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Abstract— This article presents a brief study of mobile robots
navigation. In a first part, we provide an overview of this
problem, analyzing the different involved processes and showing
several architectures allowing to organize them. In a second
step, we consider the vision based navigation problem. From the
previous analysis, we highlight the interest of using topological
maps in this context and propose an overview of existing works
in this area. Finally, we present our own solution to the problem,
showing its relevance and its efficiency.

I. INTRODUCTION

In this paper we consider the well known autonomous

navigation problem. It consists for the robot in reaching a

goal through a given environment while dealing with unex-

pected events [1]. Thus, the navigation generally involves

six processes: perception, modelling, planning, localization,

action and decision. A wide range of techniques are available

in the literature for each of them. As these processes coop-

erate within an architecture to perform the navigation, they

cannot be designed independently and it is necessary to have

an overview of the problem to select suitably the different

methods. This article aims at (i) providing such an overview,

(ii) presenting the visual solutions and (iii) positioning our

own work in this general context.

II. THE NAVIGATION FRAMEWORK

In this section, we present the different processes and the

associated methods before highlighting several architectures.

A. The navigation processes

1) Perception: In order to acquire the data required by the

navigation, a robot can be equipped with both proprioceptive

and exteroceptive sensors. The first ones (odometers, gyro-

scopes, . . . ) provide data relative to the robot internal state

whereas the second ones (camera, laser telemeters, bumpers,

. . . ) give information about the environment. The sensory

data may be used by four processes: environment modelling,

localization, decision and robot control.

2) Modelling: A navigation process generally requires an

environment model. This model is initially built using a
priori data. It is not always complete, and can evolve with

time. In this case, the model is updated thanks to the data

acquired during the navigation. There exists two kinds of

models, namely the metric and/or topologic maps [2].

The metric map is a continuous or discrete representation

of the free and occupied spaces. A global frame is defined

and the robot and obstacles poses are known with more or
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less precision in this frame. The data must then be expressed

in this frame to update the model [1].

The topologic map is a discrete representation of the

environment based on graphs [1]. Each node represents a

continuous area of the scene defined by a characteristic prop-

erty. The areas are naturally connected and can be limited to

a unique scene point. The characteristic property, chosen by

the user, may be the feature visibility or belonging to a same

room. Moreover, if a couple of nodes verifies an adjacency

condition, then they are connected. The adjacency condition

is chosen by the user and may correspond for example to

the existence of a path allowing to connect two sets, each of

them represented by a node. A topologic map is less sensitive

to the scene evolutions: it has to be updated only if there are

modifications concerning the area represented by the nodes

or the adjacency between two nodes.

Metric and topologic maps can be enhanced by adding

to nodes sensory data, actions or control inputs. These

informations may be required to localize or control the robot.

There also exists hybrid representations of the environment

based on both metric and topologic maps [3], [4], [5].

3) Localization: For navigation, two kinds of localiza-

tions are identified: the metric one and the topologic one [2].

The metric localization consists in calculating the robot pose

with respect to a global or a local frame. To do so, a first solu-

tion is to use only proprioceptive data. However this solution

can lead to significant errors [6] [7] for three reasons. The

first one comes from the pose computation process which

consists in successively integrating the acquired data, which

induces a drift. The second one is due to the model which

is used to determine the pose: an error which occurs during

the modelling step is automatically transferred to the pose

computation. Finally, the last one is related to phenomenons

such as sliding which are not taken into account. It is then

necessary to consider additional exteroceptive information to

be able to localize the robot properly. Visual odometry [8]

[9] [10] is an example of such a fusion.

The topological localization [3] [11] [12] [13] consists

in relating the data provided by the sensors with the ones

associated to the graph nodes which model the environment.

The goal is to determine the situation in a graph and not

with respect to a frame [2]. Topological localization is not

very sensitive to measurement errors unlike its metric alter-

ego. The precision depends on the accuracy with which the

environment has been described.

4) Planning: The planning step consists in computing,

using the environment model, an itinerary allowing the robot

to reach its final pose. The itinerary may be a path, a

trajectory, a set of poses to reach successively, . . . There
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exists a large variety of planning methods depending on the

environment modeling. An overview is presented hereafter.

A first approach consists in computing the path or the

trajectory using a metric map. To do so, the geometric space

is transposed into the configuration space. The configuration

corresponds to a parametrization of the static robot state.

Thus a robot with a complex geometry in the workspace is

represented by a point in the configuration space [2]. Then

planning consists in finding a path or a trajectory in the

configuration space allowing to reach the final configuration

from the initial one [1]. With a continuous representation of

the environment, a path or a trajectory can be obtained using

visibility graphs or Voronoi diagrams [14]. With a discrete

scene model, planning is performed thanks to methods from

graph theory such as A∗ or Dijkstra algorithms[15] [16]. For

the two kinds of maps, planning may be time consuming. A

solution consists in using probabilistic planning: probabilistic
roadmap [17] [18] or rapidly exploring random tree [19].

When the environment model is incomplete at the begin-

ning of the navigation, unexpected obstacles may lie on the

robot itinerary. A first solution to overcome this problem

consists in adding the obstacles to the model and then to

plan a new path or a new trajectory [1]. In [20], [21], authors

propose to consider the trajectory as an elastic band which

can be deformed if necessary. A global re-planning step can

then be required for a major environment modification.

When using a topological map without any metric data,

the planned itinerary is generally composed of a set of poses

to reach successively. These poses can be expressed in a

frame associated to the scene or to a sensor. The itinerary

is computed using general methods from the graph theory.

Depending on the precision degree used to describe the

environment, it is possible that the planned itinerary does

not take into account all the obstacles. This issue has to be

considered during the motion realization.

5) Action: To perform the tasks required by the naviga-

tion, two kinds of controllers can be designed: state feedback

or output feedback [22]. In the first case, the task is generally

defined by an error between the current robot state1 and the

desired one. To make this error vanish, a state feedback is

designed. The control law implementation requires to know

the current state value and therefore a metric localization is

needed. In the second case, it consists in making the error

between the current measure and the desired one vanish.

This measure depends on the relative pose with respect to

an element of the environment, called feature or landmark.

When using vision, the measures correspond to image data

(points, lines, moments; etc. [25]). For proximity sensors,

they are defined by distances provided by ultrasound [26]

and laser [5] [27] telemeters. The measures are directly

used in the control law computation, which means that no

metric localization is required. However the landmark must

be perceptible during the entire navigation to compute the

control inputs.

1The state may correspond to the robot pose with respect to the global
frame or to a given landmark [23] [24].

6) Decision: To perform a navigation, it may be necessary

to take decisions at different process states. These decisions

may concern high level, e.g. a re-planning step [21], or low

level, e.g. the applied control law [26]. They are usually taken

by supervision algorithms based on exteroceptive data.

B. The navigation architectures

The different processes required by a navigation have now

been identified. Here, we present examples of navigation ar-

chitectures based on the previously presented processes. We

propose to organize our presentation around the controllers.

1) ”State feedback” based architecture: First, we con-

sider a robot controlled using a state feedback controller in

a free space. The initial and final configurations are defined

in a world frame. To compute the control inputs, the state

value has to be known at any time. The robot capacity

to geometrically localize itself is a necessary condition to

successfully perform the navigation. Let us note that, the

distance that the robot can cover is only limited by the

localization precision. Indeed, a too large error on the state

value will result in inconsistent control inputs.

We now consider a cluttered environment. In this case

there are two solutions, either reactive or planning based.

The reactive one consists in controlling the robot using

two controllers : a first one making the error between the

current and the desired poses vanish, allowing to reach the

goal, and a second one performing the obstacle avoidance

using exteroceptive data. It is then necessary to develop a

supervision module selecting the adequate controller. This

solution, which guarantees the non-collision with obstacles,

does not allow to ensure the navigation success. Indeed,

the obstacle avoidance is locally performed and does not

take into account the goal. The second solution consists in

following a previously planned collision free path. To this

aim, the environment has to be modeled using a map. If

the model represents the whole scene, then the navigation

simply consists in following the planned itinerary using a

state feedback controller. A supervision module is no more

required. If the environment is not completely modeled, it

may be necessary to update it when an obstacle appears

on the robot path. After the update, a re-planning step is

performed. In this case, a supervision module which decides

to update and re-plan is mandatory. Finally, it should be

noticed that the metric localization is required and limits

the navigation range for each solution.

As a conclusion, when the robot is controlled using state

feedback controllers, the metric localization is a decisive

element, as the navigation success depends on the localiza-

tion quality. Moreover, in a cluttered environment, a model

is quickly mandatory to converge towards the desired pose

or to avoid obstacles. The metric localization and modeling

processes are very sensitive to measurement errors. It is then

necessary to pay attention to the methods performances when

the navigation is based on state feedback controllers.

2) ”Output feedback” based architecture: We now con-

sider a robot controlled using an output feedback controller in

a free space. The initial pose is unknown whereas the desired
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one with respect to a landmark is defined by measures. The

robot can converge toward the desired pose if the landmark

can be perceived at any instant. It is now the sensor range

which limits the navigation range. In this case no metric

localization is required.

When the environment is cluttered, a first solution consists

in using a sole output feedback controller to reach the desired

pose while avoiding obstacles. A second idea is to control

the robot thanks to two output feedback controllers : the

first one allows to reach the desired pose and the second

one guarantees non collision. A supervisor selecting the

adequate controller is then required. For both solutions, local

minima problems may occur. Moreover, the navigation range

is still limited by the sensors range. Global informations

must then be used to perform a long range navigation. These

global information can be added using a metric map or a

topological map. In the first case, it is possible to plan a

path taking into account the features availability at each

pose. The planned itinerary is then composed by several

landmarks successively used to compute the control inputs.

Moreover, for a static environment, joint limits, visibility

and obstacles can also be considered in the planning step.

Nevertheless, this approach requires environment, robot and

sensors reliable models. In the second case, a topological

map is used to provide the necessary global information.

Here, the additional data associated to the graph nodes

correspond usually to the desired features or landmarks. As

previously, the planned itinerary is made of measures or

landmarks set to reach. This approach is based on a partial

environment representation. The model is then less sensitive

to the environment modifications, but does not allow to take

into account several constraints such as obstacles or joints

limits during the planning step. A topologic localization is

needed.

III. THE VISUAL NAVIGATION

Now we focus on the vision based navigation problem.

The camera is then used as the main sensor, which still

allows to select any of the previous presented approaches as

shown in [28] and [29]. In these works, the authors propose

an overview of visual navigation splitting the methods into

two main categories: the metric map based ones and the

topological map based ones. Following our previous analysis,

we have selected the topological approach. Indeed, in this

case, the metric localization is no more required, limiting

the inaccuracy due to the use of noisy data in the state

computation process. Furthermore, a topological map pro-

vides sufficient data to perform a navigation task, without

significantly increasing the problem complexity. Finally, this

representation is less sensitive to scene modifications. We

present hereafter methods based on such an approach.

A. Related works

In [30], the scene is modelled by a graph whose nodes

correspond to the corridors. The robot navigates into the

corridors using an image based visual servoing relying on the

vanishing point as visual feature. This method is then limited

to an environment composed of corridors. Other approaches

propose to model the environment during a pre-navigation

step. During this phase, images obtained for several close

robot configurations are memorized. A topological map, also

called visual memory, is built by organizing the images [4].

The planned itinerary is called visual road [31]. This ap-

proach is performed using omnidirectional [32] [33] [34] [35]

[36] or pinhole camera [37] [38] [39] [40] [36]. However,

none of these approaches take into account the two major

problems of visual navigation : occlusions, i.e. the landmarks

loss, and collisions with obstacles. A set of works [41] [42]

[43] has produced a visual navigation allowing to avoid

unexpected obstacles while tolerating partial occlusions. The

topological map is also built during a pre-navigation step.

Time variant visual features are used by the visual servoing

while the obstacle avoidance is performed thanks to a po-

tential fields based control law. Thus, the learnt path can be

replayed using a topological map while avoiding collisions.

B. Our approach

We propose a similar approach to perform the navigation

while dealing with collisions and total occlusions [44]. Fol-

lowing the above analysis, we have chosen to use a camera,

a topological map and several output feedback controllers

organized in a supervision algorithm. We present hereafter

our approach detailing our choices for each process. More

details can be found in [44].

1) Perception: Our robot is equipped with a camera and

a laser able to detect respectively the landmarks of interest

and the obstacles. Our approach will rely on these two data.

2) Modelling: We now focus on the topological map,

which consists of a directed graph. Each node corresponds

to a landmark present in the scene. If there are nl landmarks,

then the graph is composed of nl nodes. A point, correspond-

ing to the desired robot pose Si with respect to the landmark

Ti, is associated to each node Ni, with i ∈ [1, ...,nl ]. An arc

A(Nj,Nk) is created if the landmark Tk, associated to the node

Nk, can be seen from the pose S j, associated to the node Nj,

with j ∈ [1, ...,nl ], k ∈ [1, ...,nl ] and j �= k. Moreover, sensory

data Di extracted from an image of the landmark Ti taken at

the pose Si is associated to the node Ni.

3) Localization: During the navigation, and especially at

the beginning, the robot has to localize itself into the graph.

The localization process identifies the landmarks that are in

the field of view of the camera. Localization is performed

using the sensory data associated to each node. It consists in

making a test of similarity between two images. To this aim,

the descriptors of the current image and those from the data

base are matched. The image from the data base which has

the best similarity with the current image is selected. Then

we consider that the robot situation in the graph corresponds

to the node containing the selected image.

4) Planning: The initial and final poses are obtained from

the localization process and from the user. They are now

considered as known. The path TP made of a sequence of

nP landmarks [TP1, ...,TPnP ] to reach, is planned using the

Dijkstra algorithm [16] which provides the shortest path.
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5) Action: To perform a long range navigation, we use
three output feedback controllers [44]. The first one allows to
perform a short range navigation with respect to a landmark,
which will be referred to as ”sub-navigation”. This controller
is defined by a classical image based visual servoing [45],
which makes the error between the current and desired im-
ages vanish. The second one performs the obstacle avoidance
by stabilizing the robot on a path defined thanks to telemetric
data [46]. The last one is intended to avoid unsuitable
motions when switching from one landmark to the other
[44]. The transition between each controller is performed
by a dynamic sequencing allowing to guarantee the control
law continuity [47]. Thus, using these two controllers, the
robot can successively reach the landmarks composing the
path while avoiding the obstacles.

To manage the occlusions problem, we have used the
algorithm [48]. It allows to predict the visual features next
position from the previous visual data and the visual features
depth. The latter is estimated thanks to a predictor/corrector
using a number npc of images allowing to provide an accurate
estimation even in the presence of noisy data [49]. Using
these tools we can deal with total occlusions.

6) Decision: The decision process has to activate or
deactivate the available tools in order to guarantee the long
range navigation success. We propose to use a supervision
algorithm to perform the decision process. The algorithm,
summarized in figure 1, is built using the following strategy.

First of all, the robot localizes itself to determine the initial
node in the graph. Then, knowing the desired pose, a path TP
composed by a set of landmarks to reach is computed. Then,
the initialization phase is executed. It consists in making
small rotations to estimate the visual features depth of land-
mark TP1. Thus occlusions can be managed during the sub-
navigation with respect to TP1. When the initialization phase
is over, the sub-navigation to TP1 is launched. If the robot is
too close to an obstacle, the obstacle avoidance controller is
used. During the sub-navigation, the robot regularly looks for
the next landmark TP2. If this latter is not found, the robot
continues the current sub-navigation and restarts the depth
estimation process. When it converges, TP2 is one more time
looked for. This loop is repeated until the next landmark
is found or the current sub-navigation is over. In the latter
case, the robot turns on itself to identify the next target. If
it is not found, then the graph is updated and a new path is
planned. If there is no path to reach the desired landmark,
the navigation fails. We consider now that the landmark TP2
has been found. The sub-navigation, obstacles avoidance and
looking for the next landmark processes are repeated using
the same conditions as previously until the robot reaches the
desired pose or the navigation fails.

IV. SIMULATIONS

We have simulated a long range navigation us-
ing MatlabTMsoftware. The considered cart-like robot is
equipped with a camera mounted on a pan-platform and
a laser telemeter. In the scene shown in figure 2(a), there
are nl = 9 artificial landmarks made of a different number
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Fig. 1. Supervision algorithm for a long range navigation

of points. The occluding obstacles are represented in black
whereas the non-occluding one is in gray. To model the
environment, the robot is successively placed at the desired
poses S∗i , with i ∈ [1, ...,nl ]. Thus, we obtain the topological
map presented in figure 2(b). It should be noticed that the
topological map is not complete, as the chosen poses S∗i do
not allow to connect all the nodes. For example, the selected
S∗8 does not allow to relate N8 and N6, although other choices
would have permitted it. However, it is not a problem as there
exists a path allowing to reach the desired pose.

From its initial pose near S∗5, the robot must reach S∗7 with
respect to the landmark T7. After a localization and using
the topological map, the shortest path TP = [T1,T2,T4,T6,T7]
is computed (see Fig. 2(b)). Then, the mission starts and
the supervision algorithm selects the current task to perform
until T7 is reached. Figure 3 shows the corresponding task
sequencing and robot trajectory. As we can see, the mission
is successfully realized despite the unexpected obstacles.

We propose a second simulation to illustrate the re-
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planning phase and the necessity to provide the most com-

plete topological map. We consider the same environment

as previously, except that all obstacles are now occluding. If

we use the same poses S∗i , reaching S∗7 from S∗5 is impossible

because nodes N4 and N6 cannot be connected anymore. To

overcome this problem, a new pose S∗8 allowing to relate

N8 and N6 is defined (see Fig 4(a)). The proposed map

is then more complete than the previous one, showing the

importance of the choice of each S∗i . The corresponding

environment map is shown in figure 4(b). Note that we have

willingly introduced an error in the map by connecting nodes

N2 and N4 whereas this relation does not exist anymore.

To reach S∗7 the robot now plans the following path

TP = [T1,T2,T4,T8,T6,T7]. Then the navigation starts and

the robot reaches S∗2 but cannot find T4. At this time, a

localization process is performed, showing that only T2 and

T3 can be perceived from the robot current position. The

map is then updated by suppressing the link between N2 and

N4. A new path TP = [T3,T4,T8,T6,T7] is computed, and the
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Fig. 5. Robot long range navigation #2

navigation is launched again. Using the adequate controllers

the robot then performs the task and reaches S∗7.

V. CONCLUSION

This paper was focused on the navigation problem. We

have first highlighted the different processes involved in

the navigation and shown their organization within several

possible architectures. Then, we have considered the vision

based solutions, showing the interest of using a topological

map. We have finally positioned our own works in this

general framework, demonstrating its efficiency to perform

a visual navigation despite collisions and occlusions. One of

the next challenges will be to take into account the presence

of mobile obstacles (vehicles, human beings, . . . ) to improve

the robot autonomy in a real environment.
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