMP neither by BM (O(m))
– It is also useful for other more complex problems, like

for instance:
• Given a set of texts {Si}, find if P is substring of any Si

• Inexact string matching problems…

Data Structures Analysis - Javier Campos 144

Suffix trees

• Definition: suffix tree for a string S of length m
– Rooted tree with m leaves numbered from 1 to m
– Each internal node (except the root)

has at least 2 children
– Each edge is labelled with

a non-empty substring of S
– 2 edges hanged from the same

node cannot have labels
starting with the same character

– For each leaf i, the concatenation of the labels in the
path from the root to i gives the suffix of S that starts
in position i of S.

x a b x a c
a

c

1

23

4

5
6

c

c

c
a

x
b

b x
a c

S = xabxac

Data Structures Analysis - Javier Campos 145

Suffix trees

• A problem…
– The definition does not guarantee that a suffix tree

exists for any string S.
– If a suffix of S is also the preffix of another suffix of

S, then the path in the tree for the first suffix would
not end in a leaf.

– Example:

– Solution: to add a terminator character, S = xabxa€

S = xabxac
x a b x a

a
1

23

a
x

b
b x

a

4

5

Data Structures Analysis - Javier Campos 146

Suffix trees

• Terminology:

– Label of a node: sorted concatenation of the labels in
the edges of the path from the root to that node

– Depth in the string of a node: number of characters in
the label of the node

Data Structures Analysis - Javier Campos 147

Suffix trees

• Solution to the substring problem:
To find all occurrences of P, with length n, in a string S,
with length m, in O(n + m) time:

– Build a suffix tree for the string S, in O(m) time.
– Match the characters of P along the

unique path in the suffix tree of S until

a) either P is exhausted or
b) no more matches are possible.

– In case (b), P is not in S.
– In case (a), every leaf in the subtree below the point of the last

match is numbered with a starting location of P in S, and there
are no more.

x a b x a c
a

c

1

23

4

5
6

c

c

c
a

x
b

b x
a c

S = xabxac

Data Structures Analysis - Javier Campos 148

Suffix trees

• Explanation of case (a):
– P occurs in S starting at location j if and only if P occurs as a

prefix of S[j..m].
– But this happens if and only if string P labels an initial part of the

path from the root to leaf j.
– It is the initial path that will be followed by the matching

algorithm.
– The matching path is unique because no two edges out of a

common node can have edge-labels beginning with the same
character.

• And, because we have assumed a finite alphabet, the
work at each node takes constant time and so the time to
match P to a path is proportional to the length of P, O(n).

Data Structures Analysis - Javier Campos 149

Suffix trees

• Cost of locating all the occurrences of the pattern
in the string, in case (a):
– If P fully matches some path in the tree, just traverse

the subtree below the end of the matching path,
collecting position numbers written at the leaves.

– Since every internal node has at least 2 children, the
number of leaves encountered is proportional to the
number of edges traversed, so the time for the
traversal is O(k), if k is the # of occurrences of P in S.

– Thus the cost to find all locations of the pattern is
O(n + m), i.e., O(m) to build the suffix tree and
O(n + k) for the search.

Data Structures Analysis - Javier Campos 150

Suffix trees

• Cost (continuation):
– That is the same cost of previous algorithms (for instance, KMP),

but:
• In that case (KMP) we needed a O(n) time for preprocessing P and

then a O(m) time for the search.
• Now, we spend O(m) time in the preprocessing and then O(n + k) in

the search, where k is the number of occurrences of P in S.
– If only one location of P in S is needed, the search can be reduced

from O(n + k) to O(n) by adding to every node (in the
preprocessing) the number of one of the leaves of its subtree.

– There exists another algorithm that uses suffix trees to solve the
same problem, that needs O(n) time for preprocessing and O(m)
time for the search (i.e., exactly like KMP).

Data Structures Analysis - Javier Campos 151

Suffix trees

• How to build a suffix tree:
– We see the ideas behind one of the three linear (on the

text length) methods known to build the tree
• Weiner, 1973: “the algorithm of 1973”, according to Knuth
• McCreight, 1976: more in space
• Ukkonen, 1995: as efficient as McCreight’s and “easier” to

understand (14 pages in D. Gusfield’s book…)

– But first we see a naïve method, with quadratic cost on
the string length (and really easy, i.e., a single slide).

Data Structures Analysis - Javier Campos 152

Suffix trees

• Building suffix tree for string S (with length m)
in quadratic time:
– Create tree N1 with a single edge from root to a leaf

numbered with 1, and label S€, i.e., S[1..m]€.
– Build tree Ni+1 (up to Nm) by adding suffix S[i+1..m]€

to Ni:
• Starting from root of Ni, find the longest path whose label

matches a prefix of S[i+1..m]€ (as when we search a pattern
in a tree), and then:

– either the path finishes at a node, w, or
– we are “in the middle” of the label of edge (u,v); in this

case, split the edge in 2 (through that point) inserting a
new node, w

• Create a new edge (w,i+1) from w to a new leaf and label it
wih the final part of S[i+1..m]€ (that was not found in Ni).

Data Structures Analysis - Javier Campos 153

Suffix trees

• A linear algorithm to build a suffix tree (Ukkonen, 1995)
• About the way of presenting it:

– First, we present it in the simplest way, even very inefficient.
– Then, its efficiency can be improved with several tricks and some

common sense.

• The method: build a sequence of implicit suffix trees, and
finally transform the last of them in the suffix tree of S
– Implicit suffix tree, Im, for string S: it is obtained from the suffix

tree for S€ by removing every copy of the terminal symbol €
from the edge labels, then removing any edge that has no label,
and then removing any node that does not have at least 2
children.

– The implicit suffix tree, Ii, for a prefix S[1..i] is similarly defined
by taking the suffix tree for S[1..i]€ and deleting things as above.

Data Structures Analysis - Javier Campos 154

Suffix trees

• The implicit suffix tree for a string S:
– Has less leaves than the suffix tree for S€ if and only if

at least a suffix of S is prefix of another suffix of S
(symbol € was added just to avoid that situation).

x a b x a €
a

€

1

23

4

5
6

€

€

€
a

x
b

b x
a €

S = xabxa€
Suffix xa is prefix of suffix xabxa, and also
suffix a is prefix of abxa.
Then, in the suffix tree of S, the edges
leading to leaves 4 and 5 are labelled only
with €.

If we delete those edges we get 2 nodes
with only 1 child, they are also deleted.
In the implicit tree, it may happen that
there is not a leaf for each suffix of S, thus
it has less information than the suffix tree.

x a b x a

a
1

23

a
x

b
b x

a

Data Structures Analysis - Javier Campos 155

Suffix trees

– On the other hand, if S ends with a character that does
not appear in the rest of S, then the implicit suffix tree
of S has a leaf for every suffix and therefore it is in
fact a suffix tree.

x a b x a c
a

c

1

23

4

5
6

c

c

c
a

x
b

b x
a c

S = xabxac€

Data Structures Analysis - Javier Campos 156

Suffix trees

• The algorithm (in its unefficient version, O(m3)
algorithm Ukkonen_high_level(S:string; m:nat)
begin
build tree I1;
for i:=1 to m-1 do
for j:=1 to i+1 do
find the end of the
path from the root
labelled with S[j..i]
in the present tree;

if needed then
extend that path with
character S(i+1) to
assure that string
S[j..i+1] is in the tree

od
od

end

Phase i+1:
computation
of tree Ii+1
from tree Ii.

Phase i+1
has i+1
extensions

It is an edge labelled with S(1)

Extension j:
string
S[j..i+1] is
added, for
j=1..i.
Finally
(ext. j+1),
string S(i+1)
is added

Remember that Ii is the implicit
suffix tree for the prefix S[1..i].

Data Structures Analysis - Javier Campos 157

Suffix trees

• Details on extension j of phase i+1:
– Find S[j..i] = β in the tree and when the end of β is

reached, try that suffix βS(i+1) is also in the tree;
to do that, three cases can arise:
[Rule 1] If β ends in a leaf: add S(i+1) at the end of the label of

the edge from which hangs that leaf.
[Rule 2] If no path from the end of string β starts with S(i+1),

but there is at least a labelled path starting at the end of β, a
new edge to a new leaf (labelled with j) is created hanging
from that point and labelled with S(i+1).
If β ends in the middle of a label of an edge, a new node
must be inserted, splitting the edge, and hanging as a new
leaf. The new leaf is labelled with j.

[Rule 3] If there is a path at the end of β starting with S(i+1),
the string βS(i+1) was already in the tree. Nothing to do.

Data Structures Analysis - Javier Campos 158

Suffix trees

• Example: S = axabx

b x b
x

4

2

1

3 5

b
b

b
a

x
a

a b
x b

x
bx

b

b x
x

4

2

1

3

b
b

a
x

a
a b

xx
x

It is an implicit suffix tree for S.
The first 4 suffixes end in a leaf.
The last one, x, ends in the middle of an
edge.

If we add b as the sixth char. of S,
the first 4 suffixes are extended
using rule 1, the 5th one using
rule 2, and the 6th with rule 3.

Data Structures Analysis - Javier Campos 159

Suffix trees

• Cost of this first version:
– Once we reach the end of suffix β of S[1..i] we need a

constant order time for the extension (to assure that
suffix βS(i+1) is in the tree).

– Then, the key point is to find the ends of all the i+1
suffixes of S[1..i].

– The easiest way:
• To find the end of β in O(|β|) time, going down from the root;
• thus, extension j in phase i+1 takes O(i+1–j) time;
• Then, tree Ii+1 can be generated from Ii in O(i2), then Im is

created in O(m3)

Data Structures Analysis - Javier Campos 160

Suffix trees

• Reducing the cost…: pointers to suffixes
– Let v be an internal node

with label (from the root)
xα (i.e., a character x
followed by a string α)
and another node s(v)
with label α, then a
pointer from v to s(v) is called a pointer to suffix

– Special case: if α is the empty string then the pointer
to suffix from an internal node with label xα points to
the root node

– Root node is not consider as “internal”, then no
pointer to suffix goes out of the root

x a b x a €
a

€

1

23

4

5
6

€

€

€
a

x
b

b x
a €

Data Structures Analysis - Javier Campos 161

Suffix trees

• Lemma 1: if we add (in the algorithm) in extension j of
phase i+1 to the present tree an internal node v with label
xα, then, either:
– the path labelled with α already ends at an internal node, or
– due to extension rules, an internal node will be created at the end

of string α in extensión j+1 of phase i+1

• Corollary 1: every internal node created in Ukkonen’s
algorithm will be the origin of a pointer to suffix at the
end of the next extension

• Corollary 2: for every implicit suffix tree Ii (in the
algorithm), if an internal node v is labelled with xα, then
there is a node s(v) in Ii labelled with α

(proofs: D. Gusfield’s book)

Data Structures Analysis - Javier Campos 162

Suffix trees

• Phase i+1, extension j (for j=1..i+1): find suffix
S[j..i] of S[1..i]
– the naïve version traverses a path from the root,
– it can be simplified by using pointers to suffixes…
– first extension (j=1):

• the end of string S[1..i] must be at a leaf of Ii because it is the
longest string of the tree;

• it is enough with storing a pointer to the leaf that corresponds
with the whole string S[1..i] ;

• in that way, we have a direct access to the end of suffix
S[1..i], and the addition of character S(i+1) is solved using
rule 1, with constant order cost in time.

Data Structures Analysis - Javier Campos 163

Suffix trees

– Second extension (j=2): find the end of S[2..i] in order
to append S(i+1).

• Let S[1..i] = xα (with α empty or not) and let (v,1) be the
edge that arrives to the leaf 1.

• We need to find the end of α in the tree.
• Node v is either the root or an internal node of Ii

– If v is the root, to reach the end of α we need to go down
the tree following the path α (as in the naïve algorithm).

– If v is internal, by Corollary 2, there is pointer to suffix
from v to s(v).
Moreover, since s(v) has a label that is prefix of α, the
end of α must be in the subtree of s(v).
Then, in the search of the end of α, we do not need to
traverse the whole string, but we can start the path at s(v)
(using the pointer to suffix).

Data Structures Analysis - Javier Campos 164

Suffix trees

– The other extensions from S[j..i] to S[j..i+1] with j > 2:
• Starting from the end of S[j–1..i] (where we arrived in

previous extension) move upward a node to reach either the
root or an internal node v, where a pointer to suffix starts that
goes to s(v).

• If v is not the root, follow the pointer to suffix and go down
in the subtree of s(v) until the end of S[j..i], and make the
extension with S(i+1) according with the extension rules.

• Obtained cost: for the moment… the same one,
but a trick is possible to reduce it to O(m2)

Data Structures Analysis - Javier Campos 165

Suffix trees

• Trick no. 1:
– In extension j+1 the algorithm

goes down from s(v) along
the substring, let be γ,
until the end of S[j..i]

– Direct implementation:
O(|γ|)

– It can be reduced to
O(# nodes in the path):

• Let g = |γ|
• The 1st character of γ must appear in 1 (and only 1) edge of

those starting from s(v); let g’ be the # characters of that edge
• If g’ < g then we can jump to the final node of the edge
• Make g=g–g’, assign the position of g’+1 to a variable h and

continue going down

x

z

α

a
α

node v
node s(v)

b
c

de
f

ghyx

γγ

za
bc

de
fg

h
y

final of suffix j
final of

suffix j–1

Data Structures Analysis - Javier Campos 166

Suffix trees

• Terminology: depth of a node is the number of
nodes in the path from the root to that node

• Lemma 2: Let (v,s(v)) be a pointer to suffix
followed in Ukkonen’s algorithm. At that point,
the depth of v is, at most, one unit more than the
depth of s(v).

• Theorem 1: using trick 1, the time cost of every
phase of Ukkonen’s algorithm is in O(m).

• Corollary 3: Ukkonen’s algorithm can be
implemented using pointers to suffixes to get a
cost in O(m2) time.

(proofs: D. Gusfield’s book)

Data Structures Analysis - Javier Campos 167

Suffix trees

• Problem to reduce the cost below O(m2):
– Storing the tree can require Θ(m2) in space:

• Labels of edges can include Θ(m2) characters
• Example: S = abcdefghijklmnopqrstuvwxyz

Every suffix starts with a different letter, then 26 edges hang
from the root, and each one is labelled with a complete suffix,
then we require 26 × 27/2 characters in total

– We need a different way to store the labels…

Data Structures Analysis - Javier Campos 168

Suffix trees

• Label compression
– Store a pair of indexes: start and end of the substring

in the string S
– The cost to find the characters using the positions is

constant (store a copy of S in a direct access structure)

– Maximum number of edges: 2m – 1, then the cost in
space to store the tree is in O(m)

ud
c

b
a

v
w

e
f

ud

c
b

v
w

e
f

1,3

10,124,6

2,3

10,12
4,6

S = abcdefabcuvw

Data Structures Analysis - Javier Campos 169

Suffix trees

• Observation 1: remember Rule 3

• If Rule 3 is applied in any extension j, rule 3 will also be
applied in the other extensions since j+1 to i+1.

• Moreover, a pointer to suffix is added only after applying
Rule 2…

Details about extension j in phase i+1:
Search S[j..i] = β in the tree and when reached the end of β we need to
include suffix βS(i+1) in the tree, three cases can arise:

…
[Rule 3] If there is a path at the end of β starting with S(i+1), the
string βS(i+1) was already in the tree. Nothing to do.

[Regla 2] If no path from the end of string β starts with S(i+1), but there is at
least a labelled path starting at the end of β, a new edge to a new leaf
(labelled with j) is created hanging from that point and labelled with S(i+1).
If β ends in the middle of a label of an edge, a new node must be inserted,
splitting the edge, and hanging as a new leaf. The new leaf is labelled with j.

Data Structures Analysis - Javier Campos 170

Suffix trees

• Trick no. 2:
– Phase i+1 must finish just after the first time that Rule

3 is applied for an extension.
– The “extensions” in phase i+1 after the first

application of Rule 3 will be called implicit (there is
nothing to do in them, then we do not execute them).

– On the contrary, an extension j in which we explicitly
find the end of S[j..i] (then, either Rule 1 or Rule 2 is
applied), is called explicit.

Data Structures Analysis - Javier Campos 171

Suffix trees

• Observation 2:
– Once a leaf is created and labelled with j (due to the

suffix of S that starts in position j), it remains as a leaf
during all the execution of the algorithm.

– In effect, if there is a leaf labelled with j, then Rule 1
of extension will apply in all the subsequent phases to
the extension j.

– Then, after creating leaf 1 in phase 1, in every phase i
there is an initial sequence of consecutive extensions
(starting from extension 1) where either Rule 1 or
Rule 2 are applied.

– Let ji be the last extension in the above sequence.

[Regla 1] If β ends in a leaf: add S(i+1) at the end of the label
of the edge from which hangs that leaf.

Data Structures Analysis - Javier Campos 172

Suffix trees

– Since in each application of Rule 2 a new leaf is
created, from observation 2 follows that ji ≤ ji+1,

• i.e., the length of the initial sequence of extensions where
rules 1 or 2 are applied does not reduce in the next phases;

• then, we can apply the following trick in the implementation:
– in phase i+1 skip all explicit extensions from 1 to ji (then

it takes a constant time to perform implicitly all these
extensions);

– we see it in detail now…
(remember that the label of an edge is represented with 2
indexes, p, q, specifying the substring S[p..q], and that
the edge to a leaf in tree Ii will have q = i, then in phase
i+1 q will be incremented to i+1, indicating the
character S(i+1) appended at the end of each suffix)

Data Structures Analysis - Javier Campos 173

Suffix trees

• Trick no. 3:
– In phase i +1, when an edge to a leaf is created and

should be labelled with indexes (p, i+1) representing
the string S[p..i+1], instead of doing that, do label it
with (p, e), where e is a symbol denoting the “present
end”

– e is a global index that takes the value i+1 once in
each phase

– In phase i+1, since we know that Rule 1 will be
applied at least in the extensions from 1 to ji, it is not
needed additional work to implement these ji
extensions; instead of that, with a constant cost, we
increment variable e and later we perform the needed
work for extensions after ji+1

Data Structures Analysis - Javier Campos 174

Suffix trees

• Cost: Ukkonen’s algorithm, using pointers to suffixes and
implementing tricks 1, 2 and 3, builds the implicit suffix
trees I1 to Im in O(m) time.

(details: D. Gusfield’s book)
• The implicit suffix tree Im can be transformed in the final

suffix tree in O(m) time:
– Add the terminal symbol € at the end of S and continue the

execution of Ukkonen’s algorithm with that character
– Since no suffix is now a prefix of another suffix, the algorithm

creates an implicit suffix tree such that every suffix ends at a leaf
(therefore, it is also a suffix tree)

– Finally, change the value of index e (in edges to leaves) into m

Data Structures Analysis - Javier Campos 175

Suffix trees

First applications of suffix trees:
• [P1] Exact string matching

– If the pattern, P(1..n), and the text, S(1..m), are known
at the same time, the cost using suffix trees is equal to
using KMP or BM: O(n+m)

– If we need to search several patterns in the same text,
after a pre-processing (creation of the suffix tree of the
text) with cost O(m), each search of the k occurrences
of a pattern P in S takes O(n+k); on the other hand,
algorithms based on pre-processing the pattern (as
KMP) take O(n+m) for every search

– This problem was the origin of suffix trees

Data Structures Analysis - Javier Campos 176

Suffix trees

• [P2] Exact matching of a set of patterns
– There exists a (non trivial, section 3.4 in Gusfield’s

book) algorithm by Aho and Corasick for searching all
(k) occurrences of a set of patterns with total length n
in a text with length m with cost O(n+m+k) in time

– Using a suffix tree we get exactly the same bound

Data Structures Analysis - Javier Campos 177

Suffix trees
• [P3] Searching a substring in a set of texts

– Example: identification of mortal remains (used for instance with
U.S. military personnel)

• A small mitochondrial DNA interval of each person (database of
military personnel) is stored (“sequenced”)

• The selected interval is such that:
– It can be easily and reliably isolated using a PCR (“polymerase

chain reaction”: process used to duplicate a DNA interval; it is
to genes what Gutenberg's printing press was to the written
word)

– it is a highly variable string (thus it is a “nearly unique”
identifier of a person)

• To identify a person, mitochondrial DNA is extracted from the
remains of persons who have been killed (or in many cases a
substring, if the conditions of the remains do not allow the complete
extraction) and matched against the database of strings of personnel
(in fact, the longest common substring of the extracted interval and
the DB intervals)

Data Structures Analysis - Javier Campos 178

Suffix trees

• Solution to [P3]: a generalized suffix tree
– It is used to store the suffixes of a set of texts
– Conceptually simple way to build it:

• add a different ending character (not belonging to the
alphabet of the texts) to each text in the set,

• concatenate all the resulting strings, and
• generate the suffix tree for the whole resulting string.

– Consequences:
• The obtained tree has a leaf per each suffix of the

concatenated string and it is built in linear time on the sum of
the lengths of the concatenated texts

• The numbers (labels) of the leaves can be substituted for a
pair of numbers: one identifying the text to which it belongs
and the other one the initial position in that text

Data Structures Analysis - Javier Campos 179

Suffix trees

– Problem with the method:
• the tree stores suffixes that cover more than one of the

original texts, thus they are not valid suffixes

– Solution:
• Since the ending character of each text is different and does

not appear in the original texts, the label of all the path from
the root to any internal node is a substring of one of the
original texts

• Then, the suffixes that are not valid are always in paths from
the root to the leaves, thus reducing the second index (that
one that is marking the end of the substring) from the label of
the edge that goes to each leaf, all the non-valid suffixes can
be deleted (those covering more than a text of the set)

Data Structures Analysis - Javier Campos 180

Suffix trees
– Smart implementation:

• Simulate the above method without making the concatenation of the
strings

• With 2 different string S1 and S2:
1st build the suffix tree of S1 (assuming it has an ending character)
2nd starting from the root of the previous tree, make the matching

of S2 with a path in the tree until a difference appears
» suppose that the first i characters of S2 match
» then the tree stores all the suffixes of S1 and S2[1..i]
» essentially, we executed the first i phases of Ukkonen’s

algorithm for S2 using the tree of S1

3rd continue Ukkonen’s algorithm with that tree for S2 from phase
i+1

» at the end, the tree stores all the suffixes of S1 and S2 but
without “synthetic” suffixes

Data Structures Analysis - Javier Campos 181

Suffix trees

– For more than 2 strings: repeat the process for all them
• The generalized suffix tree for all of them is created in linear

time on the sum of the lengths of all the strings

– Small problems:
• The compressed labels of edges can refer to several strings

we must add a symbol to every edge (now they are 3)
• It can be identical suffixes in 2 (or more) strings, in that case

a leaf will represent all the strings and starting positions of
the corresponding suffix

Data Structures Analysis - Javier Campos 182

Suffix trees

– Example: result of adding babxba to the tree of xabxa

b
x

x

2,3

bb
b
a

x
a

a

a

a

b

a

a

x

b
€

€
1,3

€

2,5

€
2,1

€
1,5
2,6 €

2,2

€
1,2

a
b

a
€

2,4

€

1,4

b x a € 1,1

Data Structures Analysis - Javier Campos 183

Suffix trees
– Summarizing, to solve [P3]:

• Build the generalized suffix tree of strings Si in the DB in O(m)
time, with m the sum of lengths of all the strings, and also in O(m)
in space

• A string S with length n can be found (or its absence proved) in the
DB in O(n) time

– It is done just matching that substring with a path in the tree
– The path ends at a leaf when looking the last character of the

string if and only if the string appears complete in the DB
– If S is substring of one or several strings of the DB, the

algorithm finds all the strings of the DB containing S in time
O(n+k) where k is the number of occurrences of the substring
(it is done by traversing the subtree hanging below the path
followed when matching S with the tree)

– If S does not match with a path in the tree then neither S is in
the DB nor is substring of a string in the DB; in this case, the
matched path defines the longest prefix of S that is substring of
a string in the DB

Data Structures Analysis - Javier Campos 184

Suffix trees

• [P4] Longest common substring of two strings
– Build the generalized suffix tree of S1 and S2
– Every leaf of the tree represents either a suffix of one

of the strings or a suffix of both strings
– Mark every internal node v with 1 (respectively, 2) if

there is a leaf in the subtree of v that represents a
suffix of S1 (respectively, S2)

– The label of the path of every internal node marked
simultaneously with 1 and 2 is a common subtring of
S1 and S2 and the longest among them is the longest
common substring

– Then, the algorithm has to search the node marked
with both 1 and 2 that has a longest path label

– The cost to build the tree and to search is linear

Data Structures Analysis - Javier Campos 185

Suffix trees

– Therefore: “Theorem. The longest common substring
of two strings can be computed in linear time by using
a generalized suffix tree.”

• Even though nowadays the above result seems to be easy,
D. Knuth, in the 70’s, conjectured that it would not be
possible to find a linear algorithm to solve this problem…

– The identification of mortal remains problem [P3],
reduced to find the longest common substring of a
given string being also substring of any of the strings
in a database can be easily solved by extending the
solution to problem [P4].

Data Structures Analysis - Javier Campos 186

Suffix trees

• Et cetera, et cetera:
– [P5] Recognizing DNA contamination

Given a string S1 and another S2 (that can be contaminated), the
problem of finding all the substrings of S2 that occur in S1 and
that have a length greater than l.

– [P6] Common substring to more than two strings
– [P7] Compression of a suffix tree, using a directed acyclic graph

of words
– [P8] Inverse use: suffix tree of the searched pattern
– … (look at D. Gusfield’s book)
– More concrete applications in genoma projects
– Minimal length codification of DNA…
– Inexact pattern matching…
– Multiple comparison of strings…

	A short course in data structures analysis��University of Torino, June 2008
	Outline
	Basic bibliography
	Dictionary ADT
	Worst case, best case, average case
	Asymptotic notation
	Outline
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Arboles rojinegros
	Arboles rojinegros
	Arboles rojinegros
	Arboles rojinegros
	Arboles rojinegros
	Arboles rojinegros
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Red-black trees
	Outline
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Lexicographical trees
	Average cost of a search operation
	Outline
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Skip lists
	Outline
	Amortized analysis
	Amortized analysis
	Amortized analysis
	Amortized analysis
	Amortized analysis
	Amortized analysis
	Amortized analysis
	Amortized analysis
	Amortized analysis
	Amortized analysis
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Splay trees
	Outline
	Data structures for computational biology
	Data structures for computational biology
	Data structures for computational biology
	Data structures for computational biology
	Data structures for computational biology
	Data structures for computational biology
	Data structures for computational biology
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees
	Suffix trees

