
4. Heaps

! d-heaps
! Leftist heaps
! Fibonacci heaps

T 33-43, F&T paper, CLR 140-147, 420-438

4-2 - Jonathan Turner - 9/25/2001

The Heap Data Structure
! To implement Prim's algorithm efficiently, we need a data structure

that will store the vertices of S in a way that allows the vertex joined
by the minimum cost edge to be selected quickly.

! A heap is a data structure consisting of a collection of items, each
having a key. The basic operations on a heap are:
» insert(i,k,h). Add item i to heap h using k as the key value.
» deletemin(h). Delete and return an item of minimum key from h.
» changekey(i,k,h). Change the key of item i in heap h to k.
» key(i,h). Return the key value for item i.

! The heap is among the most widely applicable non-elementary data
structure.

4-3 - Jonathan Turner - 9/25/2001

d-Heaps
! Heaps can be implemented efficiently, using a heap-ordered tree.

» each tree node contains one item and each item has a real-valued key
» the key of each node is at least as large the key of its parent (excepting the root)

! For integer d >1, a d-heap is a heap-ordered d-ary tree that is “heap-
shaped.”
» let T be an infinite d-ary tree, with vertices numbered in breadth-first order
» a subtree of T is heap-shaped if its vertices have consecutive numbers 1, 2, ..., n

! The depth of a d-heap with n nodes is ≤ logdn.

8

10 1 11 7 5 6 3

9

4

2

5 6 8 15 11 12 13

1074

4

key
item number

4-4 - Jonathan Turner - 9/25/2001

Implementing d-Heaps as Arrays
! The nodes of a d-heap can be stored in an array in breadth-first order.

» allows indices for parents and children to calculated directly, eliminating the
need for pointers

8

10 1 11 7 5 6 3

9

4

2

5 6 8 15 11 12 13

1074

4

4 8 2 9 10 1 11 7 5 6 3

6 7 13 4 11 12 15 4 10 5 8

1 2 3 4 5 6 7 8 9 10 11

h:

key:

! If i is the index of an item x, then (i−1)/d is the index of p(x) and the
indices of the children of x are in the range [d(i−1) + 2 .. di + 1].

! When the key of an item is decreased, we can restore heap-order, by
repeatedly swapping the item with its parent.

! Similarly, for increasing an item’s key.

4-5 - Jonathan Turner - 9/25/2001

d-Heap Operations
item function findmin(heap h);

return if h = {} ⇒ null; ! h ≠ {} ⇒ h(1) fi;
end;

procedure siftup(item i, integer x, modifies heap h);
integer p;
p := (x−1)/d;
do p ≠ 0 and key(h(p)) > key(i) ⇒

h(x) := h(p); x := p; p := (p−1)/d ;
od;
h(x) := i;

end;

procedure insert(item i; modifies heap h);
siftup(i,|h| + 1,h);

end;

4-6 - Jonathan Turner - 9/25/2001

integer function minchild(integer x, heap h);
integer i, minc;
minc := d(x−1) + 2;
if minc > |h| ⇒ return 0; fi;
i := minc + 1;
do i ≤ min {|h|,dx + 1} ⇒

if key(h(i)) < key(h(minc)) ⇒ minc := i; fi;
i := i + 1;

od;
return minc;

end;
procedure siftdown(item i, integer x, modifies heap h);

integer c;
c := minchild(x,h);
do c ≠ 0 and key(h(c)) < key(i) ⇒

h(x) := h(c); x := c; c := minchild(x,h);
od;
h(x) := i;

end;

4-7 - Jonathan Turner - 9/25/2001

procedure delete(item i, modified heap h);
item j; j := h(|h|); h(|h|) := null;
if i ≠ j and key(j) ≤ key(i) ⇒ siftup(j,h−1(i),h);
| i ≠ j and key(j) > key(i) ⇒ siftdown(j,h−1(i),h);

fi;
end;
item function deletemin(modifies heap h);

item i;
if h = {} ⇒ return null; fi;
i := h(1); delete(h(1),h);
return i;

end;
procedure changekey(item i, keytype k, modified heap h);

item ki; ki := key(i); key(i) := k;
if k < ki ⇒ siftup(i,h−1(i),h);
| k > ki ⇒ siftdown(j,h−1(i),h);

fi;
end;

4-8 - Jonathan Turner - 9/25/2001

heap function makeheap(set of item s);
integer j; heap h;
h := {};
for i∈ s ⇒ j := |h| + 1; h(j) = i; rof;
j = (|h|−1)/d;
do j > 0 ⇒ siftdown(h(j),j,h); j = j−1; od;
return h;

end;

! Each execution of siftup (and hence insert) takes O(logdn) time, while each
execution of siftdown (and also delete, deletemin) takes O(d logdn) time.

! The time required for changekey depends on whether the keys are increased or
decreased.
» if keys are always decreased, we can make changekey faster by using a large value for d

! The running time for makeheap is O(f) where

() L+++= d
d
nd

d
nd

d
nnf 32 32

which is O(n).

Analysis of d-Heap Operations

4-9 - Jonathan Turner - 9/25/2001

Leftist Heaps
! The heap operation meld(h1,h2), which combines the two heaps h1 and

h2 and returns the resulting heap can't be implemented efficiently using
d-heaps but can be with an alternative heap implementation known as
a leftist heap.

16 16

5

10 8

4

0

2

2 key

rank7

18 -

1

11

1 1

2

external node

» if x is a node in a full binary tree, rank(x) is defined to be the length of the
shortest path from x to a leaf that is a descendant of x

» a full binary tree is leftist if rank(left(x)) ≥ rank(right(x)) for every internal node x
» the right path in a leftist tree is path from the root to the rightmost external node
» this is a shortest path from root to an external

node and has length at most lg n
» a leftist heap is a leftist tree in heap order

containing one item per internal node

4-10 - Jonathan Turner - 9/25/2001

Melding Leftist Heaps

19 17

3

5 23

2

1

2

3

7

11 13

2

11

1 1

2

6

8 20

4

1

2

3

10

15 12

2

112

0

19 17

3

5 23

2

1

2

3

11

13

2

1

1

1 1

2 6

8 20

1

2

3

10

15 12

2

1

12

-

7

4

merge right
paths according

to key values

update ranks and swap
subtrees on right path to
restore leftist property

4-11 - Jonathan Turner - 9/25/2001

Implementing Leftist Heaps
heap function meld(heap h1,h2);

if h1 = null ⇒ return h2 |||| h2 = null ⇒ return h1 fi;
if key(h1) > key (h2) ⇒ h1 ↔ h2; fi;
right(h1) := meld(right(h1),h2);
if rank(left(h1)) < rank(right(h1)) ⇒ left(h1) ↔ right (h1) fi;
rank(h1) := rank(right(h1)) + 1;
return h1;

end;

procedure insert(item i, modifies heap h);
left(i) := null; right(i) := null; rank(i) := 1;
h := meld(i,h);

end;

item function deletemin(modifies heap h);
item i; i := h;
h := meld(left(h),right(h));
return i;

end;

4-12 - Jonathan Turner - 9/25/2001

Implementing Leftist Heaps in C++
typedef int keytyp, oset, item;
class opartition {

int n;
struct node {

keytyp keyf; int rankf;
oset leftf, rightf;

} vec[MAXOSET+1];
public: opartition(int);

keytyp key(item);
void setkey(item,keytyp);
oset findmin(oset);
oset meld(oset,oset);
oset insert(item,oset);
item deletemin(oset);
void print();
void sprint(oset);
void tprint(oset,int);

};
inline keytyp opartition::key(item i) {

return vec[i].keyf;
};

4-13 - Jonathan Turner - 9/25/2001

#define left(x)(vec[x].leftf) // etc.
opartition::opartition(int N) {

n = N;
for (int i = 1; i <= n ; i++) {

left(i) = right(i) = Null; rank(i) = 1; key(i) = 0;
}
rank(Null) = 0; left(Null) = right(Null) = Null;

}
oset opartition::meld(oset s1, oset s2) {

if (s1 == Null) return s2;
else if (s2 == Null) return s1;
if (key(s1) > key(s2)) { oset t = s1; s1 = s2; s2 = t; }
right(s1) = meld(right(s1),s2);
if (rank(left(s1)) < rank(right(s1))) {

oset t = left(s1); left(s1) = right(s1); right(s1) = t;
}
rank(s1) = rank(right(s1)) + 1;
return s1;

}

4-14 - Jonathan Turner - 9/25/2001

Heapify
! Operation heapify(q) returns heap formed by melding heaps on list q.

heap function heapify (list q);
if q = [] ⇒ return null fi;
do |q| ≥ 2 ⇒ q := q[3..] & meld(q(1),q(2)) od;
return q(1)

end
! Let k be the number of heaps on the list initially and let r be the

number of heaps on the list after the first k/2 melds (r≤k/2).
! Let ni be the size of the ith heap after the first pass. The time for the

first pass is

! Now, 2 ≤ ni≤ n and Σni= n. Consequently, the time for the first pass is
O(k(1 + lg(n/k))) and the time for the entire heapify is

()∑ =
+r

i inO
1

lg1

 () ()))/lg(1())/2lg(1)(2/(lg

1
knkOknkO k

j
jj +=+∑ =

4-15 - Jonathan Turner - 9/25/2001

Makeheap and Listmin
! To build a heap in O(n) time from a list of n items,

heap function makeheap(set s);
list q; q := [];
for i∈ s ⇒ left(i),right(i) := null; rank(i) := 1; q := q & [i]; rof;
return heapify(q)

end;
! Operation listmin(x,h) returns a list containing all items in heap h with

keys ≤ x.
list function listmin(real x, heap h);

if h = null or key(h) > x ⇒ return []; fi;
return [h] & listmin(x,left(h)) & listmin(x,right(h));

end;

Running time of listmin is proportional to number of items listed.

4-16 - Jonathan Turner - 9/25/2001

Lazy Melding and Deletion
! It's often possible to improve the performance of algorithms by

postponing certain operations.
» lazy melding and deletion in leftist heaps postpone melding and deletion
» to implement add a deleted bit to each node - delete node by setting bit
» to meld two heaps, make them children of a dummy node with deleted bit set
» remove deleted nodes during deletemin operations
item function deletemin(modifies heap h);

item i;
h := heapify(purge(h)); i := h; h := meld(left(h),right(h));
return i

end;
list function purge(heap h);

if h = null ⇒ return [];
| h ≠ null and not deleted(h) ⇒ return [h]
| h ≠ null and deleted(h) ⇒ return purge(left(h)) & purge(right(h))

fi;
end;

4-17 - Jonathan Turner - 9/25/2001

Fibonacci Heaps
! The Fibonacci heap data structure provides an efficient

implementation of a collection of heaps.
! Items in the heaps are integers over {1, . . . ,n}. Each item has a key.
! Each non-empty heap is identified by one of its members (its id).

Initially, there are no heaps.
! Heap operations.

» makeheap(). Return a new empty heap.
» findmin(h). Return an item of minimum key in h.
» deletemin(h). Delete an item of minimum key from h. Return it and the new id.
» meld(h1,h2). Return the id of the heap formed by combining h1 and h2. This

operation destroys h1 and h2.
» decreasekey(∆,i,h). Decrease the key of i in h by ∆. Return the new id.
» delete(i,h). Delete an arbitrary item i from h. Return the new id.

4-18 - Jonathan Turner - 9/25/2001

Structure of Fibonacci Heaps
! An F-heap is represented by a collection of heap-ordered trees.

» each node has pointers to its parent, its left and right siblings and some child
» each node also contains its key, an integer rank and a mark bit
» rank(i) equals the number of children of i
» the tree roots are linked together on a circular list
» the heap is identified by a root node of minimum key

4 2

2

7

8 106

2

6

4

5 4 2

2

7

8 106

2

6

4

5

4-19 - Jonathan Turner - 9/25/2001

Implementing F-Heap Operations
! To do meld, combine root lists.

» new heap is identified by the item of minimum key
» O(1) time

! To do a deletemin, remove the minimum key item from the root list,
and combine its list of children with the root list. Then repeat the
following step as long as possible
» find any two trees with roots of equal rank and link them, making one root the

child of the other
! Deletemin can be done in O(maximum rank + number of linking

steps) time.
» insert roots into array, at position determined by their rank
» combine roots every time there is a collision
» note that rank changes when root acquires a new child
» initialization trick needed to get indicated running time

4-20 - Jonathan Turner - 9/25/2001

Partial Analysis
! We show first that the time to perform a sequence of m operations not

including any delete or decreasekey operations is O(m+nlog n).
! Define the potential function for a collection of heaps.

» the potential is the number of trees the heaps contain
» the potential is zero initially and cannot be negative

! The amortized time of an operation is defined to be its actual time
plus the net increase it causes in the potential.
» the actual time for a sequence of m operations equals the net decrease in

potential for the sequence plus the sum of the amortized times of the operations
» the time for a sequence of operations is at most the sum of the amortized times
» the amortized time for findmin, and meld is O(1)
» the actual time for a deletemin is O(maximum rank+number of linking steps);

the amortized time is O(log n) because each linking step costs one time unit but
also decreases the potential by one, and because the ranks are O(log n) (to be
shown).

4-21 - Jonathan Turner - 9/25/2001

Decreasekey and Delete
! To perform decreasekey(∆,i,h)

» subtract ∆ from key(i) then cut the edge joining i to its parent
» make the detached subtree a separate tree in the heap
» if key(i) < key(h), i becomes the minimum node of the heap
» increases the potential by 1

! To perform delete(i,h)
» perform a decreasekey at i, that makes i the item with smallest key
» perform a deletemin to remove i from the heap
» restore the original key value of i
» time is just sum of the times for the delete and decreasekey

operations

4-22 - Jonathan Turner - 9/25/2001

Cascading Cuts
! To keep the ranks from becoming too large, we must add

another feature.
» let x be a node that becomes a child of some other node because of

a linking step
» as soon as x loses two children through cuts, the edge to its parent

is cut and x becomes the root of a new tree in the heap.
! The mark bits are used to implement this feature

» when a node becomes a child of another node through a linking
step, its mark bit is cleared

» when cutting the edge from a node x to p(x), we decrement the rank
of p(x) and check to see if p(x) has a parent
" if so, set mark(p(x)) if it is not set; cut the edge from p(x) to p(p(x)) if it is set
" the cutting procedure is repeated as many times as necessary

4-23 - Jonathan Turner - 9/25/2001

Bounds on Ranks
! Lemma 1. Let x be any node in an F-heap. Let y1, . . . ,yr be the

children of x, in order of time in which they were linked to x (earliest
to latest). Then, rank(yi)≥ i−2 for all i.
Proof. Just before yi was linked to x, x had at least i−1 children. So at
that time, rank(yi) and rank(x) were equal and ≥ i−1. Since yi is still a
child of x, its rank has been decremented at most once since it was
linked, implying rank(yi)≥ i−2. !

! Corollary 1. A node of rank k in an F-heap has at least Fk+2≥φk

descendants (including itself), where Fk is the kth Fibonacci number,
defined by F0=0, F1=1, Fk=Fk−1+Fk−2 and φ=(1+51/2)/2.
Proof. Let Sk be the minimum possible number of descendants of a
node of rank k. Clearly, S0=1, S1=2. By Lemma 1, Sk ≥ 2 + Σ0≤i≤k−2 Si
for k ≥ 2. The Fibonacci numbers satisfy Fk+2 = 1 + Σ0≤i≤k Fi from
which Sk ≥ Fk+2 follows by induction on k. !

! Corollary 1 implies that rank(x) is O(log n).

4-24 - Jonathan Turner - 9/25/2001

Analysis of Fibonacci Heaps
! Define the potential of set of F-heaps to be number of trees plus twice

number of marked non-root nodes.
» potential is zero initially and cannot be negative

! The amortized time of an operation is defined to be its actual time
plus the net increase it causes in the potential.
» actual time for a sequence of m operations is the net decrease in potential plus

the sum of the amortized time of the operations
» so, actual time for sequence is less than or equal to amortized time

! Amortized time for findmin and meld is O(1).
! Actual time for deletemin is O(maximum rank+number of linking

steps). Amortized time is O(log n) since a linking step costs one time
unit but decreases potential by one and because ranks are O(log n).

! Actual time for a decreasekey is O(number of cuts). Net increase in
the potential is at most three minus the number of cascading cuts. So,
the amortized time is O(1).

! The amortized time for delete is O(log n).

