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ABSTRACT

In the last years there has been an increasing interest og st
man feedback during robot operation to incorporate norespu-
man expertise while learning complex tasks. Most work has co
sidered reinforcement learning frameworks were humanbized
provided through multiple modalities (speech, graphictdifaces,
gestures) is converted into a reward. This paper exploréteasnt
communication channel: cognitive EEG brain signals relabethe
perception of errors by humans. In particular, we consider @o-
tentials (ErrP), voltage deflections appearing when a useep/es
an error, either committed by herself or by an external meghi
thus encoding binary information about how a robot is penfag
a task. Based on this potential, we propose an algorithmdbaise
policy matching for inverse reinforcement learning to irtfee user
goal from brain signals. We present two cases of study iingla
target reaching task in a grid world and using a real mobif®to
respectively. For discrete worlds, the results show thatrdbot
is able to infer and reach the target using only error poiénts
feedback elicited from human observation. Finally, pranggre-
liminary results were obtained for continuous states arnidrs in
real scenarios.
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1. INTRODUCTION

When learning complex tasks, robots are usually faced veigh v
action-state spaces which are difficult and expensive tdosxp
without prior knowledge of the structure of the environmefrar-
thermore, there exist hazardous regions or configuratf@ishould
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be avoided since they may be dangerous for the robot or people
around the robot. Humans are naturally aware of the intristsuc-

ture and domain knowledge of a task and, consequently, ey c
provide feedback during robot operation for learning ortoapur-
poses. Indeed, this feedback is a very powerful way to peosig¢
pervision during robot learning for complex tasks [19]. Sbse of
human feedback during robot operation and learning res|swene

kind of communication between the human and the robot, where
the most common modalities include speech gestures anitphys
interaction [1].

Most work in this area has used a reinforcement learningdram
work to incorporate human feedback during the learning gssc
[9]. Since feedback occurs through the interaction betweenan
and robots, the human shapes the reward according to herrmwn u
derstanding of the task. Some authors have studied how telmod
binary feedback (e.g. approval or disapproval) and incateoit
to the learning process [12, 19, 20]. Another importantégsiuthat
during interaction humans do not only provide feedback led a
tend to provide guidance for future actions [18].

This paper explores a different communication channel to pr
vide feedback to robots using brain signals. Brain-macline
terfaces (BMI) have been proposed in the last years as a way of
communicating with virtual or real devices using only bragtiv-
ity. Among the different ways of recording the brain signalsn-
invasive electroencephalogram (EEG) is the most extendedie-
spite its low signal-to-noise ratio, mainly due to its easmof use
and portability. EEG has been successfully used for therabot
robotic arms, wheelchairs or mobile robots among othees [(5¢
for a review). However, in most cases BMIs decouple the djmera
of the device from the mental task used to control the robat (e
motor imagery of body limbs to operate a virtual cursor) arete
has been little effort in terms of using brain signals thegclly en-
code cognitive information about the task itself and, intipatar,
feedback information about the behavior of the robot.

A promising cognitive EEG signal are the so-called erroepet
tials (ErrPs), signals elicited and measurable in the s&&G after
she commits or perceives an error [7]. More interestindlis $ig-
nal is also visible when the user observes a machine committi
an error [5, 8]. Thus, ErrPs are a natural candidate as fekdba
a robotic device directly extracted from brain activity [LOhey
present advantages and disadvantages with respect totgpiesr
of feedback signals. First, they can be difficult to detect tim
their low signal-to-noise ratio and, when detected, theyaio lit-
tle information about the nature of the error. Indeed, thay lbe
seen as a binary signal indicating the absence or presenae of
error. In addition to this, these signals have been usudligied
using locked stimulus (e.g. a clear visual cue synchronizid
the EEG) which makes their detection easier than during dine c
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Figure 1: Error potentials elicited when assessing actionsis
correct or erroneous, and difference between the two assess

ments (time 0 ms indicates the action onset). The topograpi
head interpolations on the largest peak values are also show

tinuous operation of a robot. On the positive side, ErrPsigeoa
direct access to user’s assessment of the robot operatibouvihe
ambiguities, connotations and conventions of other conication
protocols, and in principle without possibility of distiog them.

This paper proposes the use of EEG error potentials as feed-
back for controlling a robot. We exemplify the main idea for a
target reaching task in two different scenarios: a simpigual
grid world; and a 2D real mobile robot navigation task. Dgrin
the experiments, the role of the user was simply to evallse t
robot actions as correct or wrong, while the robot tried &rheand
reach the intended user’s goal. In order to cope with thetéidhi
information provided by ErrPs, we use a shared-controkesjsa
based on the inverse reinforcement learning frameworkyevtie
robot maintains a belief over a set of possible targets @gdasing
feedback signals extracted from brain activity during rtofyoera-
tion. For discrete worlds, the results show that the robabis to
reach the target using only ErrPs as feedback elicited fromam
observation. Finally, promising preliminary results fantinuous
domains and real robots are also reported using a mobilé.robo

2. TRANSLATION OF EEG ERROR POTEN-
TIALS INTO FEEDBACK SIGNALS

Error potentials belong to the family of event-related ptitds
(ERP) [13], voltage deflections appearing on the EEG afeepth
currence of an event. In our case, they are elicited duriagth
servation of actions (events) performed by a device. Thetask
is simply to assess the actions as correct or incorrect, wign-
erates different signals for the two different conditioriSgure 1
shows an averaged example of these signals, together itttk
pographic head interpolations depicting the EEG activigpmin
the remainder of the section, we describe the error potatatac-
tion process including EEG recording, BCI calibration amdire
detection during robot operation.

2.1 Data Recording
Electroencephalographic (EEG) and electrooculograpgb@G)

activity were recorded using a gTec system. For the EEG,&2 el
trodes were recorded, distributed according to an exted@¢zD
international system (FP1, FP2, F7, F8, F3, F4, T7, T8, C3, C4
P7, P8, P3, P4, O1, 02, AF3, AF4, FC5, FC6, FC1, FC2, CP5,
CP6, CP1, CP2, Fz, FCz, Cz, CPz, Pz and Oz), with the ground on
FPz and the reference on the left earlobe; for the EOG, 6 nmnop
lar electrodes were recorded (placed above and below eachry
from the outer canthi of the left and right eyes [6]), with tireund

on FPz and the reference on the left mastoid. The EEG and EOG
signals were digitized with a sampling frequency of 256 Hryer-

line notch filtered, and band-pass filtered Bt10] Hz. The EEG
was also common-average-reference (CAR) filtered. Adufdiy,

the horizontal, vertical, and radial EOG were computed §6]ito
remove the EOG from the EEG using a regression algorithm [16]
The data acquisition and online processing was developderun
self-made BCI platform.

2.2 Calibration of error potentials

Although the grand averages of Fig. 1 show a clear difference
between error and non-error signals, single trial recgsljpresent
large variability due to EEG low signal-to-noise ratio anohnn
stationarities. Moreover, different tasks induce sligriations on
the ErrPs [11]. Therefore, it is common to carry a user-gjpeci
calibration phase prior to the control phase as such.

During calibration, examples of error and non-error resgsn
are elicited in a controlled manner and used to train a dlessi
When the actions are discrete and instantaneous (e.g. giovin
grid world), the events that elicit the ErrPs are clearly rkedi in
time as it is common in the general case of event-relatechpate
[13] and in particular in ErrPs [5, 8,10]. However, in manpotic
tasks, robot actions are continuous (e.g. a mobile robotingov
towards a target or a manipulator trying to grasp an objend) a
the elicitation of the potential will occur in an undetermihpoint
in time according to the user’s assessment of the task. We nex
describe how we detect error potentials in each of thesat&ins.

2.2.1 Discrete actions

Following previous studies [10], features were extractexnf
eight fronto-central channels (Fz, FC1, FCz, FC2, C1, Cz,a0d
CPz) within a time window 0f200, 800] ms (beingd ms the ac-
tion onset) downsampled to 64 Hz, forming a vecto3d? fea-
tures. The features were then normalized, and its dimealipn
reduced with PCA retaining 95% of the variance. A regulatize
linear discriminant (LDA) [3] was trained using the previofea-
tures. The classifier output has the fogtx) = w'x + b, where
y(X) < 0 was classified as a correct assessment (class 0), and
y(x) > 0 as an error assessment (class 1). This ougpxit was
transformed into the probability that an examplevas an error,

plc=1x) = riw) [2].

2.2.2 Continuous actions

For continuous actions there is not a clear trigger for tha-el
tation of the error potential. During calibration, this dassolved
by using two trigger buttons pressed by the users accorditigetr
assessments. During the control phase, this trigger isvedyand
the classification is performed using a overlapping slidimgdow
(fixed to steps of 62.50 ms for the experiments).

In addition, the absence of a proper cue difficult the ErrReale
tion, making the temporal features described above ingeiffi¢o
obtain low misdetection rates. To mitigate this effect, wded an
additional set of features from the frequency domain, ngrtred
power spectral density (PSD), which are rather insensitiitme
shifts. The PSD is calculated on 800 ms of EEG for each of the



eight fronto-central channels used before. The new featanethe
power values in the theta banfl(8] Hz) + 1 Hz for each chan-
nel (as previous studies suggest that the error potenti@lgemer-
ated within this band [4]), making a vector of 200 featurasgt®-
trial classification was carried out using a support vectachme
(SVM) with a radial basis function (RBF) kernel, whose outpas
the probability that an examplewas an errorp(c = 1|x).

3. SHARED-CONTROL OF A REACHING
TASK VIA FEEDBACK BRAIN SIGNALS

This section describes the proposed shared-control gyrétet
allows the robot to simultaneously infer the user’s intehdeal
and reach it using ErrPs. Although ErrPs provide feedbackiab
the device actions, the amount of information conveyed byntis
limited. In particular, the decoders (see previous seytitnnot
contain any information about direction or magnitude, aadeha
non-negligible number of misdetections. The proposedesheon-
trol uses an inverse reinforcement learning algorithm tuewlate
evidence about a set of predefined possible goals while Brgau
trajectory. The proposed approach consists of two phadesfifst
one computes offline optimal trajectories (i.e. policies) €ach
potential target, while the second performs an online patiatch-
ing to rank them during robot operation based on error piatisnt
elicited for wrong actions.

We next give a general view of the method, which is then partic
ularized in the next two sections. Leanda denote the state of the
world and a robot action. Given a set of possible targetg; (st a)
be the value function [17] that describes the value of exegéc-
tion a in states for a given target. The optimal policies can be
obtained fromf; (s, a) as:

77 (s) = argmax f;(s, a). €N
a

In the examples of the next sections these functions can ime co

puted exactly, although in general it may be necessary toapp

mate them.

During the control phase, the value functions are used imatt
the probability of each target by measuring how well noroeac-
tions match the policies of each target. At each time s$tepe
device performs an actiom from states;. Let x; denote the EEG
window corresponding to timeandp(c: = 1|x¢) be the probabil-
ity provided by the ErrP decoder described in subsection Re?
p(mi | (a,5,X)1...t) be the posterior probability of policy;, that
is, of targeti being the one selected by the user. This posterior is
computed recursively for each new action executed by thetrob

p(ril(a,s,X)1..0) o p(ami, (8,X):) -p(wi (a8, X)1..e-1), (2)

where the likelihoog (a: |7}, (s, X):) measures the dissimilarity
(similarity) between the executed action and the policyavget
1 when an error (non-error) is detected from the EEG. The actua
implementation depends on the protocol and is describédubinext
sections. The execution finishes when a probability; ) reaches
a convergence criteriop,..

4. DISCRETE REACHING TASK

4.1 Experimental design

The visual protocol is shown in Fig. 2. The protocol consiste
of a virtual cursor (green circle) that could perform diserac-
tions within a 5x5 grid, and its goal was to reach the targedtion
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Figure 2: (a) Experimental protocol designed. The protocol
showed a 5x5 grid with a virtual cursor (green circle) and a
goal location (shadowed in red). (b) The cursor could perfam

five different actions (from top to bottom, move one position
up, down, left or right, or performing a goal-reached action).

(c) Optimal policy for the goal exemplified on (a).

(shadowed in red). The cursor could perform five differestan-
taneous actions: move one position left, right, up or dowrd a
goal-reached action, represented as concentric bluentierances
(see Fig. 2b). The time between two actions was random within
the rang€3, 3.5] s. The users evaluated the actions as correct for
() a movement towards the goal position, (¢f) a goal-reached
action over the goal position; and as incorrect otherwise (&g.
2c). Four subjects (mean agé + 2 years) performed the experi-
ments, seated one meter away of a computer screen displiging
protocol. The users were instructed not to move their eyesaglu
the cursor actions, and to restrain blinks only to the rggieriods.
During the calibration phase, the device performed random a
tions with 20% of probability of performing an incorrect orkhis
phase lasted for 30 minutes, acquiring around 80 correc320@r-
roneous examples. During the control phase, two differemiijgs
of goal locations were tested:) the first group (denoted fixed
goals) was shared for all the subjects, and consisted of teaésg
and initial cursor positions (see Figure 4);) for the second group
(denoted free goals), each user was asked to freely choesdiffiv
ferent initial cursor positions and goals to reach. Durimg group
of goals, the goal position was not shadowed in red, sincasttive
user who chose it.

4.2 Shared-control strategy

For this protocol, the value functiofi (s, a) was computed from
the Q-valueg); (s, a), which can be computed prior to the control
phase using the Q-learning reinforcement learning algoritl7].
Once calculated, the Q-values were converted into prakiabil
following a soft-max normalization:

- Qi (sa)/
fi (37 a) = Qz (57 a) = Zb eQ;.* (s,b)/7° (3)

wherer is denoted the temperature (fixedite= 0.3). This pa-
rameter served as a degree of reliability of the observexinmdtion
(classifier output).

The likelihood function was computed as follows:

p(@efmi, (8,X):) = plee

0fxe) - Q7 (st@0) + plee = 1xe) - (1 - Qi (51, ),
4)

Notice that the first term of the likelihood represents how we
should increase the policy; if the user's assessment was cor-
rect, while the second term penalized the policyweighted by
the probability of having and incorrect user's assessmEeigure
3 shows several examples of actions and likelihoods. Fopéhe
formed experiments, a new actian;; was chosen following asr
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Figure 3: Likelihoods of each policyr; after performing different actions: (a) correct movement with p(c; = 1|z:) = 0.2 (b) incorrect
movementp(c; = 1|z:) = 0.8 () or a goal-reached actiorp(c; = 1|z;) = 0.2. The goal position is marked with a capital G.

greedy strategy, and the run finished when reaching a caeveeg
criterion ofp. = 0.9.

4.3 Results

For each group of goals (fixed and freely-chosen), five netric
were evaluated(i) Number of goals reachedi:) number of ac-
tions needed to reach the go@li;) EEG seconds needed to reach
the goal (net time)(:v) total time needed to reach the goal; dndl
classifier accuracy, measured as the percentage of dete¢tor-
rect and erroneous signals. Note that the difference bettheenet
and total times was the seconds belonging to inter-actimvals,
which could be easily removed.

Table 1 shows the results for each subject and group of goals.
The main result was that the device always reached the sdrget
any starting point, needirgp + 13 actions an®1 + 8 actions (for
the fixed and freely chosen goals) to reach the target. Wi#r-in
action intervals of around.25 s, the total time needed to reach the
goals was 080.76 + 73.68 and66.63 + 26.85 seconds (fixed and
free goals). Nonetheless, the net time (the seconds of Egi@alsi
used for decoding) was @H.88+10.75 and16.40+6.61 seconds.
The mean classifier accuracy wasdf38+4.66 and77.67+5.02.

As expected, there was a significant negative correlatitvwd®n
the classifier mean accuracy and the time needed to reachste t
(r=—0.47,p = 0.038 andr = —0.79, p = 3-10~° for fixed and
free goals). An interesting result was that not all the stavere
visited to reach the goal (see Figure 4). For instance, dumin

3, mostly all the central states were visited, whereas thiplperal
states were not. This could allow for a better scalabilitythoe#
system (e.g. as the state space was increased, the peecefitag
visited states would decrease).

5. CONTINUOUS REACHING TASK

5.1 Experimental design

The second experiment consisted in reaching a target tocati
with a low cost mobile robot (ePuck, [15]). The experimeptad-
tocol is shown in Figure 5a. The arena wa20@ x 200 cm? map,
that was discretized intofax 5 of possible goal positions. To ease
the assessment of the robot actions by the user and for izatiah
purposes, each target was depicted as an icon of a diffeitgnt c
The robot moved in the following way. First, it executed agro-
tation motion to orientate the robot towards a desired toedi.e.
towards a goal). Then, it followed a straight line to the tebipo-
sition. Despite the goal positions were discrete, the ptessitates

and actions of the robot were continuous. In order to obtaio- a
bust measure of the robot position, the robot was visuadigkied
in real time with a camera located on the ceiling.

The main difference with the previous protocol was that timt
moved continuously and the user constantly evaluated tha ex-
tions. As long as the decoder did not detect an error, thetrobo
continued its motion to the selected goal. The robot stofiped
second after reaching a goal or detecting an error. Thenpveoh
towards a new goal selected based on the probabilities bfteac
get. The user was asked to look over the robot actions, duadua
them as correct when the robot advanced or turned towardmtie
and when the robot stopped over the desired goal positiorth©n
contrary, the user had to evaluate as incorrect those nsottwat
were not oriented towards the goal, when the robot stoppea on
wrong spot, or when the robot overpassed the desired positio
orientation. Currently, one subject (a@®) has performed the ex-
periment. The user was seated one meter away from the map (see
Figure 5a), and was instructed not to move his eyes or blinkgu
the robot movements.

For this experiment, the calibration phase required twosstene
to acquire error and another for non-error responses. In s@p,
the user had to evaluate the robot actions towards five predkfi
goals and he had to push a button when an error occurred (step
one) or when the robot was executing a correct action (step, tw
always with separations of at least one second between tgro tr
ger events. These runs were repeated until acquiring arédnd
examples of each class. The calibration phase lasted aofosél
minutes. During the control phase, the user freely chosénttial
and goal locations (see Figure 5b-c).

5.2 Shared-control strategy

Let us encode each possible state as the position and didenta
of the robot,s = (u, v, ), and each action as the combination of a
turn and a linear movemeat= (0., p) represented by the angle
and distance. In this case, we use a potential(w, v) to define the
optimal policy for target, ignoring the non-holonomic constraints
of the robot. We used the symmetric 2D quadratic function:

Ui (u7 ’U) = [u7 v],Ai [u7 U] + b; [u7 U] +ci, (5)

where A;, b; and¢; depend on the position of targeand the
size of the map.

The likelihood function was computed differently depermggdon
the action step (rotation or linear movement). While tugnithe



Table 1: Results of the reaching task for the fixed and free gda

S1 s2 S3 uto
FIXED FREE FIXED FREE FIXED FREE FIXED FREE FIXED FREE
# TARGETS REACHED(OUT OF 5) 5 5 5 5 5 5 54+0 5+0
4 ACTIONS 16+ 2 23+9 43+ 9 21+7 23+12 16+ 6 17+5 23+ 11 25+ 13 21+ 8

NET TIME (S) | 12.96+ 1.91 18.08+ 7.37 34.56+ 7.10 16.48+ 5.84 | 18.40+9.73 12.96+ 5.10 | 13.60+ 4.38 18.08+ 8.44 | 19.88+ 10.75 16.40+ 6.61

TOTAL TIME (S) | 52.65+7.76  73.45+ 29.93 | 140.40+ 28.83 66.95+ 23.73 | 74.75+ 39.54 52.65+ 20.73 | 55.25+ 17.80 73.45+ 34.29 | 80.76+ 73.68 66.63+ 26.85

MEAN ACCURACY (%)

83.14+ 15.15 78.75+ 12.62

69.49+ 4.13

82.48+ 10.66 | 72.49+ 3.74

88.18+ 10.51| 76.35+ 8.89

78.66+ 14.44 | 74.38+ 4.66

77.675.02
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Figure 4: States visited by all the subjects, for each of thee runs executed with the fixed goals (from left to right, runsl to 5).
Darker colors indicate more visited states. The range was mmalized from 0 to 1 according to the most visited state for eah run.

The initial and goal positions are marked with an S and a G respctively.

likelihood was computed as a piecewise function:

kn 0f (p(ee =1|Xe) > Te) A — 011 > 0) A (i —0: € (- 0,7]),
pla]m, (X)) =4 kn if (plee = 1%e) > T.) A (0r — 01 < O) A (0; — 0: € (—m, 0]),
1 otherwise
(6)

kn < 1is a penalization constant, fixed to 0.2 for the performed
experiments; andd( — 6;) is the relative angle between gaaind
the robot states,. The three boolean conditions of the first two
pieces of the likelihood describgi) the output of the classifier
was considered an error based on a thresfipld [0, 1]. Since we
wanted to minimize the number of false positives (corresesas-
ments detected as errors), we fixed this threshold to a hilgle va
T. = 0.8; (i4) the robot is turning clockwise or anti-clockwise;
and(4i7) the goal is located left or right relative to the current robo
position and orientation. Intuitively, if an error was det, this
likelihood simply penalized those targets where the rokas turn-
ing to; on the contrary, no changes were made on the polidiesiw
the user’s assessments were detected as correct.

5.3 Preliminary results

Figure 5(b-c) shows the two trajectories resulting fromtoaln
ling the mobile robot. The time elapsed from the start of tlowen
ment until goal reaching of each trajectory was 60 and 12drsix
respectively, counting up to 11 error events in the first euma 26 in
the second. The performed trajectories revealed some qirtie
erties of the proposed protocdk) most of the errors were concen-
trated during turns. This allowed the robot to perform mokthg
straight paths towards the believed goal locati@n} as no errors
are detected, the robot maintains a fixed trajectory, as easebén
on the subpath from Las Vegas to Pisa (see Figure 5b);(aind
the system can recover from false positives. For instangengl
the second run the robot chose to go from Beijing to Tokyo (see
Figure 5¢) but an error was detected. This made the roboatdevi
towards other goals (Cairo and Berlin), but in the end it heaiche
desired position.

For the linear movement step, the likelihood was computed as 6. CONCLUSIONS

follows:

1+ky N0 — 6, ; 0,0)

if =1 Te),
D@, (8.%):) :{ Lok MO0 0.0) Tl = 1) <)

if (p(ce = 1|x) > Te)
(7
The first piece corresponds to a correct user’'s assessntasan
signs a higher likelihood to goals in front of the robkg (= 0.01).

In this paper, we have presented an alternative way of givirg
man feedback to virtual and real devices, extracted dirdabim
the user’s brain signals. In order to cope with the limitefbin
mation provided by these signals, a shared control strateggd
on an inverse reinforcement learning framework was usediio-m
tain a belief over possible targets, updating them accgrtbrthe
user’s assessments. The use of this shared control allaeeth+

The second one is applied when an error is detected and assigning the target in a 5x5 grid world after 23 actions on averagges(

a lower likelihood to targets in front of the robdt,{ = 0.7). We
modeled the uncertainty in the user’s perception of dioastivith a
normal probability distribution with zero mean and standdevia-
tion o, fixed to have a field of view of 20 degrees. The difference
betweenk, andk,, reflects the fact that number of detected errors
should be lower than the number of correct actions.

The next action was selected greedily as the optimal poliey a
cording to the potential functio®;(u,v) of the target with the
higher probability at that point in time. This basically atgd the
robot to align it with the direction of the gradient &f (u, v) and
then moved forward to the target. The run finished when reachi
a convergence criterion @f = 0.4.

than one minute of EEG). Furthermore, the preliminary rtssab-
tained in real environments with a mobile robot were verynis

ing, suggesting that it is possible to constantly deterrttieauser’s
assessments while learning a task. The proposed shar&dicon
BCI might scale to more complex scenarios becaysgit is not
necessary to explore every single trajectory or potental;gand

(#) the user only has to monitor the device actions and evalbate i
they are right or wrong.

The promising results on real robots require more work to un-
derstand and characterize error potentials that appedreiraly-
sence of a clear cue and prevent the detector to use timedock
signals. Also, additional experiments have to be conduwiithl
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Figure 5: (a) Snapshot of the experiment performed, togethewith the grid superimposed to the image. The mobile robot l@ation
is marked with a circle. (b-c) Trajectories performed by therobot (marked in blue) during the two online runs. The initial and goal
positions were from (b) Mexico to Pisa and (c) Lisbon to Tokyo Each red mark indicates the moment when an error was detecte

from the EEG signal.

more subjects in order to confirm the results presented heneer-

theless, there are some interesting research directiongdtance,
it is possible to use more intelligent exploration strageghan the
greedy one to infer the users’ intended target. Also, weelbeli
that this type of feedback will be very useful in applicatiefated

to neurorehabilitation or neuroprosthetics, since thecgevan use
this feedback to adapt its trajectories to the user prefeein a
transparent way.
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