
Abstract — In this paper, we present a vision-based 
navigation system for autonomous vehicles in structured urban 
environments. This system uses a standard RGB camera as the 
main sensor. The proposed approach is composed by an 
association of Finite State Machines (FSM) with Artificial 
Neural Networks (ANN). First, we identify the navigable areas
after processing the input frames. Then, an ANN is trained to 
recognize patterns on the generated navigability maps. Each 
pattern is associated to a specific state, related to a unique 
environment structural feature. A topological-like map is used 
to represent the environment, so any path can be described as a
sequence of states. For example, straight path, right and left 
turns and intersections. The experiments were performed with 
an autonomous vehicle in a real urban environment in order to 
validate and evaluate this approach. The proposed system 
demonstrated to be a promising approach to autonomous 
vehicles navigation.

I. INTRODUCTION

The development of robust autonomous intelligent 
systems for robotic applications is a very important research 
topic. Several applications are related to robotics, from 
industry to military tasks.

The autonomous driving capability is one of the most 
desirable features for a mobile robot. Researches related to 
this feature are being developed since the 80´s, and groups 
such as NavLab have been presenting relevant results on 
autonomous vehicles navigation.

Nowadays there are many relevant and known researches 
on autonomous robotics being developed worldwide. Some 
of them are powered by government initiatives as for 
example the Darpa Grand Challenge [7][8][9]. The first two 
editions (2004 and 2005) were held in desert, and 2007 
edition in an urban environment. In Brazil, the development 
of autonomous vehicles is an important research challenge 
among the main working groups (WG2) of the Brazilian 
National Institute of Science and Technology on Embedded 
Critical Systems (INCT-SEC).

Autonomous mobile robots usually perform three main 
tasks: localization, mapping and navigation [17]. Mapping is 
the creation of an environment model using the sensorial 
data, representing its environment structure. Localization task 
must occur simultaneously to navigation control. It consists
in estimating the robot´s position in a previously known 
environment, using its sensorial data. The Navigation task is 
therefore the ability to obtain enough information about the 
environment, process it, and act, moving safely through the 
navigable area.
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In order to develop an intelligent system able to navigate 
through environments composed by streets and highways, it 
is desirable to know the robot´s approximate position, the 
environment map and the path to be followed. So, navigation 
in this environment lies in following a well-defined path, 
considering the navigable areas.

This work focuses on this navigation task, describing the 
development of a Vision-Based Topological Navigation 
System, able to recognize the navigable area of an urban 
environment (streets) processing image frames and 
classifying them into states which represent the current robot 
context, allowing the robot to autonomously drive through 
this environment and reach a desired destination.

The adopted navigation approach does not require a very 
detailed environment map (metric map), only a graph that
represents the main elements, in a simpler path 
representation. Furthermore, accurate pose estimation is not 
necessary. The approximate robot´s position is enough to 
navigate. So, the main objective is to detect the current node 
in a Topological map, being useful to autonomously decide 
when and how go straight, turn left or right, even when more 
than one possibility is detected simultaneously (at an 
intersection, for example).

The developed system uses Artificial Neural Networks 
(ANN) [19] in two steps: to classify the frame obtained from 
camera (resulting in a navigability map) and second to detect 
patterns on these navigability maps (representing the current 
context). In this second step, a Finite State Machine (FSM) is 
used to represent the state sequence for any path at the 
environment. The ANN is trained to recognize all possible 
states, so a FSM generator can convert any chosen path into a 
sequence of these known states. 

The motion control is based on hierarchical/hybrid control 
approach. This way, the navigation system combines the 
high-level deliberative control (path planning) with different
reactive behaviors, allowing a safe motion. This FSM-based 
approach was already successfully applied in previous 
authors’ works for indoor applications [4][25][16] with 
different sets of sensors and states, showing the feasibility of 
this implementation and motivating studies concerning the 
application of this technique in urban environments.

The main objective of this work was obtaining and 
processing enough information for state (context) detection, 
allowing a high-level path planning and also safe motion
using reactive control for autonomous vehicles.

The next topics of this paper are organized as follows: 
Section 2 presents some previous related work; Section 3 
presents the Topological Navigation System overview, 
Section 4 presents experiments and results and Section 5 
presents the conclusion and future work.
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II. RELATED WORK

Several navigation approaches have been used for navigation, 
using many different sensors (for example laser, sonar, GPS, 
IMU, compass) solely or combined [9][17][18]. One of the 
most used approaches is the vision-based navigation [20]. 
This method uses monocular video cameras as the main 
sensor. Cameras are very suitable for navigation and obstacle 
avoiding tasks due to its low weight and energy consumption 
[1]. Furthermore, one single image can provide different 
types of information about the environment simultaneously. 
It is also possible to reduce costs by using cameras rather 
than other types of sensors [2]. 

Vision-based navigation approaches are already usual in 
navigation systems for structured or semi-structured 
environments [3][10][11]. These systems classify the image, 
with track segmentation for safe navigable area identification, 
resulting in reactive models for navigation control. Works 
such as ALVINN [13] and RALPH [14] were some of the 
first to apply neural networks for this reactive control in 
outdoor environments.

In [3], Shinzato developed a neural classifier composed by 
an ANN ensemble, able to detect and to segment the 
navigable areas of the road through image features analysis. 
Later, this classifier was adopted by Souza in [15] for a
Template-Matching based reactive control.

Purely reactive models are not totally adequate for our 
autonomous navigation system development, since 
immediate reaction to sensors data is not enough to guarantee 
a correct control in complex environments. A more robust 
system should be implemented, providing sequence and 
context information that are absent in purely reactive models.

In robotics, FSM-based approaches [5] are very often 
used. FSMs are useful because the system can be easily 
described as a sequence of states (context changes), 
considering the inputs (sensors) and specific actions for each 
state. This way, for each detected state the robot can assume 
a different behavior. This work focuses on this main idea,
with possible paths described as FSMs in which current state 
is detected after processing sensors data.

The use of Machine Learning techniques such Artificial 
Neural Networks is a very interesting way to process input 
data, identifying and classifying the states and transitions to 
determine the best actions to be performed [6]. ANNs are 
tolerant to noise and imprecision on input data, and able to 
detect the states and transitions between these states. ANNs 
are also very efficient to generalize knowledge (adjusting the 
outputs to many inputs, even the ones not explicitly taught to 
the net). So, this technique is very useful for state detection 
through path features recognition.

The association of ANNs with FSMs is being developed 
and evolved since the 1990´s [21][22][23][24], and recent 
researches were focused on applying this technique to 
robotics. In [12], an autonomous car parking system was 
developed, using recurrent neural networks for FSM learning. 
The sensors data and current state were used as ANN inputs, 
so the system could detect when a context change was 
needed. This work inspired the development of our FSM-
based approach.

In [20], a Vision-based autonomous navigation system 
was implemented for indoor environments using a simple 
FSM control. In that work, Sinzato´s classifier was used to 
generate the navigability matrices from input frames. Then, 
an algorithm was developed to analyze interest areas of these
matrices in order to determine the current state of a FSM 
(robot context) to navigate through a set of turns and 
straights. The main idea of this FSM-Control was evolved, so 
in [4] and [25] an autonomous navigation system was 
developed with an ANN as the control unit. A LIDAR sensor 
was adopted as the main sensor, so an ANN was trained to 
recognize the “laser signatures” associated to every possible 
state of a FSM. Each state was related to a specific part of an 
indoor environment. This way, the FSM states could be 
learned by the ANN, and the paths represented by a sequence 
of known states. These works introduced the Topological 
Navigation approach proposed in this paper.

The navigation system developed in this paper combines 
the visual (low-cost) navigation with the neural learning of 
FSMs in Topological Navigation approach, considering the 
best features obtained with these previous results. The 
developed system components are described in next section.

III. SYSTEM OVERVIEW

The proposed system is composed by three main modules: 
“Navigability Map Generation”, “State detection” and 
“Reactive Control”. The Navigability Map generator is 
responsible to convert a captured frame into a navigability 
map, used as input for our Navigation Control System. The 
State Detection module is responsible to detect the current 
state and filter oscillations, avoiding unexpected state 
transitions (considering the path plan). The reactive control 
determines an appropriate steering angle according to the 
navigable area detection and current state detected. Figure 1
shows the full system flowchart.

Figure 1 – Navigation System Flowchart

A. Navigability Map Generation
This step is performed using the neural classifier 

proposed by Shinzato in [3]. It is composed by an ANN 
ensemble with six ANNs; each one is responsible to classify 
the pixels into navigable (1) or non-navigable (0), based on 
different sets of features of the image such as RGB values, 
HSV values and entropy. So, the mean of these output
values is the final classification value, ranging from 0 to 1.

The ANNs training is performed with a small set of 
representative frames. The supervisor must classify parts of 
these frames into navigable or non-navigable in a GUI, 
obtaining six trained ANNs.
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The input frame has 320x240 pixels size, sliced in 10x10 
block to produce a 32x24 navigability map. The neural 
classifier and the image features used for each ANN are fully 
described in [3]. Figure 2 shows some examples of processed 
frames and the resulting navigability maps. The segmented 
navigable area is used as input for the State detection and 
Reactive Control modules. 

Figure 2 – Navigable area detection results on different 
situations (bright = navigable block)

B. State Detection
This module is responsible to recognize patterns on the 

input data, allowing the detection of environment features 
used to determine the current state (context). An ANN is 
used for this task.

The environment is mapped as a topological map in 
which each node is related to a specific part of the 
environment, described by its structural features such as 
straight path, turn or intersections. All possible states 
(environment features) are taught to the ANN, so possible 
paths on this environment can be described as a sequence of 
these learned states, being represented by FSMs. Figure 3 
shows a part of an environment and its topological map.

Figure 3 – Environment mapping example

The ANN input is the navigability matrix obtained at the 
previous step, and the output is the current state (environment 
feature) detected. Four different classes were created, each 
one related to a different track shape or condition (straight, 
left and right turns and intersection).

In order to begin the training process, a database must be 
generated collecting a set of frames for each possible 
situation. So, these frames may be processed by the first 
neural classifier to generate the navigability maps. As the 
learning process is supervised, a specialist must classify these 
navigability maps in one of the possible states before the final
ANN training, creating a set of input/desired-output pairs.
After finishing the ANN training, it should be able to 
recognize different possible paths at the environment.

Once the Topological Map of an environment is known, 
it is possible to establish a route between two points, 
manually or with a path planning algorithm. Every route can 
be seen as a sequence of steps (states), so it is trivial to 
generate a FSM (sub-graph) to represent a well-defined path.

For this system implementation, it is assumed that 
vehicle´s initial position is always known, as the topological 
map also. The current position is estimated based on current 
state detection, so it isn´t necessary to estimate robot´s exact 
position. Navigation and self-localization are performed 
together.

The desired path is also used as input to State Control 
unit, so the system can determine if a state transition is 
needed or if the vehicle still remains at the current state. The 
State Control unit also filters state detection oscillations, 
allowing a state transition only if the next expected state is 
observed by a certain amount of consecutive steps. If the 
observed state does not match the path plan, current state is 
kept, as shown on Figure 4.

Figure 4 – State transition flowchart 

This Topological Navigation approach allows the vehicle 
to follow its planned path and also know its approximate 
position, but does not control the motion “into” every 
situation (state). This task is performed by a reactive control
unit, described in the next section.

C. Template-Matching Based Reactive Control
This module is responsible to react to road current 

conditions, determining the vehicle´s steering angle. As 
mentioned earlier, the motion control system must combine 
the deliberative control resulting from FSM-based 
topological navigation with reactive behaviors to guarantee a 
safe driving, avoiding leaving the track.

The implemented reactive control uses a template-
matching approach for road track following, as proposed in 
[15]. The navigability maps are compared with five different 
templates, each one related to a specific steering angle for 
reaction, as shown on Figure 5. Each template receives a 
matching score, so the steering angle is defined after 
measuring the best score.

Figure 5 – Reactive Control Templates representation
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The current state is also considered as input, so a bias is 
added to the score of the most suitable templates for each 
current condition. Straight path state adds a bias to straight 
and soft turns templates, avoiding abrupt movements; left 
and right turns adds a bias to its corresponding soft and hard 
turn templates; intersection state adds a bias to straight, hard 
and soft turns considering the path plan (left to keep in the 
roundabout, right to get out).

IV. EXPERIMENTS AND RESULTS

The experiments were carried out in a real urban 
environment, using an autonomous vehicle equipped with a
video camera as the only sensor. The environment was 
composed by straights, turns and intersections, so its 
properties could be represented with four states: “straight 
path”, “left turn”, “right turn”, and “intersection”. Some 
examples of input frames for these four states are shown on 
Figure 6.

Figure 6 – Example of input frames for each implemented state

A. System Setup
The camera used in our tests was a PointGrey 

Bumblebee2 Stereo Cam [26]. We do not deal with depth 
information in this paper, so only left image is taken as 
perception system input. The camera was placed above the 
car as shown on Figure 7, so viewing angle was adjusted in 
order to allow immediate reaction to each frame/navigability 
map processed.

Figure 7 – Camera position

The control platform was implemented on Robot 
Operating System (ROS) [27], a framework which provides 
libraries and tools for robot applications development. Each 
module was implemented as a ROS node, with message-
passing between the modules, as shown on Figure 1. The full 
control system works in real-time, with one steering 
command per frame, at 30 fps frame rate.

The Navigability Map Generator was created after 
collecting and classifying data on 15 frames of the 
environment. So, the ANN ensemble was generated, trained 
and included into the embedded system.

B. State Detection Unit
The ANN used for state detection was implemented and 

trained with Stuttgart Neural Network Simulator (SNNS) 
software. ANN training database was generated collecting 
about 2040 frames (converted to navigability maps) for each 
class. So, the final database was composed by 8165
input/output pairs. 

The training algorithm used was Resilient Propagation 
(R-Prop). This algorithm achievies great results for feed-
forward networks in many applications due to its good 
training time and convergence. Training parameters used are 
shown on Table 1.

Table 1 – Training Parameters

Parameter Value
Training Algorithm R-Prop

0,1
50
4

cicles 500
aprox. total training time 2 hours

Due to the camera position, the first 288 elements on upper 
half of navigability matrices are most commonly related to 
elements above the horizon line, so they are not considered 
for state detection. The lower 96 elements (bottom 3 lines) 
are also discarded because they are related to the current 
navigable area, not an incoming situation. This way, a
detection window with 12 lines (384 elements) is used for 
state detection. So, the ANN input layer is composed by 384 
neurons only.

Some empirical tests based on previous work knowledge 
were performed in order to determine the best ANN 
topology. The best results were achieved by a feed-forward 
MLP, with the 384 input neurons, 384 neurons on hidden 
layer and 4 neurons on output layer (1 neuron per class), all 
neurons with activation function defined as “Act_Logistic” 
implemented on SNNS.

ANN validation was done with stratified 5-fold cross-
validation method. This way, 5 train and test sets were 
generated, with 80-20 proportion on data (80% used for 
training and 20% for test, with same proportion of elements 
from the 4 classes on the datasets). The ANN accuracy on the 
five tests can be observed at Table 2, and the confusion 
matrices for the five test sets resulting from 5-fold cross 
validation are shown on Figure 8.
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Table 2 – ANN Accuracy after 500 training cicles

Test 1 Test 2 Test 3 Test 4 Test 5
ANN Accuracy 98.8% 99.0% 99.1% 99.3% 99.5%

Figure 8 – Confusion matrices

A low error per class can be observed on confusion 
matrices. However, this only shows the network learned the 
database examples. If the system wrongly detects any 
situation as the next expected state, the reactive behavior will 
be affected, adding a bias to wrong templates and performing 
wrong steering actions. Likewise, if a new expected state is 
not detected in time, the system will keep the current 
behavior active, impairing self-localization and navigation 
tasks.

Therefore, state detection is a critical point. To ensure a 
correct navigation, the ANN training database must cover an 
enough amount of examples, avoiding misclassification on
state detections. This problem can also be reduced if a 
minimum amount of consecutive new state detections is 
required for state transitions. The experiments carried out 
with this filter showed an adequate reliability level for state 
changes in developed applications.

C. Autonomous Navigation Tests

The environment in which the database was generated and 
the tests performed is shown next, on Figure 9. Our goal was 
to autonomously navigate following well-defined routes. The 
vehicle successfully accomplished the navigation task in a
path with straights and a roundabout in autonomous mode, 
validating the proposed approach.

Figure 9 – Outdoor Environment used for tests

The reactive control was correctly affected by state 
detection, allowing a smooth behavior. Figure 10 shows the 
vehicle performing a left turn in a roundabout. A video with a 
successful path sequence and more information is available at 
http://www.icmc.usp.br/~fosorio/research/vicomor12.html.

Figure 10 – Autonomous vehicle in a roundabout situation

Some misclassification occurred when unexpected light 
conditions affected input data, resulting in noisy navigability 
maps. Other dynamic elements such as vehicles and obstacles 
were not considered as a new state, and also produced bad 
responses when crossing the state detection window area.

The minimum amount of consecutive new state detections 
was manually tuned, normalizing the chance of straight and 
turn behaviors to be activated, since turn states are detected 
for a shorter period of time.

We also considered using a binary navigability map 
instead of continuous probability maps in template-matching
step, filtering uncertainty on road detection with a threshold. 
In some cases, this solution produced better results than 
continuous version, so the use of binary maps was 
implemented as a parameter to be set before navigation 
system launch, allowing the selection of the fittest solution.

V. CONCLUSION

The successful navigation results demonstrated the 
suitability of this approach for autonomous vehicles 
navigation, when an accurate state detection is possible. This 
way, the use of a camera as the main sensor can be an 
efficient and reliable solution, allowing the project of low-
cost autonomous driving systems.

This work complements the range of applications 
proposed on our previous indoor works, showing 
Topological Navigation as a promising approach for
autonomous vehicles navigation too.

The system can be re-trained to recognize new situations, 
settings and features, and also use and combine other 
sensorial systems, allowing its implementation in different
scenarios. For future works, we consider using sensor fusion
and other techniques to detect new features and landmarks 
useful for navigation control. 
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