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Abstract— In this paper we propose a distributed algorithm
for choosing the appropriate neighbors to compute the control
inputs of a team of robots. We consider a scheme where the
motion of each robot is decided using nearest neighbor rules.
In this scheme each robot is equipped with a camera and
can only exchange visual information with a subset of the
robots. Using the information provided by their neighbors,
the robots compute their control inputs, eventually reaching
a consensus in their motion. However, if a robot has too many
neighbors (e.g., a star topology), then it will require a long
time to process all the received information, leading to long loop
times or synchronization problems. In the paper we provide two
distributed policies for the robots to select at each iteration the
information of a fixed number of neighbors. In both cases we
demonstrate convergence to the consensus with a considerable
reduction on the amount of required computations. Simulations
in a virtual environment show the effectiveness of the proposed
policies.

I. INTRODUCTION

The idea of multiple robots working in cooperation to

achieve a common goal is of high interest in many tasks,

such as exploration, surveillance or transportation. Multi-

robot systems can perform these tasks with more robustness

or in less time than one robot working alone. On the other

hand, in order to carry on with these tasks, the robots need

to be able to move in coordination.

A generalized problem in this context is the problem of

reaching a consensus by all the robots. From the control

perspective, the consensus problem [14] consists of making

a team of robots to move all together in a common direction,

with the peculiarity that this goal is achieved by each robot

using only partial information given by the nearest-neighbors

in the team. In this way all the robots play the same role

in the formation, conferring the system a natural robustness

against changes in the topology and individual failures. A

key aspect left aside in most of the existing work in this

topic, e.g., [2], [6], [12], [15], is how the robots estimate

their neighbors positions to control their motion.

Vision sensors can play a fundamental role in this part

of the process due to the big amount of information that

images contain. Additionally, all the research done in the

field of computer vision during the past decades can be

exploited in a multi-robot framework in order to achieve the
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desired goal. Some works consider a single camera and a

central unit to control all the robots [7]. Distributed solutions

using omnidirectional cameras can be found in [13], [16]

where the robots can see all their neighbors. If the robots are

equipped with monocular cameras with limited field of view,

then the observation of all the neighbors may not always be

possible. A leader-follower solution is adopted in [5], where

each robot only needs to observe another robot, leading to

tree configurations. Geometry constraints are used in [11] to

allow the network to be configured in any arbitrary topology.

In the latter approach each robot computes its control input

using the epipoles between its current image and the images

of its neighbors in the communication graph. The use of

the epipolar constraint presents some advantages over other

approaches. First of all, it has been successfully used to

control the motion of a single robot on several occasions [1],

[8], which gives this constraint reliability to be used in a

multi-robot context. Secondly, the robots can reach the con-

sensus even if they are not directly observing each other as

long as they have common observations of the environment.

Lastly, the controller does not impose any constraint on the

network topology as each robot can compute as many pairs

of epipoles as neighbors in the communication graph it has.

On the other hand, in the approach presented in [11],

the number of neighbors determines the amount of time

each robot will require to compute its control input. In a

distributed scenario, if one robot has many neighbors, e.g., a

star topology, with one robot connected to all the others, then

it will receive many images. Processing all the images may

take a long time, depending on the computation capabilities

of the robots. This can lead to long times in the control

loop or even to synchronization problems between the robots

with different number of neighbors. Therefore, additional

mechanisms are required to keep the amount of computations

under control for all the robots.

In this paper we contribute to the state of the art presenting

two distributed policies that allow the robots to select only

a subset of their neighbors to compute the control input. In

this way the team is still able to reach the consensus but the

computational demands of each robot are bounded and equal.

Additionally, we discuss the convergence of the considered

controller for directed graphs.

The rest of the paper is organized as follows: In section

II we review the distributed control law using epipoles to

reach the consensus of the team of robots. All the formal

details about the distributed policies for neighbor selection

are explained in section III. Section IV shows simulations

in a virtual environment where the two proposed policies
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are tested and compared with the standard distributed con-

troller. Finally, in section V the conclusions of the work are

presented.

II. DISTRIBUTED CONSENSUS USING EPIPOLES

In this section we review the distributed controller based

on the epipolar geometry to achieve the consensus. For

additional details we refer the reader to [11].

We consider a set V of N homogeneous autonomous

robots. Communications between the robots are defined with

a connected graph G = (V, E), with E the set of communica-

tion links. In this way, if robots i and j are able to exchange

messages with each other, then (i, j) ∈ E . The neighbors of

robot i are defined as Ni = {j ∈ V | (i, j) ∈ E}.
The robots move on the plane with non-holonomic motion

constraints. Given two robots, i and j, their relative positions

can be defined by a distance, rij , a bearing angle, ψij , and

relative orientation, θij . The goal of the consensus problem

is to make all the robots achieve the same orientation, i.e.,

θij → 0, ∀i, j ∈ V , as t → ∞. To achieve this goal, each

robot has two control inputs, vi and wi, which are the linear

and angular velocity respectively. Since the linear velocity

is not required to make the robots achieve the consensus,

along the paper we consider it constant for all the robots,

vi = v ≥ 0, ∀i.
In our setup all the robots are equipped with pinhole

monocular cameras with limited field of view. We assume

that all the robots have identical cameras onboard, with

unknown calibration matrix equal to K = diag(α, α, 1), with

α > 0, the focal length of the camera. For any pair of robots,

i and j, the lack of calibration implies that rij , ψij and

θij are not directly available. The output of the system is

instead defined by the epipoles of the images acquired by

them (see Fig. 1). The robots exchange their images and

use the epipolar constraint [10] to compute eij and eji, the

epipoles in the two images. Specifically, due to the planar

motion, we are only interested in the x-coordinate of the

epipoles, which satisfies

eijx = α tan(ψij), ejix = α tan(ψij − θij). (1)

For simplicity purposes, in the following we use eij and eji
to refer to the expressions in equation (1).

Fig. 1: The robots use the epipoles between their images to

compute the control input.

Given a pair of neighbor robots, by eq. (1), a necessary

condition for the consensus is that their epipoles must be

equal, θij = 0 ⇒ eij = eji. To reach this objective the

control input wi of each robot is defined as:

wi = K
∑
j∈Ni

wij , (2)

where K > 0 is the controller gain and wij is the misalign-

ment in the epipoles, defined as

wij =

{
dij if |dij | ≤ π

2

−sign(dij)(π − |dij |) otherwise
, (3)

with

dij = arctan(
eij
β

)− arctan(
eji
β

) ∈ (−π, π], (4)

and 0 < β < ∞ some fixed positive constant to choose. Note

that, if β = α, then the setup is calibrated, dij = θij , and

the relative orientation between the robots can be computed

from the epipoles. However, we assume that this is not the

case and β �= α.

The following result determines the conditions required

for the controller to converge to the consensus:

Theorem 2.1 (Theorem 3.2 [11]): Let the robots be ini-

tially oriented in such a way that |θij | ≤ θM < π/2, ∀i, j ∈
V. If the robots use the control law (2) with β satisfying

α tan(
θM
2

) < β <
α

tan( θM2 )
, (5)

then limt→∞ θij = 0, ∀i, j ∈ V , i.e., the system will reach

consensus.

Additionally, the system is robust to changes in the com-

munication topology, as long as the following assumptions

are satisfied.

Assumption 2.1: There exists a lower bound, δ > 0, on

the time between two consecutive changes in the topology.

Denoting tk, k ∈ N, the discrete time instants when the

topology changes, then tk+1 − tk ≥ δ, ∀k.
Assumption 2.2: There exists a positive time period T

such that, for any instant of time, t, the collection of

communication topologies in the time interval (t, t + T ) is

jointly connected.

The problem with the aforementioned controller is the

amount of computations that the robots require in order to

compute the epipoles between them and all their neighbors.

If one robot has too many neighbors then it will have to

compute many epipoles. For that reason additional mecha-

nisms are required to keep the computational demands of all

the robots bounded and similar.

Along the rest of the paper we will assume that the

communication graph is fixed and the conditions in Theorem

2.1 regarding β and the initial orientations are satisfied.

Since the neighbor policies will select different neighbors

at each iteration, the assumptions regarding the changes in

the communication topology will be required to prove the

convergence.
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III. DISTRIBUTED POLICIES FOR NEIGHBOR SELECTION

In this section we propose two distributed policies to

select, from the subset of neighbors, which one each robot

should choose to compute the epipoles. The first policy

chooses at each iteration the robot that was not selected

for the longest time. The second policy chooses at each

iteration the neighbor that supposedly has the orientation

farthest away. For both policies we prove convergence to

the consensus.

Before explaining in detail our policies for neighbor

selection, let us note that by selecting a subset of the

neighbors what we are doing in practice is just changing

the communication topology at each iteration. However, the

proposed policies do not ensure a bi-directional selection,

that is robot the fact that robot i chooses j to compute the

epipoles does not imply that robot j chooses robot i as well.

As a consequence, the communication topologies need to

be modeled with time-varying directed graphs. Nevertheless,

the proposed controller will also reach the consensus if

Assumptions 2.1 and 2.2, see, e.g., [4]. Therefore, it will

be enough to prove that the proposed policies ensure that

Assumptions 2.1 and 2.2 are satisfied to reach the consensus.

In the following we present the two policies and formally

prove the convergence to the consensus.

A. Policy 1: Choose the neighbor that was not selected for
the longest time

The first policy we propose consists of selecting a different

neighbor at each iteration. Specifically the one that was not

selected for the longest time. Let each robot handle a vector

Ni(t) = [Ni1(t), . . . , NiN (t)], with Nij(t) representing the

number of communication rounds that has passed since the

last time that robot i chose robot j as the selected neighbor

to compute the epipoles.

Initially, Nij(0) = 0 for all j. Then, at time t, the neighbor

selected by robot i, denoted by j(t), will be

j(t) = argj∈Ni
maxNij(t), (6)

and the control input of the robot

wi(t) = Kwij(t). (7)

Once the robot has computed the epipoles and the control

input, it updates the vector Ni(t) with the following rule

Nij(t+ 1) =

{
0 if j = {j(t), i}
Nij(t) + 1 otherwise

, (8)

so that it ensures that j(t) will not be chosen again until all

the other possible neighbors have been chosen once.

Proposition 3.1: Let all the robots select, at each iteration,

one neighbor to compute the epipoles using equations (6),

(8) and move using the controller in eq. (7) considering only

this neighbor. Then, the system will reach the consensus.

Proof: Since we are assuming that the communica-

tion topology is fixed, G necessarily is connected and the

neighbors of each robot remain constant the whole time. At

any iteration, t, each robot selects only one of its neighbors,

which may lead to a disconnected digraph, G(t) ⊆ G.

However, in the following iterations the selected neighbor

of all those robots with more than one will be different.

Denoting Nmax = max |Ni|, we can see that for any t

G(t) ∪ G(t+ 1) ∪ . . . ∪ G(t+Nmax) = G,
which means that Assumption 2.2 is satisfied when using

this policy. Considering that the time required to compute

the epipoles is not zero, Assumption 2.1 is also satisfied and

then we can conclude that the time varying evolution of the

graph satisfies the conditions to reach the consensus.

B. Policy 2: Choose the neighbor with more misalignment

The second policy we propose is designed to reduce the

orientation error with the neighbor that supposedly is further

away at each iteration.

Let each robot have a vector d̂i(t) = [d̂i1(t), . . . , d̂iN (t)],
with d̂ij(t) being the last value of dij computed by robot

i using the information provided by robot j, equation (4).

Initially, d̂ij(0) = ∞ for all j. The neighbor selected at each

iteration is chosen by

j(t) = argj∈Ni(t) max d̂ij(t), (9)

that is, the one with the estimated most misalignment at

current time. The control input of each robot is then assigned

as in eq. (7).

With the epipoles computed, the update of d̂i(t) executed

in this case is

d̂ij(t+ 1) =

{
dij if j = j(t)

d̂ij(t) otherwise
, (10)

with dij the value computed in equation (4).

Proposition 3.2: Let all the robots select, at each iteration,

one neighbor to compute the epipoles using equations (9),

(10) and move using the controller in eq. (7) considering only

this neighbor. Then, the system will reach the consensus.

Proof: With this policy we cannot ensure that the robots

are changing the selected neighbors at each iteration. Let us

assume that none of the robots change the selected neighbor,

this means that the topology of the network remains fixed

for some time. In such case we already now that the team

approaches to the consensus, meaning that dij → 0 for all

i and j that are neighbors in the subgraph defined by the

policy, and so d̂ij → 0 for the same set. This means that

at some point there will be some robot i and some k ∈ Ni

such that d̂ij > d̂ik and the robot will change the selected

neighbor. Noting that any change of the selected neighbor

does not change the rest of values, d̂ij , in the network, we

can use this argument iteratively to see that all the neighbors

of each robot will be selected at some point. After that, using

the same arguments as in Proposition 3.1 we conclude that

the system will reach the consensus.

C. Discussion

There are several advantages of using any of the two

proposed policies instead of computing the epipoles with the

images sent by all the robots. First of all, the consensus is

achieved requiring less computations at each communication

15



round. Each pair of computed epipoles requires an initial step

to match the features of the two images plus a robust method

to estimate the epipolar constraint, e.g., DLT+RANSAC [10].

By selecting only one neighbor, we are executing this step

only once at each iteration instead of |Ni| times. This

computational reduction can be of high interest in situations

where the energy of the robots is limited.

Synchronization issues are also solved. Note that the

controller requires the images of all the robots to be acquired

(approximately) at the same instant. If each robot does not

acquire a new image until it has processed all the received

information, and assuming that the number of neighbors is

not going to be the same for all the robots, then without

additional mechanisms to synchronize the network there will

appear time discrepancies among the matched images. On the

other hand, making all the robots to select only one neighbor

to compute the epipoles, will imply similar computation

times for all of them, leading to a natural synchronization.

In case the robots want to select more than one neighbor,

let us say k neighbors at each iteration, both policies are

still be applicable. In the first policy, each robot selects the k
neighbors that were not selected for the longest time whereas

the in the second policy, each robot selects the k neighbors

with the largest value of d̂ij(t). The larger k, the most similar

would be the results to the standard case, at the price of more

and more computational demands.

IV. SIMULATIONS

The properties of the proposed controller are shown in

simulations. The experiments have been carried out using

Matlab. We have considered a fixed robotic network com-

posed by ten robots with initial positions and orientations

depicted in Fig. 2 and communications defined by the black

lines. As we can see, there are some robots that have up to

five neighbors in the communication graph whereas others

only have one or two neighbors. The vision system has been
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Fig. 2: Initial configuration of the team of robots in the

experiments. Black lines represent direct communication

between robots.

simulated using the virtual reality toolbox of MatLab. In this

way, the robots acquire virtual images of resolution 640×480
pixels depending on their position and orientation. We have

extracted SIFT [9] features from the virtual images and the 8

point algorithm with RANSAC [3] to match them in a robust

way and to compute the epipoles between pairs of robots.

An example of the images acquired by the robots and the

features extracted and matched can be found in Figure 3.

Fig. 3: Example of images acquired by the robots and SIFT

matches using the epipolar constraint.

We have executed the controller in eq. (2) without using

a neighbor selection policy and the controller (7) using the

two policies proposed in section III. The evolution of the

orientation of the robots in the three cases can be seen in

Figure 4. As expected, all the robots reach the consensus

without problems in the three situations. The evolution of

the orientation when the information of all the neighbors

is used is smoother and the consensus is reached in less

time. However, the difference with respect to the other two

graphics is negligible and in the simulation we are not

considering the real time spent by each robot to compute the

epipoles with all the neighbors. The second policy (neighbor

with more misalignment) reaches the consensus relatively

faster than the first policy, which makes sense because it

tries to reduce the error with the robot with most relative

orientation.

The control inputs of the robots in each scenario are

depicted in Fig. 5. Again, the control inputs when no policies

are used are smoother than when using any policy because

they are computed using the same set of images the whole

time but this simulation is not considering the real time spent

to compute the inputs. The second policy also seems to be

better than the first one in this aspect.

TABLE I: Computational time (seconds per robot and itera-

tion)
Quantity No policy Policy 1 Policy 2
Mean time 12.65 3.80 3.85
Std. dev 5.83 0.77 0.75
Max time 27.99 5.92 5.84
Min time 2.55 1.49 1.28

We have measured the time spent to compute the control

inputs when the robots do not use the proposed policies and

when they do to point out the real advantages of using a

policy to select a subset of neighbors. The computational

time spent by each robot at each iteration is depicted in

Fig. 6. We can see that using any of the two policies the

computational time per iteration and robot remains bounded

and similar whereas in the standard case there are big

variations in the loop time, depending on the number of
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Fig. 4: Orientation of the robots using the distributed controller without any policy to select the neighbors (left), with the

policy to choose the neighbor that was not selected for the longest time (middle) and with the policy to choose the neighbor

with the most misalignment (right). In the three cases all the robots reach the consensus in a similar time.
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Fig. 5: Control inputs of the ten robots in the three scenarios: without any policy to select the neighbors (left), with the

policy to choose the neighbor that was not selected for the longest time (middle) and with the policy to choose the neighbor

with the most misalignment (right).
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Fig. 6: Computational time spent by each robot at each iteration: without any policy to select the neighbors (left), with the

policy to choose the neighbor that was not selected for the longest time (middle) and with the policy to choose the neighbor

with the most misalignment (right). As we can see, when the robots use a policy, all of them spend approximately the same

computational time, whereas without a policy each robot requires a different time depending on its neighbors.

neighbors of each robot. The statistics of these times are

shown in in Table I.

V. CONCLUSIONS

In this paper we have proposed two distributed policies

for a team of robots to select a subset of their neighbors

to compute their control inputs. This selection bounds the

time required by the robots to compute the input, making

it equal for all of them, avoiding possible synchroniza-

tion problems that could appear because of the different

computation requirements of each robot. The computational

reduction is also of high interest when the information

shared by the robots is provided by vision sensors, because

image processing methods are in general time-demanding.

We have proved that both policies ensure convergence to the

consensus and we have shown in simulations the benefits of

using any of the two approaches compared to the situation

in which all the neighbors are considered.
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