

ViCoMoR 2012

2nd Workshop on
Visual Control of Mobile Robots

(ViCoMoR)

Half Day Workshop

October 11th, 2012, Vilamoura, Algarve, Portugal,
in conjunction with the IEEE/RSJ International
Conference on Intelligent Robots and Systems

(IROS 2012)

http://vicomor.unizar.es

Organizers

Youcef Mezouar
Institut Pascal- IFMA, France

Gonzalo López-Nicolás
I3A - Universidad de Zaragoza, Spain

ii

Contents

Aims and Scope iii

Topics iii

Program committee iv

Organizers iv

Invited speakers v

Program vi

Contributions:

From the general navigation problem to its image based solutions
Durand Petiteville Adrien, Cadenat Viviane 1

Vistas and wall-floor intersection features: enabling autonomous flight in man-made
environments

Kyel Ok, Duy-Nguyen Ta, Frank Dellaert 7

Distributed policies for neighbor selection in multi-robot visual consensus
Eduardo Montijano, Johan Thunberg, Xiaoming Hu, Carlos Sagues 13

Target tracking and obstacle avoidance for a VTOL UAV using optical flow
Aurélie Treil, Philippe Mouyon, Tarek Hamel, Alain Piquereau, Yoko Watanabe 19

Homography based visual odometry with known vertical direction and weak
Manhattan world assumption

Olivier Saurer, Friedrich Fraundorfer, Marc Pollefeys 25

Anisotropic vision-based coverage control for mobile robots
Carlos Franco, Gonzalo Lopez-Nicolas, Dusan Stipanovic, Carlos Sagues 31

FSM-based visual navigation for autonomous vehicles
Daniel Oliva Sales, and Fernando Santos Osório 37

Accurate figure flying with a quadrocopter using onboard visual and inertial sensing
Jakob Engel, Jurgen Sturm, Daniel Cremers 43

Web: http://vicomor.unizar.es
2nd Workshop on Visual Control of Mobile Robots (ViCoMoR)
October 11th, 2012, Vilamoura, Algarve, Portugal, in conjunction with the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012)

The organization of this workshop was supported by Ministerio de Ciencia e Innovación / European Union (projects
DPI2009-08126 and DPI2009-14664-C02-01), DGA-FSE (T04), ANR ARMEN project and grant I09200 from Gyeonggi
Technology Development Program funded by Gyeonggi Province.

iii

Aims and Scope

The purpose of this workshop is to discuss topics related to the challenging problems of

visual control of mobile robots. Visual control refers to the capability of a robot to
visually perceive the environment and use this information for autonomous navigation.
This task involves solving multidisciplinary problems related with vision and robotics,
for example: motion constraints, vision systems, visual perception, safety, real-time
constraints, robustness, stability issues, obstacle avoidance… The problem of the vision-
based autonomous navigation is also compounded of the different constraints imposed by
the particular features of the platform involved (ground platforms, aerial vehicles,
underwater robots, humanoids…)

Over the last years, increasing efforts have been made to integrate robotic control and

vision. Although there is an important number of works in the area of visual control for
manipulation, which is a mature field of research, the use of mobile robots add new
challenges in a still open research area. The interest in this subject lies in the many
potential robotic applications in industrial as well as in domestic settings that involve
visual control of mobile robots (automation industry, material transportation, assistance
to disabled people, surveillance, rescue, etc).

This workshop is aimed to promote exchange and sharing of experiences among

researchers in the field of visual control of mobile robots. Previously, the first edition of
ViCoMoR was held in San Francisco during IROS'11. This new edition of the workshop
will consist of invited talks and selected papers for oral presentation.

Topics

Topics of interest include:

− Autonomous navigation and visual servoing techniques for mobile robots.
− Visual perception for visual control, visual sensors and integration of image

information in the control loop.
− Visual control with constraints: nonholonomic constraints, motion in formation,

distributed visual control, obstacle avoidance, etc.
− New trends in visual control, innovative solutions or proposals in the framework of

computer vision and control theory.

iv

Program committee

Helder Araujo (ISR, University of Coimbra, Portugal)
Antonis Argyros (FORTH, Heraklion, Greece)
Hector M. Becerra (CIMAT, Guanajuato, Mexico)
Enric Cervera (Universitat Jaume-I, Spain)
François Chaumette (INRIA Rennes - IRISA, France)
Peter Corke (Queensland Univ. of Technology, Australia)
Francisco Escolano (Universidad de Alicante, Spain)
Nicholas R. Gans (University of Texas at Dallas, USA)
Andrea Gasparri (Università degli Studi Roma Tre, Roma, Italy)
Jose J. Guerrero (Universidad de Zaragoza, Spain)
Koichi Hashimoto (Tohoku University, Sendai, Japan)
Seth Hutchinson (University of Illinois at Urbana-Champaign, USA)
Patric Jensfelt (CAS, KTH, Sweden)
Nicolas Mansard (LAAS/CNRS, France)
Roberto Naldi (Universita' di Bologna, Italy)
Patrick Rives (INRIA Sophia Antipolis, France)
Carlos Sagues (Universidad de Zaragoza, Spain)
Omar Tahri (ISR, University of Coimbra, Portugal)
Dimitris P. Tsakiris (FORTH, Heraklion, Greece)
Andrew Vardy (Memorial Univ. of Newfoundland, Canada)
Xenophon Zabulis (FORTH, Heraklion, Greece)

Organizers

Youcef Mezouar
Clermont Université, IFMA, Institut Pascal,
BP 10448, F-63000 Clermont-Ferrand, France
CNRS, UMR 6602, IP, F-63171 Aubière, France
Email: youcef.mezouar@ifma.fr
Web: http://wwwlasmea.univ-bpclermont.fr/Personnel/Youcef.Mezouar

Gonzalo López-Nicolás
Instituto de Investigación en Ingeniería de Aragón - Universidad de Zaragoza
María de Luna 1, E-50018 Zaragoza. Spain
Email: gonlopez@unizar.es
Web: http://webdiis.unizar.es/~glopez

v

Invited speakers

Patrick Rives

INRIA Sophia Antipolis Mediterranee
2004 Route des Lucioles BP 93, Sophia Antipolis, France.

Web: http://www-sop.inria.fr/icare/WEB/Personnel/modele-rives.html

Title: Dense RGB-D mapping of large scale environments for real-time localisation and
autonomous navigation

Abstract: We present a method and apparatus for building 3D dense visual maps of large
scale environments for real-time localisation and autonomous navigation. The method
relies on a spherical ego-centric representation of the environment which is able to
reproduce photo-realistic omnidirectional views of captured environments. It is shown
that this representation can be used to accurately localise a vehicle navigating within a
graph of locally accurate spherical views, using only a monocular camera. Autonomous
navigation results are shown in challenging urban environments, containing pedestrians
and other vehicles.

Cédric Pradalier

Autonomous Systems Lab ETH Zürich
Inst. f. Robotik u. Intell. Syst. CLA E 14.3, Tannenstrasse 3, 8092 Zuerich, Switzerland

Web: http://www.asl.ethz.ch/people/cedricp

Title: Visual homing with omnidirectional vision

Abstract: Visual homing is the process by which a mobile robot moves to a home
position using only information extracted from visual data. This idea is often inspired by
the mechanisms that certain animal species, such as insects, utilize to return to their
known home location. This talk will present an overview of the results obtained recently
in visual homing in the Autonomous Systems Lab at ETH Zurich.

vi

Program ViCoMoR 2012 (October 11th, 2012, Vilamoura, Algarve, Portugal)

14:00 – 14:10 Presentation of the workshop

14:10 – 14:40 Invited speaker: Cédric Pradalier

14:40 – 15:00 From the general navigation problem to its image based solutions
Durand Petiteville Adrien, Cadenat Viviane

15:00 – 15:20
Vistas and wall-floor intersection features: enabling autonomous flight in
man-made environments
Kyel Ok, Duy-Nguyen Ta, Frank Dellaert

15:20 – 15:40 Distributed policies for neighbor selection in multi-robot visual consensus
Eduardo Montijano, Johan Thunberg, Xiaoming Hu, Carlos Sagues

15:40 – 16:00 Target tracking and obstacle avoidance for a VTOL UAV using optical flow
Aurélie Treil, Philippe Mouyon, Tarek Hamel, Alain Piquereau, Yoko Watanabe

16:00 – 16:30 Coffee break

16:30 – 17:00 Invited speaker: Patrick Rives

17:00 – 17:20
Homography based visual odometry with known vertical direction and
weak Manhattan world assumption
Olivier Saurer, Friedrich Fraundorfer, Marc Pollefeys

17:20 – 17:40 Anisotropic vision-based coverage control for mobile robots
Carlos Franco, Gonzalo Lopez-Nicolas, Dusan Stipanovic, Carlos Sagues

17:40 – 18:00 FSM-based visual navigation for autonomous vehicles
Daniel Oliva Sales, and Fernando Santos Osório

18:00 – 18:20
Accurate figure flying with a quadrocopter using onboard visual and
inertial sensing
Jakob Engel, Jurgen Sturm, Daniel Cremers

From the general navigation problem to its image based solutions

Adrien Durand Petiteville1 and Viviane Cadenat1

Abstract— This article presents a brief study of mobile robots
navigation. In a first part, we provide an overview of this
problem, analyzing the different involved processes and showing
several architectures allowing to organize them. In a second
step, we consider the vision based navigation problem. From the
previous analysis, we highlight the interest of using topological
maps in this context and propose an overview of existing works
in this area. Finally, we present our own solution to the problem,
showing its relevance and its efficiency.

I. INTRODUCTION

In this paper we consider the well known autonomous

navigation problem. It consists for the robot in reaching a

goal through a given environment while dealing with unex-

pected events [1]. Thus, the navigation generally involves

six processes: perception, modelling, planning, localization,

action and decision. A wide range of techniques are available

in the literature for each of them. As these processes coop-

erate within an architecture to perform the navigation, they

cannot be designed independently and it is necessary to have

an overview of the problem to select suitably the different

methods. This article aims at (i) providing such an overview,

(ii) presenting the visual solutions and (iii) positioning our

own work in this general context.

II. THE NAVIGATION FRAMEWORK

In this section, we present the different processes and the

associated methods before highlighting several architectures.

A. The navigation processes

1) Perception: In order to acquire the data required by the

navigation, a robot can be equipped with both proprioceptive

and exteroceptive sensors. The first ones (odometers, gyro-

scopes, . . .) provide data relative to the robot internal state

whereas the second ones (camera, laser telemeters, bumpers,

. . .) give information about the environment. The sensory

data may be used by four processes: environment modelling,

localization, decision and robot control.

2) Modelling: A navigation process generally requires an

environment model. This model is initially built using a
priori data. It is not always complete, and can evolve with

time. In this case, the model is updated thanks to the data

acquired during the navigation. There exists two kinds of

models, namely the metric and/or topologic maps [2].

The metric map is a continuous or discrete representation

of the free and occupied spaces. A global frame is defined

and the robot and obstacles poses are known with more or

1CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse,
France, Univ de Toulouse, UPS, LAAS ; F-31400 Toulouse,
France[adurandp,cadenat]at laas.fr

less precision in this frame. The data must then be expressed

in this frame to update the model [1].

The topologic map is a discrete representation of the

environment based on graphs [1]. Each node represents a

continuous area of the scene defined by a characteristic prop-

erty. The areas are naturally connected and can be limited to

a unique scene point. The characteristic property, chosen by

the user, may be the feature visibility or belonging to a same

room. Moreover, if a couple of nodes verifies an adjacency

condition, then they are connected. The adjacency condition

is chosen by the user and may correspond for example to

the existence of a path allowing to connect two sets, each of

them represented by a node. A topologic map is less sensitive

to the scene evolutions: it has to be updated only if there are

modifications concerning the area represented by the nodes

or the adjacency between two nodes.

Metric and topologic maps can be enhanced by adding

to nodes sensory data, actions or control inputs. These

informations may be required to localize or control the robot.

There also exists hybrid representations of the environment

based on both metric and topologic maps [3], [4], [5].

3) Localization: For navigation, two kinds of localiza-

tions are identified: the metric one and the topologic one [2].

The metric localization consists in calculating the robot pose

with respect to a global or a local frame. To do so, a first solu-

tion is to use only proprioceptive data. However this solution

can lead to significant errors [6] [7] for three reasons. The

first one comes from the pose computation process which

consists in successively integrating the acquired data, which

induces a drift. The second one is due to the model which

is used to determine the pose: an error which occurs during

the modelling step is automatically transferred to the pose

computation. Finally, the last one is related to phenomenons

such as sliding which are not taken into account. It is then

necessary to consider additional exteroceptive information to

be able to localize the robot properly. Visual odometry [8]

[9] [10] is an example of such a fusion.

The topological localization [3] [11] [12] [13] consists

in relating the data provided by the sensors with the ones

associated to the graph nodes which model the environment.

The goal is to determine the situation in a graph and not

with respect to a frame [2]. Topological localization is not

very sensitive to measurement errors unlike its metric alter-

ego. The precision depends on the accuracy with which the

environment has been described.

4) Planning: The planning step consists in computing,

using the environment model, an itinerary allowing the robot

to reach its final pose. The itinerary may be a path, a

trajectory, a set of poses to reach successively, . . . There

1

IROS Workshop on Visual Control of Mobile Robots (ViCoMoR 2012)
October 11th, 2012, Vilamoura, Algarve, Portugal

1

exists a large variety of planning methods depending on the

environment modeling. An overview is presented hereafter.

A first approach consists in computing the path or the

trajectory using a metric map. To do so, the geometric space

is transposed into the configuration space. The configuration

corresponds to a parametrization of the static robot state.

Thus a robot with a complex geometry in the workspace is

represented by a point in the configuration space [2]. Then

planning consists in finding a path or a trajectory in the

configuration space allowing to reach the final configuration

from the initial one [1]. With a continuous representation of

the environment, a path or a trajectory can be obtained using

visibility graphs or Voronoi diagrams [14]. With a discrete

scene model, planning is performed thanks to methods from

graph theory such as A∗ or Dijkstra algorithms[15] [16]. For

the two kinds of maps, planning may be time consuming. A

solution consists in using probabilistic planning: probabilistic
roadmap [17] [18] or rapidly exploring random tree [19].

When the environment model is incomplete at the begin-

ning of the navigation, unexpected obstacles may lie on the

robot itinerary. A first solution to overcome this problem

consists in adding the obstacles to the model and then to

plan a new path or a new trajectory [1]. In [20], [21], authors

propose to consider the trajectory as an elastic band which

can be deformed if necessary. A global re-planning step can

then be required for a major environment modification.

When using a topological map without any metric data,

the planned itinerary is generally composed of a set of poses

to reach successively. These poses can be expressed in a

frame associated to the scene or to a sensor. The itinerary

is computed using general methods from the graph theory.

Depending on the precision degree used to describe the

environment, it is possible that the planned itinerary does

not take into account all the obstacles. This issue has to be

considered during the motion realization.

5) Action: To perform the tasks required by the naviga-

tion, two kinds of controllers can be designed: state feedback

or output feedback [22]. In the first case, the task is generally

defined by an error between the current robot state1 and the

desired one. To make this error vanish, a state feedback is

designed. The control law implementation requires to know

the current state value and therefore a metric localization is

needed. In the second case, it consists in making the error

between the current measure and the desired one vanish.

This measure depends on the relative pose with respect to

an element of the environment, called feature or landmark.

When using vision, the measures correspond to image data

(points, lines, moments; etc. [25]). For proximity sensors,

they are defined by distances provided by ultrasound [26]

and laser [5] [27] telemeters. The measures are directly

used in the control law computation, which means that no

metric localization is required. However the landmark must

be perceptible during the entire navigation to compute the

control inputs.

1The state may correspond to the robot pose with respect to the global
frame or to a given landmark [23] [24].

6) Decision: To perform a navigation, it may be necessary

to take decisions at different process states. These decisions

may concern high level, e.g. a re-planning step [21], or low

level, e.g. the applied control law [26]. They are usually taken

by supervision algorithms based on exteroceptive data.

B. The navigation architectures

The different processes required by a navigation have now

been identified. Here, we present examples of navigation ar-

chitectures based on the previously presented processes. We

propose to organize our presentation around the controllers.

1) ”State feedback” based architecture: First, we con-

sider a robot controlled using a state feedback controller in

a free space. The initial and final configurations are defined

in a world frame. To compute the control inputs, the state

value has to be known at any time. The robot capacity

to geometrically localize itself is a necessary condition to

successfully perform the navigation. Let us note that, the

distance that the robot can cover is only limited by the

localization precision. Indeed, a too large error on the state

value will result in inconsistent control inputs.

We now consider a cluttered environment. In this case

there are two solutions, either reactive or planning based.

The reactive one consists in controlling the robot using

two controllers : a first one making the error between the

current and the desired poses vanish, allowing to reach the

goal, and a second one performing the obstacle avoidance

using exteroceptive data. It is then necessary to develop a

supervision module selecting the adequate controller. This

solution, which guarantees the non-collision with obstacles,

does not allow to ensure the navigation success. Indeed,

the obstacle avoidance is locally performed and does not

take into account the goal. The second solution consists in

following a previously planned collision free path. To this

aim, the environment has to be modeled using a map. If

the model represents the whole scene, then the navigation

simply consists in following the planned itinerary using a

state feedback controller. A supervision module is no more

required. If the environment is not completely modeled, it

may be necessary to update it when an obstacle appears

on the robot path. After the update, a re-planning step is

performed. In this case, a supervision module which decides

to update and re-plan is mandatory. Finally, it should be

noticed that the metric localization is required and limits

the navigation range for each solution.

As a conclusion, when the robot is controlled using state

feedback controllers, the metric localization is a decisive

element, as the navigation success depends on the localiza-

tion quality. Moreover, in a cluttered environment, a model

is quickly mandatory to converge towards the desired pose

or to avoid obstacles. The metric localization and modeling

processes are very sensitive to measurement errors. It is then

necessary to pay attention to the methods performances when

the navigation is based on state feedback controllers.

2) ”Output feedback” based architecture: We now con-

sider a robot controlled using an output feedback controller in

a free space. The initial pose is unknown whereas the desired

2

one with respect to a landmark is defined by measures. The

robot can converge toward the desired pose if the landmark

can be perceived at any instant. It is now the sensor range

which limits the navigation range. In this case no metric

localization is required.

When the environment is cluttered, a first solution consists

in using a sole output feedback controller to reach the desired

pose while avoiding obstacles. A second idea is to control

the robot thanks to two output feedback controllers : the

first one allows to reach the desired pose and the second

one guarantees non collision. A supervisor selecting the

adequate controller is then required. For both solutions, local

minima problems may occur. Moreover, the navigation range

is still limited by the sensors range. Global informations

must then be used to perform a long range navigation. These

global information can be added using a metric map or a

topological map. In the first case, it is possible to plan a

path taking into account the features availability at each

pose. The planned itinerary is then composed by several

landmarks successively used to compute the control inputs.

Moreover, for a static environment, joint limits, visibility

and obstacles can also be considered in the planning step.

Nevertheless, this approach requires environment, robot and

sensors reliable models. In the second case, a topological

map is used to provide the necessary global information.

Here, the additional data associated to the graph nodes

correspond usually to the desired features or landmarks. As

previously, the planned itinerary is made of measures or

landmarks set to reach. This approach is based on a partial

environment representation. The model is then less sensitive

to the environment modifications, but does not allow to take

into account several constraints such as obstacles or joints

limits during the planning step. A topologic localization is

needed.

III. THE VISUAL NAVIGATION

Now we focus on the vision based navigation problem.

The camera is then used as the main sensor, which still

allows to select any of the previous presented approaches as

shown in [28] and [29]. In these works, the authors propose

an overview of visual navigation splitting the methods into

two main categories: the metric map based ones and the

topological map based ones. Following our previous analysis,

we have selected the topological approach. Indeed, in this

case, the metric localization is no more required, limiting

the inaccuracy due to the use of noisy data in the state

computation process. Furthermore, a topological map pro-

vides sufficient data to perform a navigation task, without

significantly increasing the problem complexity. Finally, this

representation is less sensitive to scene modifications. We

present hereafter methods based on such an approach.

A. Related works

In [30], the scene is modelled by a graph whose nodes

correspond to the corridors. The robot navigates into the

corridors using an image based visual servoing relying on the

vanishing point as visual feature. This method is then limited

to an environment composed of corridors. Other approaches

propose to model the environment during a pre-navigation

step. During this phase, images obtained for several close

robot configurations are memorized. A topological map, also

called visual memory, is built by organizing the images [4].

The planned itinerary is called visual road [31]. This ap-

proach is performed using omnidirectional [32] [33] [34] [35]

[36] or pinhole camera [37] [38] [39] [40] [36]. However,

none of these approaches take into account the two major

problems of visual navigation : occlusions, i.e. the landmarks

loss, and collisions with obstacles. A set of works [41] [42]

[43] has produced a visual navigation allowing to avoid

unexpected obstacles while tolerating partial occlusions. The

topological map is also built during a pre-navigation step.

Time variant visual features are used by the visual servoing

while the obstacle avoidance is performed thanks to a po-

tential fields based control law. Thus, the learnt path can be

replayed using a topological map while avoiding collisions.

B. Our approach

We propose a similar approach to perform the navigation

while dealing with collisions and total occlusions [44]. Fol-

lowing the above analysis, we have chosen to use a camera,

a topological map and several output feedback controllers

organized in a supervision algorithm. We present hereafter

our approach detailing our choices for each process. More

details can be found in [44].

1) Perception: Our robot is equipped with a camera and

a laser able to detect respectively the landmarks of interest

and the obstacles. Our approach will rely on these two data.

2) Modelling: We now focus on the topological map,

which consists of a directed graph. Each node corresponds

to a landmark present in the scene. If there are nl landmarks,

then the graph is composed of nl nodes. A point, correspond-

ing to the desired robot pose Si with respect to the landmark

Ti, is associated to each node Ni, with i ∈ [1, ...,nl]. An arc

A(Nj,Nk) is created if the landmark Tk, associated to the node

Nk, can be seen from the pose S j, associated to the node Nj,

with j ∈ [1, ...,nl], k ∈ [1, ...,nl] and j �= k. Moreover, sensory

data Di extracted from an image of the landmark Ti taken at

the pose Si is associated to the node Ni.

3) Localization: During the navigation, and especially at

the beginning, the robot has to localize itself into the graph.

The localization process identifies the landmarks that are in

the field of view of the camera. Localization is performed

using the sensory data associated to each node. It consists in

making a test of similarity between two images. To this aim,

the descriptors of the current image and those from the data

base are matched. The image from the data base which has

the best similarity with the current image is selected. Then

we consider that the robot situation in the graph corresponds

to the node containing the selected image.

4) Planning: The initial and final poses are obtained from

the localization process and from the user. They are now

considered as known. The path TP made of a sequence of

nP landmarks [TP1, ...,TPnP] to reach, is planned using the

Dijkstra algorithm [16] which provides the shortest path.

3

5) Action: To perform a long range navigation, we use
three output feedback controllers [44]. The first one allows to
perform a short range navigation with respect to a landmark,
which will be referred to as ”sub-navigation”. This controller
is defined by a classical image based visual servoing [45],
which makes the error between the current and desired im-
ages vanish. The second one performs the obstacle avoidance
by stabilizing the robot on a path defined thanks to telemetric
data [46]. The last one is intended to avoid unsuitable
motions when switching from one landmark to the other
[44]. The transition between each controller is performed
by a dynamic sequencing allowing to guarantee the control
law continuity [47]. Thus, using these two controllers, the
robot can successively reach the landmarks composing the
path while avoiding the obstacles.

To manage the occlusions problem, we have used the
algorithm [48]. It allows to predict the visual features next
position from the previous visual data and the visual features
depth. The latter is estimated thanks to a predictor/corrector
using a number npc of images allowing to provide an accurate
estimation even in the presence of noisy data [49]. Using
these tools we can deal with total occlusions.

6) Decision: The decision process has to activate or
deactivate the available tools in order to guarantee the long
range navigation success. We propose to use a supervision
algorithm to perform the decision process. The algorithm,
summarized in figure 1, is built using the following strategy.

First of all, the robot localizes itself to determine the initial
node in the graph. Then, knowing the desired pose, a path TP
composed by a set of landmarks to reach is computed. Then,
the initialization phase is executed. It consists in making
small rotations to estimate the visual features depth of land-
mark TP1. Thus occlusions can be managed during the sub-
navigation with respect to TP1. When the initialization phase
is over, the sub-navigation to TP1 is launched. If the robot is
too close to an obstacle, the obstacle avoidance controller is
used. During the sub-navigation, the robot regularly looks for
the next landmark TP2. If this latter is not found, the robot
continues the current sub-navigation and restarts the depth
estimation process. When it converges, TP2 is one more time
looked for. This loop is repeated until the next landmark
is found or the current sub-navigation is over. In the latter
case, the robot turns on itself to identify the next target. If
it is not found, then the graph is updated and a new path is
planned. If there is no path to reach the desired landmark,
the navigation fails. We consider now that the landmark TP2
has been found. The sub-navigation, obstacles avoidance and
looking for the next landmark processes are repeated using
the same conditions as previously until the robot reaches the
desired pose or the navigation fails.

IV. SIMULATIONS

We have simulated a long range navigation us-
ing MatlabTMsoftware. The considered cart-like robot is
equipped with a camera mounted on a pan-platform and
a laser telemeter. In the scene shown in figure 2(a), there
are nl = 9 artificial landmarks made of a different number

[A]
Initialization

[F] Visual
servoing /

Looking for the
next target

[C] Obstacle
avoidance

[B] Visual
servoing

[D] Visual
servoing with

estimated visual
features

[G] Obstacle
avoidance /

Looking for the
next target

[H] Re-
orientation

[E] Obstacles
avoidance with
estimated visual

features

1

1

1

2

1&2

2 & !EON
2 & !EON

3 3

5

5 4 & T

1 : End of avoidance
Obstacle detected

2 : Reference visual features estimation process has converged

3 : End of occlusion

Occlusion detected

4 : Next reference visual features estimation process has converged
5 : End of re-orientation

Next target not found

1 & 3

1 & 2

6 : End of visual servoing
End of re-orientation and obstacle avoidance

4 & T

77

7 : Next target not found and occlusion detected

[M1]
Planning

[J] Looking
for the next

target

[M2] Map
updating

Failure

8 : End of sub-navigation and next target not found

9 : Next target not found
10 : End of update of the map

0

0 : Path computed

8
8

9

10

E1

E1 : No path to the desired target
T : Update the current target

Next target found

8 & T

End
6 & EON

EON : Current target is the last of the sequence
 !EON : Current target is not the last of the sequence

Beginning

Fig. 1. Supervision algorithm for a long range navigation

of points. The occluding obstacles are represented in black
whereas the non-occluding one is in gray. To model the
environment, the robot is successively placed at the desired
poses S∗i , with i ∈ [1, ...,nl]. Thus, we obtain the topological
map presented in figure 2(b). It should be noticed that the
topological map is not complete, as the chosen poses S∗i do
not allow to connect all the nodes. For example, the selected
S∗8 does not allow to relate N8 and N6, although other choices
would have permitted it. However, it is not a problem as there
exists a path allowing to reach the desired pose.

From its initial pose near S∗5, the robot must reach S∗7 with
respect to the landmark T7. After a localization and using
the topological map, the shortest path TP = [T1,T2,T4,T6,T7]
is computed (see Fig. 2(b)). Then, the mission starts and
the supervision algorithm selects the current task to perform
until T7 is reached. Figure 3 shows the corresponding task
sequencing and robot trajectory. As we can see, the mission
is successfully realized despite the unexpected obstacles.

We propose a second simulation to illustrate the re-

4

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

T
1

T
3

T
9

T
2

T
5

T
4

T
8

T
6

T
7

S
1
*

S
5
* S

3
*

S
2
*

S
4
*

S
8
*

S
9
*

S
6
*

S
7
*

(a) Environment of navigation #1

!

"

#

$%

&

’

(

)

(b) Environment #1
topological map

Fig. 2. Mapping #1

Fig. 3. Robot long range navigation #1 (letters correspond to the current
executed task (see figure 1))

planning phase and the necessity to provide the most com-

plete topological map. We consider the same environment

as previously, except that all obstacles are now occluding. If

we use the same poses S∗i , reaching S∗7 from S∗5 is impossible

because nodes N4 and N6 cannot be connected anymore. To

overcome this problem, a new pose S∗8 allowing to relate

N8 and N6 is defined (see Fig 4(a)). The proposed map

is then more complete than the previous one, showing the

importance of the choice of each S∗i . The corresponding

environment map is shown in figure 4(b). Note that we have

willingly introduced an error in the map by connecting nodes

N2 and N4 whereas this relation does not exist anymore.

To reach S∗7 the robot now plans the following path

TP = [T1,T2,T4,T8,T6,T7]. Then the navigation starts and

the robot reaches S∗2 but cannot find T4. At this time, a

localization process is performed, showing that only T2 and

T3 can be perceived from the robot current position. The

map is then updated by suppressing the link between N2 and

N4. A new path TP = [T3,T4,T8,T6,T7] is computed, and the

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

T
1

T
3

T
9

T
2

T
5

T
4

T
8

T
6

T
7

S
1
*

S
5
* S

3
*

S
2
*

S
4
*

S
8
*

S
9
*

S
6
*

S
7
*

(a) Environment of navigation #2

!

"

#

$%

&

’

(

)

(b) Environment #2
topological map

Fig. 4. Mapping #2

Fig. 5. Robot long range navigation #2

navigation is launched again. Using the adequate controllers

the robot then performs the task and reaches S∗7.

V. CONCLUSION

This paper was focused on the navigation problem. We

have first highlighted the different processes involved in

the navigation and shown their organization within several

possible architectures. Then, we have considered the vision

based solutions, showing the interest of using a topological

map. We have finally positioned our own works in this

general framework, demonstrating its efficiency to perform

a visual navigation despite collisions and occlusions. One of

the next challenges will be to take into account the presence

of mobile obstacles (vehicles, human beings, . . .) to improve

the robot autonomy in a real environment.

REFERENCES

[1] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion. MIT Press,
Boston, 2005.

[2] R. Siegwart and I. Nourbakhsh, Introduction to autonomous mobile
robots, ser. A bradford book, Intelligent robotics and autonomous
agents series. The MIT Press, 2004.

[3] S. Segvic, A. Remazeilles, A. Diosi, and F. Chaumette, “A mapping
and localization framework for scalable appearance-based navigation,”
Computer Vision and Image Understanding, vol. 113, no. 2, pp. 172–
187, February 2009.

5

[4] E. Royer, M. Lhuillier, M. Dhome, and J.-M. Lavest, “Monocular
vision for mobile robot localization and autonomous navigation,”
International Journal of Computer Vision, vol. 74, no. 3, pp. 237–
260, 2007.

[5] A. Victorino and P. Rives, “An hybrid representation well-adapted
to the exploration of large scale indoors environments,” in IEEE
International Conference on Robotics and Automation, New Orleans,
USA, 2004, pp. 2930–2935.

[6] D. Cobzas and H. Zhang, “Mobile robot localization using planar
patches and a stereo panoramic model,” in Vision Interface, Ottawa,
Canada, June 2001, pp. 04–99.

[7] J. Wolf, W. Burgard, and H. Burkhardt, “Robust vision-based local-
ization for mobile robots using an image retrieval system based on
invariant features,” in Robotics and Automation, 2002. Proceedings.
ICRA ’02. IEEE International Conference on, vol. 1, 2002, pp. 359 –
365 vol.1.

[8] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” in Com-
puter Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings
of the 2004 IEEE Computer Society Conference on, vol. 1, june-2 july
2004, pp. I–652 – I–659 Vol.1.

[9] A. Comport, E. Malis, and P. Rives, “Real-time quadrifocal visual
odometry,” International Journal of Robotics Research, Special issue
on Robot Vision, vol. 29, 2010.

[10] Y. Cheng, M. Maimone, and L. Matthies, “Visual odometry on the
mars exploration rovers - a tool to ensure accurate driving and science
imaging,” Robotics Automation Magazine, IEEE, vol. 13, no. 2, pp.
54 –62, june 2006.

[11] R. Sim and G. Dudek, “Learning visual landmarks for pose estima-
tion,” in Robotics and Automation, 1999. Proceedings. 1999 IEEE
International Conference on, vol. 3, 1999, pp. 1972 –1978 vol.3.

[12] L. Paletta, S. Frintrop, and J. Hertzberg, “Robust localization using
context in omnidirectional imaging,” in Robotics and Automation,
2001. Proceedings 2001 ICRA. IEEE International Conference on,
vol. 2, 2001, pp. 2072 – 2077 vol.2.

[13] B. Krösea, N. Vlassisa, R. Bunschotena, and Y. Motomura, “A
probabilistic model for appearance-based robot localization,” Image
and Vision Computing, vol. 19, pp. 381–391, 2001.

[14] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations
- Concepts and Applications of Voronoi Diagrams. John Wiley, 2000.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination od minimum cost paths,” Systems Science and
Cybernetics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, 1968.

[16] E. W. Dijkstra, “A short introduction to the art of programming,” Aug
1971.

[17] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
Robotics and Automation, IEEE Transactions on, vol. 12, no. 4, pp.
566 –580, aug 1996.

[18] R. Geraerts and M. H. Overmars, “A comparative study of probabilistic
roadmap planners,” in Proc. Workshop on the Algorithmic Foundations
of Robotics (WAFR’02), Nice, France, December 2002, pp. 43–57.

[19] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” In, vol. TR 98-11, no. 98-11, pp. 98–11, 1998.

[20] Khatib, Jaouni, Chatila, and Laumond, “Dynamic path modification for
car-like nonholonomoic mobile robots,” in IEEE Int. Conf. on Robotics
and Automation, April 1997, pp. 490–496.

[21] F. Lamiraux, D. Bonnafous, and O. Lefebvre, “Reactive path deforma-
tion for nonholonomic mobile robots,” Robotics, IEEE Transactions
on, vol. 20, no. 6, pp. 967 – 977, dec. 2004.

[22] W. S. Levine, The Control Handbook. CRC Press Handbook, 1996.
[23] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo

control,” IEEE Trans. on Rob. and Automation, vol. 12, no. 5, pp.
651–670, 1996.

[24] D. Bellot and P. Danes, “Towards an lmi approach to multiobjective
visual servoing,” in European Control Conference 2001, Porto (Por-
tugal), September 2001.

[25] F. Chaumette, “Image moments: a general and useful set of features
for visual servoing,” Robotics, IEEE Transactions on, vol. 20, no. 4,
pp. 713 – 723, aug. 2004.

[26] D. Folio and V. Cadenat, “A controller to avoid both occlusions
and obstacles during a vision-based navigation task in a cluttered
environment,” in European Control Conference (ECC05), Seville,
Espagne, December 2005, pp. 3898–3903.

[27] S. Thrun, W. Burgard, and D. Fox, “A real time algorithm for mobile
robot mapping with applications to multi-robot and 3d mapping,”

in IEEE International Conference on Robotics and Automation, San
Francisco, CA, USA, April 2000.

[28] G. Desouza and A. Kak, “Vision for mobile robot navigation: a
survey,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 24, no. 2, pp. 237 –267, feb 2002.

[29] F. Bonin-Font, F. Ortiz, and G. Oliver, “Visual navigation for mobile
robots : a survey,” Journal of intelligent and robotic systems, vol. 53,
no. 3, p. 263, 2008.

[30] R. Vassalo, H. Schneebeli, and J. Santos-Victor, “Visual servoing and
appearance for navigation,” Robotics and autonomous systems, 2000.

[31] Y. Matsumoto, M. Inaba, and H. Inoue, “Visual navigation using
viewsequenced route representation,” in IEEE Int. Conf. on Robotics
and Automation, Minneapolis, USA, 1996, pp. 83–88 –2692.

[32] J. Gaspar, N. Winters, and J. Santos-Victor, “Vision-based navigation
and environmental representations with an omni-directional camera,”
IEEE transactions on robotics and automation, vol. 6, no. 6, pp. 890–
898, 2000.

[33] Y. Yagi, K. Imai, K. Tsuji, and M. Yachida, “Iconic memory-based
omnidirectional route panorama navigation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 27, pp. 78–87, 2005.

[34] T. Goedemé, M. Nuttin, T. Tuytelaars, and L. V. Gool, “Omnidirec-
tional vision based topological navigation,” International Journal of
Computer Vision, vol. 74, no. 3, pp. 219–236, 2007.

[35] O. Booij, B. Terwijn, Z. Zivkovic, and B. Krose, “Navigation using
an appearance based topological map,” in IEEE Int. Conf. on Robotics
and Automation, Rome, Italy, 2007, pp. 3927– 3932.

[36] J. Courbon, Y. Mezouar, and P. Martinet, “Autonomous navigation
of vehicles from a visual memory using a generic camera model,”
Intelligent Transport System (ITS), vol. 10, pp. 392–402, 2009.

[37] S. Jones, C. Andresen, and J. Crowley, “Appearance based process
for visual navigation,” in Intelligent Robots and Systems, 1997. IROS
’97., Proceedings of the 1997 IEEE/RSJ International Conference on,
vol. 2, sep 1997, pp. 551 –557 vol.2.

[38] G. Blanc, Y. Mezouar, and P. Martinet, “Indoor navigation of a
wheeled mobile robot along visual routes,” in International Conference
on Robotics and Automation, Barcelona, Spain, 2005.

[39] Z. Chen and S. Birchfield, “Qualitative vision-based mobile robot nav-
igation,” in Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on, may 2006, pp. 2686 –2692.

[40] T. Krajnı̀k and L. Přeučil, A simple visual navigation system with
convergence property. H. Bruyninckx et al. (Eds.), 2008.

[41] A. Cherubini and F. Chaumette, “Visual navigation with a time-
independent varying reference,” in IEEE Int. Conf. on Intelligent
Robots and Systems, IROS’09, St Louis, USA, October 2009, pp.
5968–5973.

[42] ——, “A redundancy-based approach to obstacle avoidance applied to
mobile robot navigation,” in Proc. of IEEE Int. Conf. on Intelligent
Robots and Systems, Taipei, Taiwan, 2010.

[43] A. Cherubini, F. Spindler, and F. Chaumette, “A redundancy-based
approach for visual navigation with collision avoidance,” in ICVTS
proceedings, 2011.

[44] A. Durand Petiteville, S. Hutchinson, V. Cadeant, and M. Courdesses,
“2d visual servoing for a long range navigation in a cluttered en-
vironment,” in 50th IEEE Conference on Decision and Control and
European Control Conference, Orlando, USA, December 2011.

[45] F. Chaumette and S. Hutchinson, “Visual servo control, part 1 : Basic
approaches,” IEEE Robotics and Automation Magazine, vol. 13, no. 4,
2006.

[46] P. Souères, T. Hamel, and V. Cadenat, “A path following controller for
wheeled robots wich allows to avoid obstacles during the transition
phase,” in IEEE, Int. Conf. on Robotics and Automation, Leuven,
Belgium, May 1998.

[47] P. Souères and V. Cadenat, “Dynamical sequence of multi-sensor based
tasks for mobile robots navigation,” in SYROCO, Wroclaw, Poland,
September 2003.

[48] D. Folio and V. Cadenat, Computer Vision - Treating Image Loss by
using the Vision/Motion Link: A Generic Framework. IN-TECH,
2008, ch. 4.

[49] A. Durand Petiteville, M. Courdesses, V. Cadenat, and P. Baillion,
“On-line estimation of the reference visual features. application to a
vision based long range navigation task,” in IEEE/RSJ 2010 Interna-
tional Conference on Intelligent Robots and Systems, Taipei, Taiwan,
October 2010.

6

Vistas and Wall-Floor Intersection Features:

Enabling Autonomous Flight in Man-made Environments

Kyel Ok, Duy-Nguyen Ta and Frank Dellaert

Abstract— We propose a solution toward the problem of
autonomous flight and exploration in man-made indoor en-
vironments with a micro aerial vehicle (MAV), using a frontal
camera, a downward-facing sonar, and an IMU. We present a
general method to detect and steer an MAV toward distant fea-
tures that we call vistas while building a map of the environment
to detect unexplored regions. Our method enables autonomous
exploration capabilities while working reliably in textureless
indoor environments that are challenging for traditional monoc-
ular SLAM approaches. We overcome the difficulties faced by
traditional approaches with Wall-Floor Intersection Features, a
novel type of low-dimensional landmarks that are specifically
designed for man-made environments to capture the geometric
structure of the scene. We demonstrate our results on a small,
commercially available quadrotor platform.

I. INTRODUCTION

We address the problem of vision-based autonomous navi-

gation and exploration in man-made environments for Micro

Aerial Vehicles (MAVs). With its wide range of applications

in military and civilian services, research in autonomous

navigation and exploration for MAVs has been growing

significantly in recent years. Despite many similar charac-

teristics to ground robots, problems such as autonomous

navigation, obstacle avoidance, and map building on an aerial

robot have been much more challenging due to payload

limitations, power availability, and extra degrees-of-freedom.

Recent work in autonomous MAV navigation and ex-

ploration has been insufficient due to aforementioned chal-

lenges. Related work, described in Section II, either neglects

to address the power and payload limitations by using heavy

and power-hungry sensors or uses vision-only but comes

short of achieving autonomous exploration capabilities.

We present an autonomous navigation and exploration

method, using a lightweight frontal camera, an IMU and a

downward-facing sonar for height measurements. Our key

contribution is combining map-building and detection of

distant features, which we call vistas, to enable exploration

strategies that could not be achieved before. For example,

we utilize our map of inferred structure to detect unexplored

regions of interest, such as new hallway openings. This type

of capability could not be achieved in previous vision-based

MAVs, without dedicating additional sensors for this purpose

(i.e. frontal and side-facing sonars [1]).

Our first contribution is using vistas to determine the robot

steering direction, enabling robust navigation. Our vistas are

derived from first principles of what it means to be distant;

The authors are with the Center for Robotics and Intelligent Machines,
Georgia Institute of Technology, Atlanta, Georgia, USA,
{kyelok, duynguyen, dellaert}@gatech.edu

Fig. 1: Our method uses vistas (bottom left) to maintain long-

term orientation consistency and relies on a map of Wall-
Floor Intersection Features (bottom right) to infer the scene

structure. We present our results in an indoor setting using

a Parrot AR.Drone (top).

hence, they are not hallway-specific like the previous work

that depends on vanishing points detected from spurious

edges [1] or hallway-specific cues [2]. Moreover, vistas

are also derived from scale-space features and inherit the

properties such that they are easily and reliably detected and

tracked in many types of environments.

Our second contribution is an indoor mapping paradigm

that allows full exploration. In addition to vistas, for intelli-

gent exploration schemes, the MAV needs some knowledge

about the scene structure. We infer the structure from a

map of compact and low-dimensional landmarks that are

informative enough to capture the most important geometric

information about the scene. Our novel landmarks that we

call Wall-Floor Intersection Features lie on the perpendicular

intersection of vertical lines on the wall and the horizontal

floor plane. They encode the direction of the wall and can

capture any type of corners whether straight, convex or

concave. We build a map of our landmarks online using the

state-of-the-art inferencing engine, iSAM2 [3].

We combine our contributions to demonstrate an au-

tonomous exploration system on an inexpensive quadrotor.

7

IROS Workshop on Visual Control of Mobile Robots (ViCoMoR 2012)
October 11th, 2012, Vilamoura, Algarve, Portugal

7

II. RELATED WORK

Recent work [4], [5], [6] successfully demonstrates MAV

navigation and exploration in indoor environments using a

map built with laser scanners. [7] present a full SLAM

solution for an MAV equipped with a laser scanner to

autonomously navigate in indoor environments. [8] presents a

helicopter navigating with a laser scanner to avoid different

types of objects such as buildings, trees, and 6mm wires

in the city. However, these methods are severely limited to

short-term operations due to their heavy payload and high

power usage. Moreover, active sensors such as laser scanners

are undesirable in many applications (e.g., military), due to

the risk of cross-talk and ineligibility for covert operations.

Therefore, we preclude the use of laser scanner and other

heavy and power-hungry sensors.

Recent work in vision-based autonomous navigation ne-

glects to provide exploration capabilities enabled by build-

ing a map of the environment. For example, [1] detects

the vanishing point at the end of the hallway by finding

intersection of long lines along the corridors. Similarly, on

a ground robot, [2] fuses many specific properties present

at the end of hallways such as high entropy, symmetry,

self-similarity, etc. to infer the hallway directions. However,

neither methods have a vision-based exploration capability

to steer the robot toward undiscovered regions. [1] attempts

to solve the problem but relies on supplementary sonar

sensors to detect openings to the sides. However, this method

does not infer the scene structure and cannot support any

planning algorithms to efficiently explore the area, whereas

our combined method can support any planning algorithm to

navigate toward unexplored regions.

On the other hand, state-of-the-art map-building methods

are insufficient for usage in indoor navigation. Some work

relies on a downward camera for building a map [9], [10],

[11] but lacks the ability to avoid obstacles. Many other

vision-based methods build 3D point-cloud based maps [9],

[10], [11] but in textureless indoor environments, the point-

clouds are too sparse to reveal the 3D structure needed for

path/motion planning. Although some [12], [13] build a map

from edges in the environment, they neglect to infer the

environment structure crucial for robot navigation. Further-

more, state-of-the-art vision-based methods that reconstruct

the indoor scene [14], [15], [16] either rely on the indoor

Manhattan world assumption or require expensive multi-

hypothesis inference methods [15], [16]. Our method based

on Wall-Floor Intersection Features improves on previous

work with the ability to work in textureless environments,

using sparse yet informative scene representation, and not

relying on the indoor Manhattan world assumption.

III. AUTONOMOUS NAVIGATION TOWARD VISTAS

One of the first tasks in autonomous navigation and

exploration is to determine the direction toward open space.

In this section, we derive from first principles a general

approach that can potentially be applied to any type of

environment to steer the robot.

Fig. 2: Detected vistas (in red) and features that do not satisfy

the vista criteria (in yellow) are shown. The closest vista to

the mean of all the detected vistas (pink feature) is selected

as the steering direction for the robot.

A. Vista Size Change Criterion

We use vistas to refer to those landmarks that are far away

from the robot and can be used as a steering direction toward

empty space when exploring in an unknown environment.

One important property of vistas is that, due to their far

distance to the robot, the size of their projection in the camera

frame does not change significantly when flying toward

them. This property is already well-known in perceptual

psychology under the τ -theory [17] by David Lee, saying

that the time-to-collision (TTC) to an object is the ratio τ of

the object’s image size to the rate of its size change. Some

work has utilized this property to compute TTC using optical

flow [18], [19] or direct methods [20], [2].

Using this property, we derive vistas from relative size

change of scale-space features such as SIFT [21] or SURF

[22]. The optimal size of these features are computed by

fitting a 3D quadratic function to the feature responses in

scale-space around the max response [21].

Let s1, s2 be feature sizes and Z1, Z2 be their distance

from the camera at frames 1 and 2. Since si = f S
Zi

, where f
is the camera focal length and S is the true size of landmark,

we have s1/s2 = Z2/Z1. It can be easily shown that Δs
s2

=

−ΔZ
Z1

= tz
Z1

where Δs = s2− s1 is the absolute size change

of the feature and tz = −ΔZ = Z1 − Z2 is the amount of

forward movement of the robot between two frames, easily

obtained from integrating an IMU, using a motion model, or

fusing optical flow and corner tracking on a bottom-looking

camera, as already implemented on the AR.Drone [23].

Let Z1min be the minimum safety distance to the landmark

in camera frame 1 so that any landmarks with Z1 ≥ Z1min

can be considered vistas. The relative size change of vistas

must satisfy

Δs

s2
≤ tz

Z1min
(1)

As shown in Figure 2, this criterion leads to a simple yet

efficient way to detect distant landmarks in the environment.

8

B. Vista Rotation-predictability Criterion

Fig. 3: Minimum Zr
1min distances for rotation-predictable

features for tx = ty = 0, tz = 0.1. The horizontal xy-

plane is the image pixel coordinate, and the vertical z-axis

is the minimum Z1 required at each pixel. Plot with camera

calibration: ox = 160, oy = 120, fx = fy = 210.

The minimum safety distance Z1min of vistas in the

previous section could be chosen arbitrarily as long as it

is safe for the robot to avoid collision with the wall at the

moving speed. However, to ease the prediction and tracking

of the vistas, we enforce another geometric property of

distant landmarks that their projection in the image should

be predictable using pure camera rotation, unaffected by the

translation. We call this “rotation-predictability” criterion.

We derive this additional requirement for our vistas basing

on a well-known fact that if a point is at infinity, its projection

in the camera image can be purely determined by the camera

rotation. In our case, the camera translation between two

consecutive frames is insignificant compared to the distance

from the camera to the landmarks, hence has no effect on

the landmark position in the image.

More specifically, let p1 and p2 be the 2D homogeneous

forms of the landmark projections in camera frames 1 and 2.

Also, let K =

⎡
⎣ fx 0 ox

0 fy oy
0 0 1

⎤
⎦ be the camera calibration

matrix, and X1
2 = {R, t} ∈ SE (3) be the odometry of the

camera from frame 1 to frame 2. If the landmark P is at

infinity or if the camera motion is under a pure rotation

(t = 0), its projections p1 and p2 are related by the infinite

homography H = KR2
1K

1 between the two images [24]:

p2 = pr2 ∼ KR2
1K

−1p1,

where R2
1 = R�, and ∼ denotes the equivalent up to a

constant factor.

However, if the camera motion also involves a translation,

i.e. t �= 0, and the landmark is not at infinity, the relationship

between p1 and p2 is:

p2 = pt2 ∼ K(R2
1Z1K

−1p1 + t21)

∼ pr2 +
1

Z1
Kt21,

where t21 = −R�t.
Consequently, the rotation-predictability criterion infers

that pt2 must be well approximated by pr2. In this case,

the effect of the camera translation t on p2 is negligible

and insensible by the camera, i.e., in homogeneous form,
1
Z1

Kt21 ≈ kpr2, for some scalar k ∈ R. To satisfy this con-

straint, we impose the condition that the non-homogeneous

distance between pt2 and pr2 has to be less than 1 pixel, i.e.,

|| 1

zpr
2

pr2 −
1

zpt
2

pt2||2 ≤ 1,

where zpr
2

and zpt
2

are the third components of pr2 and pt2,

respectively. Solving for this constraint leads to the minimum

depth Zr
1min of the landmark such that its image projection

can be purely determined by the camera rotation as follows:

Zr
1min(x, y, t) =

tz +
√
[fxtx + tz(ox − x)]2 + [fyty + tz(oy − y)]2 (2)

where t =
[
tx ty tz

]�
, and (x, y) is the non-

homogeneous coordinate of p1.

This formula shows that the minimum Zr
1min distance of

the landmark in the first camera view depends on its position

(x, y) in the first image, and also the camera translation t.
Figure 3 shows the Zr

1min required for each pixel landmark

location in the image where the camera moves in z direction.

Note that at the Focus of Expansion (FoE), where the

camera translation vector intersects with the camera image

plane, the minimum Zr
1min is very close to the camera. As

a trivial example, when the camera moves forward without

rotation, R = I3×3, the minimum distance for rotation-

predictability criterion is Zr
1min = tz; i.e., any point along

the camera optical axis will not be affected by the camera

translation as long as it is in front of the second camera view.

Although such limitations exist in the FoE region, the

rotation-predictability criterion is still useful to reject false

vistas outside the region. Thus, we use max(Zr
1min, Z1min)

for the minimum distance in equation (1) to create the final

criteria to track vistas on a frame to frame basis.

IV. WALL-FLOOR INTERSECTION FEATURES FOR

SMOOTHING AND MAPPING

Despite vistas’ ability to steer a robot toward open space,

vistas alone can not grant fully autonomous exploration

capabilities. In order to detect directions toward unexplored

regions and adopt an intelligent planning scheme, it is

critical to obtain a map of the environment. In other words,

while flying toward vistas, we need to build a map of

landmarks that contains sufficient information about the

environment to simultaneously localize the robot and plan

exploration strategies. Although, the well-studied problem

of Simultaneous Localization and Mapping can be solved

using state-of-the-art incremental smoothing and mapping

algorithms such as iSAM2 [3], the problem of lack of

texture in indoor environments still imposes difficulties in

the landmark representation. We address this problem with

our novel landmarks, Wall-Floor Intersection Features.

9

Fig. 4: (a) Our landmark encodes a vertical line position

and a wall direction. (b) Two landmarks with opposite wall

directions can share the same vertical line. (c) Two landmarks

encoding an edge. (d) Two landmarks, one invisible.

A. Wall-Floor Intersection Features

Choosing the right type of landmarks is challenging for

indoor vision-based SLAM, due to the textureless scene.

[25] proposes to recognize the floor-wall boundary in each

column of the input image. [15], on the other hand, catego-

rizes all possible types of corners in indoor environments to

generates hypotheses of the environment structure. Recently,

[16] generates and evaluates multiple hypotheses of wall-

floor intersection lines from detected edges in the images,

whereas [14] utilizes the floor-ceiling planar homology.

Inspired by these previous work, we propose a landmark

representation that can encode the intersection of a vertical

line on the wall and the intersecting floor plane. These

new landmarks, named Wall-Floor Intersection Feature, are

derived from our observation that a vertical line in the scene

is most likely associated with a wall and an intersecting floor

plane, whose location is estimated by the downward sonar

sensor, allowing easy localization of the landmark in space.

Our landmark representation, shown in Figure 4, can

employ different wall configurations by encoding only a
single wall direction in each landmark and allowing two

landmarks with different wall directions to co-exist at the

same vertical line. This alleviates the need to explicitly

model all types of concave/convex corners as previously done

in [15], and can deal with non-right wall angles by allowing

arbitrary angles between wall directions at the same vertical

edge. For example, if a vertical line is on a single wall (ie.

vertical edge of a door), the angle between the landmarks

would be 180° and if the line is an intersection of two

different walls (ie. corners), then the two landmarks will

form an angle other than 180°. As such, our representation

can efficiently capture the structure of the scene.

Requiring only a 2D position and a single direction, our

landmarks can be represented as SE (2), an element of the

Lie-group, where the representation is compact and standard

Gauss-Newton optimization is straightforward. Moreover,

our landmarks are also easy to detect for both vertical lines

and wall directions, as discussed in the next section.

(a) Steerable filter responses along a vertical line. The maximum
sum responses on each side are shown in red and green. Blue
segments display dominant gradient direction at each point.

(b) Wall-floor corner detection. Detected features are shown in
yellow and images of landmarks are shown in red (positive
horizontal gradient) and blue (negative horizontal gradient).

Fig. 5: Detection results

B. Detection and Measurement Model

First, to detect the vertical line in the landmark, we rectify

the image using an IMU, so that vertical lines in the 3D space

are also vertical lines in the image, as shown in Figure 5.

Then, the vertical line candidates are local maxima in the

sum of horizontal image gradients Ix along each column of

the image. Using height estimate from the sonar sensor, each

point on the vertical line in the image is associated with one

point on the floor plane by back-projection. Then, we only

select points with high vertical image gradients Iy on the

bottom half of the image, near the floor.

Then, we detect wall directions for the remaining candi-

dates by (1) quantizing all possible directions on the left

and right side of the detected vertical line, (2) summing up

steerable filter responses [26] at every pixel along each bin

direction and (3) choosing the directions with maximum sum

responses on each side (see Figure 5).

Finally, we traverse the image in the detected wall di-

rections as far as the steerable filter response is similar to

the original detection. When the response differs by more

than a threshold, we stop and store the length of the wall-

floor intersection traversed. We finally choose features with

lengths larger than a threshold as our landmarks.

10

Fig. 6: Wall inference results (green) and an estimated map

of Wall-Floor Intersection Features (red and blue).

C. Wall Inference

Our landmarks only capture local information about the

wall structure. At places where there are no vertical lines

on the wall, no landmarks exist. However, our Wall-Floor

Intersection Features are capable of revealing the skeleton

structure of the hallway. We perform an additional step to

“fill in” the space between the features to yield a complete

knowledge of the environment by accumulating evidence

of walls in an occupancy grid, with each cell’s evidence

calculated by extending our features in the wall directions

and summing up the image gradient strength along the

extended direction. Figure 6 shows our inferred wall structure

in the occupancy grid when the drone is turning a corner.

V. EXPERIMENTS

A. Complete System

In order to obtain an autonomous system, we combine vis-

tas and Wall-Floor Intersection Features with two additional

supplementary navigation strategies.

Vistas: We use vistas to choose the steering direction

toward open space. This governs the yaw direction of the

robot and prevents head-on collision with obstacles.

Wall-Floor Intersection Features: Using iSAM2 [3]

Smoothing and Mapping algorithm and our novel landmarks,

we create a sparse map of our features and a grid map of

inferred wall structure to be used in the later strategies.

Avoiding Side Collisions: Given the local occupancy grid

centered at the current robot position, we infer the distance

to the walls on the sides of the robot by attempting to equate

the distance to the left and the right by changing the MAV’s

roll rates. This strategy prevents side collisions and navigates

the robot in the middle of the environment.

Detecting directions to unexplored regions: We create

two masks with openings on the left and right sides and apply

them on the local grid map to find salient matches. Matches

above a threshold is considered a new opening, and is used

to re-direct the MAV.

Combining the four strategies, we obtain a system that

can avoid collisions in both forward and side directions,

fly toward unexplored open areas, while also simultaneously

localizing and building a map of the environment.

Fig. 7: Comparison between the ground-truth map of the

environment and our manually-aligned estimated map. Our

Wall-Floor Intersection Features are shown in red and the

ground-truth floor layout in black (walls) and blue (doors).

Our estimated trajectory of the quadrotor is in green, and the

AR.Drone onboard estimate in purple. Accuracy of our esti-

mate, completely constrained in the ground-truth map, shows

advantages in using our features in textureless environments.

B. Experimental Setup

For the evaluation of our complete system using vistas

and Wall-Floor Intersection Features, we fly a commercially-

available AR.Drone quadrotor through a hallway, as shown

in Figure 1. Using the 468 MHz processor on the AR.Drone,

we stream 320×240 gray-scale images from the front facing

camera at 10 Hz along with the IMU and sonar measure-

ments. The main computing is done off-board, and the

control outputs are streamed back to the quadrotor.

C. Map-building Results

We evaluate the quality of our map by first running our

system on a set of video frames and sensor data recorded

from a manual flight and compare the results with the hand-

measured ground-truth of the test environment. Due to drift

and unreliability in sensor readings during AR.Drone’s take-

off sequence [23], we only start our system once the drone

stabilizes in the air. Since the entire map depends on the

first robot pose at the system start, which is arbitrary due to

the drift, we manually rotate our map to match the ground-

truth map orientation. Figure 7 demonstrates our map of

landmarks approximating the ground-truth structure suffi-

ciently. Although there are some spurious features inside the

walls that escaped rejection based on uncertainty, and large

features are congregated at the bottom-right corner during

the unstable landing sequence, our exploration strategies are

unaffected by these small shortcomings in the map.

Furthermore, we compare the quadrotor trajectory esti-

mated by our system with the one provided by the AR.Drone

software. As shown in Figure 7, our estimated trajectory is

much more accurate, being well-bounded inside the hallway

interior, while the AR.Drone’s estimate drifts significantly.

11

D. Autonomous Exploration Results

We also test our system in a hallway environment for

(1) autonomously steering toward vistas, (2) building a map

of the environment online, and (3) finding new corners and

hallway openings to turn to. As shown in Figure 2, the vista

detection was robust enough to detect and focus on distant

features at the end of hallways, and effectively steer the robot

toward that direction. As shown in our attached video1, the

skeleton map was accurate enough for inferring a grid map of

the wall-structure, keeping the robot stay in the middle of the

hallway and detecting new corners effectively. In addition,

our full system could run in real-time at around 8 to 9 fps.

VI. DISCUSSION AND FUTURE WORK

We have presented a vision-based system that enables

autonomous exploration strategies on an MAV in texture-

less indoor environments, which could not be achieved in

previous work in the absence of heavy and power-hungry

sensors. With our map of Wall-Floor Intersection Features,

we are able to infer the entire scene structure and with vistas,

steer toward open areas. We have demonstrated our complete

system with two additional strategies (1) to keep the robot

in the middle of the hallway, and (2) to detect opening

directions to undiscovered regions. Our experiments show

promising results toward a fully robust autonomous system

for MAV navigation and exploration.

Although our method of combining vistas and Wall-Floor

Intersection Features advances autonomous navigation and

exploration capabilities of MAVs, there remain some limita-

tions as future work. Our criteria for vistas (1) and (2) may

have some practical limitations without perfect projective

camera imaging. For example, the rolling shutter effect of

the low-quality camera on the AR.Drone may affect the

size of the features and violate (1). In addition, the Wall-

Floor Intersection Features require future work for mapping

with special chessboard-type floors where strong gradient

lines exist in the floor’s texture. Lastly, our wall-inference

and hallway opening detection schemes are sensitive to

thresholding values, and require fine-tuning for the specific

lighting condition in the environment. A more sophisticated

top-down algorithm remains as future work to make the

complete system less sensitive to thresholds and be more

robust to other lighting conditions.

ACKNOWLEDGEMENTS

This work is supported by an ARO MURI grant, award

number W911NF-11-1-0046.

REFERENCES

[1] C. Bills, J. Chen, and A. Saxena, “Autonomous MAV flight in
indoor environments using single image perspective cues,” in Robotics
and Automation, 2011. ICRA 2011. Proceedings of the 2011 IEEE
International Conference on, 2011.

[2] V. Murali and S. Birchfield, “Autonomous exploration using rapid
perception of low-resolution image information,” Autonomous Robots,
pp. 1–14, 2012.

1http://youtu.be/x8oyld2m9Cw

[3] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Del-
laert, “iSAM2: Incremental smoothing and mapping using the Bayes
tree,” Intl. J. of Robotics Research, vol. 31, pp. 217–236, Feb 2012.

[4] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation system
for autonomous indoor flying,” in Robotics and Automation, 2009.
ICRA ’09. IEEE International Conference on, 2009, pp. 2878–2883.

[5] A. Bachrach, R. He, and N. Roy, “Autonomous flight in unknown
indoor environments,” International Journal of Micro Air Vehicles,
vol. 1, no. 4, p. 217–228, 2009.

[6] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy, “Stereo
vision and laser odometry for autonomous helicopters in GPS-denied
indoor environments,” Unmanned Systems Technology XI. Ed. Grant
R. Gerhart, Douglas W. Gage, & Charles M. Shoemaker. Orlando, FL,
USA: SPIE, 2009.

[7] S. Grzonka, G. Grisetti, and W. Burgard, “A fully autonomous indoor
quadrotor,” Robotics, IEEE Transactions on, no. 99, pp. 1–11, 2012.

[8] S. Scherer, S. Singh, L. Chamberlain, and S. Saripalli, “Flying fast
and low among obstacles,” in Robotics and Automation, 2007 IEEE
International Conference on, 2007, p. 2023–2029.

[9] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision
based mav navigation in unknown and unstructured environments,” in
Robotics and Automation (ICRA), 2010 IEEE International Conference
on, 2010, p. 21–28.

[10] M. Achtelik, M. Achtelik, S. Weiss, and R. Siegwart, “Onboard imu
and monocular vision based control for mavs in unknown in- and
outdoor environments,” in Proc. of the IEEE International Conference
on Robotics and Automation (ICRA), 2011.

[11] S. Weiss, M. Achtelik, L. Kneip, D. Scaramuzza, and R. Siegwart,
“Intuitive 3d maps for mav terrain exploration and obstacle avoidance,”
Journal of Intelligent and Robotic Systems, vol. 61, pp. 473–493, 2011.

[12] G. Klein and D. Murray, “Improving the agility of keyframe-based
SLAM,” in Eur. Conf. on Computer Vision (ECCV), Marseille, France,
2008.

[13] E. Eade and T. Drummond, “Edge landmarks in monocular slam,” in
Proc. British Machine Vision Conf, 2006.

[14] M. D. Flint A. and R. I., “Manhattan scene understanding using
monocular, stereo, and 3d features,” in International Conference on
Computer Vision. IEEE, 2011.

[15] D. Lee, M. Hebert, and T. Kanade, “Geometric reasoning for single
image structure recovery,” in IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2009, pp. 2136–2143.

[16] G. Tsai, C. Xu, J. Liu, and B. Kuipers, “Real-time indoor scene under-
standing using bayesian filtering with motion cues,” in International
Conference on Computer Vision, 2011.

[17] D. Lee et al., “A theory of visual control of braking based on
information about time-to-collision,” Perception, vol. 5, no. 4, pp. 437–
459, 1976.

[18] N. Ancona and T. Poggio, “Optical flow from 1-d correlation: Ap-
plication to a simple time-to-crash detector,” International Journal of
Computer Vision, vol. 14, no. 2, pp. 131–146, 1995.

[19] D. Coombs, M. Herman, T. Hong, and M. Nashman, “Real-time ob-
stacle avoidance using central flow divergence and peripheral flow,” in
Computer Vision, 1995. Proceedings., Fifth International Conference
on. IEEE, 1995, pp. 276–283.

[20] B. Horn, Y. Fang, and I. Masaki, “Time to contact relative to a planar
surface,” in Intelligent Vehicles Symposium, 2007 IEEE. IEEE, 2007,
pp. 68–74.

[21] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Intl. J. of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[22] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: speeded up robust
features,” in Eur. Conf. on Computer Vision (ECCV), 2006.

[23] P. Bristeau, F. Callou, D. Vissière, and N. Petit, “The navigation and
control technology inside the ar. drone micro uav,” in World Congress,
vol. 18, no. 1, 2011, pp. 1477–1484.

[24] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, 2000.

[25] E. Delage, H. Lee, and A. Ng, “A dynamic bayesian network model
for autonomous 3d reconstruction from a single indoor image,” in
Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference on, vol. 2. IEEE, 2006, pp. 2418–2428.

[26] W. Freeman and E. Adelson, “The design and use of steerable filters,”
in IEEE Transactions on Pattern Analysis and Machine Intelligence,
1991.

12

Distributed Policies for Neighbor Selection in Multi-Robot Visual
Consensus

Eduardo Montijano Johan Thunberg Xiaoming Hu Carlos Sagues

Abstract— In this paper we propose a distributed algorithm
for choosing the appropriate neighbors to compute the control
inputs of a team of robots. We consider a scheme where the
motion of each robot is decided using nearest neighbor rules.
In this scheme each robot is equipped with a camera and
can only exchange visual information with a subset of the
robots. Using the information provided by their neighbors,
the robots compute their control inputs, eventually reaching
a consensus in their motion. However, if a robot has too many
neighbors (e.g., a star topology), then it will require a long
time to process all the received information, leading to long loop
times or synchronization problems. In the paper we provide two
distributed policies for the robots to select at each iteration the
information of a fixed number of neighbors. In both cases we
demonstrate convergence to the consensus with a considerable
reduction on the amount of required computations. Simulations
in a virtual environment show the effectiveness of the proposed
policies.

I. INTRODUCTION

The idea of multiple robots working in cooperation to

achieve a common goal is of high interest in many tasks,

such as exploration, surveillance or transportation. Multi-

robot systems can perform these tasks with more robustness

or in less time than one robot working alone. On the other

hand, in order to carry on with these tasks, the robots need

to be able to move in coordination.

A generalized problem in this context is the problem of

reaching a consensus by all the robots. From the control

perspective, the consensus problem [14] consists of making

a team of robots to move all together in a common direction,

with the peculiarity that this goal is achieved by each robot

using only partial information given by the nearest-neighbors

in the team. In this way all the robots play the same role

in the formation, conferring the system a natural robustness

against changes in the topology and individual failures. A

key aspect left aside in most of the existing work in this

topic, e.g., [2], [6], [12], [15], is how the robots estimate

their neighbors positions to control their motion.

Vision sensors can play a fundamental role in this part

of the process due to the big amount of information that

images contain. Additionally, all the research done in the

field of computer vision during the past decades can be

exploited in a multi-robot framework in order to achieve the

E. Montijano is with Centro Universitario de la Defensa (CUD) and
Instituto de Investigación en Ingenierı́a de Aragón (I3A), Zaragoza, Spain.

J. Thunberg and X. Hu are with Department of Math, Division of
Optimization and Systems Theory, Royal Institute of Technology (KTH),
Sweden.

C. Sagues is with Departamento de Informática e Ingenierı́a de Sistemas
- Instituto de Investigación en Ingenierı́a de Aragón (I3A), Universidad de
Zaragoza, Spain.

desired goal. Some works consider a single camera and a

central unit to control all the robots [7]. Distributed solutions

using omnidirectional cameras can be found in [13], [16]

where the robots can see all their neighbors. If the robots are

equipped with monocular cameras with limited field of view,

then the observation of all the neighbors may not always be

possible. A leader-follower solution is adopted in [5], where

each robot only needs to observe another robot, leading to

tree configurations. Geometry constraints are used in [11] to

allow the network to be configured in any arbitrary topology.

In the latter approach each robot computes its control input

using the epipoles between its current image and the images

of its neighbors in the communication graph. The use of

the epipolar constraint presents some advantages over other

approaches. First of all, it has been successfully used to

control the motion of a single robot on several occasions [1],

[8], which gives this constraint reliability to be used in a

multi-robot context. Secondly, the robots can reach the con-

sensus even if they are not directly observing each other as

long as they have common observations of the environment.

Lastly, the controller does not impose any constraint on the

network topology as each robot can compute as many pairs

of epipoles as neighbors in the communication graph it has.

On the other hand, in the approach presented in [11],

the number of neighbors determines the amount of time

each robot will require to compute its control input. In a

distributed scenario, if one robot has many neighbors, e.g., a

star topology, with one robot connected to all the others, then

it will receive many images. Processing all the images may

take a long time, depending on the computation capabilities

of the robots. This can lead to long times in the control

loop or even to synchronization problems between the robots

with different number of neighbors. Therefore, additional

mechanisms are required to keep the amount of computations

under control for all the robots.

In this paper we contribute to the state of the art presenting

two distributed policies that allow the robots to select only

a subset of their neighbors to compute the control input. In

this way the team is still able to reach the consensus but the

computational demands of each robot are bounded and equal.

Additionally, we discuss the convergence of the considered

controller for directed graphs.

The rest of the paper is organized as follows: In section

II we review the distributed control law using epipoles to

reach the consensus of the team of robots. All the formal

details about the distributed policies for neighbor selection

are explained in section III. Section IV shows simulations

in a virtual environment where the two proposed policies

13

IROS Workshop on Visual Control of Mobile Robots (ViCoMoR 2012)
October 11th, 2012, Vilamoura, Algarve, Portugal

13

are tested and compared with the standard distributed con-

troller. Finally, in section V the conclusions of the work are

presented.

II. DISTRIBUTED CONSENSUS USING EPIPOLES

In this section we review the distributed controller based

on the epipolar geometry to achieve the consensus. For

additional details we refer the reader to [11].

We consider a set V of N homogeneous autonomous

robots. Communications between the robots are defined with

a connected graph G = (V, E), with E the set of communica-

tion links. In this way, if robots i and j are able to exchange

messages with each other, then (i, j) ∈ E . The neighbors of

robot i are defined as Ni = {j ∈ V | (i, j) ∈ E}.
The robots move on the plane with non-holonomic motion

constraints. Given two robots, i and j, their relative positions

can be defined by a distance, rij , a bearing angle, ψij , and

relative orientation, θij . The goal of the consensus problem

is to make all the robots achieve the same orientation, i.e.,

θij → 0, ∀i, j ∈ V , as t → ∞. To achieve this goal, each

robot has two control inputs, vi and wi, which are the linear

and angular velocity respectively. Since the linear velocity

is not required to make the robots achieve the consensus,

along the paper we consider it constant for all the robots,

vi = v ≥ 0, ∀i.
In our setup all the robots are equipped with pinhole

monocular cameras with limited field of view. We assume

that all the robots have identical cameras onboard, with

unknown calibration matrix equal to K = diag(α, α, 1), with

α > 0, the focal length of the camera. For any pair of robots,

i and j, the lack of calibration implies that rij , ψij and

θij are not directly available. The output of the system is

instead defined by the epipoles of the images acquired by

them (see Fig. 1). The robots exchange their images and

use the epipolar constraint [10] to compute eij and eji, the

epipoles in the two images. Specifically, due to the planar

motion, we are only interested in the x-coordinate of the

epipoles, which satisfies

eijx = α tan(ψij), ejix = α tan(ψij − θij). (1)

For simplicity purposes, in the following we use eij and eji
to refer to the expressions in equation (1).

Fig. 1: The robots use the epipoles between their images to

compute the control input.

Given a pair of neighbor robots, by eq. (1), a necessary

condition for the consensus is that their epipoles must be

equal, θij = 0 ⇒ eij = eji. To reach this objective the

control input wi of each robot is defined as:

wi = K
∑
j∈Ni

wij , (2)

where K > 0 is the controller gain and wij is the misalign-

ment in the epipoles, defined as

wij =

{
dij if |dij | ≤ π

2

−sign(dij)(π − |dij |) otherwise
, (3)

with

dij = arctan(
eij
β

)− arctan(
eji
β

) ∈ (−π, π], (4)

and 0 < β < ∞ some fixed positive constant to choose. Note

that, if β = α, then the setup is calibrated, dij = θij , and

the relative orientation between the robots can be computed

from the epipoles. However, we assume that this is not the

case and β �= α.

The following result determines the conditions required

for the controller to converge to the consensus:

Theorem 2.1 (Theorem 3.2 [11]): Let the robots be ini-

tially oriented in such a way that |θij | ≤ θM < π/2, ∀i, j ∈
V. If the robots use the control law (2) with β satisfying

α tan(
θM
2

) < β <
α

tan(θM2)
, (5)

then limt→∞ θij = 0, ∀i, j ∈ V , i.e., the system will reach

consensus.

Additionally, the system is robust to changes in the com-

munication topology, as long as the following assumptions

are satisfied.

Assumption 2.1: There exists a lower bound, δ > 0, on

the time between two consecutive changes in the topology.

Denoting tk, k ∈ N, the discrete time instants when the

topology changes, then tk+1 − tk ≥ δ, ∀k.
Assumption 2.2: There exists a positive time period T

such that, for any instant of time, t, the collection of

communication topologies in the time interval (t, t + T) is

jointly connected.

The problem with the aforementioned controller is the

amount of computations that the robots require in order to

compute the epipoles between them and all their neighbors.

If one robot has too many neighbors then it will have to

compute many epipoles. For that reason additional mecha-

nisms are required to keep the computational demands of all

the robots bounded and similar.

Along the rest of the paper we will assume that the

communication graph is fixed and the conditions in Theorem

2.1 regarding β and the initial orientations are satisfied.

Since the neighbor policies will select different neighbors

at each iteration, the assumptions regarding the changes in

the communication topology will be required to prove the

convergence.

14

III. DISTRIBUTED POLICIES FOR NEIGHBOR SELECTION

In this section we propose two distributed policies to

select, from the subset of neighbors, which one each robot

should choose to compute the epipoles. The first policy

chooses at each iteration the robot that was not selected

for the longest time. The second policy chooses at each

iteration the neighbor that supposedly has the orientation

farthest away. For both policies we prove convergence to

the consensus.

Before explaining in detail our policies for neighbor

selection, let us note that by selecting a subset of the

neighbors what we are doing in practice is just changing

the communication topology at each iteration. However, the

proposed policies do not ensure a bi-directional selection,

that is robot the fact that robot i chooses j to compute the

epipoles does not imply that robot j chooses robot i as well.

As a consequence, the communication topologies need to

be modeled with time-varying directed graphs. Nevertheless,

the proposed controller will also reach the consensus if

Assumptions 2.1 and 2.2, see, e.g., [4]. Therefore, it will

be enough to prove that the proposed policies ensure that

Assumptions 2.1 and 2.2 are satisfied to reach the consensus.

In the following we present the two policies and formally

prove the convergence to the consensus.

A. Policy 1: Choose the neighbor that was not selected for
the longest time

The first policy we propose consists of selecting a different

neighbor at each iteration. Specifically the one that was not

selected for the longest time. Let each robot handle a vector

Ni(t) = [Ni1(t), . . . , NiN (t)], with Nij(t) representing the

number of communication rounds that has passed since the

last time that robot i chose robot j as the selected neighbor

to compute the epipoles.

Initially, Nij(0) = 0 for all j. Then, at time t, the neighbor

selected by robot i, denoted by j(t), will be

j(t) = argj∈Ni
maxNij(t), (6)

and the control input of the robot

wi(t) = Kwij(t). (7)

Once the robot has computed the epipoles and the control

input, it updates the vector Ni(t) with the following rule

Nij(t+ 1) =

{
0 if j = {j(t), i}
Nij(t) + 1 otherwise

, (8)

so that it ensures that j(t) will not be chosen again until all

the other possible neighbors have been chosen once.

Proposition 3.1: Let all the robots select, at each iteration,

one neighbor to compute the epipoles using equations (6),

(8) and move using the controller in eq. (7) considering only

this neighbor. Then, the system will reach the consensus.

Proof: Since we are assuming that the communica-

tion topology is fixed, G necessarily is connected and the

neighbors of each robot remain constant the whole time. At

any iteration, t, each robot selects only one of its neighbors,

which may lead to a disconnected digraph, G(t) ⊆ G.

However, in the following iterations the selected neighbor

of all those robots with more than one will be different.

Denoting Nmax = max |Ni|, we can see that for any t

G(t) ∪ G(t+ 1) ∪ . . . ∪ G(t+Nmax) = G,
which means that Assumption 2.2 is satisfied when using

this policy. Considering that the time required to compute

the epipoles is not zero, Assumption 2.1 is also satisfied and

then we can conclude that the time varying evolution of the

graph satisfies the conditions to reach the consensus.

B. Policy 2: Choose the neighbor with more misalignment

The second policy we propose is designed to reduce the

orientation error with the neighbor that supposedly is further

away at each iteration.

Let each robot have a vector d̂i(t) = [d̂i1(t), . . . , d̂iN (t)],
with d̂ij(t) being the last value of dij computed by robot

i using the information provided by robot j, equation (4).

Initially, d̂ij(0) = ∞ for all j. The neighbor selected at each

iteration is chosen by

j(t) = argj∈Ni(t) max d̂ij(t), (9)

that is, the one with the estimated most misalignment at

current time. The control input of each robot is then assigned

as in eq. (7).

With the epipoles computed, the update of d̂i(t) executed

in this case is

d̂ij(t+ 1) =

{
dij if j = j(t)

d̂ij(t) otherwise
, (10)

with dij the value computed in equation (4).

Proposition 3.2: Let all the robots select, at each iteration,

one neighbor to compute the epipoles using equations (9),

(10) and move using the controller in eq. (7) considering only

this neighbor. Then, the system will reach the consensus.

Proof: With this policy we cannot ensure that the robots

are changing the selected neighbors at each iteration. Let us

assume that none of the robots change the selected neighbor,

this means that the topology of the network remains fixed

for some time. In such case we already now that the team

approaches to the consensus, meaning that dij → 0 for all

i and j that are neighbors in the subgraph defined by the

policy, and so d̂ij → 0 for the same set. This means that

at some point there will be some robot i and some k ∈ Ni

such that d̂ij > d̂ik and the robot will change the selected

neighbor. Noting that any change of the selected neighbor

does not change the rest of values, d̂ij , in the network, we

can use this argument iteratively to see that all the neighbors

of each robot will be selected at some point. After that, using

the same arguments as in Proposition 3.1 we conclude that

the system will reach the consensus.

C. Discussion

There are several advantages of using any of the two

proposed policies instead of computing the epipoles with the

images sent by all the robots. First of all, the consensus is

achieved requiring less computations at each communication

15

round. Each pair of computed epipoles requires an initial step

to match the features of the two images plus a robust method

to estimate the epipolar constraint, e.g., DLT+RANSAC [10].

By selecting only one neighbor, we are executing this step

only once at each iteration instead of |Ni| times. This

computational reduction can be of high interest in situations

where the energy of the robots is limited.

Synchronization issues are also solved. Note that the

controller requires the images of all the robots to be acquired

(approximately) at the same instant. If each robot does not

acquire a new image until it has processed all the received

information, and assuming that the number of neighbors is

not going to be the same for all the robots, then without

additional mechanisms to synchronize the network there will

appear time discrepancies among the matched images. On the

other hand, making all the robots to select only one neighbor

to compute the epipoles, will imply similar computation

times for all of them, leading to a natural synchronization.

In case the robots want to select more than one neighbor,

let us say k neighbors at each iteration, both policies are

still be applicable. In the first policy, each robot selects the k
neighbors that were not selected for the longest time whereas

the in the second policy, each robot selects the k neighbors

with the largest value of d̂ij(t). The larger k, the most similar

would be the results to the standard case, at the price of more

and more computational demands.

IV. SIMULATIONS

The properties of the proposed controller are shown in

simulations. The experiments have been carried out using

Matlab. We have considered a fixed robotic network com-

posed by ten robots with initial positions and orientations

depicted in Fig. 2 and communications defined by the black

lines. As we can see, there are some robots that have up to

five neighbors in the communication graph whereas others

only have one or two neighbors. The vision system has been

2468
−13

−12

−11

−10

−9

−8

−7

−6
Initial Configuration of the Robots

X (m)

Y
 (

m
)

Fig. 2: Initial configuration of the team of robots in the

experiments. Black lines represent direct communication

between robots.

simulated using the virtual reality toolbox of MatLab. In this

way, the robots acquire virtual images of resolution 640×480
pixels depending on their position and orientation. We have

extracted SIFT [9] features from the virtual images and the 8

point algorithm with RANSAC [3] to match them in a robust

way and to compute the epipoles between pairs of robots.

An example of the images acquired by the robots and the

features extracted and matched can be found in Figure 3.

Fig. 3: Example of images acquired by the robots and SIFT

matches using the epipolar constraint.

We have executed the controller in eq. (2) without using

a neighbor selection policy and the controller (7) using the

two policies proposed in section III. The evolution of the

orientation of the robots in the three cases can be seen in

Figure 4. As expected, all the robots reach the consensus

without problems in the three situations. The evolution of

the orientation when the information of all the neighbors

is used is smoother and the consensus is reached in less

time. However, the difference with respect to the other two

graphics is negligible and in the simulation we are not

considering the real time spent by each robot to compute the

epipoles with all the neighbors. The second policy (neighbor

with more misalignment) reaches the consensus relatively

faster than the first policy, which makes sense because it

tries to reduce the error with the robot with most relative

orientation.

The control inputs of the robots in each scenario are

depicted in Fig. 5. Again, the control inputs when no policies

are used are smoother than when using any policy because

they are computed using the same set of images the whole

time but this simulation is not considering the real time spent

to compute the inputs. The second policy also seems to be

better than the first one in this aspect.

TABLE I: Computational time (seconds per robot and itera-

tion)
Quantity No policy Policy 1 Policy 2
Mean time 12.65 3.80 3.85
Std. dev 5.83 0.77 0.75
Max time 27.99 5.92 5.84
Min time 2.55 1.49 1.28

We have measured the time spent to compute the control

inputs when the robots do not use the proposed policies and

when they do to point out the real advantages of using a

policy to select a subset of neighbors. The computational

time spent by each robot at each iteration is depicted in

Fig. 6. We can see that using any of the two policies the

computational time per iteration and robot remains bounded

and similar whereas in the standard case there are big

variations in the loop time, depending on the number of

16

0 5 10 15

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Orientation of the Robots (No policy)

Time (s)

O
rie

nt
at

io
n

(r
ad

)

0 5 10 15

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Orientation of the Robots (Policy 1)

Time (s)

O
rie

nt
at

io
n

(r
ad

)

0 5 10 15

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Orientation of the Robots (Policy 2)

Time (s)

O
rie

nt
at

io
n

(r
ad

)

Fig. 4: Orientation of the robots using the distributed controller without any policy to select the neighbors (left), with the

policy to choose the neighbor that was not selected for the longest time (middle) and with the policy to choose the neighbor

with the most misalignment (right). In the three cases all the robots reach the consensus in a similar time.

0 5 10 15
−0.5

0

0.5
Control Inputs (No policy)

Time (s)

w
 (

ra
d/

s)

0 5 10 15
−0.5

0

0.5
Control Inputs (Policy 1)

Time (s)

w
 (

ra
d/

s)

0 5 10 15
−0.5

0

0.5
Control Inputs (Policy 2)

Time (s)

w
 (

ra
d/

s)

Fig. 5: Control inputs of the ten robots in the three scenarios: without any policy to select the neighbors (left), with the

policy to choose the neighbor that was not selected for the longest time (middle) and with the policy to choose the neighbor

with the most misalignment (right).

0 5 10 15
0

5

10

15

20

25

30
Execution time per robot and iteration (No policy)

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Iterations
0 5 10 15

0

2

4

6

8

10
Execution time per robot and iteration (Policy 1)

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Iterations
0 5 10 15

0

2

4

6

8

10
Execution time per robot and iteration (Policy 2)

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Iterations

Fig. 6: Computational time spent by each robot at each iteration: without any policy to select the neighbors (left), with the

policy to choose the neighbor that was not selected for the longest time (middle) and with the policy to choose the neighbor

with the most misalignment (right). As we can see, when the robots use a policy, all of them spend approximately the same

computational time, whereas without a policy each robot requires a different time depending on its neighbors.

neighbors of each robot. The statistics of these times are

shown in in Table I.

V. CONCLUSIONS

In this paper we have proposed two distributed policies

for a team of robots to select a subset of their neighbors

to compute their control inputs. This selection bounds the

time required by the robots to compute the input, making

it equal for all of them, avoiding possible synchroniza-

tion problems that could appear because of the different

computation requirements of each robot. The computational

reduction is also of high interest when the information

shared by the robots is provided by vision sensors, because

image processing methods are in general time-demanding.

We have proved that both policies ensure convergence to the

consensus and we have shown in simulations the benefits of

using any of the two approaches compared to the situation

in which all the neighbors are considered.

ACKNOWLEDGMENTS

This work was supported by the project DPI2009-08126

and partly supported by Swedish Research Council and

Swedish Foundation for Strategic Research.

REFERENCES

[1] R. Basri, E. Rivlin, and I. Shimshoni, Visual homing: Surfing on the
epipoles, International Journal of Computer Vision 33 (1999), no. 2,
117–137.

[2] J. Cortes, Global and robust formation-shape stabilization of relative
sensing networks, Automatica 45 (2009), no. 12, 2754 – 2762.

[3] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision, Cambridge University Press, Cambridge, 2000.

[4] Q. Hui and W. M. Haddad, Distributed nonlinear control algorithms
for network consensus, Automatica 44 (2008), no. 1, 2375–2381.

[5] T. Ibuki, T. Hatanaka, M. Fujita, and M. W. Spong, Visual feedback
attitude synchronization in leader-follower type visibility structures,
49th IEEE Conference on Decision and Control, December 2010,
pp. 2486–2491.

[6] A. Jadbabaie, J. Lin, and A. S. Morse, Coordination of groups
of mobile autonomous agents using nearest neighbor rules, IEEE
Transactions on Automatic Control 48 (2003), no. 6, 988–1001.

[7] G. Lopez-Nicolas, M. Aranda, Y. Mezouar, and C. Sagues, Visual
Control for Multi-Robot Organized Rendezvous, IEEE Transactions
on Systems Man and Cybernetics: Part B (2012), to appear.

17

[8] G. López-Nicolás, C. Sagues, J.J. Guerrero, D. Kragic, and P. Jensfelt,
Switching visual control based on epipoles for mobile robots, Robotics
and Autonomous Systems 56 (2008), no. 7, 592–603.

[9] D. Lowe, Distinctive image features from scale-invariant keypoints,
International Journal of Computer Vision 60 (2004), no. 2, 91–110.

[10] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An invitation to 3d
vision, SpringerVerlag, 2004.

[11] E. Montijano, J. Thunberg, X. Hu, and C. Sagues, Multi-Robot
Distributed Visual Consensus using Epipoles, IEEE Conference on
Decision and Control, 2011, pp. 2750–2655.

[12] N. Mostagh and A. Jadbabaie, Distributed geodesic control laws for
flocking of nonholonomic agents, IEEE Transactions on Automatic
Control 52 (2007), no. 4, 681–686.

[13] N. Mostagh, N. Michael, A. Jadbabaie, and K. Daniilidis, Vision-
based, distributed control laws for motion coordination of nonholo-
nomic robots, IEEE Transactions on Robotics 25 (2009), no. 4, 851–
860.

[14] Wei Ren and Randal W. Beard, Distributed consensus in multi-
vehicle cooperative control, Communications and Control Engineer-
ing, Springer-Verlag, London, 2008.

[15] J. Thunberg, E. Montijano, and X. Hu, Distributed attitude synchro-
nization control, 50th IEEE Conference on Decision and Control and
European Control Conference, December 2011, pp. 1962–1967.

[16] R. Vidal, O. Shakernia, and S. Sastry, Following the flock [formation
control], IEEE Robotics and Automation Magazine 11 (2004), no. 4,
14–20.

18

Target Tracking and Obstacle Avoidance for a VTOL UAV
using Optical Flow

Aurélie Treil1, Philippe Mouyon1, Tarek Hamel2, Alain Piquereau1 and Yoko Watanabe 1

Abstract— This paper presents the practical implementation
of a nonlinear visuel servo controller for obstacle avoidance
and target tracking of an eye-in-hand Vertical Take-Off and
Landing Uninhabited Air Vehicle (VTOL UAV). The VTOL
vehicle is assumed to be equipped with a minimum sensor
suite; a camera and Inertial Measurement Unit (IMU). The
control law uses optical flow calculated from the camera
images and angular measurement from IMU to ensure obstacle
avoidance and target tracking of the UAV while maneuvering
over a textured terrain made of planar surfaces. The proposed
controller has been tested in simulation as a preliminary step to
outdoor flight experiments. Both simulation and experimental
results are presented in this paper.

I. INTRODUCTION

Most of progresses in aeronautics field since the appear-

ance of aircraft are due to military applications. UAVs are

not an exception. They are born to limit losses of human

pilot lifes during recognition missions. Operation fields, that

require the use of UAV, are often urban environment. There

are also some civil applications like monitoring traffic con-

gestion, regular inspection of infrastructure such as bridges,

etc. The urban environment brings new constraints to UAV

operation. Indeed, masking of GPS signals by building walls

in the city disables its use. Moreover to follow streets, which

can be narrow, or even inside buildings UAVs need to be light

and small. Finally, UAVs can be lost during mission, which

implies cost constraint.

So, new solutions have been studied to compensate non-

availability of GPS in urban environment and to go beyond

cost and size constraints. In particular, visual servoing has

been for twenty years an important research subject in ground

robotics field and more recently in UAV field.

Visual servoing for ground applications has been exten-

sively studied. Question of docking [1] and obstacle detection

and avoidance [2], [3] have been treated. For example to

detect obstacle, methods using perspective have been set

up [4] as well as method based on optical flow [5]. In

UAV category optical flow is often used in biomimetic

approaches [6], [7], [8]. Optical flow is also used combined

with IMU measurements for stabilisation and vertical landing

problematics, [9], [10] and for terrain following applications,

[11].

Two objectives are identified in this paper. The first is the

target tracking for a VTOL UAV, the second is the obstacle

avoidance during tracking, by using vision and IMU. Image

1ONERA, Dept. of Systems Control and Flight Dynamics, Toulouse,
France, firstname.name at onera.fr

2I3S, CNRS, Sophia Antipolis, France, thamel at
i3s.unice.fr

features considered are the optical flow obtained from im-

age processing algorithms, and using additional information

provided by an embedded IMU for derotation of the flow. A

non-linear proportional type controller is designed for target

tracking. This controller is augmented with a repulsive action

via repulsive potential fields around obstacles.

To expose this work we start, in Section II, by presenting

the fundamental equations of motion for a VTOL UAV

and describing the translational optical flow that is used

as an input for the control law. Section III presents the

control strategy for target tracking and obstacle avoidance

manoeuvres. Section IV describes gain tuning and test in

simulation. Section V is about image processing algorithms

evaluation. Then, experimental results are presented in Sec-

tion VI. Finally we conclude and discuss about futur work

in section VII.

II. MODELLING

A. UAV dynamics model for control law design

The VTOL UAV is represented by a rigid body of mass

m and of tensor of inertia J . To describe the motion of the

UAV, two reference frames are introduced: an inertial frame

FI fixed on the ground and associated with the vector basis

[ex, ey, ez] and a body-fixed frame FB attached to the UAV

at the center of mass and associated with the vector basis

[ebx, e
b
y, e

b
z].

A translational force F and a torque Γ are applied to the

UAV. The translational force F combines thrust, lift and

drag. The gravitational force can be separated from F . For

a miniature VTOL UAV in quasi-stationary flight, one can

reasonably assume that the aerodynamic forces are always

in direction ebz , since the lift predominates on the other

components. Let ξ, v, be the UAV position and velocity in

FI , R the rotation matrix from FB to FI and Ω the angular

velocity in FB . Then, the UAV dynamics can be written as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ̇ = v

mv̇ = F +mgez, F = RTebz

Ṙ = R sk(Ω)

JΩ̇ = −Ω× JΩ+ Γ

(1)

with T the rotor thrust and g the gravity. sk(.) denotes the

skew-symetric matrix representing cross-product.

The VTOL UAV is equipped with a minimum sensor

suite, IMU which provides Ω and R, and a camera. For the

rotational dynamics of the UAV, a high gain controller is

used to ensure that the orientation R of the UAV converges

19

IROS Workshop on Visual Control of Mobile Robots (ViCoMoR 2012)
October 11th, 2012, Vilamoura, Algarve, Portugal

19

to the desired values. The resulting control problem is then

simplified to:

ξ̇ = v, mv̇ = F +mgez (2)

Thus in the part III, only the control of the translational

dynamics (2) is considered and the direct control input, u =
F . This common approach is used in practice and can be

justified theoretically using singular perturbation theory [12].

B. Translational optical flow for visual servoing

The translational optical flow on a spherical image, under

the following assumptions is presented in the sequel.

Assumption 1:
• The camera is positioned at the UAV center of mass,

with its orientation aligned with FB and the optical axis

is ebz ,

• Points of the environment are stationary in the inertial

frame. Thus, motion of the environment points appeared

on images depends only on motion of the camera,

• Surface observed is textured and plane.

The choice of using spherical image is based on the

passivity-like property discussed in [13] and the fact that

it is possible to convert optical flow and points position in a

plane image to a spherical image [14].

FB

P

p

ebx

eby

ebz

Spherical Image

W 2

(optical axis)

Fig. 1. Spherical Image

Let P = (X,Y, Z)T be the position of a point on

the surface observed expressed in FB . Figure 1 shows its

projection on a unit radius spherical image f = 1. The

projection equation is given by:

p =
P

|P | (3)

where |.| denotes the Euclidean norm.

Introducing the normal direction η, expressed in FB , to

the surface, the distance to its surface can be written:

d =< P, η >= |P | < p, η > (4)

where <.,.> is the inner product. As defined in [15], the

translational optical flow is:

w = −v

d
= RQ−1(q̇ +Ω× q) (5)

where,

q =
n∑

i=1

pi (6)

with pi the set of points on W 2 (Fig.1), a section of the

image. The square matrix Q is defined by :

q̇ =
n∑

i=1

ṗi

= −Ω× q −
n∑

i=1

(
I − pip

T
i

)
< pi, η > RT v

d

= −Ω× q −QRT v

d

(7)

III. TARGET TRACKING AND OBSTACLE

AVOIDANCE

A. Target tracking

In this section a control design for target tracking is

proposed. Let call target a point of the environment that the

UAV has to join. This control law is inspired by [9]. The

translational optical flow and the target position on the image

are used as an input. The target is a point on the horizontal

and plane ground (Rη = ez). Its coordinates expressed in

FI are IP . The target error expressed in FB is thus

P = RT (IP − ξ) (8)

Its projection on the spherical image is denoted p ans is

merged with the target location within the image.

Proposition 3.1: Consider the dynamics (2) and assume

that the thrust vector u = F is the control input chosen as

follows:

u = −mgez +mkP (w + kIRp), kP , kI > 0 (9)

The proof that ∀t, d(t) > 0 and hence the linear velocity and

the position of the UAV converges asymptotically towards

zero, is done by using a Lyapunov function. The proof is

not presented here but will be the object of a future article.

B. Obstacle avoidance

In this section an obstacle avoidance control design is

proposed augmenting the previous target tracking control

law. The control law is inspired by [3] and the potential

field theory.
1) Avoiding a unique obstacle: First, consider only one

obstacle. Let Po be a point on the obstacle surface, its

position on the spherical image is named po and Bo be the

spherical influence area around the obstacle, in which it is

repellant, see Figure 2.

Assumption 2: The target position and the UAV initial

position are not inside Bo.

Assumption 3: Obstacle is spherical and its volume is

small, so the approximation po = ηo can be made, with

ηo the normal direction to the obstacle. To compute the

translational optical flow of the obstacle, the surface around

Po is considered locally plane.

The distance to the obstacle can be writen as follows :

do =< Po, ηo >= |Po| (10)

As defined in (5) the translational optical flow of the obstacle,

wo, is :

wo = − v

do
(11)

20

The relative speed to the obstacle in the normal direction can

be written as:

ḋo
do

=
1

do

(
ηTo Ṗo + η̇To Po

)
= ηTo R

Two

(12)

Since ηo = po, the control law hereafter uses an integration

of pTo R
Two to compute ln(do/do(0)) up to a constant.

po

ηo

Po

RB

Bo

αdo(0)

Fig. 2. Obstacle configuration

Proposition 3.2: Consider the dynamics (2) and assume

that the thrust vector u = F is the control input chosen as

follows:{
γ̇ = pTo R

Two, γ(0) = −ln(α)

u = −mgez +mkP (w + kIRp) +mkof(γ)Rpo
(13)

with, 0 < α < 1, kP , kI , ko > 0, and f(γ) = min(γ, 0).
Then, the UAV is ensured to avoid the obstacle, to get out

of Bo, the repulsive sphere of radius αdo(0) in a finite time

if it enters in, to do never go back in Bo, and to converge

asymptotically to the target if

ko >
kIkP |P (0)|+ v(0)T v(0)

αdo(0)
(14)

This constraint depending on the initial distance to the

obstacle, UAV initial condition, and control gain of target

tracking, determines how important has to be the repulsion.

The proof is not presented here but will be the object of a

future article.

2) Avoiding more than one obstacle: Considering more

than one obstacle and calling Boi the influence sphere around

the ith obstacle.

Assumption 4: Boi doesn’t intersect an other influence

sphere Boj , ∀i �= j, otherwise they are merged in a unique

repulsive sphere. Boi doesn’t contain the target, ∀i.
As in previous section, the distance to the ith obstacle can

be written as follow :

doi = |Poi | < poi , ηoi > (15)

Using (5), the translational optical flow of the ith obstacle,

woi is

woi = − v

doi
(16)

and the relative speed normal to the ith obstacle,

ḋoi
doi

= ηToiR
Twoi (17)

Proposition 3.3: Consider the dynamics (2) and assume

that the thrust vector u is the control input chosen as follows⎧⎪⎨
⎪⎩

γ̇i = pToiR
Twoi , γi(0) = −ln(αi)

u = −mgez +mkP (w + kIRp) +mkoi

n∑
i=1

f(γi)Rpoi

(18)

with, 0 < αi < 1 and kP , kI , koi > 0.

Then, the UAV is ensured to avoid each obstacle, to get

out of each Boi in a finite time if it enters in, to do never

go back in, and to converge asymptotically to the target if

koi >
kIkP |P (0)|+ v(0)T v(0)

αdoi(0)
(19)

The proof is not presented here but will be the object of a

future article.

IV. TEST IN SIMULATION

Control laws presented in part III are tested in simulation.

First, the control gain are determined by considering the

translational controlled dynamics for target tracking :

dξ̈ + kP ξ̇ + kP k
′
Iξ = 0 (20)

where k′I = kI < p, η >. Choosing a double pole at -0.5

and that for d∗=5m the damping ratio be 0.7. Solving the

following equations,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k2P − 4dkP k
′
I = 0

−kP
2d

= −0.5√−k2P + 4d∗kP k′I
−kP

= −1

(21)

it comes kP =2.5 and k′I=0.25.

Figure 3 shows the architecture of the simulator that

includes in the complete UAV dynamics (1).

Control input are T, φc, θc and can be expressed as

following:
T = |u|
φc = atan

(
uy

|uz|
)

θc = −atan

(
ux

|uz|
)

ψc = 0

(22)

The attitude controller on the ONERA UAV is :

Γ = k1

⎛
⎝
⎛
⎝φc − φ

θc − θ
ψc − ψ

⎞
⎠− k2Ω

⎞
⎠ (23)

with k1 = 3 and k2 = 960.

Figure 4 presents simulation results of UAV position and

velocity for the target tracking with the initial conditions :

ξ(0) = [20; 20;−20], v(0) = [0; 0; 0]. The skid height is

taken into account so simulation stops when the center of

mass reach the height of 20 cm. Note that for the target

tracking orientation dynamics introduce a difference between

trajectory and velocity in (x, y) and in z. The maximum

21

θc, φc

ψc = 0

Ω
Γ

UAV

dynamics

Attitude

T

R

w,p Control

lawf(γ)wo,

Creation of

Visual

Variables

Controller

Fig. 3. UAV complete dynamics simulator

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

t(s)

(m
)

UAV position

x
y
z

0 2 4 6 8 10 12 14 16 18

−2.5

−2

−1.5

−1

−0.5

0

0.5

t(s)

(m
/s

)

UAV velocity

x

y

z

Fig. 4. UAV position and velocity

impact velocity of the UAV on the ground has to be 0.5m/s,

this constraint is respected, see Figure 4 and 5.

Figure 5 is that for the obstacle avoidance with ko = 21
and α = 0.5/do(0). Initial conditions are the same that

for target traking, and the obstacle position in FI is Po =
[3; 3;−2.5]. UAV 3D trajectory is shown in figure 6. The

UAV reaction during the obstacle avoidance is slow due to

the delay introduced by the orientation dynamics.

Figure 7 is the simulation results of target tracking with

measurement noise on optical flow. The white noise intro-

duced is based on noise estimation presented in the next

part. Even with the noise the target tracking and obstacle

avoidance is correctly realised.

Moreover, in the simulator the simulation stops when the

target get out of the camera field of view. Because the

control imposes a 3D deplacement with a constant slope

and considering initial condition v(0) = 0, it is possible

to determine the domain of acceptable UAV initial positions

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

t(s)

(m
)

UAV position

x
y
z

0 2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

t(s)

(m
/s

)

UAV velocity

x

y

z

Fig. 5. UAV position and velocity in obstacle avoidance scenario

0 2 4 6 8 10 12 14 16 18 200

10

20
0

2

4

6

8

10

12

14

16

18

20

x(m)y(m)

z(
m

)

UAV trajectory

Initial Cond.

Obstacle

target

Obstacle point

Repulsion area

Fig. 6. UAV 3D trajectory with aobstacle avoidance and zoom on the
repulsive area

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

14

16

18

20

t(s)

(m
)

UAV position

x
y
z

0 2 4 6 8 10 12 14 16 18 20 22
−2.5

−2

−1.5

−1

−0.5

0

0.5

t(s)

(m
/s

)

UAV velocity

x

y

z

Fig. 7. Target tracking with noisy w,v(0) = 0, ξ(0) = [4; 4;−20]

for which the target stays in the camera field of view, see

Figure 8.

V. IMAGE PROCESSING

This part presents the study of the image processing algo-

rithms and their ouput. The precision of the measurements

and the impact of the hypothesis previously made are studied.

Image processing algorithms are runned on images of the

onboard camera, recorded during flight test. The camera

embedded on the ONERA VTOL UAV is a plane camera.

In the sequel are considered only image processing func-

tions that yield to algorithms estimating affine deplacement

between images. Calling p the coordinates of a point in

the previous image, p′ in the currant image, A|b the affine

deplacement matrix and H the homographic matrix. The

affine deplacement can be written

p′ =
(
A b
0 1

)
p = Hp (24)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

20

25

30

x,y

|z
|

Target−in−the−field−of−view domain of initial positions

Fig. 8. Initial position from where target stays in the field of view

22

0 20 40 60 80 100 120 140 160 180 200
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

t(s)

A11

OpenCV
 EVA
inertial

0 20 40 60 80 100 120 140 160 180 200

−0.05

0

0.05

t(s)

A12

OpenCV

 EVA

inertial

0 20 40 60 80 100 120 140 160 180 200
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

t(s)

A21

OpenCV
 EVA
inertial

0 20 40 60 80 100 120 140 160 180 200
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

t(s)

A22

OpenCV
 EVA
inertial

0 20 40 60 80 100 120 140 160 180 200
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

t(s)

b
1

OpenCV

 EVA

inertial

0 20 40 60 80 100 120 140 160 180 200
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

t(s)

b
2

OpenCV
 EVA
inertial

Fig. 9. A|b and A∗|b∗

There exists a difference between real affine deplacement

A|b and its estimation named A∗|b∗. The relation between

A|b and A∗|b∗ is modeled as

A∗ = A+ ēA + σAν

b∗ = b+ ēb + σbν
(25)

where, ν is a white noise, ēA,b and σA,b are respectively the

mean of error and the standard deviation of error on A or b.

Two image processing algorithms are compared to de-

termine the most adapted to obtain A∗|b∗. The first uses

OpenCV, an open source library of image processing func-

tions. The second uses EVA a library equivalent to OpenCV

developped by the ONERA/DTIM department. Both algo-

rithms, the one based on OpenCv functions and the one

based on EVA functions, provide affine deplacement between

consecutive images. Steps that conduce to affine deplacement

estimation are: feature point extraction from the previous and

current image, matching of the two sets of points based on

descriptor, estimation of the affine deplacement.

Figure 9 presents the value of A|b obtained from GPS

measurement, considered as true, and their estimations A∗|b∗
obtained with the image processing algorithm based on

OpenCV functions and with the image processing algorithm

based on EVA functions. These datas have been obtained

from flight experimental measurements recorded during a

representative trajectory of target tracking.

Algorithm Term of A|b Mean of error Standard deviation
EVA Axx -1.1543e-04 0.0022

Axy 1.4080e-04 0.0032
Ayx -2.0342e-04 0.0034
Ayy 3.6142e-04 0.0038
bx -0.0391 2.0141
by 0.9360 2.9976

OpenCV : Axx 0.0025 0.0110
Harris Axy -7.8512e-04 0.0114
+ Ayx 9.7957e-04 0.0120
EstimateRigidTransform Ayy -5.3694e-04 0.0116

bx -0.0413 2.0106
by 0.9741 3.0523

TABLE I

MEAN OF ERROR AND STANDARD DEVIATION

Table I shows mean and standard deviation of error of each

componant of A and b. ēA,b and σA,b have been calculated

from datas presented on the Figure 9, in the case of OpenCV

based image processing algorithm and on EVA based image

processing algorithm. During this test it has been noticed

that the calculation time for the entire operation chain on a

200x200 section of image is about 60ms for EVA and 20ms

for OpenCV.

For flight experiment in section IV image processing

algorithm based on EVA will be used because it is the more

accurate of the two algorithms.

Moreover, it is possible to link A|b to w writing theo-

retically the affine deplacement. Let Z be the distance to

the ground along the optical axis and V = (Vx, Vy, Vz)
T

and bΩ be the velocity and the angular velocity in FB and

considering that the center of the image section, on which

the image processing algorithm is used, coincides with the

center of the entire image, it comes (24) with

A = I +

(
Vz

Z −Ωz

Ωz
Vz

Z

)
dt (26)

and

b = f

(
Ωy − Vx

Z

−Ωx − Vy

Z

)
dt (27)

Remark that because Ω = (Ωx,Ωy,Ωz)
T is measured, it

is possible to isolate from A|b the term V
Z . Using previous

assumption of plane and horizontal ground it is possible to

link V
Z to w. In reality A∗|b∗ are estimated so it is possible

to estimate w∗, that will be used in the control laws.

w∗ = R

⎛
⎝ 1

f.dtb
∗ −

(
Ωy

−Ωx

)
1−A∗

11

dt

⎞
⎠ (28)

where A∗
11 is the first row and first column coefficient of the

A∗ matrix. Because A∗|b∗ is noisy w∗ is too. A discrete low

pass filter is used to filter w∗ .

VI. EXPERIMENTAL RESULTS

In order to realise the final scenario of target tracking and

obstacle avoidance a plan of experiments is built. First, the

work consists in testing control laws in the horizontal plane,

the vertical control is managed by a control law using GPS

23

Fig. 10. ONERA RMAX UAV

0 5 10 15 20
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

w
x

w
x

flow order

0 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

w
y

w
y

flow order

Fig. 11. Experimentation result of constant optical flow in x

datas. Then, the scenario is to move on the x axis with a

constant optical flow. Second step is to run the horizontal

target tracking. After that the vertical landing is tested to

finally run the entire scenario of target tracking in 3D. Then,

the same steps are realised with obstacle avoidance. The first

step of this plan of experiments is presented in this part. For

a move on the x axis with a constant optical flow the control

law (9) is reduced to ux and uy the two first componants of

the control u :

ux = mkP (wx + α)

uy = mkP (wy + kI

∫
wy)

(29)

where wx, wy are the two first componants of w and α =
0.15 is the constant optical flow order in x. Initial conditions

of the experiment are v(0) = 0, ξ(0) = (0, 0,−20). The

experiments are realized with an YAMAHA RMAX, Figure

10, on which are embedded the IMU, the camera and a

PIP22 allowing the image processing and the control to

be embedded. Figure 11 shows that the optical flow in x
reaches its reference value. Because the UAV is at the same

height during the flight and the ground is horizontal the

UAV velocity reaches a constant value, see Figure 12. This

experimentation shows that it is possible to control VTOL

UAV in real time using optical flow, with an embedded

camera and image processing system. Other parts of the plan

of experiments are in progress so they are not presented here.

VII. CONCLUSION

This paper presented a nonlinear controller for obstacle

avoidance and target tracking of a VTOL UAV using the

measurement of optical flow along with the IMU data. The

proposed control algorithm has been tested in simulation in

different scenarios to demonstrate the performance of the

closed loop system. And a first experimental result shown

0 5 10 15 20 25
−2

0

2

4
UAV velocity

v
x

velocity order

0 5 10 15 20 25
−1

−0.5

0

0.5

v
y

velocity order

Fig. 12. UAV velocity during first experiment

that it was possible to achieve a closed-loop flight. As a futur

work, we would like to complete experimental results with

the entire scenario of target tracking and obstacle avoidance.

REFERENCES

[1] J. Santos-Victor and G. Sandini, “Visual behaviors for docking,”
Computer Vision and image understanding, vol. vol 67, pp. pp 223–
238, September 1997.

[2] J. Vanualailai, B. Sharma, and S. ichi Nakagiri, “An asymptotically
stable collision-avoidance system,” International Journal of Non-
Linear Mechanics, vol. 43, pp. 925–932, 2008.

[3] E. P. Jiangmin Chunyu, Zhihua Qu and M. Falash, “A new reactive
target-tracking control with obstacle avoidance in a dynamic environ-
ment,” in American Control Conference, 2009.

[4] N. Simond, “Obstacle Detection from IPM and Super-Homography,”
in IEEE IROS 2007 / International Conference on Intelligent Robots
and Systems, (San Diego, California / USA United States), IEEE
Intelligent Robots and Systems, 10 2007.

[5] J. Santos-Victor and G. Sandini, “Visual-based obstacle detection. a
purposive approach using the normal flow,” Intelligent Autonomous
Systems, 1995.

[6] J. S. Humbert and A. M. Hyslop, “Bioinspired visuomotor conver-
gence,” Trans. Rob., vol. 26, no. 1, pp. 121–130, 2010.

[7] J.-C. Zuffereyy, BIO-INSPIRED VISION-BASED FLYING ROBOTS.
PhD thesis, EPFL, 2005.

[8] F. Ruffier and N. Franceschini, “Octave, a bioinspired visuo-motor
control system for the guidance of micro-air vehicles,” in Conference
on Bioengineered and Bioinspired Systems, 2003.

[9] B. Herisse, F.-X. Russotto, T. Hamel, and R. Mahony, “Hovering flight
and vertical landing control of a vtol unmanned aerial vehicule using
optical flow,” in IEEE/RSJ Internationnal Conference on Intelligent
Robots and Systems, 2008.

[10] B. Herisse, T. Hamel, R. Mahony, and F.-X. Russotto, “Landing a
VTOL Unmanned Aerial Vehicle on a moving platform using optical
flow,” Automatica, 2010.

[11] B. Herisse, T. Hamel, R. Mahony, and F.-X. Russotto, “A nonlinear
terrain following controller for a vtol unmanned aerial vehicule using
translationnal optical flow,” in ICRA, Kobe, Japan, 2009.

[12] H. K. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[13] T. Hamel and R. Mahony, “Visual servoing of an under actuated

dynamic rigid-body system: An image-based approach,” IEEE Trans-
actions on robotics and automation, vol. vol 18, pp. pp 187–198, April
2002.

[14] R. F. Vassallo, J. Santos-victor, and H. J. Schneebeli, “A general
approach for egomotion estimation with omnidirectional images,” 3rd
Workshop on Omnidirectional Vision, pp. 97–103, 2002.

[15] R. Mahony, P. Corke, and T. Hamel, “Dynamic image-based visual
servo control using centroid and optic flow features,” Journal of
Dynamic Systems, Measurement and Control, vol. vol 130, pp. pp
011005–1–011005–12, January 2008.

24

Homography based visual odometry with known vertical direction and
weak Manhattan world assumption

Olivier Saurer, Friedrich Fraundorfer, Marc Pollefeys

Computer Vision and Geometry Lab, ETH Zürich, Switzerland

Abstract— In this paper we present a novel visual odometry
pipeline, that exploits the weak Manhattan world assumption
and known vertical direction. A novel 2pt and 2.5pt method
for computing the essential matrix under the Manhattan world
assumption and known vertical direction is presented that im-
proves the efficiency of relative motion estimation in the visual
odometry pipeline. Similarly an efficient 2pt algorithm for
absolute camera pose estimation from 3D-2D correspondences
is presented that speeds up the visual odometry pipeline as
well. We show that the weak Manhattan world assumption and
known vertical allow for direct relative scale estimation, without
recovering the 3D structure. We evaluate our algorithms on
synthetic data and show their application on real data sets
from camera phones and robotic micro aerial vehicles. Our
experiments show that the weak Manhattan world assumption
holds for many real-world scenarios.

I. INTRODUCTION

The Manhattan world assumption is a very strong re-

striction to a general 3D scene. And yet this assumption is

fulfilled for many scenes that contain man-made architectural

structures, at least partially. The assumption especially holds

true for indoor environments, and also for urban canyons

of modern cities. This was successfully demonstrated and

exploited in a variety of recent papers [1], [4], [5]. In this

work we will refer to the weak Manhattan world, describing

a world consisting of vertical planes which are arbitrary

oriented around the vertical direction. They are not required

to be orthogonal to each other. The only restriction is, that

vertical planes are parallel to the gravity vector and the

ground planes are orthogonal to the vertical direction.

Especially visual odometry [16] can benefit at a high

degree from the Manhattan world assumption. Visual odom-

etry is the means of ego motion estimation of e.g. mobile

robots fitted with cameras. One computational bottleneck

of visual odometry is the robust motion estimation using

RANSAC [2]. The computational complexity of RANSAC

depends exponentially on the number of data points needed

for hypothesis generation, for unconstrained motion in 3D

this would mean 5 data points (feature correspondences)

using the 5pt essential matrix algorithm [14]. Constraints on

the robot motion (e.g. planar motion), on the environment or

using additional sensor data however can reduce the number

of necessary data points and make RANSAC more efficient,

which is important to achieve real time performance. For

the case of a planar motion assumption, which is true

for many mobile robot applications, two point correspon-

dences are sufficient to compute an egomotion hypothesis

for RANSAC [15].

�������	
��������

��������
�������

�

�

�

�

�

�

Fig. 1. Knowing the vertical direction, e.g. by measuring the gravity vector
with an IMU or from vanishing points, the image can be rotated such that
the y-axis of the camera matches the vertical direction. Under the weak
Manhattan world assumption this aligns the x-z-plane of the camera with
the ground plane and the y-axis with the vertical direction of walls.

In this work we will present two novel relative pose

algorithms and a novel absolute pose algorithm which ex-

ploits the weak Manhattan world assumption and additionally

takes advantage of the knowledge of the vertical direction

of the scene structure in the images. The known vertical

direction and the assumptions about the environment lead

to a simpler formulation for relative 5DOF camera motion,

in particular to a 2pt algorithm and a 2.5pt algorithm, in

contrast to the standard 5pt method. For successive 6DOF

camera pose estimation from 3D-2D matches we propose a

new 2pt method, exploiting the known vertical direction.

The vertical direction can be computed from image fea-

tures, but also from an inertial measurement unit (IMU)

(which e.g. measures the earth’s gravity vector) attached to

a camera. This is the case for almost every state-of-the-art

smart phone (e.g. IPhone, Google Nexus S, Nokia N900..)

which are all equipped with a camera and an IMU. We

conduct synthetic experiments to evaluate the proposed al-

gorithms under different image noise and IMU measurement

noise and compare the results to the standard 5-pt relative

pose and the 3-pt relative pose with known vertical direction

algorithm. We further demonstrate the proposed algorithms

on real data from camera phones (which come with IMU

sensors) and show visual odometry results for a robotic

micro aerial vehicle. The experiments show that the weak

Manhattan world assumption holds and can be exploited in

real-world scenarios.

II. RELATED WORK

Early results on coupling inertial sensors (IMU) and cam-

eras and using the measured gravity normal for ego-motion

25

IROS Workshop on Visual Control of Mobile Robots (ViCoMoR 2012)
October 11th, 2012, Vilamoura, Algarve, Portugal

25

estimation have been discussed in [17] or [11]. Most closely

related to our paper are the works of [3], [7]. In [3] the

authors present an algorithm to compute the essential matrix

from 3pt correspondences and a known gravity vector, e.g.

from an IMU measurement. This 3pt formulation can speed

up RANSAC significantly compared to the standard 5pt

algorithm. In [7] vision and IMU information is combined

in a similar way to find new algorithms for absolute pose

estimation. More recently [8] proposed to combine IMU

and vision data from monocular camera to incrementally

accumulate the motion and reconstruct the camera trajectory.

The incremental approach requires integration of the IMU

data over time and is brittle towards IMU inaccuracy.

The Manhattan world assumption [1] has recently been

picked up again and successfully been used for multi-view

stereo [5], the reconstruction of building interiors [4] and

also for scene reconstruction from a single image only [9]. In

this paper we combine both ideas, the IMU-vision fusion and

a weak Manhattan world assumption. Similar to [3], [7] but

now for the case of homographies we derive a formulation for

relative motion under weak Manhattan world constraints and

a formulation for absolute pose. A similar idea for egomotion

estimation has also been described in [12] where the authors

derive a homography for vertical walls under a planar motion

constraint. However, in our formulation the relative motion

is not restricted to motion on a plane.

III. RELATIVE AND ABSOLUTE POSE ESTIMATION

Knowing the vertical direction in images will simplify the

estimation of camera pose and camera motion, which are

fundamental methods in any odometry pipeline. It is then

possible to align every camera coordinate system with the

measured vertical direction such that the y-axis of the camera

is parallel to the vertical direction and the x-z-plane of the

camera is orthogonal to the vertical direction (illustrated in

Fig. 1). Under the Manhattan world assumption this means

that the x-z-plane of the camera is now parallel to the world’s

ground plane and the y-axis is parallel to vertical walls. This

alignment can just be done as a coordinate transform for

motion estimation algorithms, but also be implemented as

image warping such that feature extraction method benefit

from it. Relative motion between two such aligned cameras

reduces to a 3-DOF motion, which consists of 1 remaining

rotation and a 2-DOF translation vector. The absolute camera

pose for aligned camera has 4-DOF, again 1 remaining

rotation and a 3-DOF translation vector.

The algorithms for estimating the relative pose are derived

from computing a homography between a plane in two

images and decomposing it. After incorporating the Man-

hattan world constraint, which restricts the possible planes

to vertical and horizontal ones, and after incorporating the

vertical direction, which decreases the DOF of the camera

orientation, the parameterization of a homography is greatly

simplified. This simplification leads to a 2pt and a 2.5pt algo-

rithm for computing homographies and closed form solutions

for the decomposition. The homography is represented by

H = R+
1

d
tTn, (1)

where R = RyRxRz is a rotation matrix representing the

relative camera rotations around the x, y, and z-axis, t =
[tx, ty, tz]

T represents the relative motion, n = [nx, ny, nz]
T

is the plane normal and d is the distance from the first

camera center to the plane. In all our derivations, the camera-

plane distance is set to 1 and absorbed by t. With the

knowledge of the vertical direction the rotation matrix R
can be simplified such that R = Ry by pre-rotating the

feature points with RxRz, which can be measured from the

IMU or vanishing points. Under the weak Manhattan world

assumption additionally the parameterization of the plane

normal n can be simplified, to be only vertical or horizontal

planes.

A. 2pt relative pose for known plane normal

The following algorithm is able to compute the relative

pose given 2pt correspondences and the normal of the

plane on which the points reside. The derivation will be

carried out for a vertical plane but works similar for planes

parameterized around other axis.

The homography for a vertical plane can be written as

H = Ry + [tx, ty, tz]
T [nx, 0, nz] (2)

where the normal vector is parametrized by nx = sin(φn)
and nz = cos(φn). The homography then writes as

H =

⎡
⎣cos(φy) + nxtx 0 sin(φy) + nztx

nxty 1 nzty
nxtz − sin(φy) 0 cos(φy) + nztz

⎤
⎦ (3)

=

⎡
⎣h11 0 h13

h21 1 h23

h31 0 h33

⎤
⎦ (4)

To solve for the 6 entries of H we solve x′ × Hx = 0,

where x = [x y 1]T and x′ = [x′ y′ 1]T are the point

correspondences. By using this relation we get rid of the

unknown scaling factor of the homography. Knowing nx and

ny leads to one additional linear constraint in the entries of

the homography, h23 = nx/nzh21.

This leaves 5 entries in H to be estimated. Each point cor-

respondences gives 2 inhomogeneous linearly independent

equations of the form Ah = b,

[
0 0 −x− nx

nz
xy′ y′

−xy′ −y′ xx′ + nx

nz
x′ 0 0

]
h =

[
y

−x′y

]
(5)

where h = [h11 h13 h21 h31 h33]
T .

Using 2 point correspondences this gives 4 equations

which is a deficient-rank system. The solution is h =
Vy+wv (see [6]) where svd(A) = UDVT and v is the last

column vector of V. The vector y is computed by yi = bi/di
where di is the i− th diagonal entry of D and b′ = UTb.

26

This leaves the unknown scalar w which can be computed

from the additional constraint, that one of the singular values

of the homograph has to be one (i.e., det(HTH − I) = 0,

see [13]). By substituting h = Vy + wv for the entries of

H. The determinant is a 4th order polynomial in w which

results in 4 solutions for H.

If the plane normal is not known one can sample the ratio

nx/nz . Each sample represents a hypothesis in the RANSAC

loop that are then tested against the other points. Having

multiple hypothesis is better than computing the orientation

with one additional point sample since this has only a linear

instead of an exponential impact on the RANSAC iterations.

Knowledge about the approximate orientation of the wall

relative to the camera will reduce the number of hypothesis,

for example the case when the camera is moving along a

corridor it is not always necessary to sample the full 360 deg
for the side walls.

The such parameterized homography can easily be de-

composed in the rotation and translation parameters of the

relative motion. First step is a proper normalization of the

up to scale homography, by dividing it by h22. h22 needs to

be 1 according to Eq. 3. Using the relation n2
x + n2

z = 1, ty
can be obtained from h21 and h23 by ty = ±(h2

21 + h2
23)

1
2

which gives two solutions for ty which differ in the sign. The

normal can then be computed as follows that nx = h21/ty
and nz = h23/ty . Two pairs of the normal have to be

computed for the two ty . Next we can compute sin(φy) from

a quadratic in the entries h11, h13, h21, h23 and the cos(φy) is

obtained from the relation sin(φy)
2 + cos(φy)

2 = 1. Finally

tx and tz are obtained as tx = (h11 − cos(φy))/nx and

tz = (h33 − cos(φy))/nz .

B. 2pt relative pose for ground plane

This derivation is a special case of the previous one and

will work for points on the ground plane. The normal of

the ground plane is n = [0 1 0]T . This leads to an again

simpler formulation for the homography and only 2 point

correspondences are enough to compute the full homography.

The homography for the ground plane can be written as:

H = Ry + [tx, ty, tz]
T [0, 1, 0]

The entries of H are then

H =

⎡
⎣ cos(φy) tx sin(φy)

0 ty + 1 0
− sin(φy) tz cos(φy)

⎤
⎦ (6)

=

⎡
⎣ h11 h12 h13

0 h22 0
−h13 h32 h11

⎤
⎦ (7)

Because of 2 linear constraints in the entries of H , H has

only 5 unknowns, for which can linearly be solved using 2

point correspondences. Each point gives 2 constraints of the

form Ah = 0,

[
y′ 0 −xy′ −y yy′

−xy′ −yy′ −y′ x′y 0

]
h = 0 (8)

where h = [h11 h12 h13 h22 h32]
T .

The rotation and translation parameters of the relative

motion can be read off the homography matrix directly,

after proper normalization. Inspection of H shows that the

following relation h2
11 + h2

13 = 1 has to be fulfilled. The

proper normalization is by dividing H by (h2
11+h2

13)
1
2 . The

rotation matrix R and the translation vector t are then:

t = [h12, h22 − 1, h32]
T , R =

⎡
⎣ h11 0 h13

0 1 0
−h13 0 h11

⎤
⎦(9)

C. 2.5pt relative pose with unknown plane normal
The 2.5pt algorithm is an extension of the 2pt described

in section III-A. The homography is designed as in Eq 2.

However, when the plane normal n is not known we can’t

make use of the same linear constraint, thus all the 6

parameters of H have to be estimated. To do this, one more

equation is needed which can be taken from a third point.

Thus we stack the constraint equations of 2 points and 1 of

the equations from a third point into an equation system of

the form Ah = b. The two equations from one point are as

follows:

[
0 0 −x −1 xy′ y′

−xy′ −y′ xx′ x′ 0 0

]
h =

[
y

−x′y

]
(10)

where h = [h11 h13 h21 h23 h31 h33]
T .

As in section III-A the solution to this system is of the

form h = Vy + wv. The unknown scalar w can again

be computed from the additional homography constraint

det(HTH − I) = 0 (see [13]). The determinant is a 4th

order polynomial in w which results in 4 solutions for H.
The interesting fact in this case is that we used only 1

equation of the 2 available ones for computing the homog-

raphy. While in a RANSAC loop it is however necessary to

sample 3 points for this method, it is now possible to do a

consistency check on the 3 point correspondences. To be an

outlier free sample the one remaining equation has also to

be fulfilled by the estimated homography. This can easily be

tested and if it is not fulfilled the hypothesis is discarded.

This gives a computational advantage over the standard 3pt

essential matrix method [3], because inconsistent samples

can be detected without testing on all the other point corre-

spondences.

D. 2pt absolute pose
With known vertical the absolute pose problem gets sim-

plified as well and it is possible to compute the remaining

4DOF absolute pose from 2 3D-2D point correspondences.

Here we again assume that the camera is pre-rotated by the

vertical direction so that the x-z plane is parallel to the

ground plane. The camera matrix is defined as P = [R t]
which results in

P =

⎡
⎣ cos(φy) 0 sin(φy) tx

0 1 0 ty
−sin(φy) 0 cos(φy) tz

⎤
⎦ . (11)

27

There are 4 unknowns which are the rotation angle around

the y-axis and one 3D translation vector. Using the relation

x×PX = 0 we can solve for these unknowns, where X is

a homogeneous 3D point of the form X = [X Y Z 1] and x
is an image point x = [x y 1]. One 3D-2D correspondence

gives 2 linearly independent equations of the form

[
yZ −yX 0 −1 y
−yX −yZ −y x 0

]
p =

[
Y

−xY

]
(12)

where p = [cos(φy) sin(φy) tx ty tz]
T . 2 point correspon-

dences give an equation system with 4 equations. Variable

elimination can be used to find expressions for tx, ty, tz and

eliminate it from the remaining 4th equation. The remaining

equation is in cos(φy) and sin(φy) only and the additional

constraint cos(φy)
2 + sin(φy)

2 = 1 can be used to get an

expression in sin(φy). It is quadratic in sin(φy) and can

be solved in closed form. Then the other parameters can

be found by back-substitution, which leads to 2 solutions

for the camera pose. A similar approach has been described

in [7], however for our derivation we assume pre-aligned

feature correspondences, while in [7] the measured angles of

the IMU are included in the equation system. Furthermore

our angles are parameterized in sin and cos while in [7] a

representation with tan is used.

IV. RELATIVE SCALE ESTIMATION WITHOUT 3D

STRUCTURE RECOVERY

The formulation of the homography induced by the ground

plane Eq. 1 encodes the inverse distance d of the first camera

to the plane. Assuming the ground plane is visible over all

views, the relative scale can be propagated between views

over the plane. The computation of the homography assumes

the distance to the ground plane to be 1, as formulated in

Eq. 1. The actual distance between the first camera and the

ground plane ise encoded in the translation vector of the

camera (i.e., y-component of the camera). This distance can

then be used to rescale the relative translation vector of the

second camera. The implicit encoding of the scale in the

homography allows for direct scale estimation without the

need of a computationally expensive recovery of the 3D

structure.

V. EXPERIMENTS

We evaluate the accuracy of the presented algorithms on

synthetic data under different image noise and IMU noise.

We compare the results to the general 5pt algorithm pre-

sented in [14] and the general 3pt algorithm proposed by [3]

with two know orientation angles. Finally we demonstrate

our algorithms on our own real world datasets.

A. Synthetic evaluation

To evaluate the algorithm on synthetic data we chose the

following setup. The average distance of the scene to the first

camera center is set to 1. The scene consists of two planes,

one ground plane and one vertical plane which is parallel to

the image plane of the first camera. Both planes consist of

S
id

ew
ay

s
m

o
ti

o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Noise in Pixel

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

5pt
3pt
2pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Noise in Pixel

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

5pt
3pt
2pt

F
o
rw

ar
d

m
o
ti

o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Noise in Pixel

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

5pt
3pt
2pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Noise in Pixel

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

5pt
3pt
2pt

Fig. 2. Evaluation of the 2 point algorithm under different image noise.

S
id

ew
ay

s
m

o
ti

o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Rotation Noise in Degree (Pitch)

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

5pt
3pt
2pt

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Rotation Noise in Degree (Roll)

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

5pt
3pt
2pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Rotation Noise in Degree (Pitch)

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

5pt
3pt
2pt

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Rotation Noise in Degree (Roll)

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

5pt
3pt
2pt

F
o
rw

ar
d

m
o
ti

o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Rotation Noise in Degree (Pitch)

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

5pt
3pt
2pt

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rotation Noise in Degree (Roll)

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

5pt
3pt
2pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

10

Rotation Noise in Degree (Pitch)

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

5pt
3pt
2pt

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

Rotation Noise in Degree (Roll)

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

5pt
3pt
2pt

Fig. 3. Evaluation of the 2pt algorithm under different IMU noise and
constant image noise with 0.5 pixel standard deviation. (First row sideways
motion, second row forward motion.

200 randomly sampled points. The base-line between two

cameras is set to be 0.2, i.e., 20% of the average scene

distance, and the focal length is set to 1000 pixel, with a

field of view of 45 degrees.

Each algorithm is evaluated under varying image noise and

increasing IMU noise. Each of the two setups is evaluated

under a forward and sideways translation of the second

camera. For each configuration we randomly sample 100
cameras.

a) Relative pose:: Fig. 2 and Fig. 3 compare the 2-

point algorithm to the general 5-point [14] and 3-point

algorithms [3]. Notice, in this experiments the camera poses

were computed from points randomly drawn from the ground

plane. Since camera poses estimated from coplanar points do

not provide a unique solution for the 5pt and 3pt algorithm

we evaluate each hypothesis with all points coming from

both planes. The solution providing the smallest reprojected

error is chosen to be the correct one. This evaluation is used

in all our synthetic experiments. Similarly Fig. 4 and Fig. 5

show a comparison of the 2.5pt algorithm with the general

5pt and 3pt algorithm. Here the camera poses are computed

from points randomly sampled from the vertical plane only.

The evaluation shows that knowing the vertical direction

and exploiting the planarity of the scene improves motion

estimation. The 2pt and 2.5pt algorithms outperform the

5pt algorithm, in terms of accuracy. Under perfect IMU

measurements the algorithms are robust to image noise and

perform significantly better than the 5pt algorithm. With

increasing IMU noise their performance are still comparable

to the 5pt algorithm.

b) Absolute pose:: We compare the presented 2pt ab-

solute pose algorithm to the closed form solution proposed

in [10]. We evaluate the algorithm on different noise in the

image plane and noise in the roll and pitch measurements

of the IMU. The results are shown in Fig. 6 and Fig. 7.

With increasing image noise the absolute 2pt algorithm

28

S
id

ew
ay

s
m

o
ti

o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Noise in Pixel

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

5pt
3pt
2.5pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Noise in Pixel

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

5pt
3pt
2.5pt

F
o
rw

ar
d

m
o
ti

o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Noise in Pixel

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

5pt
3pt
2.5pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

Noise in Pixel

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

5pt
3pt
2.5pt

Fig. 4. Evaluation of the 2.5pt algorithm under forward and sideways
motion under varying image noise.

S
id

ew
ay

s
m

o
ti

o
n

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Rotation Noise in Degree (Pitch)

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

5pt
3pt
2.5pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Rotation Noise in Degree (Roll)

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

5pt
3pt
2.5pt

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Rotation Noise in Degree (Pitch)

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

5pt
3pt
2.5pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Rotation Noise in Degree (Roll)

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

5pt
3pt
2.5pt

F
o
rw

ar
d

m
o
ti

o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotation Noise in Degree (Pitch)

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

5pt
3pt
2.5pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Rotation Noise in Degree (Roll)

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

5pt
3pt
2.5pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Rotation Noise in Degree (Pitch)

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

5pt
3pt
2.5pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

3

4

5

6

7

8

9

10

Rotation Noise in Degree (Roll)

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

5pt
3pt
2.5pt

Fig. 5. Evaluation of the 2.5pt algorithm under IMU noise and constant im-
age noise with 0.5 pixel standard deviation. (First row sideways translation,
second row forward translation.

outperforms the 4pt algorithm. While with increasing IMU

noise their approach has a higher accuracy.

B. Algorithm evaluation on real data

c) Plane detection:: We evaluate our relative motion

algorithms on an image pair that contains multiple planes

and further demonstrate that the weak Manhattan world

assumption holds on real images, where vertical structures

might not be perfectly vertical due to construction or due

to IMU inaccuracies. Relative motion is computed with the

2pt algorithm as well as with the 2.5pt algorithm. The

2pt algorithm computes the relative motion from matches

found on the ground, while the 2.5pt algorithm computes

relative motion from matches found on the wall. Fig. 8

S
id

ew
ay

s
m

o
ti

o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Noise in Pixel

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

4pt
2pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Noise in Pixel

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

4pt
2pt

F
o
rw

ar
d

m
o
ti

o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Noise in Pixel

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

4pt
2pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Noise in Pixel

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

4pt
2pt

Fig. 6. Evaluation of the 2pt absolute pose algorithm under forward and
sideways motion with varying image noise.

S
id

ew
ay

s
m

o
ti

o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Rotation Noise in Degree (Pitch)

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

4pt
2pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Noise in Degree (Roll)

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

4pt
2pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Rotation Noise in Degree (Pitch)

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

4pt
2pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

4

Noise in Degree (Roll)

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

4pt
2pt

F
o
rw

ar
d

m
o
ti

o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Rotation Noise in Degree (Pitch)

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

4pt
2pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Rotation Noise in Degree (Roll)

R
ot

at
io

n
E

rr
or

 in
 D

eg
re

e

Quantile

4pt
2pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Rotation Noise in Degree (Pitch)

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

4pt
2pt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Rotation Noise in Degree (Roll)

T
ra

ns
la

tio
n

E
rr

or
 in

 D
eg

re
e

Quantile

4pt
2pt

Fig. 7. Evaluation of the 2pt absolute pose algorithm under different IMU
noise and image noise of 0.5 pixel standard deviation. (First row, sideways
translation, second row forward translation.

a)

b)

Fig. 8. a) Detected planes using the 2pt and 2.5 algorithm. b) Sample
input image and two synthetic views of the reconstructed scene using the
absolute 2pt algorithm.

shows the inlier sets of the two methods in one image. The

motion estimate from the homographies can be refined by

constructing the essential matrix of it and finding inliers

to the essential matrix (these need not be on planes) and

computing a least squares estimate of the essential matrix.

Furthermore, the detected inlier sets can be used for plane

detection.

d) Visual Odometry:: We evaluate the 2pt relative pose

on our own dataset, recorded with an IMU-camera rig of a

micro aerial vehicle. Sample images are shown in Fig. 8a).

The experiment consists of 114 images showing a forward

motion towards the front wall followed by a backwards

motion to the starting point. First, we extract SIFT features

and match them to neighboring views. Then, we compute

the relative pose between two consecutive views using the

2pt algorithm in a RANSAC scheme. Finally, the solution

with most inliers is used to form the camera trajectory by

concatenating neighboring poses. Fig. 9 compares the raw

odometry obtained from the 2pt algorithm without scaling

and without refinement to the odometry obtained after non-

linear refinement and proper scaling with the method de-

scribed in section IV.

e) 2pt absolute pose:: We integrate the 2pt absolute

pose algorithm into a standard SfM pipeline and show results

of a reconstructed scene in Fig. 8b). The 2pt absolute pose

algorithm is used to find a first inlier set from the 3d - 2d

correspondences. The full camera pose and 3d points are then

refined using bundle adjustment. The dataset was recorded

using a Nexus One smartphone, equipped with IMU and

camera.

29

−
10

−
5

0
5

0 5 10 15 20 25 30 35 40 45

x−
axis

z−axis

a)

−
10

−
5

0
5

0 5 10 15 20 25 30 35 40 45

y−
axis

z−axis

b)

−
2

−
1

0
1

0 2 4 6 8 10 12

x−
axis

z−axis

c)

−
2

−
1

0

0 2 4 6 8 10 12

y−
axis

z−axis

d)

Fig. 9. (a,c) Top view of the camera trajectory. (b,d) Side view of the
trajectory. (a,b) Non-refined trajectory obtained from the 2pt algorithm. (c,d)
Optimized and properly scaled camera trajectory. (z-axis, motion direction,
y-axis gravity direction, blue line optical axis).

VI. CONCLUSION

In this paper we presented an odometry pipeline that

exploits the weak Manhattan world assumption and takes

advantage of knowing the vertical direction in images. Our

results show that the weak Manhattan assumption holds for

real-world scenarios and can be used to derive efficient

algorithms for relative motion (2pt, 2.5pt). Furthermore our

results confirm that the vertical direction measured from an

off-the-shelf IMUs are accurate enough to be used for relative

motion estimation and absolute pose estimation (2pt).

REFERENCES

[1] J.M. Coughlan and A.L. Yuille. Manhattan world: Compass direction
from a single image by bayesian inference. In Proc. 7th International
Conference on Computer Vision, Kerkyra, Greece, pages 941–947,
1999.

[2] M. A. Fischler and R. C. Bolles. RANSAC random sampling concen-
sus: A paradigm for model fitting with applications to image analysis
and automated cartography. Communications of ACM, 26:381–395,
1981.

[3] F. Fraundorfer, P. Tanskanen, and M. Pollefeys. A minimal case
solution to the calibrated relative pose problem for the case of two
known orientation angles. In Proc. 11th European Conference on
Computer Vision, pages IV: 269–282, 2010.

[4] Y. Furukawa, B. Curless, S.M. Seitz, and R. Szeliski. Reconstructing
building interiors from images. In Proc. 12th International Conference
on Computer Vision, pages 80–87, 2009.

[5] Y. Furukawa, B. Curless, S.M. Seitz, and R.S. Szeliski. Manhattan-
world stereo. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, Florida, Miami, pages 1422–1429, 2009.

[6] R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge, 2000.

[7] Z. Kukelova, M. Bujnak, and T. Pajdla. Closed-form solutions to the
minimal absolute pose problems with known vertical direction. In
ACCV, 2010.

[8] Margarita Chli Laurent Kneip and Roland Siegwart. Robust Real-Time
Visual Odometry with a Single Camera and an IMU. Proceedings
of the British Machine Vision Conference, pages 16.1–16.11, 2011.
http://dx.doi.org/10.5244/C.25.16.

[9] D.C. Lee, M. Hebert, and T. Kanade. Geometric reasoning for single
image structure recovery. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition, Florida, Miami, pages 2136–2143,
2009.

[10] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An
accurate o(n) solution to the pnp problem. Int. J. Comput. Vision,
81(2):155–166, feb 2009.

[11] J. Lobo and J. Dias. Vision and inertial sensor cooperation using
gravity as a vertical reference. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 25(12):1597–1608, December 2003.

[12] G. López-Nicolás, J.J. Guerrero, and C. Sagüés. Multiple homogra-
phies with omnidirectional vision for robot homing. Robotics and
Autonomous Systems, 58(6):773 – 783, 2010.

[13] Ezio Malis and Manuel Vargas. Deeper understanding of the ho-
mography decomposition for vision-based control. Research Report
RR-6303, INRIA, 2007.

[14] D. Nistér. An efficient solution to the five-point relative pose
problem. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, Madison, Wisconsin, pages II: 195–202, 2003.

[15] D. Ortı́n and J. M. M. Montiel. Indoor robot motion based on
monocular images. Robotica, 19(3):331–342, 2001.

[16] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tuto-
rial] part1: The first 30 years and fundamentals. Robotics Automation
Magazine, IEEE, 18(4):80 –92, dec. 2011.

[17] T. Vieville, E. Clergue, and P.E.D. Facao. Computation of ego-motion
and structure from visual an inertial sensor using the vertical cue.
In Proc. 4th International Conference on Computer Vision, Berlin,
Germany, pages 591–598, 1993.

30

Anisotropic Vision-Based Coverage Control for Mobile Robots

C. Franco, G. López-Nicolás, D. M. Stipanović, C. Sagüés

Abstract— We consider the problem of vision-based coverage
control with a team of robots in the sense of dynamic coverage.
Therefore, the aim is to actively cover certain domain by
means of robots’ visual sensors while they navigate in the
workspace. Each robot is equipped with a conventional camera,
an anisotropic sensor modeled as a wedge-shaped region in
front of the robot. The contribution is a new algorithm for
coordinated coverage control which, weights local and global
information while avoiding local minima and obeying the
particularities of the anisotropic vision-based sensors. The
performance of the proposed technique is illustrated with
simulation results.

I. INTRODUCTION

Visual control is currently a mature field of research, nev-
ertheless it is still a very active area as new computer vision
algorithms or control techniques are being developed and
more ambitious applications are envisioned. Fundamental
concepts and basic approaches in visual servo control are
described in the tutorial [1]. More specific is the survey on
vision for mobile robot navigation presented in [2], where
visual control refers to the pose control of a vehicle in a
closed loop using the input of a visual sensor.

Although visual control and autonomous navigation for a
single robot is still an open research area, the use of mul-
tiple robots to fulfill particular tasks has been increasingly
demanding during the last decade. This is due not only to
the advances in hardware devices and commercial software
but also to the fact that multiple robots may carry out tasks
that are difficult or unfeasible for one single robot such
as exploration, surveillance, security or rescue applications.
However, not many works in the literature consider the use of
vision in the algorithm design for multi-robot systems. Some
examples of works using vision to fulfill tasks performed by
multiple mobile robots are the localization method presented
in [3], the vision-based formation control in [4] or the robot
coordination proposed in [5]. Other related works are [6], that
aims to enable groups of mobile robots to visually maintain
formations in the absence of communication, and [7], that
encapsulates the multi-robot system information in a single
homography so as to drive the team to a desired formation.

In this work, we focused on the problem of coverage
control by using a team of robots equipped with conventional

This work was supported by Ministerio de Ciencia e Innovación/Unión
Europea, DPI2009-08126, by project IPT-2011-1158-920000 of subprogram
INNPACTO from Ministerio de Economía y Competitividad, by DGA-FSE
(grupo T04), and by grant B139/2010 by DGA.

C. Franco, G. López-Nicolás and C. Sagüés are with the Instituto de
Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Mar-
iano Esquillor s/n, 50018, Zaragoza, España. cfranco@unizar.es

D. M. Stipanović is with the Department of Industrial and Enterprise
Systems Engineering, and the Coordinated Science Laboratory, University
of Illinois, Urbana, IL 61801, USA.

cameras. The coverage task may be found in a wide variety
of applications such as demining, cleaning, lawn mowing,
painting or surveillance. However, the challenges involved in
the multi-robot system control are far from trivial and need
to be solved in order to exploit the benefits of multi-robot
systems for the efficient coordination of the resources.

The problem of coverage can be classified as static or
dynamic depending on how it is addressed. If the resources
or robots are static, the problem is known as allocation
of resources [8]. The other approach considers mobile re-
sources, and may also consider variable or unknown envi-
ronment. This problem is often referred to as area coverage
and, although multiple applications are possible, literature is
mainly focused on sensing tasks. Several approaches tackle
the problem by means of an optimization function to be
minimized in a decentralized manner with Voronoi partitions
[9], [10], by using potential fields [11], [12], or gradient-
based approaches [13], [14].

The goal of this work is to explore the feasibility of
an anisotropic sensor, i.e. the conventional camera, in the
context of dynamic coverage with a team of robots. The
problem consists in a coordinated covering of the workspace
with the camera field of view. Regarding the type of cam-
era selected, for the last years, the use of omnidirectional
cameras is growing because of their effectiveness due to the
panoramic view from a single image. This type of camera
can be modeled as an isotropic sensor with a circle shape.
However, some applications require better resolution rather
than a large field of view. In particular, we consider a camera
mounted onboard the robots pointing forward. The problem
of motion control of a single robot with camera field-of-view
constraints has been considered, for instance, in [15], [16].
There, the goal is to keep the camera field of view focused
in a particular zone of the environment during the navigation
rather than perform visual coverage.

To the best of our knowledge, this is the first dynamic
coverage control algorithm proposed for a team of robots
considering anisotropic visual sensors. Closely related works
are [10] that considers anisotropic sensors modeled with
elliptic shape and [17], [18] with the same wedge-shape
sensor considered in our work. However, both works focus on
the problem of coverage control in the sense of deployment,
whereas we are interested in the problem of dynamic cov-
erage. In this paper, we propose a new motion strategy that
weights continuously local and global components avoiding
local minima and providing an efficient coverage of the
domain. The local strategy is based on the gradient, while
a blob analysis based approach is defined for the global
strategy. The main novelty of this work resides in that the

31

IROS Workshop on Visual Control of Mobile Robots (ViCoMoR 2012)
October 11th, 2012, Vilamoura, Algarve, Portugal

31

x

F

R

r

Fig. 1. Scheme of the variables of the sensing function. The dashed line
represents the area covered by the camera onboard

proposed approach overcomes the challenges raised by the
use of the camera sensor to achieve the coverage objective
efficiently.

The paper is organized as follows. Section II introduces
the problem formulation. The coverage control laws are pre-
sented in Section III. The strategy to select global objectives
avoiding local minima is presented in Section IV. Simula-
tions are given in Section V to illustrate the performance of
the proposed approach. Conclusion and avenues for future
research are given in Section VI.

II. PROBLEM FORMULATION

In this section we describe the framework for a team of
nonholonomic agents performing dynamic coverage tasks
with anisotropic sensors. The main objective is to reach a
coverage level Λ∗(x) > 0 inside a domain Dx ⊂ R2. We
assume the agents moves according to the following unicycle
model:

ṗi1 = vi cos(θi),

ṗi2 = vi sin(θi),

θ̇i = ωi.

(1)

Here, pi = [pi1 , pi2]
T is the position of agent i in a convex

domain Dp ⊂ R2, and θi ∈ [−π, π] is the orientation
angle. The positions and the orientation angles of agents are
assumed to be known, for instance, by visual localization or
by a GPS system. vi, ωi are the linear and angular velocity
inputs respectively. In this paper, we focus on sensing with
vision cameras so let us define the sensing ability αi(r, θix)
as:

αi(r, θix) =

{
αM

(R−r)(F−θix)
RF

, r ≤ R, θix ≤ F
0, elsewhere

(2)
where αM is the maximum ability of sensing, R is the
sensing range, r = ‖pi − x‖ is the distance from the agent
to a point x, F is the half of the angle of view of the
camera and θix = |θi − θx| is the angle between the camera
and the point x. A graphical depiction of the variables is
shown in Fig. 1. This wedge shaped function is maximum
in the position of the agent and decreases with the linear and
angular distance to the agent. The points that are nearer are
better sensed and then it will take less time to cover those
points. The coverage action of the team of agents is defined
as α =

∑
i∈{1,...,N} αi(r, θix), with N being the number

of robots. Furthermore we define Λ(t, x) as the coverage

developed by a team of agents over a point x at time t. The
coverage information is updated continuously as follows:

∂Λ(t, x)

∂t
= α(r, θix) (3)

We assume that the points are initially uncovered Λ(0, x) =
0, ∀x ∈ Dx. We introduce the lack of coverage Υ(t, x)
over a point x at time t as:

Υ(t, x) = max

(
0, 1−

Λ(t, x)

Λ∗(x)

)
. (4)

At this point let us define the error function of the whole
domain as:

eDx
(t) =

∫
Dx

Υ(t, x)dx

SDx

, (5)

where SDx
is the area of the surface of the domain, and the

error function of the actuator domain of each agent as:

eΩi
(t) =

∫
Ωi

Υ(t, x)dx

SΩi

, (6)

where Ωi is the sensing domain, and SΩi
is the area of the

surface of the sensing domain i.e. the area which the camera
sees.

III. DYNAMIC COVERAGE CONTROL LAWS

We divide our control strategy in two control laws that
are weighted during the coverage process. One part of the
control law depends on the local error, that is the error of
the points that are in the coverage domain of the agent. The
other part of the control law depends on the coverage error
of the whole domain.

A. Local control law

The speed of the local control law is controlled with the
amount of local error:

uloc
i = 1− eΩi

. (7)

In this way, when the local error is high, the agents slow
down to cover the domain, and when the local error is low,
they speed up to escape from covered areas. To obtain the
angular velocity we start by computing:

ẽ =

∫
Dx

∂Υ

∂t
dx = −

1

Λ∗(x)

∫
Ω−Υ0

α(r, θix)dx (8)

We take out from the integral the points of Dx that are not in
the coverage domain of the agents, i.e. the points that are not
in Ω =

⋃N

i=1 Ωi, and the points whose lack of coverage is
0, Υ0 = {x : Υ(t, x) = 0}, because both do not contribute
to the integral. To optimize the orientation of each robot
with respect to the variation of the error we take the partial
derivative as:

∂ẽ

∂θi
=

1

Λ∗(x)

∫
Ω−Υ0

(R − r)(θi − θx)

RFθix
dx (9)

With this expression we get the direction θloc
∗

i to obtain the
maximum benefit for developing local coverage . Therefore,
the contribution of the local control law to the control
strategy is given by (uloc

i , θloc
∗

i).

32

B. Global control law

When an agent falls into an area where the error is
constant or symmetric from the point of view of the camera,
expression in equation (9) equals zero, and the agent needs
another input to reach uncovered areas until the domain is
fully covered. In this section we propose a control law by
defining (uglo

i , θglo
∗

i) to reach an uncovered point pobji , and
in section IV we will explain how to choose these points
between all uncovered points. The speed of the global control
law is controlled with the distance from the agent to the
objective, ‖pi−pobji ‖, minus a distance from where the agent
can sense the objective, for example R/2 as:

uglo
i =

2

π
arctan(‖pi − pobji ‖ −R/2). (10)

uglo
i is close to one until the agent approach the surrounding

area of the objective from where can cover it. Then, it
decreases to 0 at a distance equal to R/2, and is negative
inside a circle whose center is pi and radius R/2. Then, when
an agent is too near to the objective, it moves away avoiding
to drive in circles around the point to see. The orientation to
reach global objectives is obtained as:

θglo
∗

i = arctan 2(pi − pobji). (11)

C. Coverage control law

In order to combine both global and local control laws let
us introduce a local weight W loc

i and a global weight W glo
i

as follows:

W loc
i (t) = eβΩi

(t) (12)

W glo
i (t) = 1− eβΩi

(t) (13)

where β ∈ R
+ is a parameter which allows tuning the

weights depending on the amount of error. We define the
angular error eθi ∈ (−π, π] as:

eθi = (θloc∗i − θi)W
loc
i + (θglo∗i − θi)W

glo
i , (14)

and the linear and angular velocities are finally obtained with:

vi =kv(u
loc
i W loc

i + uglo
i W glo

i)(1−
2

π
eθi), (15)

ωi =kωeθi(1− uglo
i). (16)

kv and kω are the control gains of the linear and angular
velocity inputs, respectively. When the local error is high,
i.e. eΩi

is close to 1, W loc
i (t) is also close to 1, and the

agents obey the local control law which is based on the
gradient of the coverage error. Thus, the agents move to get
the most coverage benefit. However, when the local error is
low, the agents do not get benefit covering its neighborhood.
W loc

i (t) is close to 0, and the agents obey the global control
law, which direct them to new areas with higher error. These
control laws are both bounded by definition, with vi ∈
[−kv, kv] and ωi ∈ [−kωπ, kωπ], allowing a straightforward
implementation of the algorithm in real robots by adjusting
the gains to the maximum speed of the robots.

Algorithm 1 Blob-based algorithm for the selection of global
objectives

Require: Dx, Υ(t, x), Ψ, πj ;
Ensure: Ψ, πj ;

1: for j = 1,..,M do
2: if Υ(t, ψj) ≤ 0 then
3: Π = Π− πj ; Ψ = Ψ− ψj ;
4: end if
5: end for
6: for j = 1,..,M do
7: dmin

j = min(‖ψj − ψr‖), r = 1..M/j
8: end for
9: for j = 1,..,M do

10: if dmin
j < R then

11: Π = Π− πj ; Ψ = Ψ− ψj ;
12: end if
13: end for
14: Dblob = Dx −Π− π∅;
15: while Dblob �= ∅ do
16: (ψ1, ..., ψK , π1, .., πK) = blob(Dblob);
17: for k=1,..,K do
18: if ψk ∪ πk �= ∅ then
19: ΨM+1 = ψk; πM+1 = πk;
20: Dblob = Dblob − πk;
21: end if
22: end for
23: Dblob = erode(Dblob);
24: end while
25: Assign eroded points to the nearest blob;

IV. SELECTION OF GLOBAL OBJECTIVES

In this section, we propose a strategy to find areas with
large error and to provide the agents with inputs to reach
them (i.e. we now describe the procedure to define the values
of pobji used in section III.B). It is based on blob detection
of the uncovered information. We use this image processing
technique to find islands of uncovered information in the map
Λ(t, x), and then we compute their sizes and their centroids.
With this information we propose a criterium to select a
centroid as a global objective based on the uncertainty and
the proximity of the blobs. Hence, a global objective is the
centroid of an uncovered area which is close to the agent.

Let us define Ψ = {ψ1, ψ2, ..., ψj , ..., ψM} as the col-
lection of M global objectives, ψj ∈ Dx. We refer to
ψ’s as objectives and they represent points that belongs to
a set of uncovered points. Let us also define πj as the
collection of points of the domain composing each blob
and whose global objective is ψj , Π =

⋃M

j=1 πj as the
collection of points of the domain assigned to objectives ψj ,
and π∅ = {x ∈ Dx|Υ(t, x) ≤ 0} as the collection of points
that are covered. The method to select the global objectives
is described in Algorithm 1.

The algorithm starts by checking if some of the M global
objectives ψj have been covered. Those covered are erased
from the list of global objectives Ψ and the points πj

33

Fig. 2. Example of an uncertainty map that causes the centroid to fall
inside of the blob. Black area represents the uncovered zone and white the
covered zone whose points belongs to π∅. The centroids are represented
by rhombi. The uncertainty map has 3 blobs and then 3 global objectives
are generated. The points πj in black areas are assigned to their respective
centroids ψj .

assigned to the objective are released. It also checks if there
are objectives that are closer than a distance R, which is
the coverage radius of the agents. Those objectives are also
erased and their points released to try to merge them to get a
bigger blob in the blob searching procedure. Afterwards, the
domain to obtain the new blobs of the scene is computed by
subtracting the covered points π∅ and the assigned points Π
from the domain to cover Dx. With blob(Dblob) the centroids
ψk and the points πk of the K regions of the space to be
covered are obtained (as shown in Fig. 2). Then, the centroids
ψk are checked to see if they belong to the points πk of the
blob. If the centroids ψk are inside the blob, they and the
points of the blobs πk are saved, whereas the blob domain
is reduced by the points of the new found blob.

Once the checking is complete, it is possible that some
centroids fall outside of their respective blobs. This is not a
desired situation because due to the coverage range of the
agent, it is possible that once the agent has arrived to the
global objective, it cannot reach uncovered points causing a
blockage. In this case, the image is eroded (as depicted in
Fig. 3). This results in the elimination of the points in the
domain that are in contact with covered or assigned points in
such a way that the irregularities of the blob that cause the
centroid to fall outside the blob are eliminated. Afterwards,
blob analysis is repeated while the blob domain is not null.
Finally, the eroded points are assigned to the nearest blob.
It is possible but unlikely that, due to symmetries, no global
objectives are found. In that case a nearest uncovered point
is the only global objective until the symmetry breaks.

The choice of the objective pobji for each robot i is done
according to proximity. First, the distance between the i-th
agent and the j-th centroid is calculated to create a matrix
D as follows:

D(i, j) =

(
‖pi − ψj‖

max(‖pi − ψj‖)

)
. (17)

It is divided by the maximum distance in such a way that the
elements of D are in interval (0, 1]. Then, with this matrix,
the global objectives are assigned using Algorithm 2. It is
repeated until all the agents have a global objective. First, the
algorithm finds the minimum distance between an agent and
a centroid. Then, the agent takes that centroid as the global

x1

x
2

1-Υ(x, t)

0 50 100
0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

x
1

x 2

0 20 40 60 80 100
0

20

40

60

80

100

x1

x
2

1-Υ(x, t)

0 50 100
0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

x
1

x 2

0 20 40 60 80 100
0

20

40

60

80

100

Fig. 3. Two examples of uncertainty maps that cause the centroid to fall
outside of the blob. In the left column black areas represent the uncovered
zones and white the covered zones. The centroids are represented by rhombi.
A blob analysis of these scenes produces in each case only one connected
blob with one centroid. Due to the shapes of the blobs, the centroids fall
outside their blobs and according to Algorithm 1 an erosion process is
needed. In the right column the iterative erosion process is shown until the
centroid falls into the blob. After this process is completed, eroded points
are assigned to the last centroids obtained according to proximity.

objective. Next, the algorithm adds 1 to the column where
the distances of the centroid to other has been calculated to
avoid that the centroid is assigned to other agent, distributing
the team between all the available centroids. Also, the row
of the agent is increased by N units to avoid the assignation
of other centroid to the agent. If there are more agents than
centroids, when all the centroids have been assigned once,
all the distances between centroids and non assigned agents
are increased by 1 and then, the centroids can be assigned
again with the distance criterium. This process is repeated

N/M� times distributing at most �N/M
 to each centroid
and at least
N/M�.

Algorithm 2 Assignation of objectives
Require: D, Ψ
Ensure: pobji

1: repeat
2: [i, j] = {i, j : D(i, j) = min(D)};
3: pobji = ψj ;
4: D(i, :) = D(i, :) +N ;
5: D(:, j) = D(:, j) + 1;
6: until <All agents have an objective>

V. SIMULATION RESULTS

In this section we present some simulation results that il-
lustrate the behavior of the proposed algorithms. The domain
to cover Dx is a square of 100x100 units, whereas Dp = R2.
The coverage objective is Λ∗ = 100. There are four agents
with: R = 20, F = 54o, αM = 50, β = 1, kv = 1, and
kω = 1. Fig. 4 shows the evolution of the normalized error
throughout the coverage process. In 592 units of time, the

34

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e(
t)

t

Fig. 4. Evolution of the normalized coverage error

0 100 200 300 400 500 600
−4

−2

0

2

0 100 200 300 400 500 600
−5

0

5

0 100 200 300 400 500 600
−2

0

2

0 100 200 300 400 500 600
−2

0

2

4

Fig. 5. Motion action of the agents. Solid line represents the linear action
and dotted line the angular velocity.

objective has been fully accomplished at all the points of
the domain. The motion actions to develop the coverage are
shown in Fig. 5, and the map of the lack of coverage in each
point at different times is shown in Fig. 6.

1 − Υ(1)

0 20 40 60 80 100

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1
1 − Υ(100)

0 20 40 60 80 100

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

1 − Υ(300)

0 20 40 60 80 100

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1
1 − Υ(500)

0 20 40 60 80 100

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

Fig. 6. Evolution of the global coverage map throughout the coverage
process. Small circles represent the position of the robots and the coverage
domain is represented by a dashed line. The domain is rather covered at
t=500 and it is totally covered at t=592.

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

|x2 − pi2|

Λ

Fig. 7. Amount of coverage developed perpendicular to vi when the agent
moves along x1.

We also develop simulations to check the efficiency in the
usage of the robots. First, we start by computing the total
ability of sensing A:

A = 2

∫ F

0

∫ R

0

α(r, θix)rdrdθix (18)

With this value, we can compute the minimum time to
completion for N agents t∗N :

t∗N =

∫ ∫
Dx

Λ∗(x1, x2)dx1dx2

A ·N
, (19)

Lastly, let us compare our algorithm with a typical path
planning coverage trajectory carried out in zig-zag with
maximum speed. The amount of coverage Λ(x, t) developed
by one agent in the perpendicular direction to vi with vi = 1
and ωi = 0 is shown in Fig. 7. The agent reaches the
coverage objective over the points placed at d100 = 2.72
units away from the agent and half of the coverage objective
over the points placed at d50 = 3.865 units away from the
agent. The trajectory is developed taking into account these
parameters and with a length L=140 units as shown in Fig.
8. The time to completion for one agent is tzz1 = 2080.6
units of time with a path length of PLzz

1 = 2054.6 units.
Assuming perfect coordination between teams of agents, we
have tzzN = 2080.6/N and we also assume PLzz

N = 2054.6.
Thus, we compute Ezz

N = t∗N/tzzN .
In Fig. 9 we show the relation between the optimum and

our algorithm, and the relation between the optimum and
the zig-zag algorithm from 1 to 30 agents. The time to
completion tN of teams of robots varying from 1 unit to
30 units have been computed running 100 simulations in
each case and taking the average value. For small teams
our proposal takes 4 times the time to completion of the
optimum, and as the team grows it tends to 5, compared
with the zig-zag path that is 3 times slower. Furthermore,
we also compare the sum of the path length of the robots
to develop the coverage. We compute the path length of 100
simulations and show the average in Fig.10. Since the speed
is regulated with the local error, our algorithm make the most
of the traveled path. It takes some more time to cover the
domain, but the path length needed in our algorithm is around
a 55% of the path length needed with zig-zag strategy.

35

L

2d
50

d 1
00

Fig. 8. Zig-zag path to cover the domain with one agent.

5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Number of agents

t
N

/t*
N

t
N
zz/t*

N

Fig. 9. Comparison of the time to completion of several teams of
agents developing optimum coverage with our algorithm and with a zig-
zag algorithm.

VI. CONCLUSION

In this paper we have proposed a new control algorithm
for the dynamic coverage of a domain developed by a team
of agents with anisotropic vision based sensors. The control
law weights local and global actions, depending on local
coverage error and global error map, respectively, to give
more importance to local objectives when the local error is
high and to global objectives when the benefit of developing
the coverage in the neighborhood of an agent is small.
We also propose, a new strategy to select global objectives
based on blob analysis of the whole map. Additionally, we
impose bounds on both linear and angular velocities. Finally,

5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of agents

PL
N

PL
N
zz

Fig. 10. Comparison of the path length of several teams of agents
developing coverage with our algorithm and with a zig-zag algorithm.

simulations are provided to illustrate the approach. Current
work focuses on the collision avoidance problem and the
coverage with decentralized information. In this work, we
assume that the robots do not produce occlusions between
them. Even if the convergence is not compromised, future
work would study this issue regarding the performance of
the proposed algorithm.

REFERENCES

[1] F. Chaumette and S. Hutchinson, “Visual servo control, part II:
Advanced approaches,” IEEE Robotics and Automation Magazine,
vol. 14, pp. 109–118, Mar. 2007.

[2] G. N. DeSouza and A. C. Kak, “Vision for mobile robot navigation:
A survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 2, pp. 237–267, 2002.

[3] H. Chen, D. Sun, and J. Yang, “Global localization of multirobot for-
mations using ceiling vision SLAM strategy,” Mechatronics, vol. 19,
no. 5, pp. 617 – 628, 2009.

[4] A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and
C. J. Taylor, “A vision-based formation control framework,” IEEE
Transactions on Robotics and Automation, vol. 18, no. 5, pp. 813–
825, 2002.

[5] N. Moshtagh, N. Michael, A. Jadbabaie, and K. Daniilidis, “Vision-
based, distributed control laws for motion coordination of nonholo-
nomic robots,” IEEE Transactions on Robotics, vol. 25, pp. 851–860,
Aug. 2009.

[6] R. Vidal, O. Shakernia, and S. Sastry, “Following the flock: Distributed
formation control with omnidirectional vision-based motion segmen-
tation and visual servoing,” Robotics and Autonomous Magazine,
vol. 11, no. 4, pp. 14–20, 2004.

[7] G. López-Nicolás, M. Aranda, Y. Mezouar, and C. Sagüés, “Visual
control for multi-robot organized rendezvous,” IEEE Transactions on
Systems, Man, and Cybernetics: Part B, 2012.

[8] Z. Drezner, Facility location: A survey of Applications and Methods.
New york: Springer-Verlag, 1995.

[9] J. Cortés, S. Martínez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[10] A. Gusrialdi, S. Hirche, T. Hatanaka, and M. Fujita, “Voronoi based
coverage control with anisotropic sensors,” in Proceedings of the
American Control Conference, pp. 736–741, 2008.

[11] D. O. Popa, C. Helm, H. E. Stephanou, and A. C. Sanderson,
“Robotic deployment of sensor networks using potential fields,” in
Proceedings of the 2004 IEEE International Conference on Robotics
and Automation, pp. 642–647, 2004.

[12] M. J. Mataric, A. Howard, and G. S. Sukhatme, “Mobile sensor net-
work deployment using potential fields: A distributed, scalable solution
to the area coverage problem,” in Proceedings of the 6th International
Symposium on Distributed Autonomous Robotics Systems, 2002.

[13] I. I. Hussein and D. M. Stipanović, “Effective coverage control for
mobile sensor networks with guaranteed collision avoidance,” IEEE
Transactions on Control Systems Technology, vol. 15, no. 4, pp. 642–
657, 2007.

[14] S. K. Gan and S. Sukkarieh, “Multi-UAV target search using explicit
decentralized gradient-based negotiation,” in 2011 IEEE International
Conference on Robotics and Automation, pp. 751 – 756, may 2011.

[15] G. López-Nicolás, N. R. Gans, S. Bhattacharya, J. J. Guerrero,
C. Sagüés, and S. Hutchinson, “Homography-based control scheme
for mobile robots with nonholonomic and field-of-view constraints,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 40,
no. 4, pp. 1115–1127, 2010.

[16] P. Salaris, L. Pallottino, and A. Bicchi, “Shortest paths for finned,
winged, legged, and wheeled vehicles with side-looking sensors,”
International Journal of Robotics Research, vol. 31, no. 8, pp. 997–
1017, 2012.

[17] K. Laventall and J. Cortes, “Coverage control by robotic networks with
limited-range anisotropic sensory,” in American Control Conference,
2008, pp. 2666 –2671, june 2008.

[18] A. Gusrialdi, T. Hatanaka, and M. Fujita, “Coverage control for
mobile networks with limited-range anisotropic sensors,” in 47th IEEE
Conference on Decision and Control, pp. 4263 –4268, dec. 2008.

36

Abstract — In this paper, we present a vision-based
navigation system for autonomous vehicles in structured urban
environments. This system uses a standard RGB camera as the
main sensor. The proposed approach is composed by an
association of Finite State Machines (FSM) with Artificial
Neural Networks (ANN). First, we identify the navigable areas
after processing the input frames. Then, an ANN is trained to
recognize patterns on the generated navigability maps. Each
pattern is associated to a specific state, related to a unique
environment structural feature. A topological-like map is used
to represent the environment, so any path can be described as a
sequence of states. For example, straight path, right and left
turns and intersections. The experiments were performed with
an autonomous vehicle in a real urban environment in order to
validate and evaluate this approach. The proposed system
demonstrated to be a promising approach to autonomous
vehicles navigation.

I. INTRODUCTION

The development of robust autonomous intelligent
systems for robotic applications is a very important research
topic. Several applications are related to robotics, from
industry to military tasks.

The autonomous driving capability is one of the most
desirable features for a mobile robot. Researches related to
this feature are being developed since the 80´s, and groups
such as NavLab have been presenting relevant results on
autonomous vehicles navigation.

Nowadays there are many relevant and known researches
on autonomous robotics being developed worldwide. Some
of them are powered by government initiatives as for
example the Darpa Grand Challenge [7][8][9]. The first two
editions (2004 and 2005) were held in desert, and 2007
edition in an urban environment. In Brazil, the development
of autonomous vehicles is an important research challenge
among the main working groups (WG2) of the Brazilian
National Institute of Science and Technology on Embedded
Critical Systems (INCT-SEC).

Autonomous mobile robots usually perform three main
tasks: localization, mapping and navigation [17]. Mapping is
the creation of an environment model using the sensorial
data, representing its environment structure. Localization task
must occur simultaneously to navigation control. It consists
in estimating the robot´s position in a previously known
environment, using its sensorial data. The Navigation task is
therefore the ability to obtain enough information about the
environment, process it, and act, moving safely through the
navigable area.

*Research supported by FAPESP.
The authors are with the Mobile Robotics Lab at ICMC - University of

São Paulo, São Carlos, CEP 13566-590, Brasil (e-mail: dsales, lnd, fosorio,
denis @ icmc.usp.br).

In order to develop an intelligent system able to navigate
through environments composed by streets and highways, it
is desirable to know the robot´s approximate position, the
environment map and the path to be followed. So, navigation
in this environment lies in following a well-defined path,
considering the navigable areas.

This work focuses on this navigation task, describing the
development of a Vision-Based Topological Navigation
System, able to recognize the navigable area of an urban
environment (streets) processing image frames and
classifying them into states which represent the current robot
context, allowing the robot to autonomously drive through
this environment and reach a desired destination.

The adopted navigation approach does not require a very
detailed environment map (metric map), only a graph that
represents the main elements, in a simpler path
representation. Furthermore, accurate pose estimation is not
necessary. The approximate robot´s position is enough to
navigate. So, the main objective is to detect the current node
in a Topological map, being useful to autonomously decide
when and how go straight, turn left or right, even when more
than one possibility is detected simultaneously (at an
intersection, for example).

The developed system uses Artificial Neural Networks
(ANN) [19] in two steps: to classify the frame obtained from
camera (resulting in a navigability map) and second to detect
patterns on these navigability maps (representing the current
context). In this second step, a Finite State Machine (FSM) is
used to represent the state sequence for any path at the
environment. The ANN is trained to recognize all possible
states, so a FSM generator can convert any chosen path into a
sequence of these known states.

The motion control is based on hierarchical/hybrid control
approach. This way, the navigation system combines the
high-level deliberative control (path planning) with different
reactive behaviors, allowing a safe motion. This FSM-based
approach was already successfully applied in previous
authors’ works for indoor applications [4][25][16] with
different sets of sensors and states, showing the feasibility of
this implementation and motivating studies concerning the
application of this technique in urban environments.

The main objective of this work was obtaining and
processing enough information for state (context) detection,
allowing a high-level path planning and also safe motion
using reactive control for autonomous vehicles.

The next topics of this paper are organized as follows:
Section 2 presents some previous related work; Section 3
presents the Topological Navigation System overview,
Section 4 presents experiments and results and Section 5
presents the conclusion and future work.

FSM-based Visual Navigation for Autonomous Vehicles
Daniel Oliva Sales1, Leandro Carlos Fernandes1, Fernando Santos Osório1 and Denis Fernando Wolf1

37

IROS Workshop on Visual Control of Mobile Robots (ViCoMoR 2012)
October 11th, 2012, Vilamoura, Algarve, Portugal

37

II. RELATED WORK

Several navigation approaches have been used for navigation,
using many different sensors (for example laser, sonar, GPS,
IMU, compass) solely or combined [9][17][18]. One of the
most used approaches is the vision-based navigation [20].
This method uses monocular video cameras as the main
sensor. Cameras are very suitable for navigation and obstacle
avoiding tasks due to its low weight and energy consumption
[1]. Furthermore, one single image can provide different
types of information about the environment simultaneously.
It is also possible to reduce costs by using cameras rather
than other types of sensors [2].

Vision-based navigation approaches are already usual in
navigation systems for structured or semi-structured
environments [3][10][11]. These systems classify the image,
with track segmentation for safe navigable area identification,
resulting in reactive models for navigation control. Works
such as ALVINN [13] and RALPH [14] were some of the
first to apply neural networks for this reactive control in
outdoor environments.

In [3], Shinzato developed a neural classifier composed by
an ANN ensemble, able to detect and to segment the
navigable areas of the road through image features analysis.
Later, this classifier was adopted by Souza in [15] for a
Template-Matching based reactive control.

Purely reactive models are not totally adequate for our
autonomous navigation system development, since
immediate reaction to sensors data is not enough to guarantee
a correct control in complex environments. A more robust
system should be implemented, providing sequence and
context information that are absent in purely reactive models.

In robotics, FSM-based approaches [5] are very often
used. FSMs are useful because the system can be easily
described as a sequence of states (context changes),
considering the inputs (sensors) and specific actions for each
state. This way, for each detected state the robot can assume
a different behavior. This work focuses on this main idea,
with possible paths described as FSMs in which current state
is detected after processing sensors data.

The use of Machine Learning techniques such Artificial
Neural Networks is a very interesting way to process input
data, identifying and classifying the states and transitions to
determine the best actions to be performed [6]. ANNs are
tolerant to noise and imprecision on input data, and able to
detect the states and transitions between these states. ANNs
are also very efficient to generalize knowledge (adjusting the
outputs to many inputs, even the ones not explicitly taught to
the net). So, this technique is very useful for state detection
through path features recognition.

The association of ANNs with FSMs is being developed
and evolved since the 1990´s [21][22][23][24], and recent
researches were focused on applying this technique to
robotics. In [12], an autonomous car parking system was
developed, using recurrent neural networks for FSM learning.
The sensors data and current state were used as ANN inputs,
so the system could detect when a context change was
needed. This work inspired the development of our FSM-
based approach.

In [20], a Vision-based autonomous navigation system
was implemented for indoor environments using a simple
FSM control. In that work, Sinzato´s classifier was used to
generate the navigability matrices from input frames. Then,
an algorithm was developed to analyze interest areas of these
matrices in order to determine the current state of a FSM
(robot context) to navigate through a set of turns and
straights. The main idea of this FSM-Control was evolved, so
in [4] and [25] an autonomous navigation system was
developed with an ANN as the control unit. A LIDAR sensor
was adopted as the main sensor, so an ANN was trained to
recognize the “laser signatures” associated to every possible
state of a FSM. Each state was related to a specific part of an
indoor environment. This way, the FSM states could be
learned by the ANN, and the paths represented by a sequence
of known states. These works introduced the Topological
Navigation approach proposed in this paper.

The navigation system developed in this paper combines
the visual (low-cost) navigation with the neural learning of
FSMs in Topological Navigation approach, considering the
best features obtained with these previous results. The
developed system components are described in next section.

III. SYSTEM OVERVIEW

The proposed system is composed by three main modules:
“Navigability Map Generation”, “State detection” and
“Reactive Control”. The Navigability Map generator is
responsible to convert a captured frame into a navigability
map, used as input for our Navigation Control System. The
State Detection module is responsible to detect the current
state and filter oscillations, avoiding unexpected state
transitions (considering the path plan). The reactive control
determines an appropriate steering angle according to the
navigable area detection and current state detected. Figure 1
shows the full system flowchart.

Figure 1 – Navigation System Flowchart

A. Navigability Map Generation
This step is performed using the neural classifier

proposed by Shinzato in [3]. It is composed by an ANN
ensemble with six ANNs; each one is responsible to classify
the pixels into navigable (1) or non-navigable (0), based on
different sets of features of the image such as RGB values,
HSV values and entropy. So, the mean of these output
values is the final classification value, ranging from 0 to 1.

The ANNs training is performed with a small set of
representative frames. The supervisor must classify parts of
these frames into navigable or non-navigable in a GUI,
obtaining six trained ANNs.

38

The input frame has 320x240 pixels size, sliced in 10x10
block to produce a 32x24 navigability map. The neural
classifier and the image features used for each ANN are fully
described in [3]. Figure 2 shows some examples of processed
frames and the resulting navigability maps. The segmented
navigable area is used as input for the State detection and
Reactive Control modules.

Figure 2 – Navigable area detection results on different
situations (bright = navigable block)

B. State Detection
This module is responsible to recognize patterns on the

input data, allowing the detection of environment features
used to determine the current state (context). An ANN is
used for this task.

The environment is mapped as a topological map in
which each node is related to a specific part of the
environment, described by its structural features such as
straight path, turn or intersections. All possible states
(environment features) are taught to the ANN, so possible
paths on this environment can be described as a sequence of
these learned states, being represented by FSMs. Figure 3
shows a part of an environment and its topological map.

Figure 3 – Environment mapping example

The ANN input is the navigability matrix obtained at the
previous step, and the output is the current state (environment
feature) detected. Four different classes were created, each
one related to a different track shape or condition (straight,
left and right turns and intersection).

In order to begin the training process, a database must be
generated collecting a set of frames for each possible
situation. So, these frames may be processed by the first
neural classifier to generate the navigability maps. As the
learning process is supervised, a specialist must classify these
navigability maps in one of the possible states before the final
ANN training, creating a set of input/desired-output pairs.
After finishing the ANN training, it should be able to
recognize different possible paths at the environment.

Once the Topological Map of an environment is known,
it is possible to establish a route between two points,
manually or with a path planning algorithm. Every route can
be seen as a sequence of steps (states), so it is trivial to
generate a FSM (sub-graph) to represent a well-defined path.

For this system implementation, it is assumed that
vehicle´s initial position is always known, as the topological
map also. The current position is estimated based on current
state detection, so it isn´t necessary to estimate robot´s exact
position. Navigation and self-localization are performed
together.

The desired path is also used as input to State Control
unit, so the system can determine if a state transition is
needed or if the vehicle still remains at the current state. The
State Control unit also filters state detection oscillations,
allowing a state transition only if the next expected state is
observed by a certain amount of consecutive steps. If the
observed state does not match the path plan, current state is
kept, as shown on Figure 4.

Figure 4 – State transition flowchart

This Topological Navigation approach allows the vehicle
to follow its planned path and also know its approximate
position, but does not control the motion “into” every
situation (state). This task is performed by a reactive control
unit, described in the next section.

C. Template-Matching Based Reactive Control
This module is responsible to react to road current

conditions, determining the vehicle´s steering angle. As
mentioned earlier, the motion control system must combine
the deliberative control resulting from FSM-based
topological navigation with reactive behaviors to guarantee a
safe driving, avoiding leaving the track.

The implemented reactive control uses a template-
matching approach for road track following, as proposed in
[15]. The navigability maps are compared with five different
templates, each one related to a specific steering angle for
reaction, as shown on Figure 5. Each template receives a
matching score, so the steering angle is defined after
measuring the best score.

Figure 5 – Reactive Control Templates representation

39

The current state is also considered as input, so a bias is
added to the score of the most suitable templates for each
current condition. Straight path state adds a bias to straight
and soft turns templates, avoiding abrupt movements; left
and right turns adds a bias to its corresponding soft and hard
turn templates; intersection state adds a bias to straight, hard
and soft turns considering the path plan (left to keep in the
roundabout, right to get out).

IV. EXPERIMENTS AND RESULTS

The experiments were carried out in a real urban
environment, using an autonomous vehicle equipped with a
video camera as the only sensor. The environment was
composed by straights, turns and intersections, so its
properties could be represented with four states: “straight
path”, “left turn”, “right turn”, and “intersection”. Some
examples of input frames for these four states are shown on
Figure 6.

Figure 6 – Example of input frames for each implemented state

A. System Setup
The camera used in our tests was a PointGrey

Bumblebee2 Stereo Cam [26]. We do not deal with depth
information in this paper, so only left image is taken as
perception system input. The camera was placed above the
car as shown on Figure 7, so viewing angle was adjusted in
order to allow immediate reaction to each frame/navigability
map processed.

Figure 7 – Camera position

The control platform was implemented on Robot
Operating System (ROS) [27], a framework which provides
libraries and tools for robot applications development. Each
module was implemented as a ROS node, with message-
passing between the modules, as shown on Figure 1. The full
control system works in real-time, with one steering
command per frame, at 30 fps frame rate.

The Navigability Map Generator was created after
collecting and classifying data on 15 frames of the
environment. So, the ANN ensemble was generated, trained
and included into the embedded system.

B. State Detection Unit
The ANN used for state detection was implemented and

trained with Stuttgart Neural Network Simulator (SNNS)
software. ANN training database was generated collecting
about 2040 frames (converted to navigability maps) for each
class. So, the final database was composed by 8165
input/output pairs.

The training algorithm used was Resilient Propagation
(R-Prop). This algorithm achievies great results for feed-
forward networks in many applications due to its good
training time and convergence. Training parameters used are
shown on Table 1.

Table 1 – Training Parameters

Parameter Value
Training Algorithm R-Prop

0,1
50
4

cicles 500
aprox. total training time 2 hours

Due to the camera position, the first 288 elements on upper
half of navigability matrices are most commonly related to
elements above the horizon line, so they are not considered
for state detection. The lower 96 elements (bottom 3 lines)
are also discarded because they are related to the current
navigable area, not an incoming situation. This way, a
detection window with 12 lines (384 elements) is used for
state detection. So, the ANN input layer is composed by 384
neurons only.

Some empirical tests based on previous work knowledge
were performed in order to determine the best ANN
topology. The best results were achieved by a feed-forward
MLP, with the 384 input neurons, 384 neurons on hidden
layer and 4 neurons on output layer (1 neuron per class), all
neurons with activation function defined as “Act_Logistic”
implemented on SNNS.

ANN validation was done with stratified 5-fold cross-
validation method. This way, 5 train and test sets were
generated, with 80-20 proportion on data (80% used for
training and 20% for test, with same proportion of elements
from the 4 classes on the datasets). The ANN accuracy on the
five tests can be observed at Table 2, and the confusion
matrices for the five test sets resulting from 5-fold cross
validation are shown on Figure 8.

40

Table 2 – ANN Accuracy after 500 training cicles

Test 1 Test 2 Test 3 Test 4 Test 5
ANN Accuracy 98.8% 99.0% 99.1% 99.3% 99.5%

Figure 8 – Confusion matrices

A low error per class can be observed on confusion
matrices. However, this only shows the network learned the
database examples. If the system wrongly detects any
situation as the next expected state, the reactive behavior will
be affected, adding a bias to wrong templates and performing
wrong steering actions. Likewise, if a new expected state is
not detected in time, the system will keep the current
behavior active, impairing self-localization and navigation
tasks.

Therefore, state detection is a critical point. To ensure a
correct navigation, the ANN training database must cover an
enough amount of examples, avoiding misclassification on
state detections. This problem can also be reduced if a
minimum amount of consecutive new state detections is
required for state transitions. The experiments carried out
with this filter showed an adequate reliability level for state
changes in developed applications.

C. Autonomous Navigation Tests

The environment in which the database was generated and
the tests performed is shown next, on Figure 9. Our goal was
to autonomously navigate following well-defined routes. The
vehicle successfully accomplished the navigation task in a
path with straights and a roundabout in autonomous mode,
validating the proposed approach.

Figure 9 – Outdoor Environment used for tests

The reactive control was correctly affected by state
detection, allowing a smooth behavior. Figure 10 shows the
vehicle performing a left turn in a roundabout. A video with a
successful path sequence and more information is available at
http://www.icmc.usp.br/~fosorio/research/vicomor12.html.

Figure 10 – Autonomous vehicle in a roundabout situation

Some misclassification occurred when unexpected light
conditions affected input data, resulting in noisy navigability
maps. Other dynamic elements such as vehicles and obstacles
were not considered as a new state, and also produced bad
responses when crossing the state detection window area.

The minimum amount of consecutive new state detections
was manually tuned, normalizing the chance of straight and
turn behaviors to be activated, since turn states are detected
for a shorter period of time.

We also considered using a binary navigability map
instead of continuous probability maps in template-matching
step, filtering uncertainty on road detection with a threshold.
In some cases, this solution produced better results than
continuous version, so the use of binary maps was
implemented as a parameter to be set before navigation
system launch, allowing the selection of the fittest solution.

V. CONCLUSION

The successful navigation results demonstrated the
suitability of this approach for autonomous vehicles
navigation, when an accurate state detection is possible. This
way, the use of a camera as the main sensor can be an
efficient and reliable solution, allowing the project of low-
cost autonomous driving systems.

This work complements the range of applications
proposed on our previous indoor works, showing
Topological Navigation as a promising approach for
autonomous vehicles navigation too.

The system can be re-trained to recognize new situations,
settings and features, and also use and combine other
sensorial systems, allowing its implementation in different
scenarios. For future works, we consider using sensor fusion
and other techniques to detect new features and landmarks
useful for navigation control.

41

ACKNOWLEDGMENT

The author acknowledges FAPESP and CNPq for their
support to INCT-SEC (National Institute of Science and
Technology - Critical Embedded Systems - Brazil),
processes 573963/2008-9 and 08/57870-9 and financial
support to authors (master´s grant).

REFERENCES

[1] Zingg, S., Scaramuzza, D., Weiss, S., and Siegwart, R. MAV
Navigation through Indoor Corridors Using Optical Flow , IEEE
International Conference on Robotics and Automation (ICRA 2010),
Anchorage, Alaska, May, 2010.

[2] Scaramuzza, D., Siegwart, R. Appearance Guided Monocular
Omnidirectional Visual Odometry for Outdoor Ground Vehicles.
IEEE Transactions on Robotics, vol. 24, issue 5, October 2008.

[3] Shinzato, P. Y, Wolf, D. F. Features Image Analysis for Road
Following Algorithm Using Neural Networks. In: 7th IFAC
Symposium on Intelligent Autonomous Vehicles, Lecce, 2010.

[4] Sales, D; Osório, F; Wolf, D. Topological Autonomous Navigation for
Mobile Robots in Indoor Environments using ANN and FSM. In:
Proceedings of the I Brazilian Conference on Critical Embedded
Systems (CBSEC), São Carlos, Brazil, 2011.

[5] Hopcroft, J.E., Ullman, J.D. (1979) “Introduction to Automata
Theory, Languages and Computation”. Addison - Wesley, 1979.

[6] Marino, A.; Parker, L.; Antonelli, G. and Caccavale, F. Behavioral
Control for Multi-Robot Perimeter Patrol: A Finite State Automata
approach. In: ICRA, 2009.

[7] Thrun, S. et al. (2006) "Stanley: The Robot that Won the DARPA
Grand Challenge," Journal of Field Robotics, Vol. 23, No. 9, June
2006, p.661-692.

[8] Urmson, Chris et al. (2008). “Autonomous driving in urban
environments: Boss and the Urban Challenge”. In: Journal of Field
Robotics. Vol. 25 , Issue 8 (August 2008). Special Issue on the 2007
DARPA Urban Challenge, Part I. Pages 425-466.

[9] Buehler, Martin; Iagnemma, Karl; Singh, Sanjiv (Editors). The 2005
DARPA Grand Challenge: The Great Robot Race (Springer Tracts in
Advanced Robotics). Springer; 1st. edition (October, 2007).

[10] Nefian, A.V.; Bradski, G.R. (2006) “Detection of Drivable Corridors
for Off-Road Autonomous Navigation”. ICIP-06: Proceedings of the
IEEE International Conference on Image Processing. pp. 3025-3028.

[11] J.M. Álvarez, A. M. López, and R. Baldrich. (2008) “Illuminant
Invariant Model-Based Road Segmentation”. IEEE Intelligent
Vehicles Symposium, Eindhoven, Netherlands, June 2008.
http://www.cvc.uab.es/adas/index.php?section=publications.

[12] Heinen, Milton Roberto ; Osório, Fernando S. ; Heinen, Farlei ;
Kelber, Christian . SEVA3D: Using Artificial Neural Networks to
Autonomous Vehicle Parking Control.. In: IJCNN - IEEE Intenational
Joint Conference on Neural Networks, 2006, Vancouver. Proceeding
of the WCCI (World Congress on Computational Intelligence) -
IJCNN. Vancouver, Canadá : IEEE Press, 2006. v. 1. p. 9454-9461.

[13] Pomerleau, D. ALVINN: An Autonomous Land Vehicle In a Neural
Network. Advances in Neural Information Processing Systems 1,
1989.

[14] Pomerleau, D. RALPH: Rapidly Adapting Lateral Position Handler.
IEEE Symposium on Intelligent Vehicles, September, 1995, pp. 506 -
511.

[15] Souza, J.; Sales, D. O.; Shinzato, P. Y.; Osório, F. S.; Wolf, D. F.
Template-based autonomous navigation in urban environments. In:
Proceedings of the 2011 ACM Symposium on Applied Computing,
TaiChung, China, 2011.

[16] Sales, D. O.; Correa, D. S. O.; Osório, F. S.; Wolf, D. F. 3D Vision-
based Autonomous Navigation System using ANN and Kinect Sensor.
In: Conference Proceedings EANN 2012 – CCIS: Volume number
311., London, UK, 2012.

[17] Wolf, Denis F.; Osório, Fernando S.; Simões, Eduardo; Trindade Jr.,
Onofre. Robótica Inteligente: Da Simulação às Aplicações no Mundo
Real. [Tutorial] In: André Ponce de Leon F. de Carvalho; Tomasz
Kowaltowski. (Org.). JAI: Jornada de Atualização em Informática da
SBC. Rio de Janeiro: SBC - Editora da PUC. RJ, 2009, v. 1, p. 279-
330.

[18] Goebl, M.; Althoff, M.; Buss, M.; Farber, G.; Hecker, F.; Heissing,
B.; Kraus, S.; Nagel, R.; Leon, F.P.; Rattei, F.; Russ, M.; Schweitzer,
M.; Thuy, M.; Cheng Wang; Wuensche, H.J.; (2008) "Design and
capabilities of the Munich Cognitive Automobile". IEEE Intelligent
Vehicles Symposium, 2008. Page(s): 1101 – 1107.

[19] Haykin, S. Neural Networks: A Comprehensive Foundation. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1998.

[20] Sales, D; Shinzato, P; Pessin, G; Wolf, D; Osório, F. Vision-based
Autonomous Navigation System using ANN and FSM Control. In:
Proceedings of the IEEE Latin American Robotics Symposium
(LARS), São Bernardo do Campo, Brazil, 2010.

[21] Giles, C. Lee; Horne, Bill G.; LIN, Tsungnan. Learning a class of
large finite state machines with a recurrent neural network. Neural
Networks 8(9): 1359-1365. 1995.

[22] Omlin, Christian W.; Giles, C. Lee. Constructing Deterministic Finite-
State Automata in Recurrent Neural Networks. Jornal of the ACM
43(6): 937-972. 1996.

[23] Frasconi, Paolo; Gori, Marco; Maggini, Marco; Soda, Giovanni.
Representation of finite state automata in Recurrent Radial Basis
Function networks. Machine Learning 23:1, 5-32 1996.

[24] Cleeremans, Axel; Servan-Schreiber, David; McClelland, James L.
Finite State Automata and Simple Recurrent Networks. Neural
Computation, Vol. 1, No. 3, Pages 372- 381. 1989.

[25] Sales, D; Feitosa, D; Osório, F; Wolf, D. Multi-Agent Autonomous
Patrolling System using ANN and FSM Control. In: Proceedings of
the II Brazilian Conference on Critical Embedded Systems (CBSEC),
Campinas, Brazil, 2012.

[26] PointGray Bumblebee2 Stereo Cam. Internet:
http://www.ptgrey.com/products/stereo.asp [09/2012]

[27] Robot Operating System (ROS). Internet: http://www.ros.org/wiki/
[09/2012]

42

Accurate Figure Flying with a Quadrocopter
Using Onboard Visual and Inertial Sensing

Jakob Engel, Jürgen Sturm, Daniel Cremers

Abstract— We present an approach that enables a low-cost
quadrocopter to accurately fly various figures using vision
as main sensor modality. Our approach consists of three
components: a monocular SLAM system, an extended Kalman
filter for data fusion and state estimation and a PID controller
to generate steering commands. Our system is able to navigate
in previously unknown indoor and outdoor environments at
absolute scale without requiring artificial markers or external
sensors. Next to a full description of our system, we introduce
our scripting language and present several examples of accurate
figure flying in the corresponding video submission.

I. INTRODUCTION

In recent years, research interest in autonomous micro-

aerial vehicles (MAVs) has grown rapidly. Significant

progress has been made, recent examples include aggressive

flight maneuvers [1, 2], ping-pong [3] and collaborative

construction tasks [4]. However, all of these systems require

external motion capture systems. Flying in unknown, GPS-

denied environments is still an open research problem. The

key challenges here are to localize the robot purely from its

own sensor data and to robustly navigate it even under poten-

tial sensor loss. This requires both a solution to the so-called

simultaneous localization and mapping (SLAM) problem as

well as robust state estimation and control methods. These

challenges are even more expressed on low-cost hardware

with inaccurate actuators, noisy sensors, significant delays

and limited onboard computation resources.

For solving the SLAM problem on MAVs, different types

of sensors such laser range scanners [5], monocular cameras

[6, 7], stereo cameras [8] and RGB-D sensors [9] have been

explored in the past. In our point of view, monocular cameras

provide two major advantages above other modalities: (1)

the amount of information that can be acquired is immense

compared to their low weight, power consumption, size and

cost, which are unmatched by any other type of sensor

and (2) in contrast to depth measuring devices, the range

of a monocular camera is virtually unlimited – allowing a

monocular SLAM system to operate both in small, confined

and large, open environments. The drawback however is,

that the scale of the environment cannot be determined from

monocular vision alone, such that additional sensors (such

as an IMU) are required.

The motivation behind our work is to showcase that robust,

scale-aware visual navigation is feasible and safe on low-cost

robotic hardware. As a platform, we use the Parrot AR.Drone

which is available for $300 and, with a weight of only 420 g

J. Engel, J. Sturm and D. Cremers are with the Department
of Computer Science, Technical University of Munich, Germany
{engelj,sturmju,cremers}@in.tum.de

Fig. 1. Our approach enables a low-cost quadrocopter to accurately follow
any given flight trajectory. We use the front-facing camera as the main
sensor for localization based on PTAM [11]. Middle: Flight figure (blue
lines) and current goal location (red cross). Bottom left: Learned 3D feature
map. Bottom right: Visual features detected and the live-stream from the
quadrocopter.

and a protective hull, safe to be used in public places. As

the onboard computational resources are utterly limited, all

computations are performed externally.

This paper is an extension of our recently published

work [10]. In this work, we additionally describe the script-

ing language that enables our quadrocopter to complete

complex flight patterns including take-off, autonomous map

initialization, and landing. This paper comes with two videos,

demonstrating the robustness of our approach, its ability to

eliminate drift effectively and to follow pre-defined, absolute

scale trajectories. They are available online at:

http://youtu.be/tZxlDly7lno
http://youtu.be/eznMokFQmpc

II. RELATED WORK

Previous work on autonomous flight with quadrocopters

can be categorized into different research areas. One part of

the community focuses on accurate quadrocopter control and

a number of impressive results have been published [12, 1,

3]. These works however rely on advanced external tracking

systems, restricting their use to a lab environment. A similar

approach is to distribute artificial markers in the environment,

simplifying pose estimation [13]. Other approaches learn a

map offline from a previously recorded, manual flight and

thereby enable a quadrocopter to again fly the same trajectory

[14]. For outdoor flights where GPS-based pose estimation

is possible, complete solutions are available as commercial

products [15].

In this work we focus on autonomous flight without previ-

ous knowledge about the environment nor GPS signals, while

43

IROS Workshop on Visual Control of Mobile Robots (ViCoMoR 2012)
October 11th, 2012, Vilamoura, Algarve, Portugal

43

using only onboard sensors. First results towards this goal

have been presented using a lightweight laser scanner [5], a

Kinect [9] or a stereo rig [8] mounted on a quadrocopter as

primary sensor. While these sensors provide absolute scale

of the environment, their drawback is a limited range and

large weight, size and power consumption when compared

to a monocular setup [16, 7].

In our work we therefore focus on a monocular camera for

pose estimation. Stabilizing controllers based on optical flow

were presented in [17], and similar methods are integrated

in commercially available hardware [18]. Such systems how-

ever are subject to drift over time, and hence not suited for

long-term navigation.

To eliminate drift, various monocular SLAM methods

have been investigated on quadrocopters, both with off-board

[16, 5] and on-board processing [7]. A particular challenge

for monocular SLAM is, that the scale of the map needs

to be estimated from additional metric sensors such as IMU

or GPS, as it cannot be recovered from vision alone. This

problem has been addressed in recent publications such as

[19, 20]. The current state of the art is to estimate the scale

using an extended Kalman filter (EKF), which contains scale

and offset in its state. In contrast to this, we propose a novel

approach which is based on direct computation: Using a

statistical formulation, we derive a closed-form, consistent

estimator for the scale of the visual map. Our method

yields accurate results both in simulation and practice, and

requires less computational resources than filtering. It can

be used with any monocular SLAM algorithm and sensors

providing metric position or velocity measurements, such

as an ultrasonic or pressure altimeter or occasional GPS

measurements.

In contrast to the systems presented in [16, 7], we deliber-

ately refrain from using expensive, customized hardware: the

only hardware required is the AR.Drone, which comes at a

costs of merely $300 – a fraction of the cost of quadrocopters

used in previous work. Released in 2010 and marketed as

high-tech toy, it has been used and discussed in several

research projects [21, 22, 23]. To our knowledge, we are the

first to present a complete implementation of autonomous,

camera-based flight in unknown, unstructured environments

using the AR.Drone.

III. HARDWARE PLATFORM

As platform we use the Parrot AR.Drone, a commercially

available quadrocopter. Compared to other modern MAV’s

such as Ascending Technology’s Pelican or Hummingbird

quadrocopters, its main advantage is the very low price, its

robustness to crashes and the fact that it can safely be used

indoor and close to people. This however comes at the price

of flexibility: Neither the hardware itself nor the software

running onboard can easily be modified, and communication

with the quadrocopter is only possible over wireless LAN.

With battery and hull, the AR.Drone measures 53cm×52cm

and weights 420 g.

monocular
SLAM

extended
Kalman filter

PID
control

video @ 18 Hz
320×240

∼ 130 ms delay

IMU @ 200 Hz
altimeter @ 25 Hz

∼ 30-80 ms delay

control
@ 100 Hz

∼ 60 ms
delay

wireless

LAN

Fig. 2. Approach Outline: Our navigation system consists of three major
components: a monocular SLAM implementation for visual tracking, an
EKF for data fusion and prediction, and PID control for pose stabilization
and navigation. All computations are performed offboard, which leads to
significant, varying delays which our approach has to compensate.

A. Sensors

The AR.Drone is equipped with a 3-axis gyroscope and

accelerometer, an ultrasound altimeter and two cameras. The

first camera is aimed forward, covers a field of view of

73.5◦ × 58.5◦, has a resolution of 320× 240 and a rolling

shutter with a delay of 40 ms between the first and the last

line captured. The video of the first camera is streamed to a

laptop at 18 fps, using lossy compression. The second camera

aims downward, covers a field of view of 47.5◦ ×36.5◦ and

has a resolution of 176×144 at 60fps. The onboard software

uses the down-looking camera to estimate the horizontal

velocity. The quadcopter sends gyroscope measurements and

the estimated horizontal velocity at 200Hz, the ultrasound

measurements at 25Hz to the laptop. The raw accelerometer

data cannot be accessed directly.

B. Control

The onboard software uses these sensors to control the roll

Φ and pitch Θ, the yaw rotational speed Ψ̇ and the vertical

velocity ż of the quadrocopter according to an external

reference value. This reference is set by sending a new

control command u = (Φ̄,Θ̄, ¯̇z, ¯̇Ψ) ∈ [−1,1]4 every 10 ms.

IV. APPROACH

Our approach consists of three major components running

on a laptop connected to the quadrocopter via wireless LAN,

an overview is given in Fig. 2.

1) Monocular SLAM: For monocular SLAM, our solu-

tion is based on Parallel Tracking and Mapping (PTAM) [11].

After map initialization, we rotate the visual map such that

the xy-plane corresponds to the horizontal plane according

to the accelerometer data, and scale it such that the average

keypoint depth is 1. Throughout tracking, the scale of the

map λ ∈ R is estimated using a novel method described in

Section IV-A. Furthermore, we use the pose estimates from

the EKF to identify and reject falsely tracked frames.

44

prediction:

Φ,Θ,Ψ:

ẋ, ẏ,z:

vis. pose:
∼ 125ms∼ 25ms∼ 100ms

t −Δtvis t t +Δtcontrol

Fig. 3. Pose Prediction: Measurements and control commands arrive
with significant delays. To compensate for these delays, we keep a history
of observations and sent control commands between t−Δtvis and t+Δtcontrol

and re-calculate the EKF state when required. Note the large timespan with
no or only partial odometry observations.

2) Extended Kalman Filter: In order to fuse all available

data, we employ an extended Kalman filter (EKF). We

derived and calibrated a full motion model of the quadro-

copter’s flight dynamics and reaction to control commands,

which we will describe in more detail in Section IV-B. This

EKF is also used to compensate for the different time delays

in the system, arising from wireless LAN communication

and computationally complex visual tracking.

We found that height and horizontal velocity measure-

ments arrive with the same delay, which is slightly larger than

the delay of attitude measurements. The delay of visual pose

estimates Δtvis is by far the largest. Furthermore we account

for the time required by a new control command to reach

the drone Δtcontrol. All timing values given subsequently are

typical values for a good connection, the exact values depend

on the wireless connection quality and are determined by

a combination of regular ICMP echo requests sent to the

quadrocopter and calibration experiments.

Our approach works as follows: first, we time-stamp all

incoming data and store it in an observation buffer. Control

commands are then calculated using a prediction for the

quadrocopter’s pose at t +Δtcontrol. For this prediction, we

start with the saved state of the EKF at t −Δtvis (i.e., after

the last visual observation/unsuccessfully tracked frame).

Subsequently, we predict ahead up to t + Δtcontrol, using

previously issued control commands and integrating stored

sensor measurements as observations. This is illustrated in

Fig. 3. With this approach, we are able to compensate

for delayed and missing observations at the expense of

recalculating the last cycles of the EKF.

3) PID Control: Based on the position and velocity

estimates from the EKF at t+Δtcontrol, we apply PID control

to steer the quadrocopter towards the desired goal location

p = (x̂, ŷ, ẑ,Ψ̂)T ∈R
4 in a global coordinate system. Accord-

ing to the state estimate, we rotate the generated control

commands to the robot-centric coordinate system and send

them to the quadrocopter. For each of the four degrees-of-

freedom, we employ a separate PID controller for which we

experimentally determined suitable controller gains.

A. Scale Estimation

One of the key contributions of this paper is a closed-

form solution for estimating the scale λ ∈R+ of a monocular

SLAM system. For this, we assume that the robot is able to

make noisy measurements of absolute distances or veloci-

ties from additional, metric sensors such as an ultrasound

altimeter.

As a first step, the quadrocopter measures in regular

intervals the d-dimensional distance traveled both using only

the visual SLAM system (subtracting start and end position)

and using only the metric sensors available (subtracting start

and end position, or integrating over estimated speeds). Each

interval gives a pair of samples xi,yi ∈R
d , where xi is scaled

according to the visual map and yi is in metric units. As both

xi and yi measure the motion of the quadrocopter, they are

related according to xi ≈ λyi.

More specifically, if we assume Gaussian noise in the

sensor measurements with constant variance1, we obtain

xi ∼N (λμi,σ2
x I3×3) (1)

yi ∼N (μi,σ2
y I3×3) (2)

where the μi ∈ R
d denote the true (unknown) distances

covered and σ2
x ,σ2

y ∈ R
+ the variances of the measurement

errors. Note that the individual μi are not constant but depend

on the actual distances traveled by the quadrocopter in the

measurement intervals.

One possibility to estimate λ is to minimize the sum of

squared differences (SSD) between the re-scaled measure-

ments, i.e., to compute one of the following:

λy
∗

:= argmin
λ

∑
i
‖xi −λyi‖2 =

∑i xT
i yi

∑i yT
i yi

(3)

λx
∗

:=

(
argmin

λ
∑

i
‖λxi −yi‖2

)−1

=
∑i xT

i xi

∑i xT
i yi

. (4)

The difference between these two lines is whether one aims

at scaling the xi to the yi or vice versa. However, both

approaches lead to different results, none of which converges

to the true scale λ when adding more samples. To resolve

this, we propose a maximum likelihood (ML) approach, that

is estimating λ by minimizing the negative log-likelihood

L(μ1 . . .μn,λ) ∝
1

2

n

∑
i=1

(
‖xi −λμi‖2

σ2
x

+
‖yi −μi‖2

σ2
y

)
(5)

By first minimizing over the μi and then over λ , it can be

shown analytically that (5) has a unique, global minimum at

μ∗
i =

λ∗σ2
y xi +σ2

x yi

λ∗2σ2
y +σ2

x

(6)

λ∗ =
sxx − syy + sign(sxy)

√
(sxx − syy)2 +4s2

xy

2σ−1
x σysxy

(7)

with sxx := σ2
y ∑n

i=1 xT
i xi, syy := σ2

x ∑n
i=1 yT

i yi and sxy :=
σyσx ∑n

i=1 xT
i yi. Together, these equations give a closed-

form solution for the ML estimator of λ , assuming the

measurement error variances σ2
x and σ2

y are known.

1The noise in xi does not depend on λ as it is proportional to the average
keypoint depth, which is normalized to 1 for the first keyframe.

45

B. State Prediction and Observation
In this section, we describe the state space, the observation

models and the motion model used in the EKF. The state

space consists of a total of ten state variables

xt := (xt ,yt ,zt , ẋt , ẏt , żt ,Φt ,Θt ,Ψt ,Ψ̇t)
T ∈ R

10, (8)

where (xt ,yt ,zt) denotes the position of the quadrocopter in

m and (ẋt , ẏt , żt) the velocity in m/s, both in world coordinates.

Further, the state contains the roll Φt , pitch Θt and yaw Ψt
angle of the drone in deg, as well as the yaw-rotational speed

Ψ̇t in deg/s. In the following, we define for each sensor an

observation function h(xt) and describe how the respective

observation vector zt is composed from the sensor readings.
1) Odometry Observation Model: The quadrocopter

measures its horizontal speed v̂x,t and v̂y,t in its local co-

ordinate system, which we transform into the global frame

ẋt and ẏt . The roll and pitch angles Φ̂t and Θ̂t measured by

the accelerometer are direct observations of Φt and Θt . To

account for yaw-drift and uneven ground, we differentiate

the height measurements ĥt and yaw measurements Ψ̂t and

treat them as observations of the respective velocities. The

resulting observation function hI(xt) and measurement vector

zI,t is hence given by

hI(xt) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋt cosΨt − ẏt sinΨt
ẋt sinΨt + ẏt cosΨt

żt
Φt
Θt
Ψ̇t

⎞
⎟⎟⎟⎟⎟⎟⎠

(9)

zI,t := (v̂x,t , v̂y,t ,(ĥt − ĥt−1),Φ̂t ,Θ̂t ,(Ψ̂t − Ψ̂t−1))
T (10)

2) Visual Observation Model: When PTAM success-

fully tracks a video frame, we scale the pose estimate by

the current estimate for the scaling factor λ∗ and transform

it from the coordinate system of the front camera to the

coordinate system of the quadrocopter, leading to a direct

observation of the quadrocopter’s pose given by

hP(xt) := (xt ,yt ,zt ,Φt ,Θt ,Ψt)
T (11)

zP,t := f (EDCEC,t) (12)

where EC,t ∈ SE(3) is the estimated camera pose (scaled with

λ), EDC ∈ SE(3) the constant transformation from the camera

to the quadrocopter coordinate system, and f : SE(3) → R
6

the transformation from an element of SE(3) to our roll-

pitch-yaw representation.
3) Prediction Model: The prediction model describes

how the state vector xt evolves from one time step to the next.

In particular, we approximate the quadrocopter’s horizontal

acceleration ẍ, ÿ based on its current state xt , and estimate

its vertical acceleration z̈, yaw-rotational acceleration Ψ̈ and

roll/pitch rotational speed Φ̇,Θ̇ based on the state xt and the

active control command ut .
The horizontal acceleration is proportional to the horizon-

tal force acting upon the quadrocopter, which is given by(
ẍ
ÿ

)
∝ facc − fdrag (13)

where fdrag denotes the drag and facc denotes the accelerating

force. The drag is approximately proportional to the horizon-

tal velocity of the quadrocopter, while facc depends on the

tilt angle. We approximate it by projecting the quadrocopter’s

z-axis onto the horizontal plane, which leads to

ẍ(xt) = c1 (cosΨt sinΦt cosΘt − sinΨt sinΘt)− c2 ẋt (14)

ÿ(xt) = c1 (−sinΨt sinΦt cosΘt − cosΨt sinΘt)− c2 ẏt (15)

We estimated the proportionality coefficients c1 and c2 from

data collected in a series of test flights. Note that this model

assumes that the overall thrust generated by the four rotors

is constant. Furthermore, we describe the influence of sent

control commands ut = (Φ̄t ,Θ̄t , ¯̇zt ,
¯̇Ψt) by a linear model:

Φ̇(xt ,ut) = c3 Φ̄t − c4 Φt (16)

Θ̇(xt ,ut) = c3 Θ̄t − c4 Θt (17)

Ψ̈(xt ,ut) = c5
¯̇Ψt − c6 Ψ̇t (18)

z̈(xt ,ut) = c7 ¯̇zt − c8 żt (19)

Again, we estimated the coefficients c3, . . . ,c8 from test flight

data. The overall state transition function is now given by⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xt+1

yt+1

zt+1

ẋt+1

ẏt+1

żt+1

Φt+1

Θt+1

Ψt+1

Ψ̇t+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

←

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xt
yt
zt
ẋt
ẏt
żt
Φt
Θt
Ψt
Ψ̇t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+δt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋt
ẏt
żt

ẍ(xt)
ÿ(xt)

z̈(xt ,ut)
Φ̇(xt ,ut)
Θ̇(xt ,ut)

Ψ̇t
Ψ̈(xt ,ut)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

using the model specified in (14) to (19). Note that, due to

the many assumptions made, we do not claim the physical

correctness of this model. It however performs very well

in practice, which is mainly due to its completeness: the

behavior of all state parameters and the effect of all control

commands is approximated, allowing “blind” prediction, i.e.,

prediction without observations for a brief period of time

(∼ 125ms in practice, see Fig. 3).

V. EXPERIMENTS AND RESULTS

We conducted a series of real-world experiments to ana-

lyze the properties of the resulting system. The experiments

were conducted in different environments, i.e., both indoor

in rooms of varying size and visual appearance as well as

outdoor under the influence of sunlight and (slight) wind. A

selection of these environments is depicted in Fig. 4.

A. Scale Estimation Accuracy

To analyze the accuracy of the scale estimation method

derived in IV-A, we instructed the quadrocopter to fly a

fixed figure, while every second a new sample is taken

and the scale re-estimated. In the first set of flights, the

quadrocopter was commanded to move only vertically, such

that the samples mostly consist of altitude measurements.

In the second set, the quadrocopter was commanded to fly

46

small office kitchen large office large indoor area outdoor

Fig. 4. Testing Environments: The top row shows an image of the quadrocopter flying, the bottom row the corresponding image from the quadrocopter’s
frontal camera. This shows that our system can operate robustly in different, real-world environments.

vertical motion horizontal motion

0 5 10 15 20

1

1.5

2

2.5

0 5 10 15 20

1

1.5

2

2.5

es
ti

m
at

ed
le

n
g
th

o
f

1
m

[m
]

time [s]time [s]

Fig. 5. Scale Estimation Accuracy: The plots show the mean and standard
deviation of the the estimation error e, corresponding to the estimated length
of 1m, from horizontal and vertical motion. It can be seen that the scale
can be estimated accurately in both cases, it is however more accurate and
converges faster if the quadrocopter moves vertically.

a horizontal rectangle, such that primarily the IMU-based

velocity information is used. After each flight, we measured

the ground truth λ̂ by manually placing the quadrocopter at

two measurement points, and comparing the known distance

between these points with the distance measured by the

visual SLAM system. Note that due to the initial scale

normalization, the values for λ̂ roughly correspond to the

mean feature depth in meters of the first keyframe, which in

our experiments ranges from 2 m to 10 m. To provide better

comparability, we analyze and visualize the estimation error

e := λ∗
λ̂

, corresponding to the estimated length of 1m.

Fig. 5 gives the mean error as well as the standard

deviation spread over 10 flights. As can be seen, our method

quickly and accurately estimates the scale from both types

of motion. Due to the superior accuracy of the altimeter

compared to the horizontal velocity estimates, the estimate

converges faster and is more accurate if the quadrocopter

moves vertically, i.e., convergence after 2s versus 15s, and

to a final accuracy ±1.7% versus ±5%. Note that in practice,

we allow for (and recommend) arbitrary motions during scale

estimation so that information from both sensor modalities

can be used to improve convergence. Large, sudden changes

in measured relative height can be attributed to uneven

ground, and removed automatically from the data set.

−0.4
0

0.4

−0.4
0

0.4

−0.4
−0.2

0
0.2
0.4

−0.4
0

0.4

−0.4
0

0.4

−0.4
−0.2

0
0.2
0.4

−0.4
0

0.4

−0.4
0

0.4

−0.4
−0.2

0
0.2
0.4

y
[m

]

kitchen

RMSE = 4.9 cm

y [m] x [m]

large indoor area

RMSE = 7.8 cm

y [m] x [m]

outdoor

RMSE = 18.0 cm

y [m] x [m]

Fig. 6. Flight Stability: Path taken and RMSE of the quadrocopter when
instructed to hold a target position for 60 s, in three of the environments
depicted in Fig. 4. It can be seen that the quadrocopter can hold a position
very accurately, even when perturbed by wind (right).

B. Positioning Accuracy

In this section, we evaluate the performance of the com-

plete system in terms of position control. We instructed

the quadrocopter to hold a target position over 60 s in

different environments and measure the root mean square

error (RMSE). The results are given in Fig. 6: the measured

RMSE lies between 4.9 cm (indoor) and 18.0 cm (outdoor).

C. Drift Elimination

To verify that the incorporation of a visual SLAM sys-

tem eliminates odometry drift, we compare the estimated

trajectory with and without the visual SLAM system. Fig. 7

shows the resulting paths, both for flying a fixed figure (left)

and for holding a target position while the quadrocopter is

being pushed away (right). Both flights took approximately

35 s, and the quadrocopter landed no more than 15 cm away

from its takeoff position. In contrast, the raw odometry

accumulated an error of 2.1 m for the fixed figure and 6m

when being pushed away - which is largely due to the relative

lack of texture on the floor. This experiment demonstrates

that the visual SLAM system efficiently eliminates pose drift

during maneuvering.

D. Figure Flying

Based on the accurate pose estimation and control, we

implemented a simple scripting language for flying pre-

specified maneuvers. Available commands in this scripting

language include take-off, landing, automatic initialization

47

−8 −6 −4 −2 0 2
−8

−6

−4

−2

0

2

−1 0 1 2 3

−1

0

1

2

3

EKF trajectory raw odometry target trajectory
y

[m
]

x [m]x [m]

Fig. 7. Elimination of Odometry Drift: Horizontal path taken by the
quadrocopter as estimated by the EKF compared to the raw odometry (i.e.,
the integrated velocity estimates). Left: when flying a figure; right: when
being pushed away repeatedly from its target position. The odometry drift
is clearly visible, in particular when the quadrocopter is being pushed away.
When incorporating visual pose estimates, it is eliminated completely.

(take-off + PTAM map initialization) and approaching a

waypoint, both in absolute coordinates (with the world

origin at the take-off location) as well as relative to the

current location. Various parameters can be set during the

flight, for example to re-define the world origin, limit flight

speed, and the parameters for approaching a waypoint. A

waypoint has been “reached” after the quadrocopter reaches

and remains within a certain distance (default: 0.5 m) for a

certain time (default: 2.0 s). With this scripting language, we

were able to let the quadrocopter autonomously complete

a large variety of different figures including take-off and

map initialization, for example a rectangle and the “Haus

vom Nikolaus” as depicted in Fig. 1, both vertically and

horizontally. Demonstrations of these flight patterns are also

shown in the video accompanying this paper.

VI. CONCLUSION

In this paper, we presented a visual navigation system for

autonomous figure flying. Our system enables the quadro-

copter to visually navigate in unstructured, GPS-denied en-

vironments and does not require artificial landmarks nor prior

knowledge about the environment. We tested our system in

a set of extensive experiments in different real-world indoor

and outdoor environments and with different flight patterns.

We found in these experiments, that our system achieves an

average positioning accuracy of 4.9 cm (indoor) to 18.0 cm

(outdoor) and can robustly deal with communication delays

of up to 400 ms. With these experiments, we demonstrated

that accurate, robust and drift-free visual figure flights are

possible.
We plan to release our software as open-source in the near

future.

REFERENCES

[1] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Proc. IEEE Intl. Conf. on Robotics
and Automation (ICRA), 2011.

[2] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A sim-
ple learning strategy for high-speed quadrocopter multi-flips.” in
Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA), 2010.

[3] M. Müller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball jug-
gling,” in Proc. IEEE Intl. Conf. on Intelligent Robots and Systems
(IROS), 2011.

[4] Q. Lindsey, D. Mellinger, and V. Kumar, “Construction of cubic
structures with quadrotor teams,” in Proceedings of Robotics: Science
and Systems (RSS), Los Angeles, CA, USA, 2011.

[5] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation system
for autonomous indoor flying,” in Proc. IEEE Intl. Conf. on Robotics
and Automation (ICRA), 2009.

[6] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based
MAV navigation in unknown and unstructured environments,” in
Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA), 2010.

[7] M. Achtelik, M. Achtelik, S. Weiss, and R. Siegwart, “Onboard IMU
and monocular vision based control for MAVs in unknown in- and
outdoor environments,” in Proc. IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2011.

[8] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy, “Stereo
vision and laser odometry for autonomous helicopters in GPS-denied
indoor environments,” in Proc. SPIE Unmanned Systems Technology
XI, 2009.

[9] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy, “Visual odometry and mapping for autonomous flight
using an RGB-D camera,” in Proc. IEEE International Symposium of
Robotics Research (ISRR), 2011.

[10] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a
low-cost quadrocopter,” in Proc. of the International Conference on
Intelligent Robot Systems (IROS), Oct. 2012.

[11] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Proc. IEEE Intl. Symposium on Mixed and Augmented
Reality (ISMAR), 2007.

[12] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation
and control for precise aggressive maneuvers with quadrotors,” in
Proceedings of the Intl. Symposium on Experimental Robotics, Dec
2010.

[13] D. Eberli, D. Scaramuzza, S. Weiss, and R. Siegwart, “Vision based
position control for MAVs using one single circular landmark,” Journal
of Intelligent and Robotic Systems, vol. 61, pp. 495–512, 2011.

[14] T. Krajnı́k, V. Vonásek, D. Fišer, and J. Faigl, “AR-drone as a platform
for robotic research and education,” in Proc. Research and Education
in Robotics: EUROBOT 2011, 2011.

[15] “Ascending technologies,” 2012. [Online]: http://www.asctec.de/
[16] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based

MAV navigation in unknown and unstructured environments,” in
Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA), 2010.

[17] S. Zingg, D. Scaramuzza, S. Weiss, and R. Siegwart, “MAV navi-
gation through indoor corridors using optical flow,” in Proc. IEEE
Intl. Conf. on Robotics and Automation (ICRA), 2010.

[18] “Parrot AR.Drone,” 2012. [Online]: http://ardrone.parrot.com/
[19] S. Weiss and R. Siegwart, “Real-time metric state estimation for

modular vision-inertial systems,” in Proc. IEEE Intl. Conf. on Robotics
and Automation (ICRA), 2011.

[20] G. Nützi, S. Weiss, D. Scaramuzza, and R. Siegwart, “Fusion of IMU
and vision for absolute scale estimation in monocular SLAM,” Journal
of Intelligent Robotic Systems, vol. 61, pp. 287 – 299, 2010.

[21] C. Bills, J. Chen, and A. Saxena, “Autonomous MAV flight in indoor
environments using single image perspective cues,” in Proc. IEEE
Intl. Conf. on Robotics and Automation (ICRA), 2011.

[22] T. Krajnı́k, V. Vonásek, D. Fišer, and J. Faigl, “AR-drone as a platform
for robotic research and education,” in Proc. Communications in
Computer and Information Science (CCIS), 2011.

[23] W. S. Ng and E. Sharlin, “Collocated interaction with flying robots,”
in Proc. IEEE Intl. Symposium on Robot and Human Interactive
Communication, 2011.

48

