
Minimizing Calibration Time Using Inter-Subject Information
of Single-Trial Recognition of Error Potentials

in Brain-Computer Interfaces
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Abstract— One of the main problems of both synchronous
and asynchronous EEG-based BCIs is the need of an initial
calibration phase before the system can be used. This phase
is necessary due to the high non-stationarity of the EEG,
since it changes between sessions and users. The calibration
process limits the BCI systems to scenarios where the outputs
are very controlled, and makes these systems non-friendly
and exhausting for the users. Although it has been studied
how to reduce calibration time for asynchronous signals, it
is still an open issue for event-related potentials. Here, we
propose the minimization of the calibration time on single-
trial error potentials by using classifiers based on inter-subject
information. The results show that it is possible to have a
classifier with a high performance from the beginning of the
experiment, and which is able to adapt itself making the
calibration phase shorter and transparent to the user.

I. INTRODUCTION

Non-invasive brain-computer interfaces (BCI) are systems
that decode the brain signals (usually EEG) into actions to
control robotic devices or virtual agents, and have been suc-
cessfully tested in past approaches [1], [2]. The design of an
EEG-based BCI implies the choice of a specific brain signal
or mental process to use. These signals are usually classified
as asynchronous or synchronous. The asynchronous signals
mainly rely on changes in the power spectra, such as µ− β
rhythms [3] or cognitive mental tasks [4]. The synchronous
ones are usually elicited from external events, the most
common being the event-related potentials (ERPs) [3].

One of the main problems of both synchronous and asyn-
chronous EEG-based BCIs is the need of an initial calibration
phase before being able to use the system. This phase is
necessary due to the high non-stationarity of the EEG. These
non-stationarities can be related to session-dependent aspects
such as the motivation or fatigue of the user, or the slight
displacement of electrodes [5]. Additionally, they are user-
dependent, meaning that the signals vary between different
users due to aspects such as the age or cognitive capabilities
[6]. Thus, in a given experiment, the calibration phase is
session- and user-dependent. This phase can be boring and
exhausting for the user, since it can last for more than 30
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minutes, and the user has no control over the device being
used. Furthermore, this phase limits the BCI systems to
scenarios where the outputs are very controlled.

In this context, several asynchronous approaches have re-
sulted in supervised and non-supervised learning techniques
to cope with the changes in the distributions due to session-
and user- related non-stationarities [5], [7], [8]. In a similar
way, past studies with synchronous signals have found user-
related differences in the averaged P300 ERP component
from the neurophysiological point of view [6]. However,
there are a few works that deal with the design of robust
classifiers for ERPs. Chavarriaga et al. have shown that error-
related ERPs remain very stable among different sessions,
even with two years of separation between the recordings [9].
However, the changes between different subjects is still a key
issue. To our knowledge, there is only a recent paper where
the authors designed a non-supervised technique to reduce
the P300 calibration time using inter-subject information
[10]. However, the P300 was not used in a single-trial
manner, but averaged using several repetitions of the stimuli.
Thus, it is still unclear how these user-specific changes affect
single trial ERPs, and other ERP components.

In this paper, we analyze the problems of non-stationarities
between different users with single-trial ERPs. The ERPs
chosen were error potentials. In a given task, these potentials
encode information about whether a user has considered a
specific action erroneous or not. Their presence has been
demonstrated in very different situations, such as user’s
own errors or simply monitoring errors (see [11], [9], [12]
among others). This work presents an analysis with respect
to the EEG features by using a novel spatio-temporal filter.
Based on these features, we propose the design of classifiers
based on inter-subject information to detect single-trial error
potentials and either remove the calibration time or make it
shorter and transparent to the user.

II. METHODS

A. Experimental setup

The following experiment was designed to generate er-
ror potentials during user’s monitoring of different actions
performed by a virtual agent. The presence of error po-
tentials during action monitoring has been suggested on
previous works [9], [12]. Four subjects (one female, mean
age 28 ± 7.68) participated in the experiment. The users
were comfortably seated in a chair facing a computer screen
at approximately one meter of distance. In the experiment



Fig. 1. Design of the experiment.

performed, the screen displayed a blue dot on the center
and three rectangles located at the same distance from the
blue dot in a triangle-like shape (Figure 1 left). The blue
dot performed discrete actions (Figure 1 right) to one of the
squares, staying one second over the square, and one second
on the center position. One condition of the experiment
was represented by coloring one of the squares green. The
users were asked to just monitor and evaluate the actions
performed by the blue dot in the following way: a movement
to the green square was a correct action, and movements
to the other squares were incorrect. Each block of the
experiment consisted of 50 random movements with the
green square fixed, with a 0.2 probability of error occurrence.
Once the block had finished another block started, with the
green square being in a different position. 12 runs of each
condition were executed, obtaining a total of 1140 correct
responses and 360 error responses.

The instrumentation used to record the EEG brain activity
was a gTec system using 32 active electrodes. The location
of the electrodes were FP1, FP2, F7, F8, F3, F4, T7, T8,
C3, C4, P7, P8, P3, P4, O1, O2, AF3, AF4, FC5, FC6, FC1,
FC2, CP5, CP6, CP1, CP2, Fz, FCz, Cz, CPz, Pz and Oz
(according to the international 10/10 system). The ground
electrode was positioned on FPz and the reference electrode
was placed on the right earlobe. The EEG was amplified,
digitized with a sampling frequency of 256Hz, and power-
line notch-filtered. A common average reference (CAR) filter
and a [0.5, 10]Hz band-pass filter were applied to the signal.
The ERP responses were extracted using the time window
[0, 1000]ms, where the action started at t = 0ms. The EEG
acquisition and experimental interface were developed under
the BCI2000 platform [13].

B. Spatio-temporal filtering

Here, we present a spatio-temporal filter that allowed us
to obtain the most discriminative spatio-temporal patterns
between the error and correct responses [14]. This technique
can either be used to perform feature selection for classifi-
cation, or to perform characterization analysis. Previous to
perform the filtering, it is necessary to choose the n desired
channels and the time window of m samples. Then, the filter
executes the following steps:

1) For each ERP response the input matrix of size n×m
is reshaped as a single feature vector of size 1×(n·m).

2) Each feature is normalized between [0, 1].
3) The normalized features are decorrelated using princi-

pal component analysis (PCA) without performing any
dimensionality reduction.

4) The r2 statistical coefficient is computed to determine
those features that best separate the data, and only the
best features are retained.

C. Single-trial classification

For the classification, a classical linear discriminant anal-
ysis (LDA) was chosen, since linear classifiers have demon-
strated their feasibility for BCI applications [3], [7]. The
LDA discriminant function D(x) is the hyperplane that
maximally separates the distribution of the two classes:

D(x) = wT · x+ b (1)

where w and b are the normal vector to the hyperplane
and the corresponding bias. LDA assumes that both classes
have the same covariance Σ, estimating also the mean µi of
each class i, and the global mean, µ. Then, the parameters
of the hyperplane are computed as follows:

w = Σ−1(µ2 − µ1) (2)

b = −wTµ (3)

Next, we present three classification strategies (CS) pro-
posed for minimizing the calibration time.

1) CS I, Classical Training: This strategy represents the
classical approach usually used in BCIs, where the training
phase represents a certain amount of time in the entire
experiment for each different user. Here, we tried to reduce
as much as possible this training time. We did not use the
knowledge of previous subjects to train the classifier. For
each subject, we used the labeled examples as they occurred
in the experiment. With each new example coming at time
t, we trained a classifier with all the examples acquired in
the time [1, t]. The test set remained fixed, representing the
last 600 examples of the experiment.

Due to the fronto-central nature of the error potentials
[11], channels located in fronto-central areas were selected
for classification. Since we wanted an LDA classifier to learn
from the examples rapidly, we only used the channels Fz and
FCz within the time window [200, 800]ms. Then, the data
was sub-sampled by a factor of 4, having a feature vector of
dimension 78. No further feature processing was performed.

2) CS II, Inter-Subject Calibration: This strategy was
performed (i) on each user separately using a ten-fold cross
validation strategy, and (ii) with a classifier trained with
three users and tested with the remaining one (without
performing any recalibration on the test subject). All the
combinations were tested.

In this strategy, the following eight fronto-central channels
were chosen: Fz, FC1, FC2, FCz, Cz, CP1, CP2 and CPz.
The time window selected was [200, 800]ms. Again, the data
was sub-sampled by a factor of 4, having a feature vector
of 312 features. Then, the filtering method presented in II-B
was applied to select the best f features, which were fed to
the classifier. To study the performance as a function of the
number of features used, f varied from 1 to 312 features.
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Fig. 2. Grand Averages of error, correct and error minus correct responses for each subject (from left to right, subjects 1-4) at channel FCz.

3) CS III, Adaptive Calibration: In the adaptive strategy,
we first used the knowledge obtained from trials of the
previous subjects to train an initial classifier (as in CS II).
Then, each of the labeled examples of the new subject was
used to adapt the initial classifier. The test set and the features
used were the same as the ones used in the CS I to perform
further comparisons.

The adaptation performed was based on LDA, and was
defined in [8]. For each new ERP belonging to class i, the
feature vector xt was created, and the corresponding µi was
updated using an exponential moving average as follows:

µi(t) = (1− α) · µi(t− 1) + α · xt, (4)

where α represents the update coefficient. To improve the
convergence of the method, α was initially fixed to 0.1,
decreasing its value by 0.99 with each new example acquired.
Finally, the parameters µ, w and b were updated.

III. RESULTS

The results are divided into two categories. First, we
analyze the similarity of the signals obtained across the dif-
ferent subjects. Then, we present the single-trial classification
accuracies obtained from each of the strategies proposed.

A. Similarity analysis

1) Grand averages: Figure 2 shows the grand averages
obtained for each of the participant at channel FCz. The dif-
ference between error and correct responses in this channel
is usually used as the analysis of error-related activity [11].
In our case, this difference was represented by a negative
peak at approximately 200ms, followed by a positive peak
at 300ms, and a second negative peak, agreeing with previous
results on error potentials [9], [12]. In general, correct
responses seemed to have a roughly stable shape between
different users, whereas error responses presented different
shapes between the users. To corroborate these conclusions,
we computed for each pair of subjects the Bhattacharyya
distance of the marginal distributions of each time sample
at channel FCz, separately on error and correct single-trial
responses. This metric measures the distance between two
normal probability distributions (The Kolmogorov-Smirnov
test was computed to assess the normality of the data).
The results are shown on Table I. For all the users, the
correct responses always showed a lower distance than the
error responses, indicating that correct responses had smaller
changes between users than error responses.

2) Features: As suggested in [10], there could be user-
independent features able to separate the two classes, but
the use of other features specific to each user could improve
the separability. Here, we corroborated these assumptions
analyzing the similarity of the best feature obtained from

TABLE I
BHATTACHARYYA DISTANCES

Correct Responses Error Responses

S1 S2 S3 S4 S1 S2 S3 S4
S1 — 11.36 5.19 2.86 S1 — 12.39 6.23 6.74
S2 11.36 — 6.03 4.37 S2 12.39 — 8.51 4.87
S3 5.19 6.03 — 2.23 S3 6.23 8.51 — 6.04
S4 2.86 4.37 2.23 — S4 6.74 4.87 6.04 —
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Fig. 3. Weights of the best feature for three concatenated subjects (left)
and the remaining user (right).

three subjects altogether, compared with the best feature
obtained with the remaining subject. For this analysis, we
used the method explained on II-B. All the channels and
time window were chosen, and the weights of the best feature
were reshaped and plotted as a color-encoded image. Figure
3 (left) shows the weights from the best feature, obtained
from subjects 1-3. Figure 3 (right) shows the corresponding
weights for subject 4. The other combinations presented
similar results, and thus are not shown. The two features
showed similar time-channel combinations. For instance,
during the time [200 − 500]ms on fronto-central channels
(circled area in Fig.3), there was a negative activity followed
by a positive one. However, the user-specific coefficients had
different activations in terms of absolute value. Furthermore,
the user-specific weights showed a higher number of time-
channel combinations in other areas (for instance, squared
zone of Fig.3 (right)). Thus, the performance obtained with
a purely user-independent classifier could be not optimal.

B. Single-trial classification

1) CS I: Figure 4 shows the results obtained with the
classical training approach averaged for all the subjects. As
can be seen, the classical approach almost converged to the
maximum accuracy (roughly 76%) with 600 examples. This
is equivalent to approximately 40 minutes of EEG recording
in the experimental protocol designed. This time is similar
to the duration of the training phase on previous EEG-based
BCIs [2].

2) CS II: Figure 4 shows the results obtained averaged for
all the subjects. The results showed that a classifier trained
separately for each user achieved higher accuracies than one
trained with three users, with a decrease of approximately
8%. This could be due to the existence of user-specific fea-
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Fig. 4. From top to bottom: accuracy of the inter-subject training approach
(CS II) as a function of the number of features; accuracies of the classical
training (CS I), adaptive (CS III), and adaptive minus classical approaches
as a function of examples added.

tures that helped in the separation of the two classes, as stated
previously. However, we obtained high performances with
the user-independent classifier, of roughly 70%. Furthermore,
with this strategy we completely removed the calibration
phase. One interesting fact is that the LDA classifier suffered
from an overfitting effect: the performance decreased after
adding more than approximately 20 features. Thus, it is
advisable to use a relatively low number of features.

3) CS III: Figure 4 shows the results obtained with the
adaptive calibration approach averaged for all the subjects.
Contrary to the results of the classical training approach, the
adaptive approach was able to obtain high accuracies from
the beginning of the experiment. To analyze the effect of
the adaptive approach compared with the classical one, the
adaptive minus classical approach was computed, and is also
shown on Figure 4. This plot can be separated in three Parts:
during Part I, the classical approach was not able to estimate
the parameters due to the low number of examples, whereas
the adaptive approach obtained high accuracies; during Part
II, the classical approach was able to train the classifier.
However, the performance of the adaptive classifier was still
better. Finally, during Part III the classical approach still
increased the performance, while the adaptive remained with
the same accuracy. Thus, the adaptive approach can help on
the first two Parts. In our case, the duration of these two
Parts corresponded to 18± 10 min.

As a conclusion, the adaptive approach can help in al-
leviating the training phase, usually represented by Parts I
and II. Furthermore, instead of having a training phase as
such, the experiment could start from the beginning without

an explicit training phase, while learning the classifier in a
transparent manner without the user noticing it.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the analysis of error
potentials with respect to the features, and the inter-user vari-
ability existent in the signals. Additionally, two techniques
to reduce the calibration time have been presented.

The feature analysis suggested that user-independent fea-
tures exist, and they could be used to detect signals from
other users with a high accuracy (70%). Additionally, the
use of an adaptive classifier can improve this accuracy.
Furthermore, the adaptive approach can make the calibration
phase shorter and transparent to the user. Thus, the user
would be able to start the control of the device without a
specific training phase.

As future work, we are investigating the use of non-
supervised adaptive classifiers to remove the label informa-
tion when a new user comes. Additionally, the use of a large
number of subjects could help to improve the inter-subject
classifier, since the features found could be better estimated.
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