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Aims and Scope 

 

Autonomous navigation of mobile robots is a complex problem that has attracted the 

attention of the research community during the last decades. Systems capable of 

performing efficient and robust autonomous navigation are of interest in many robotic 

applications: automation industry, material transportation, assistance to disabled people, 

surveillance, etc. In order to perform navigation, the mobile robots need to interact with 

the environment, and for this purpose different types of sensors are nowadays available. 

From all of them, vision systems stand out because they provide very rich information 

and because of their versatility and low cost. The purpose of this workshop is to discuss 

topics related to the challenging problems of visual control of mobile robots.  

 

Visual control refers to the capability of a robot to visually perceive the environment 

and use this information for autonomous navigation. The visual control is a 

multidisciplinary field of research that requires the collaboration of computer vision and 

robotics control experts. Nowadays, there is still a gap between computer vision and 

robotics communities that prevents more profitable results from jointly research. Thus, 

one of the goals of this workshop is to provide a forum for the communication of new 

ideas between these communities. Moreover, different fields of research can promote new 

methods, for example from biological inspiration, or taking advantage of known methods 

applied in different areas, such as robotic manipulation or UAV. We propose a half-day 

workshop to enhance active collaboration of computer vision and robotic researchers, 

discuss formal methods for visual control and identify current trends of the field. 

Achievements, challenges and open questions related with the visual control of mobile 

robots are welcome. 

 

 

 

 

Topics 
 

Topics of interest include: 

− Autonomous navigation and visual servoing techniques for mobile robots. 

− Visual perception for visual control, visual sensors and integration of image 

information in the control loop. 

− Visual control with constraints: nonholonomic constraints, motion in formation, 

coordination, distributed visual control, obstacle avoidance, motion planning, etc. 

− New trends in visual control, innovative solutions or proposals in the framework of 

computer vision and control theory. 
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Planning high-level paths for visual control tasks with sensor

constraints.

J.B. Hayet

Abstract— Traditionally, vision-based control algorithms
have been defined as local strategies that formulate the control
of the robot actuators in terms of some image-related features.
These features may take the form of landmark points (corners,
interest points or lines) that have to be detected and recognized,
e.g. to compute an homography between the current image and
the target one. At the higher level, recent works have proposed
to compute robot paths in such a way that one particular point
is kept in sight all the time during the trajectory execution,
which does not necessarily mean that all the interesting points
will be effectively seen. Here, we propose to use a high-level
planner that guarantees that all the points actually tracked will
be kept in sight e.g. for computing homographies and basing
the visual control on them.

I. INTRODUCTION

Visual control techniques have played a key role in the

development of autonomous mobile platforms. In image-

based visual servoing, one specifies locomotion tasks in

terms of the position of some features in the image. In the

most typical setup, visual servoing is defined in terms of

configurations of points in the image, by which are defined

both the initial and goal configurations. As a consequence,

an important pre-condition for this scheme to be successful

is that, at a higher level, the robot path should be defined or

guided in such a way that the features that will be used during

the control will be kept in sight all along the trajectory. Our

work aims at exhibiting such paths, that (1) could be used

as reference paths in a visual servoing control and (2) could

guarantee geometrically that the perspective entities used

in the visual control – typically, a homography computed

between two sets of four points, the starting and ending

image configurations – can be effectively computed with a

limited field-of-view camera, i.e. that none of the points get

out of the image.

A. Existing approaches

Many visual servoing schemes have been described in

the literature that rely on the estimation of the epipolar

geometry between the current camera configuration and the

goal camera configuration [5]. However, in indoor environ-

ments, it is quite common to have to rely only on planar

scenes, with which the estimation of epipolar geometry is

more difficult [6]. Hence, visual control schemes have been

proposed based on the homographies induced by the visible

planes.

In the work of [4], the authors have defined a set of

homography-based control laws designed in such a way

J.B. Hayet is with Centro de Investigación en Matemáticas (CIMAT),
36240 Guanajuato, GTO., México jbhayet@cimat.mx
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Fig. 1. Geometric setup for our problem: we aim at joining initial
configuration Pi to final configuration Pf , through visual controls based on
homographies, where the homographies are computed with visual landmarks
laying on the planar patch maintained in sight. β is the field of view. The
shaded region is the locus of points such that the viewing angle on the
planar path is superior to β (hence, not admissible configurations).

that, by applying these laws, the robot follows the shortest

trajectories maintaining a given punctual target in sight, as

illustrated by Fig. 1. The geometric characterization of these

particular trajectories, and the complete synthesis of shortest

paths have been described in two separate works. An initial

description was provided in [1] and then corrected in a later

work [7]. Locally, it is shown that these trajectories are either

logarithmic spirals, straight lines or in-site rotations, and the

most remarkable element in the synthesis is that any pair of

configurations can be reached by trajectories (“words”) in-

volving no more than five elementary paths (“letters”). In [4],

control laws are given for a sub-set of optimal trajectories,

namely straight lines and concatenation of two spirals. In

our opinion, these control laws could be generalized for the

complete synthesis proposed in [7]. However, there remains

an important limitation to this approach, as maintaining only

one target point in sight does not necessarily imply that

the planar features we use for computing the inter-image

homographies necessary for the control will be visible in

all frames. For example, some of the shortest paths in [7],

such as the ones made of two spirals, may cause the robot

to derive from the straight line joining the initial and final

configurations and get closer to the main target. This may

produce a break in the visibility of the features we are not

keeping in sight explicitly.

B. Contributions of this work

We propose a planner for a differential drive robot that

guarantees that a given planar target is maintained in sight. In

a sense, instead of [4], we do not decouple the problem of the

visibility constraints (handled by the high-level planner) from

the problem of vision-based control (handled by the control

1
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Fig. 2. Mobility around one configuration P. The continuously derivable
paths necessarily go through the green areas at P. The C1 parts of shortest
paths are necessarily among lines (in the interior of the green area) or
logarithmic spirals (boundaries of the green area).

system), but instead, we consider the same features we use

for the homography estimation as the geometric objects

defining the visibility constraints. As it is shown below (in

Section II), the shortest paths under these constraints are

similar to the ones that keep one landmark in sight; in

Section III, we will define a control scheme for realizing

these paths, and in Section IV, we give the results of a few

simulations based on this scheme. Finally, in Section V, we

draw some conclusions about this approach.

II. HIGH LEVEL PLANS FOR VISUAL CONTROL

Consider Fig. 1 for a geometric setup of the problem. We

want to plan paths in the plane, for a differential drive robot

(hence, non-holonomic), controlled through its linear and

angular velocities (v, ω). These paths should lead the robot

from an initial configuration Pi to a final configuration Pf ,

in such a way that a planar area, delimited by the two points

L1 and L2, is kept in sight and is effectively used for the

robot control, as explained in Section III. We suppose that

the whole planar area is the surface of an obstacle (e.g., a

wall), so that the robot can only be in the half-plane above

the line (L1L2). Let us call β the robot camera field-of-view

and let us define µ = β
2 . The plane supporting the features

will be referred to as Π.

A. Local properties of shortest paths

In [2], we have studied the main local properties of the

shortest paths maintaining two landmarks in sight, and we

recall here briefly the most important results. First, if one

focuses on the neighborhood of a particular configuration

P, as in Fig. 2, one will immediately understand that the

local nature of shortest paths is quite similar to the one

studied in [1], [7] for the case of just one landmark. Indeed,

any neighborhood will be partitioned into four zones, two

of which being attainable from P by forward or backward

motion, and the other two not being attainable directly. The

curves delimiting these zones are, on the left (resp. right)

side, the one on which the landmark L1 (resp. L2) is kept

at a maximal viewing angle, i.e. with a value +µ (resp.

−µ), which means that the landmark is seen at the leftest

(resp. rightest) position in the image. These curves are the

same logarithmic spirals found in the 1-landmark case, the

difference being that they are defined with respect to two

separate centers. We will denote them by B+(P,L2)
1 (in

red in Fig. 2) and B−(P,L1) (in blue). From this local

structure, we have shown that, locally, and in this half-plane,

the continuously derivable parts of the shortest paths can only

be straight lines or parts of these spirals. Similarly to [1], we

have also shown in [2] that the non-differentiable points on

shortest paths could only correspond to in-site rotations from

one saturated configuration to another one.

B. Globally optimal paths

From the previous remarks, we can define a new alphabet

for shortest paths, based on straight line segments (L in

the following), logarithmic spirals saturating the viewing

angle on L1 on the left side of the image (B−(L1)), or

saturating the viewing angle on L2 on the right side of the

image (B+(L2)). A first important element of the synthesis

is what is referred to in the quoted literature as the “S-

sets” of a point P, i.e. the set of points that are attainable

from P through a straight line segment. This set is easy

to build geometrically: it consists, behind P, of an angular

sector delimited by the lines corresponding to saturations of

each of the two landmarks on their respective side, and in

front of P, of the intersection of two disks, each of them

having PLi (i = 1, 2) as a chord, and denoting the maximal

configurations (at saturation on Pi) after starting a straight

line from P.

Moreover, as most of the properties already proven for

one landmark are still valid for the case of two (see [2]

for more details), we can reason in a similar fashion for

establishing a synthesis of shortest paths, given a pair of

initial and final configurations in the plane. However, an

important difference with the 1-landmark case is the presence

of an obstacle in the (x, y) space. Indeed, configurations for

which the viewing angle on the segment L1L2 is superior to

β are forbidden, so that a whole part of a disk, the locus of

points C such that the angle ̂L1CL2 = β, having L1L2 as a

chord, has to be removed of the projection of the free space

on the (x, y) plane. We will call this obstacle Γβ . This new

element complicates considerably the global characterization

of shortest paths and implies to make a distinction among

pairs of initial/final configurations: For some of them, the

shortest path will be without contact with Γβ , whereas for

other pairs, the shortest path is necessarily in contact with

Γβ at some point.

a) Paths in contact with Γβ: In this work, we will

not try to exhibit the shortest paths in that case, which is

illustrated by the example of Fig. 3. The paths are made of

one or several cusps on Γβ , at which point the tangent on

both sides is the bisector of angle ̂L1PL2, and they appear

as candidate optimal paths whenever the double-spiral curve

that can be drawn from Pi to Pf first get in contact with Γβ ,

before crossing the other spiral (this is the case in Fig. 3), or

1The plus indicates that the saturating viewing angle is positive.
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Fig. 4. Given a path with two cusps on the circle saturating the viewing angle (left), path length as a function of the position of the intermediary cusp
on Γβ (right).

Fig. 3. An example of a path getting in contact with Γβ . This path is
made of four spirals, the landmarks are the two colored disks at the bottom,
Γβ is shaded.

if they do not cross at all. The main problem is in evaluating

the number of cusps in the optimal path and their positions.

Empirically, we have found that, given the double cusp of

Fig. 3, it is sometimes possible to improve it by just dividing

the inner curve of the cusps into two other curves, and that

this happens when the two cusps are widely separated on Γβ .

It does not happen it they are close to each other. In Fig. 4,

we give an example of this possible reduction: On the left

hand side is one of the double cusp curve, for which we tried

many alternative paths with one more intermediary cusp; On

the right hand side, we plotted the path length function of the

position of the intermediary cusp on Γβ . Clearly, there is a

reduction option for a cusp at some median value between the

other two. Note in the same graph that the length function

is not that simple: it seems to have two local maxima in

addition of this minimum. For this paper, we will take the

four spirals curve of Fig. 3 as the reference path, even if it

is not always the shortest one.

b) Paths not in contact with Γβ: For shortest paths

not in contact with Γβ , we can apply the same reasoning as

with the 1-landmark case, especially as far as the number

of possible “letters” in the “word” are possible. Shortest

paths are done, in function of the relative position of Pi and

Pf , either through a LB+(L2)B
−(L1)L word (or shorter),

or a LB−(L1)B
+(L2)L (or shorter). The aforementioned

shorter variants of these are made of at maximum four non-

rotation letters (in the case of four letters, we would add

the initial, final and middle rotation) and are “sub-strings”

L1 L2

α2α1

Fig. 5. Numerical evaluation of the shortest LB
+(L2)B−(L1)L path

between two configurations. The optimization is done in the (α1, α2) space,
each possible curve of the family being uniquely characterized by a pair of
angles (α1, α2). Each of the depicted line segment at the left (resp. right)
correspond to a possible α1 (resp. α2).

of these two. For example L, LB+(L2), B−(L1)B
+(L2)L

are possible words. Now, the minimal length element inside

the whole family of four non-rotation letter words joining

two configurations is much more complicated to isolate than

in the 1-landmark case. It involves transcendental equations

to solve the intersection of the two spirals which are not

defined in the same frames. However, it is a rather simple

family to parameterize and simulate numerically, as can be

seen in Fig. 5: each of this curve is uniquely determined

by two angles, namely the angles defining the orientation of

the starting and ending segments, and the minimum length

curve in that case is in fact a B−(L1)B
+(L2)L curve. For

the remaining of this work, we will rely on this simple

numerical optimization to compute the shortest path between

configurations with candidate paths not in contact with Γβ .

III. APPLICATION TO VISUAL CONTROL

STRATEGIES

In this section, we show how we can use a homography-

based controller to follow the paths defined above, computed

in function of the features used to estimate the homography.

For simplicity we will suppose that the plane under obser-

vation is vertical.

3



A. Global control strategy

As a global control strategy, we will perform the following

steps. Given a pair of start and goal images, in which a set

of planar features {qk}k is present in both:

1) in the starting image, select a planar region of interest

(not only a point), which horizontal bounds define the

directions l1 and l2 to L1 and L2,

2) compute the homography between the two images,

3) decompose it [8] to get the (planar) rotation R, the

plane orientation n, and, up to a scale factor, the trans-

lation between the robot position t and the distance to

the plane, d,

4) choose an arbitrary scale factor,

5) with the scale factor, deduce L1 and L2 from l1 and l2,

and Pf from t. We have now a map (L1,L2,Pi,Pf )
that we can use for planning.

6) Similarly, with this same scale factor, compute (1) the

positions {Qk}k∈[1,N of the features {qk}k∈[1,N that

will be used for homography estimation, (2) the short-

est path sequence as in II and (3) the corresponding

intermediary homographies,

7) apply the elementary control laws to reach each of the

subgoal according to the corresponding path.

Given a shortest path computed by the numerical synthesis

of Section II, we need to define image-defined sub-goals for

each of the “letters” composing the shortest path. As an ex-

ample, if the shortest path is given by a LB−(L1)B
+(L2)L

path (such as in Fig. 5), then we generate the five sets of

feature projections, {q
(s)
k }k∈[1,N ]} where s indexes the path

primitive, and k the feature. These sets are the goal to reach

in each sub-path, and the only information available during

the execution are the current {qk}k∈[1,N ]}, at one given

instant (and their correspondences to the goal set).

B. Control strategy along elementary paths

To implement the homography-based control along each

of the primitive paths, we have taken the same methodology

as [4], where separate control laws are provided for straight

line segments and concatenations of two spirals, for which

stability results are given. Here, we process each primitive

with an individual image-based goal and the correspond-

ing control. We recall that in the planar motion case and

with a vertical underlying plane, the inter-image euclidean

homography Ĥ corresponding to two robot configurations

such that the first one is written (x, z, φ) or (ρ, α, φ) (polar

coordinates) in the second one (z pointing in the direction

of the robot)

Ĥ = K
−1

HK

∝

(
cos φ + ρ cos(φ − α)nx 0 sin φ + ρ cos(φ − α)nz

0 1 0
− sin φ + ρ sin(φ − α)nx 0 cos φ + ρ sin(φ − α)nz

)
,

where K are the camera intrinsic parameters, H the

projective homography, that one computes from a set of cor-

responding pairs (generally by SVD). The controls developed

in [4] act on these terms, more precisely on the equivalent

terms of H. By developing a bit further their expression,

we can make appear clearly all the terms involved and how

they need to be evaluated during the control. For example,

to follow a spiral B, we apply

⎧
⎪⎨
⎪⎩

v = kv(Ĥ11 − Ĥ33)

ω = kω(Ĥ13(1 − sin(φ+α+m)
sin(φ+α) ) + sin m sin α

sin(φ+α) )

m = arctan
(

l1,u−W

αu

) ,

where W is the image width, αu = K11 the focal in pixels

and l1 is the projection on the image of L1. kv and kω are

control gains, whose sign may depend on the way a primitive

is traversed, and on the relative orientation between the plane

and the current translation vector, as explained in [4]. The

terms α and φ correspond to a knowledge of the relative

position of the robot w.r.t. the goal position, and they can be

estimated by decomposition of the estimated homography H.

The controls for the spirals and the rotations are similar. As

for the lines, since we already use position information for

the other primitives, we choose a position-based controller

{
v = kv(Ĥ11 − Ĥ33)
ω = kωφ

.

IV. SIMULATION RESULTS

To validate the approach, we wrote a small JAVA program

to simulate motion queries expressed as formulated above.

To simplify the implementation, we supposed that all starting

and ending rotations where automatically done, and we let

the user choose the starting and final configurations in the

Euclidean plane, from which we deduced the intermediate

goal configurations. As stated previously, this is equivalent

to define the initial and final configurations, the features for

the homography, their planar support, and the field of interest

directly from the image, after a “reconstruction” up to a scale.

In these simulations, the homography decomposition is

done through the SVD-based algorithm described in [8], pro-

posed in the context of auto-calibration. We suppose that we

know the intrinsic parameters matrix K. The homographies

between the current image and the goal image are computed

by a SVD from the overdetermined set of equations given

by the correspondences, we have used only 7 features, which

explains that the computed homography is often quite noisy,

in particular when the point positions are perturbed by noise.

The first experiment (Figs. 6, 7, 8) is in a nearly noise-

less case (Gaussian σ = 10−3 pixels additive noise on

point coordinates). It corresponds to the execution of a

LB−(L1)B
+(L2), that is made of four distinct primitives

(counting the in-site rotation), for β = 2. In Fig. 6, we show

the ground truth trajectory, and the sub-goals to reach. In

Fig 7, we show that the error levels are kept quite low, both

in the image and with respect to the ground truth position of

the goal, except at the end of the second spiral, where one

observe for some time stronger orientation errors and a non-

null residual in the X error. Finally, Fig. 8 shows the linear

and angular velocities. The different primitives are clearly

distinguishable.
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Fig. 6. Left, the planned path and its execution through homography-based control. The path is made of four primitives (a line, a forward spiral, an
in-site rotation and a final backward spiral. Right, the different sub-objectives (for commodity, we only depicted the four surrounding features). Note the
saturation on one side for all of them. The current position (left) and view (right) are depicted in green.

Fig. 7. Errors for the experiment of Fig. 6. Left, errors in orientation and, right, errors in X and Y (in both case, actual pose vs. pose corresponding to
the goal). To give an idea of the scale of these errors, the planar area in which the experiment is done (i.e., the size of Fig. 6, left) is 900 × 500.

Fig. 8. Linear and angular velocities profiles.

With noisy data (σ = 1), we produced the second exper-

iment, in which the path (see Fig. 9) is a B−(L1)B
+(L2)

one. The error levels are higher, of course, but the execution

of the path remains reasonable, the main problem occurring

for the orientation, again, at the end of the second spiral,

and with residual position errors at the end of both spirals. A

more robust decomposition algorithm could perhaps improve

the overall performance.

V. CONCLUSIONS AND FUTURE WORKS

We have presented a motion planner for differential drive

robots that outputs paths maintaining two points into cov-

erage, thus guaranteeing for example that an entire planar

patch of the environment could stay visible, e.g. for visual

control purposes. The planner is similar in many ways to

the existing proposals for one landmark, in particular as it

induces the same kind of local primitives for shortest paths,

straight lines and logarithmic spirals. We have integrated it

with an homography-based controller initially developed for

5



Fig. 9. Second experiment with noisy input data, σ = 1. The trajectory is a double spiral with an in-site rotation.

the primitives of the one-landmark case, and we have shown

that it could be adapted in a straightforward way. In our

ongoing work, we first aim to give a complete path synthesis

for this specific problem, which is difficult in the case paths

in contact with Γβ are considered; we also want to use our

works of [2] and [3] to extend this kind of strategy in two

directions: (1) in surveillance contexts, it could be interesting

to find optimal paths that keep a set of planar locations in

sight (e.g. the vertices of a polygon), and (2) in the presence

of obstacles, since in this scenario the free case primitives

could be an element for building admissible paths among

obstacles.
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One Homography to Control Multiple Robots

M. Aranda1, G. López-Nicolás1, Y. Mezouar2 and C. Sagüés1

Abstract— This paper presents a visual control method to
be used on a set of mobile robots. We consider a framework
where the robots have nonholonomic constraints, move in a
plane and are observed by a calibrated flying camera, which
provides the only sensory information used for the control. The
objective of the control task is to drive the group of robots to a
desired configuration. This configuration is simply defined by
an image, avoiding the need for additional information. The
task is carried out through an image-based control scheme
using the homography induced by the multi-robot system.
Collision avoidance between the robots is also performed, using
a simple image-based method. The performance of the proposal
is illustrated through simulations.

I. INTRODUCTION

Multi-robot systems are an important research area in

current robotics, due to their suitability to perform certain

tasks (such as exploration, surveillance, security or rescue

operations) that are difficult for one single robot. In par-

ticular, a number of research works in this field focus on

the problem of reaching and maintaining a robot team in a

particular configuration [1] [2] [3].

Vision sensors have been extensively used for robot lo-

calization, navigation and control. Visual control is a wide

field of research that has attracted the attention of many

researchers [4]. In multi-robot systems, it is common to have

a setup where each robot is equipped with a local perception

system, and they share their information to accomplish the

global task. This is the case, for example, in the localization

method for multiple mobile robots presented in [5]. Another

related work is [2], where groups of mobile robots are

controlled to visually maintain formations, including the

situation where communication between the robots is not

available. The vision-based formation control with feedback-

linearization proposed in [1] tackles the issue of switching

between decentralized and centralized cooperative control.

Centralized multi-robot control approaches provide several

advantages: they allow simple and cheap robots, and release

their local resources by transferring expensive computations

to an external computer. A centralized architecture is consid-

ered for the leader-follower control proposed in [3], where

the perception system consists of a fixed camera on the

ceiling. In general, vision-based tasks become more robust

1 Instituto de Investigación en Ingenierı́a de Aragón.
Universidad de Zaragoza, Spain. {marandac, gonlopez,
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Development Program funded by Gyeonggi Province, by project DPI2009-
08126, the ANR R-discover project, grant AP2009-3430 Ministerio de
Educación and the I3A Fellowship Program.

when multiple view geometry constraints are imposed [6].

Particularly, the homography is a well-known geometric

model across two views induced by a plane of the scene,

and it has been used extensively in visual control [7], [8],

[9].

In this paper, we consider a framework where the multiple

robots are assumed to have nonholonomic motion constraints

and move in a planar surface. The goal of the proposed

control scheme is to drive the multiple robots to a desired

configuration defined by an image previously taken of that

configuration. The visual information is acquired by a flying

camera undergoing an arbitrary planar motion and looking

downward at the robots. The camera moves in such a way

that its translation is parallel to the motion plane of the robots

and its rotation is parallel to the plane normal.

We propose a homography-based control approach that

takes advantage of the planar motion constraint to parame-

terize the homography. With this particular parametrization,

the approach can be used in a set of two or more robots.

The image features we employ to compute the homography

are the projections of the multiple robots on the image plane.

Then, the computed homography gives information about the

configuration of the set of robots. In particular, from the

homography we can determine if the configuration of the

robots is rigid, i.e. they maintain the desired configuration

defined by the target image, or nonrigid, meaning that the

robots are in a different configuration. We propose an image-

based control law where a desired homography is defined as

a reference for the control in order to drive the robots to

the desired configuration. The use of the homography for

multi-robot formation makes our approach different from

other image-based techniques. In particular, the interaction

is expressed and handled through this homography.

It is always necessary to perform collision avoidance when

controlling multiple mobile robots. Being a key element of

robotic navigation, obstacle avoidance has been extensively

studied for many years. Classical solutions to the problem

include the potential field methods [10]. These methods have

some well-known shortcomings [11], which has prompted

the appearance of many modifications and improvements on

them [12], [13]. Potential-like methods continue to be widely

used for obstacle avoidance, mainly due to their simplic-

ity. Collision avoidance in multiple-robot scenarios has to

deal with both inter-agent and external collisions. Simple,

decentralized approaches are usually preferred. In our case,

we use a potential-like collision avoidance method based

on gyroscopic forces, similar to the approaches employed

in [14], [15]. Our method is image-based, simple and fast

to compute, well suited to nonholonomic vehicles, and can
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Fig. 1. Coordinate system: The motion of the camera occurs in the x− y
plane of the global reference and the robots undergo planar motion parallel
to the x− y plane. The rotation of the camera is also parallel to the plane
normal n.

be implemented as a decoupled term added directly to the

control inputs.

This paper extends the work presented in [16]. Here, we

propose a different control law which carries out the multi-

robot configuration control task in one single step. With this

scheme, only the positions of the robots in the configuration

are controlled, while their final orientation is not regulated.

This is suitable for cases where, for instance, the robots

have omnidirectional capabilities, and the final orientation

is irrelevant. The other main difference with respect to

the aforementioned previous work is that in this paper we

incorporate a collision avoidance mechanism, which is a

necessary element in any multi-robot control implementation.

The paper is organized as follows. Section II presents

the parametrization of the homography and the definition

of the desired homography for reaching the multi-robot goal

configuration. The control law for the multi-robot system

and the collision avoidance method employed are presented

in section III. In Section IV the performance of the proposal

is illustrated through simulations. Finally, the conclusions of

the paper are given in Section V.

II. HOMOGRAPHY-BASED SCHEME

The setup of the multi-robot system and the flying cam-

era is illustrated in Fig. 1, where the global fixed Left-

handed coordinate system is depicted. In the following, we

parameterize the homography in this framework and describe

the method to compute linearly the homography. Then, we

propose a procedure to define the desired homography that

corresponds to the desired configuration of the multi-robot

system.

A. Homography Parametrization

Two perspective images can be geometrically linked

through a plane by a homography H ∈ R
3×3. This projective

transformation H relates points of the plane projected in both

images. Pairs of corresponding points (p,p′) are then related

up to scale by p′ = Hp. The calibrated homography can be

related to camera motion and plane parameters as follows

H = R+TnT /d , (1)

where R and T are the relative rotation and translation

of the camera, n is the unit normal of the plane with

respect to the reference frame and d is the distance along

n between the plane and the reference position. In the

framework considered, the position of the camera (x, y, z)T

is constrained to the plane x− y (i.e. z = 0) and rotation φ
about the z-axis. This constraint yields

R =

⎡
⎣

cosφ sinφ 0
− sinφ cosφ 0

0 0 1

⎤
⎦ , T =

⎛
⎝

tx
ty
tz

⎞
⎠ , (2)

with T = −R(x, y, 0)T .

In our framework, the mobile robots move in a planar

surface that generates the homography. Besides, the camera

undergoes planar motion: the translation is parallel to the

plane and the rotation is parallel to the plane normal, i.e. the

z-axis, and n = (0, 0,−1)T . Notice that the distance d is the

height of the camera with respect the motion plane of the

robots. Therefore, the homography matrix is given by

H =

⎡
⎣

h11 h12 h13

h21 h22 h23

0 0 1

⎤
⎦

=

⎡
⎣

cosφ sinφ −tx/d
− sinφ cosφ −ty/d

0 0 1

⎤
⎦ . (3)

B. Homography Computation

The homography across two views can be computed from

a minimal set of four point correspondences solving a linear

system [17]. In our framework, the points considered consist

of the projection of the robots on the image plane, and they

are denoted in homogeneous coordinates by p = (px, py, 1).
A point correspondence (p,p′) is related up to scale by the

homography as p′ = Hp, which can be expressed in terms

of the vector cross product as p′ ×Hp = 0 [17]. From this

expression two linearly independent equations in the entries

of H (3) are obtained

[
px py 1 0 −p′x
py −px 0 1 −p′y

]
⎛
⎜⎜⎜⎜⎝

h11

h12

h13

h23

h33

⎞
⎟⎟⎟⎟⎠

= 0 . (4)

Each point correspondence gives two independent equations.

Given that H is defined by seven unknown entries, and using

the homography constraints h11 = h22 and h21 = −h12, a

set of two point correspondences allows to determine the

homography up to a scale factor by solving a linear system.

Given that h33 is never zero because of the particular form

(3), the scale of the homography can always be normalized

and fixed by this entry.

C. The Target Homography

Each pair of robots induce a homography across two

images, the current image and the image of the desired

configuration. Given a set of N robots, the number of

homographies defined by the different pair of robots is
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N(N − 1)/2. If all of these homographies are equal, the

relative motion of the robots is rigid. Otherwise, if any of the

homographies is different to the others, the relative motion

of the set of robots is not rigid and they are not in the desired

configuration. A desired homography computed using all

robots needs to be defined in order to lead the robots to

the desired configuration.

In the first case, the homography induced by the plane of

the robots moving in the desired configuration is conjugate

to a planar Euclidean transformation given by

Hrigid =

⎡
⎣

cosφ sinφ h13

− sinφ cosφ h23

0 0 1

⎤
⎦ . (5)

Notice that the upper left hand 2×2 matrix is orthogonal. The

Euclidean transformation produces a translation and rotation

of the image, and lengths and angles are invariants by this

transformation.

The angle of rotation is encapsulated in the eigenval-

ues of (5) given by {1, eiφ, e−iφ}. Then, from the gen-

eral expression of the homography, it can be deduced that

n = (0, 0,−1)T and relative motion up to scale (x, y, 0)T

analogue as the assumptions defined for the homography

parametrization. In this case, the robots are in formation with

all the homographies induced by pairs of robots equal to the

homography computed from all the robots (5) .

In the second case, the motion of the robots is not rigid,

and they are not in the desired configuration. Then, the

computation of the homography gives a matrix of the form

Hnonrigid =

⎡
⎣

s cosφ s sinφ h13

−s sinφ s cosφ h23

0 0 1

⎤
⎦ , (6)

where the upper left hand 2 × 2 matrix is no longer or-

thogonal. This previous matrix corresponds to a similarity

transformation, i.e. translation, rotation and isotropic scaling

represented by the scalar s. Angles and ratios of lengths

are invariants by this transformation. The eigenvalues of

this similarity are {1, s eiφ, s e−iφ} and encapsulate the

rotation angle. Comparison with the general expression of

the homography leads again to n = (0, 0,−1)T but to a

computed relative motion (x, y, (s−1)d2)T up to scale, with

z �= 0. Therefore, the nonrigid motion of the robots induces

a valid homography but not constrained to the assumed

camera motion. We need to define a desired homography

like Hnonrigid, but being induced by a motion that keeps

the camera motion constraints. This can be done normalizing

(6) to make the upper left hand 2× 2 matrix orthogonal and

setting h33 = 1 to hold the planar motion constraint of the

camera (z = 0). Alternatively, we can simply normalize

the upper left hand 2 × 2 matrix and obtain the desired

homography with

Hd = Hnonrigid

⎡
⎣

1/s 0 0
0 1/s 0
0 0 1

⎤
⎦ , (7)

where s is computed as the norm of the upper left hand 2×2
matrix of Hnonrigid. Then, the goal is to control the robots

RobotsControl law

Image of desired

configuration Current image

Flying

camera

Fig. 2. Overview of the control loop. In each iteration of the control, the
flying camera takes a current image of the robots, the desired homography
Hd is obtained and used in the control law to compute the robot velocities
necessary to reach the desired configuration of the multi-robot system.

Fig. 3. Coordinate systems from a top view of the 3D scene. The robot
position is given by (x, y, φ)T or (ρ, α, φ)T in the global reference. The
different parameters depicted are described along the text.

in such a way that all the homographies are led to Hd to

reach the desired configuration.

The Hnonrigid relates each point p of the current image

with the corresponding point p′ in the desired formation

image with p′ = Hnonrigid p. The desired homography

Hd is used now to define the goal location of the points

in the image as pd = (Hd)−1 p′. Notice that the desired

location of the robots in the image computed from the

desired homography is not constant and varies along the time

depending on the motion of the camera and the robots.

III. VISUAL CONTROL LAW

From the desired homography computed as explained in

the previous section, we propose a control scheme to drive

the robots to the desired configuration defined by an image

of that configuration. An overview of the control loop is

depicted in Fig. 2.

A. Robot Model and Coordinate Systems

Different coordinate systems defined in the 3D space are

depicted in Fig. 3. The state of each robot is given by

(x, y, φ)T , where φ is the orientation of the robot expressed

9



Image plane

Fig. 4. Coordinate systems on the image plane for each robot. Subindex m
denotes that the variable is defined on the image plane (the same variable
without subindex m refers to the 3D space). Point p is the image projection
of a robot and pd its location to reach the desired configuration of the multi-
robot system.

as the angle between the robot body y-axis and the world y-

axis. Each robot has two velocity inputs, the linear velocity

v and angular velocity ω, with v in the direction of the robot

y-axis, and ω about the robot z-axis. The kinematics of each

robot can be then expressed in general in polar or Cartesian

coordinates in a fixed reference as
⎧
⎨

⎩

ρ̇ = v cosα
α̇ = ω − v

ρ
sinα

φ̇ = ω

, and

⎧
⎨

⎩

ẋ = −v sinφ
ẏ = v cosφ

φ̇ = ω
, (8)

respectively, being

x = −ρ sinψ and y = ρ cosψ . (9)

The alignment error α is defined as the angle between the

robot body y-axis and the distance vector ρ,

α = φ− ψ . (10)

We now introduce several variables, depicted in Fig. 4,

to define the state of each robot on the image plane with

(ρm, ψm, φm). The origin of the coordinate system for each

robot p on the image plane is placed in the desired location

pd, i.e. the robots are in the desired configuration when all

of them are in the origin of their respective references (pd).

The variable ρm denotes the distance of the projection of

a robot in the image p with respect to its desired position

on the image pd, and so

ρm =
√

(px − pdx)
2 + (py − pdy)

2 , (11)

and also

ψm = atan2
(
−(px − pdx), (py − pdy)

)
, (12)

where function atan2 returns the value of the arc tangent

using the sign of the arguments to determine the quadrant.

φm can be computed directly from the image of the robot

with computer vision techniques or estimated with φm =
atan2(−∆px,∆py), where ∆px and ∆py is the incremental

motion of the robot in the image plane. The alignment error

on the image αm is also defined as αm = φm − ψm.

B. Control Law

We define the control law in order to bring the robot team

to the desired configuration. The control is carried out in

one single step. It is assumed that the final orientation of the

agents is not relevant. This would be the case, for example, in

an application where a secondary task is performed by robots

having omnidirectional capabilities. Having this assumption

in mind, we define the controller as follows:

{

v = −kv ρm
ω = −kω (αm − π)

, (13)

where kv > 0 and kω > 0 are control gains.

This control law drives the robots to their target positions

so that the team reaches the desired configuration. The image

projection of the distance to the desired position ρm and the

alignment error αm are measured directly in the image plane.

C. Collision avoidance

We choose to perform the collision avoidance task with

a method based on gyroscopic forces. These types of ap-

proaches [14], [15] have their origin in navigation function

methods (NFM) [18], and present some interesting proper-

ties. First, they are simple and fast. In addition, they are

suitable to be used directly on a nonholonomic vehicle as

steering commands. Gyroscopic forces can be implemented

simply as an additive term in the control law, decoupling

the collision avoidance from the control task. Also, their

application does not change the energy of the system, which

is an interesting characteristic from the stability viewpoint.

Lastly, they are known to be able to avoid certain trap

situations that come about with collision avoidance methods

based on navigation functions.

In order to avoid inter-agent collisions, we use the follow-

ing repulsive potential function [10] between any two given

robots in the team:

fij(rij) =

⎧
⎨

⎩

1

2
η

(
1

rij
−

1

r0

)2

, rij ≤ r0

0, rij > r0.

(14)

This function has been widely used in obstacle avoidance

contexts. It creates a repulsive force when the distance (rij)
between two agents i and j is below a certain limit distance

(r0). In [14], [15], split-rejoin behaviors of the team of robots

are desired, and therefore the potential functions employed

are different from ours. Collision avoidance needs range

information; however, due to the particular geometry of

our framework, distances in the image plane are equivalent

to distances between the robots, up to a constant scale

factor. This allows us to implement the collision avoidance

(i.e. compute (14)) using only visual information. The total

repulsive potential acting on each robot is equal to the sum

of the potentials due to all of the other robots in the group,

i.e. fi =
∑
j �=i

fij(rij).

We perform the collision avoidance as an additive angular

velocity term. The linear velocity remains unchanged. The
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added steering term for every robot i is proportional to the

negative gradient of the potential function projected on the

direction orthogonal to the orientation of the robot (v⊥i ):

ωca
i = −kca < v⊥i ,∇rifi >, kca > 0. (15)

The total angular velocity of the control method is:

ωtotal = ω + ωca, (16)

where ω is given by (13).

IV. EXPERIMENTS

In this section, we present several simulations in order

to illustrate the performance of the control scheme. It is

assumed that the projection of each robot in the images

can be detected and identified in order to match it with its

correspondence in the other images.

The first experiment considers a configuration consist-

ing of four robots in a square formation, with the flying

camera undergoing a circular motion. The results from it

are displayed in Fig. 5. We show the performance of the

homography-based control with and without collision avoid-

ance. In both cases the multi-robot system reaches the desired

configuration (i.e. the relative positions between the robots

in the formation). It can be seen that the collision avoidance

mechanism performs well and generates more suitable paths

from a practical point of view. As explained in section III-

B, the control is performed in one single step and the final

orientation of the robots is not corrected. The evolution of

the homography entries is also displayed in the figure. As can

be seen, all the individual homographies computed between

each pair of robots converge to the desired homography.

Notice that the desired homography is not constant, as it

evolves depending on the motion of the camera.

In the second experiment, the desired configuration is a

triangle formed by six robots, while the flying camera follows

a spiral-like motion. Figure 6 displays the results from this

experiment. Again, the target multi-robot configuration is

correctly achieved, independently of the motion of the cam-

era or the absolute position of the robot team. The minimum

distance between robots is shown in order to illustrate the

collision avoidance performance. Finally, we also carried out

an experiment with a larger number of robots (twenty). It

can be seen in Fig. 6 that in this case, the minimum distance

between robots is also maintained above a certain threshold,

avoiding drops in its value (possible collisions).

V. CONCLUSION

A new visual control scheme has been proposed to lead a

group of robots to a desired configuration. The control law

is based on a particular homography parametrization that al-

lows to define the desired location of the robots in the image

plane. The advantages of this approach are the simplicity of

the definition of any arbitrary desired configuration for the

set of robots, avoiding the need of metric information in the

3D space, and the fact that the planar motion of the flying

camera can be unknown and arbitrary (thus allowing it to

perform additional tasks simultaneously) without affecting

the control performance. A vision-based collision avoidance

method decoupled from the control task is also proposed.

Simulations are presented in order to support the validity of

the approach and illustrate its performance.
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[6] G. López-Nicolás, J. J. Guerrero, and C. Sagüés, “Visual control of
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Fig. 5. Simulation with the flying camera undergoing a circular motion. The robots are initially in an arbitrary configuration and the goal is to reach the
desired one, which is defined by the image of a square with vertices of x− y coordinates: (-10,-8),(-10,-3),(-5,-8),(-5,-3). Top-left: top view of the camera
(the initial position is depicted with a circle inside a square) and the robots, which are depicted as circles with a spot signalling their orientation. The initial
configuration is drawn with a dashed line and the path followed by the robots to reach the desired configuration is shown (thick lines). This plot corresponds
to the case where collision avoidance is not used. Top row-second column: trace of the robots in the image plane. Top row-third and fourth columns: linear
and angular velocities of the robots, without collision avoidance. Bottom-left: robot paths with collision avoidance. Bottom row-second column: evolution
of the homography entries (h11, h12, h13, h23) of the desired homography (thick lines) and the current homographies between the robots (thin lines).
Bottom row-third and fourth columns: linear and angular velocities of the robots, with collision avoidance. The image plane and homography elements
plots are from the case when collision avoidance is used.
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Fig. 6. Simulation results with the flying camera undergoing a spiral-like motion. The robots are initially in an arbitrary configuration and the goal is
to reach the desired one, which is a triangle formed by six robots. Top-left: camera motion and robot paths, without collision avoidance. Bottom-left:
camera motion and robot paths, with collision avoidance. Top row-center: linear velocities. Bottom row-center: angular velocities. The displayed velocities
are for the case in which collision avoidance is used. Top-right: minimum inter-robot distance, with and without collision avoidance, for the six-robot
triangular configuration. Bottom-right: minimum inter-robot distance, with and without collision avoidance, for a twenty-robot square configuration with
circular camera motion.
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Abstract—Road recognition using visual information is an
important capability for autonomous navigation in urban en-
vironments. Over the last three decades, a large number of
visual road recognition approaches have been appeared in the
literature. This paper propose a novel stereo vision based on
artificial neural network that can identify the road using color,
texture and disparity information from images. Several features
are used as inputs of the ANN such as: average, entropy, energy
and variance from different color channels (RGB, HSV, YCrCb).
As a result, our system is able to estimate the road location
and the confidence factor for each part of detected environment.
Furthermore, our system presents a good generalization capacity.
Experimental tests have been performed in several situations in
order to validate the proposed approach.

I. INTRODUCTION

Visual road recognition, also known as “lane detection”,

“road detection” and “road following”, is one of the desirable

skills to improve autonomous vehicles systems. As a result,

visual road recognition systems have been developed by many

research groups since the early 1980s, such as [1] [2] [3].

Details about these and others works can be found in several

surveys [4] [5] [6] [7].

Most work developed before the last decade was based on

certain assumptions about specific features of the road, such

as lane markings [8] [9], geometric models [10] and road

boundaries [11]. These systems have limitations and in most

cases they showed satisfactory results only in autonomous

driving on paved, structured and well-maintained roads. Fur-

thermore they required favorable conditions of weather and

traffic. Autonomous driving on unpaved or unstructured roads,

and adverse conditions have also been well-studied in the

last decade [12] [13] [14] [15]. We can highlight developed

systems for the DARPA Grand Challenge [16] like [17] [18]

[19] focusing on desert roads.

One of the most representative works in this area is the

NAVLAB project [3]. Systems known as SCARF [20], UN-

SCARF [10], YARF [21], ALVINN [22], MANIAC [23] and

RALPH [24] were also developed by the same research group.

Among these systems, the most relevant reference for this

paper are ALVINN and MANIAC because they are also based

on artificial neural networks (ANN) for road recognition.

The idea of ALVINN consists of monitoring a human driver

in order to learn the steering of wheels while driving on roads

on varying conditions. This system, after several upgrades,

was able to travel on single-lane paved and unpaved roads

and multi-lane lined and unlined roads at speeds of up to 55

mph. However, it is important to emphasize that this system

was designed and tested to drive on well-maintained roads

like highways under favorable traffic conditions. Beyond those

limitations, the learning step takes a few minutes [25] and the

authors mention that when is necessary a retraining then this is

a shortcoming [24]. According to [23], the major problem of

ALVINN is the lack of ability to learn features which would

allow the system to drive on road types other than that on

which it was trained.

In order to improve the autonomous control, MANIAC

(Multiple ALVINN Networks In Autonomous Control) [23]

has been developed. In this system, several ALVINN networks

must be trained separately on their respective roads types

that are expected to be encountered during driving. Then the

MANIAC system must be trained using stored exemplars from

the ALVINN training runs. If a new ALVINN network is added

to the system, MANIAC must be retrained. Both systems

trained properly, ALVINN and MANIAC, can handle non-

homogeneous roads in various lighting conditions. However,

this approach only works on straight or slightly curved roads

[12].

Other group that developed visual road recognition based

on ANN was the Intelligent Systems Division of the Na-

tional Institute of Standards and Technology [26] [27]. They

developed a system that make use of a dynamically trained

ANN to distinguish between areas of road and nonroad. This

approach is capable of dealing with nonhomogeneous road

appearance if the nonhomogeneity is accurately represented

in the training data. In order to generate training data, three

regions from image were labeled as road and three others

regions as nonroad, i.e., the authors made assumptions about

the location of the road in the image, which causes problems in

certain traffic situations. Additionally, this system works with

the RGB color channel that suffers a lot of influence in the

presence of shadows and lighting changes in the environment.

A later work [28] proposed dynamic location of regions la-

beled as road in order to avoid these problems. However, under

shadows situations, the new system becomes less accurate

than the previous one because the dynamic location does not
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incorporate the road with shadow information in the training

database.

In this work, we present a visual road detection system that

use ANN with stereo images that contains depth information.

Beyond the depth information, our ANN received several

different image features as input. Features like averages,

entropy, energy and variance from differents color channels

(RGB, HSV, YCrCb) from sub-images. Other detail about this

classification is that it provides confidence factor for each sub-

image classification that can be used by control algorithm.

Unlike [26], our system does not need to be retrained all the

time because the generalization capacity of our system is more

powerful than theirs. Therefore, our system does not require

make assumption about location of road.

II. SYSTEM DESCRIPTION

The system’s goal is to identify the road region on a

image obtained by a stereo camera attached to a vehicle. To

accomplish this task, our system calculates the disparity of

pixels using images left and right from camera. Immediately

after, our system transforms the color image into set of sub-

images and generates image features for each one. These

features and disparity are used by ANN in order to classify if a

sub-image belongs to a road class or not. A control algorithm

uses the results in order to control the vehicle autonomously.

After executing an action, the system captures another pair of

images from environment and returns to first stage. The Fig. 1

show how the system works.

ANN

F
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G
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n
e
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to
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Right ImageLeft Image

Undistort Images

Set region of interest Color Image

Disparity Image

Result

Control
Get

Images

Fig. 1. (a) The System Architecture: Given a pair of images, the disparity
is calculated. After that, disparity and color image are transformed into a set
of sub-images that will be classified by ANN.

A. Stereo Vision

A stereo camera has two lenses to always capture a pair

of images. These images have a shift between parts of the

image proportional to the distance of the lens. Due to of this,

it is possible to determine the depth of a point, estimating the

difference of its position within the two images. This method

is similar to the functioning of human vision.

Fig. 2. Canonical system of a camera with two lenses. f is focal length, B
is the distance between the lens.

Disparity of a point p is the distance on the X-axis with

corresponding point p’ in another image. Fig. 2 shows canon-

ical system of a camera with two lenses. Match algorithms are

used to calculate disparity and it has a high computational cost,

therefore one should minimize the search space. In a canonical

perfect system, such a search could be limited horizontally,

ie, the search only happens in the neighbors of the same

line. However, this does not happen in reality because of the

camera lenses have distortions and are not perfectly aligned.

Due to this, it is necessary calibrate camera in order to rectify

the images and limit the search space. The method used to

calibrate our camera and calculate the disparity is described

in [29].

B. Generating Of Sub-images With Features

This stage transforms an color image into set a of sub-

images and generates image-features for each them. More

specifically, a image resolution (M × N ) pixels was decom-

posed in many sub-images with (K × K) pixels, as show

Fig. 3(a) which is transformed in Fig. 3(b). Mathematically,

it can be defined as follows: suppose an image represented

by a matrix I of size (M × N ). The element I(m,n)
corresponds to the pixel in row m and collumn n of image,

where (0 ≤ m < M) and (0 ≤ n < N). Therefore, sub-

image(i, j) is represented by group G(i, j) that contains all the

pixels I(m,n) such that ( (i ∗ K) ≤ m < ((i ∗ K) + K) )
and ( (j ∗ K) ≤ n < ((j ∗ K) + K) ). For each group,

many image features are generated. These features will be used

as input ANN that determine whether the sub-image belongs to

a road class or not. If the sub-image is classified as belonging

to road class, then all pixels from group are considered as

belonging to this class. Fig.3(c) shows sub-images belonging

to road class painted red. This strategy has been used to reduce

the amount of data, allowing faster processing and obtaining

information like texture from sub-images.

Several statistical measures like mean, entropy and variance

were used as image features. For each image, all measures

were calculated with each color channel - we used RGB, HSV,

YCrCb and normalized RGB. Also, the average of disparity

of all pixels inside each sub-image was calculated. Thus, we

generated a group of 49 features to be used as inputs by ANN.

However, how this is a large number of inputs, we decided
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(a) (b) (c)

Fig. 3. In features generation stage, the image (a) is transformed into set
of sub-images that represents each square from the image (b). After the
classification, we can obtained results like (c), where all pixels from a square
receive the same classification. Red squares were classified as belonging to
road class.

to use a selection method “CFS”. This method selected the

disparity-feature and all features shown in Table I. Finally, our

system uses only 14 features to classify sub-images between

road or non-road class.

TABLE I
FEATURES CALCULATED BY OUR SYSTEM. NOTE THAT RN, GN, BN ARE

RGB CHANNELS NORMALIZED.

Measure
Channels from several color spaces

R G B H S V Y Cr Cb RN GN BN

Mean × × × × × × × × × × ×

Entropy ×

Variance

Energy ×

C. Artificial Neural Network

We used a multilayer perceptron (MLP) [30], which is a

feedforward neural network model that maps sets of input data

onto specific outputs. We use the back propagation technique

[31], which estimates the weights based on the amount of error

in the output compared to the expected results.

The ANN topology consists in, basically, two layers, where

the hidden layer has seven neurons and the output layer has

two neurons, as shows the Fig. 4, one neuron for road class

and other for non-road class. The input layer has 14 inputs,

and they are all normalized.

Mean of Disparity

Mean of R

Mean of G

Mean of B

Mean of H

Mean of S

Mean of V

Mean of Y

Mean of Cr

Mean of Cb

Mean of R normalized

Mean of B normalized

Road

Non-Road

Fig. 4. ANN topology: The ANN uses some features, not all, to classify the
sub-image between belonging to a road class or not.

Regarding ANN convergence evaluation, two metrics are

frequently used: “MSE” and “Hit Rate”. The MSE is “Mean-

Square Error” and usually the training step stops when the

“MSE” converges to zero or some acceptable value. However,

a small mean-square error does not necessarily imply good

generalization [32]. Also this metric does not provide how

many patterns are missclassified, i.e., if the error is higher in

some patterns or if the error is evenly spread in all patterns.

Other way of evaluating the convergence is checking how

many patterns were classified correctly, or “Hit Rate”. In this

case, the problem is to define a good precision to interpret the

ANN output (i.e. given a ANN output, determine whether the

output is equal to expected output or not), since the output may

not be exactly the value expected. Seeking for a more adequate

assessment to the proposed problem, we used a method known

as AUC (area under an ROC curve).

According Fawcett [33], a receiver operating characteristics

(ROC) graph is a technique for visualizing, organizing and

selecting classifiers based on their performance. ROC graps are

two-dimensional graphs in which true positive rate is plotted

on the Y-axis and false positive rate is plotted on the X-axis,

as show Fig. 5. Each point in “ROC curve” is produced by

different thresholds. To evaluate a classifier, the area under the

ROC curve is calculated. This value will always be between 0

and 1.0. Is important to note that AUC values close to or below

0.5 indicate classifiers with poor performance. The closer to

1.0 the better the performance of the classifier.

Fig. 5. ROC Curve sample for 4 classifiers. Image adapted from [33]

D. Visual Navigation Map (VNMap)

After classify all sub-images from an image with ANN, our

system generate a VNMap filtering the resulting image with a

growth algorithm. Thanks to it, the sub-images belonging to

non-road class are painted pure black. Fig. 6 shows a sample of

an image classified, where the Fig. 6(b) shows the VNMap in
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gray-scale - black represents non-road class, white represents

road class and the gray represents the intermediate values. Is

important to note that when the network does not achieve a

good classification then the filter can consider the whole region

as not navigable.

(a) (b)

Fig. 6. (a) is a color image. (b) is results from a classification sample from
our system. Black represents non-road class, white represents road class and
the gray represents the intermediate values.

III. EXPERIMENTS AND RESULTS

In order to validate the proposed system, several experi-

ments have been perfomed. Our setup for the experiments

was a eletric car equipped with (Videre STOC Color 15cm)

camera. The image resolution was (640 × 480) pixels. The

car and camera were used only for data collection. In order

to execute the experiments with ANNs, we used the OpenCV

library [29] that has also been used in the image acquisition

and to visualize the processed results from system. The sub-

image size used was K = 10, so each image has 3072 sub-

images. We use the semi-global block matching method to

calculate the disparity of pixels. The ANN has been trained

until reaching 500 cycles.

Several paths traversed by the vehicle have been recorded

using stereo camera. These paths are composed by road,

sidewalks, parking, buildings, and vegetation. Also, some

stretchs presents adverse conditions such as dirt (Fig. 7). We

selected 128 pairs of images to compose our database. We

randomly selected 3

4
of images to use in training step and the

last 1

4
for evaluation step. The method 8-fold cross validation

[32] was used in training step. The Table II shows results on

evaluation set, ie, the AUC of each instance of ANN. Each line

represents some instance of ANN trained with 7

8
of training

set and tested with last 1

8
represented by each column. The

last line represents the average of all instances evaluated. In

general, our system achive AUC of 0.96 on evaluation set,

which is a sactisfatory result.

The Fig. 8 shows some samples of classifications. It is

possible to see that our system (ANN + filter) has achieved

a high degree of certainty about the sub-images belonging to

road class in all cases. In general, our system has been able to

distinguish the road from the sidewalk and other items as cars

and trees of the scenes evaluated. The small errors obtained

are related to traffic lanes that have very different colors of

asphalt and were manually interpreted as belonging to road

class in this experiment. In addition, the system accumulates

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Samples of scenarios used in this work.

TABLE II
TABLE OF SOME AUC OBTAINED ON THE SET OF EVALUATION

some instances T1 T2 T3 T4 T5 T6 T7 T8

1 0.98 0.89 0.96 0.97 0.95 0.98 0.97 0.96

2 0.98 0.89 0.96 0.97 0.96 0.98 0.98 0.96

3 0.98 0.89 0.96 0.97 0.95 0.98 0.98 0.96

4 0.98 0.89 0.97 0.97 0.96 0.98 0.98 0.96

5 0.98 0.89 0.96 0.97 0.96 0.98 0.98 0.97

6 0.98 0.89 0.97 0.98 0.96 0.98 0.98 0.96

7 0.98 0.88 0.96 0.97 0.95 0.98 0.98 0.97

8 0.98 0.89 0.97 0.97 0.95 0.98 0.98 0.97

9 0.98 0.89 0.96 0.97 0.96 0.98 0.98 0.96

10 0.98 0.89 0.97 0.97 0.96 0.98 0.98 0.96

average 0.98 0.89 0.96 0.97 0.96 0.98 0.98 0.96

error with the loss of accuracy at the edges, since the method

of generating attributes averaging a portions of the image.

An important observation is that the disparity helped elimi-

nate the misclassification of near obstacles with similar colors

to the road - see Fig.8(e)-(f). Also, we may be concluded that

the farther away is the observed point, less significant is the

value of disparity. Because the sub-images near the vanishing

point of the straight roads were not correctly classified - see

Fig.8(c)-(d) and Fig.8(k)-(l).

Based on the experiments, we concluded that results are

satisfatory and can be used by some control algorithm. Fig.9

shows in green the sector chosen by the algorithm based on

direction of goal using a GPS and the classification from scene

obtained by stereo camera. The other sectors colored with blue

are other options avaiable in accordance with road identifier

classification. When the sector is not colored so the sector not

achieved the minimum threshold from polar histogram, which

means that the vehicle should not go in those directions. This

implementation only shows the direction that our vehicle must

follow, we do not implement the control of the vehicle yet.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 8. Samples of results from our system.

(a) (b) (c)

Fig. 9. Results from control algorithm, the image (a) is result when the goal
is left of vehicle. (b) when goal is in the front of vehicle. And finally, (c)
when the goal is the right of vehicle.

IV. CONCLUSION

Visual road recognition is one of the desirable skills to

improve autonomous vehicles systems. We presented a visual

road detection system that use ANN with depth information

obtained by a stereo camera. Our ANN is capable to learn

colors, textures and disparity of any sub-image instead of

totally road appearance. Also, our training evaluation method

is a more adequate assessment to the proposed problem, since

many results with many low degrees of certainty lead to low

scores. Finally, the system classification provides confidence

factor for each pixel-group classification of image that can be

used by a control algorithm.

In general, the results obtained in the experiments were

relevant, since the system reached good classification results

when the training step obtains good score. As future work,

we plan to integrate it with other visual systems like lane

detection in order to improve the system in urban scenarios.

We intend integrate our road detection system with some

control algorithm like a adaptation of VFH and control the

vehicle. We also plan to integrate our approach with laser
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mapping in order to make conditions to retrain the ANN

without human intervention and without making assumptions

about the image. Finally, as the system classifies each block

independently, we intend to improve the processing efficience

using a GPU.
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Vision based control for Humanoı̈d robots

C. Dune, A. Herdt, E. Marchand, O. Stasse, P.-B. Wieber, E. Yoshida

Abstract— This paper presents a visual servoing scheme
to control humanoid dynamic walk. Whereas most of the
existing approaches follow a perception-decision-action scheme,
we hereby introduce a method that uses the on-line information
given by an on-board camera. This close looped approach allows
the system to react to changes in its environment and adapt
to modelling error. Our approach is based on a new reactive
pattern generator which modifies footsteps, center of mass and
center of pressure trajectories at the control level for the center
of mass to track a reference velocity. In this workshop, we
present three ways of servoing dynamical humanoı̈d walk :
a naı̈ve one that compute a reference velocity using a visual
servoing control law, a second one that takes into account the
sway motion induced by the walk and an on going work on
vision predictive control that directly introduces the visual error
in the cost function of the pattern generator. The two first
approaches have been validated on the HRP-2 robot. These
close loop approaches give a more accurate positioning than
the one obtained when executing a planned trajectory especially
when rotational motion are involved.

I. INTRODUCTION

Humanoid robots are designed for human environments,

defined as unstructured and dynamic environments [1] where

objects move outside robots’control. In order to complete a

specific task, humanoid robots must perceive and react to en-

vironmental changes. Vision based control may help them to

perceive their surroundings in order to adapt their behaviour

efficiently. Indeed, most of the humanoid robots are equipped

with cameras that provide rich information without adding

so much weight and size. The use of embedded camera is

attractive because it avoids equipping the environment with

additional sensors, and thus the system is more autonomous.

Yet, extracting data from these cameras is a real challenge,

especially while walking.

In this paper, we introduce a monocular visual servoing

scheme to control the HRP-2 walk towards an object with

taking into account the peculiar motion of the on-board

camera induced by the stepping.

A. State of the art

Previous works on humanoid walking control assume that

the robot path is defined before computing the actual joint
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control to realize it. They generally follow a perception-

decision-action scheme: first, a sensor acquires data on the

world and/or the robot state, then, suitable footsteps over a

time horizon are decided, and the trajectories of the center

of mass (CoM) and the center of pressure (CoP) are com-

puted while respecting the stability constraints. Finally, the

control of the legs is computed by inverse kinematics. This

perception-decision-action loop has proven to be fast enough

to realize impressive demonstrations for stair-climbing and

obstacle avoidance [2], [3], [4], [5].
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Fig. 1. The robot has to reach a desired position with regards to an object

We claim that a visual servoing control scheme is well

suited for vision based walking motion generation because

it compensates for model errors. Visual servoing proved

to be successful for grasping tasks with standing [6], [7]

or walking humanoids [8], [9]. In [8], visual servoing is

used to control a humanoid avatar along landmarks. The

upper body is approximated by the kinematic chain that

links an on-board camera to the CoM. The lower body is

controlled by adding two translational degrees of freedom

to the CoM. The translational velocity of the CoM is sent

to a kinematic locomotion module which control the legs

motion. In [9] a whole body visual servoing scheme based

on a hierarchical stack of task is introduced. However, the

footsteps are predefined. The leg motion is thus set to be

the task of higher priority. Therefore visual-servoing in this

context is projected in the null-space of the pre-defined

walking path. On the contrary in this work, the controller

driving the walk is directly guided by vision.

Few work deal with footsteps, CoM and CoP trajectories

modification inside the preview window. The work presented
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in [10] shades some light on this problem. It shows that

modifying the next landing position of the flying foot might

impose a new CoP trajectory going out of the support

polygon. This can jeopardize the equilibrium of the robot.

To solve the problem, the stepping period may be modified

to reduce this instability [10], at the cost of slowing down

the robot. A recent method proposes to modify the footsteps

according to a perturbation applied to the CoP [11]. In the

current paper the desired velocity computed by a visual

servoing based controller is directly used to change footsteps,

while ensuring walking stability constraints and with time

intervals of constant length. Another difference lays on the

fact that, on the one hand, the CoP is constrained at the

center of the footprints, and on the other hand the CoP can

move freely inside the support polygon.

B. Contribution

Our approach is based on a new pattern generator (PG)

that has been proposed by Herdt et al [12], [13]. It computes

a reactive stable walking motion for the CoM to track an

instant reference velocity without predefined footsteps. This

paves the way to reactive walking motion based on current

environmental perception.

In this paper, we introduce a real time vision based control

of HRP-2 walking motion. It is based on the visual servoing

scheme we introduced in [14] applied to a positioning task.

This scheme has the advantage of handling both fixed and

mobile object. The only requirement is to know at least

partially the 3d model of the object : some 3d edges for

angular objects or the diameter of a sphere for a ball.

C. Paper overview

Section II is dedicated to the new PG description. Section

III presents the model based tracker and the visual servoing

control and Section IV presents the results obtained using

our approach with regards to the execution of a planned

trajectory. Section V draws the conclusion and perspectives.

II. PREDICTION CONTROL SCHEME FOR REACTIVE

WALKING MOTION

This section presents the on-line walking motion generator

introduced in [12], [13]. The robot is modelled as a linear

inverse pendulum which fits fairly well with the HRP-

2 distribution of mass. The control is based on a Linear

Model Predictive Control scheme that computes the footsteps

and the optimal jerk of the point mass model to minimise

the difference between a reference CoM velocity and the

previewed one.

A. Systems Dynamics

The humanoid robot is modelled as an oriented mass point

centred on the robot CoM. This paragraph describes the

dynamics of a stable walking motion.

1) Motion of the Center of Mass: Let us consider a frame

C attached to the position of the CoM of the robot and to

the orientation of its trunk. The position and orientation of

this frame will be noted c =
[
cx cy cz cϕ cψ cθ

]
,

with Cardan angles cϕ, cψ and cθ.

The acceleration c̈ of this frame has to be continuous for

being realized properly by usual actuators. We will consider

here that it is in fact piecewise linear on time intervals of

constant length τ , with a piecewise constant jerk
...
c (third

derivative of the position) on these intervals. The trajectory

of this frame over longer time intervals of length nτ can

be simply obtained by integrating over time the piecewise

constant jerk together with the initial speed ċ and acceleration

c̈. For any coordinate α ∈ {x, y, z, ϕ, ψ, θ}, this leads to

simple linear relationships

Cα
i+1 = Sp ˆcαi + Up

...
C

α

i , (1)

Ċα
i+1 = Sv ĉ

α
i + Uv

...
C

α

i , (2)

C̈α
i+1 = Saĉ

α
i + Ua

...
C

α

i , (3)

where the initial state is ĉαi =
[
cα(ti) ċα(ti) c̈α(ti)

]T
,

and Cα
i+i is the vector of the state on the prediction horizon

that can is defined by

Cα
i+1 =

⎡
⎢⎣
cα(ti+1)

...

cα(ti+n)

⎤
⎥⎦ , . . .

...
C

α

i+1 =

⎡
⎢⎣

...
c α(ti+1)

...
...
c α(ti+n)

⎤
⎥⎦

The matrices U•, S•, Z• introduced here follow directly from

recursive application of the dynamics (details on matrices can

be found in [12]), let T be the sampling period, and N the

length of the time horizon. The matrix related to the position

prediction are :

Sp =

⎛
⎜⎝
1 T T 2

2

...
...

...

1 NT N2T 2

⎞
⎟⎠Up =

⎛
⎜⎝

T 3

6
0 0

...
. . . 0

(1+3N+3N2)T
3

6
. . . T 3

6

⎞
⎟⎠

the one related to the velocity prediction on time horizon are

:

Sv =

⎛
⎜⎝
0 1 T
...

...
...

0 1 NT

⎞
⎟⎠Uv =

⎛
⎜⎝

T 2

2
0 0

...
. . . 0

(1+2N)T
2

2
. . . T 2

2

⎞
⎟⎠

and the one related to the acceleration prediction on time

horizon are :

Sa =

⎛
⎜⎝
0 0 1
...

...
...

0 0 1

⎞
⎟⎠Ua =

⎛
⎜⎝

T 0 0
...

. . . 0
(1 +N)T . . . T

⎞
⎟⎠

2) Motion of the Center of Pressure: The position z of the

Center of Pressure (CoP) on the ground can be approximated

by considering only the inertial effects that are due to the

translation of the CoM, neglecting the other effects due to

the rotations of the different parts of the robot. This proves to
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be a very effective approximation, which leads to the simple

relationships:

zxi = cxi − (czi − zzi )c̈
x
i /g, and zyi = cyi − (czi − zzi )c̈

y
i /g,

where the difference czi − zzi corresponds to the height of

the CoM above the ground, and g is the norm of the gravity

force. We will consider here only the simple case where the

height of the CoM above the ground is constant. In that case,

we can obtain a relationship similar to (1)-(3):

Zx
i+1 = Sz ĉ

x
i + Uz

...
C

x

i and Zy
i+1

= Sz ĉ
y
i + Uz

...
C

y

i ,

with Sz = Sp − (czi − zzi )Sa/g,

Uz = Up − (czi − zzi )Ua/g.

3) Foot step generation: Basically, humanoid nominal

walking cycle can be divided into two stages: a double

support phase, where the two feet are on the ground and

a single support phase, where only one foot is firmly on the

ground on the other one is flying from its previous position

to the next one. In this paper the stepping period is set to

be 800ms with a double support phase of 100ms and single

support phase of 700ms.

The new pattern generator selects on-line the feasible

footsteps on the preview window with regards to the robot

mechanical properties [15]. Let note Fi+1 the vector of the

footstep position on the time horizon. The position of the

footsteps is then used twice: first to ensure the stability

constraints on the CoP trajectory and secondly to be included

in the cost function to attract the CoP trajectory towards the

center of the polygon of support.

B. Constraints definition

To be stable, the dynamics control of the walking motion

must comply with the following stability constraints.

1) Constraints on the CoP : since the feet of the robot

can only push on the ground, the CoP can lie only within

the support polygon, that is the convex hull of the contact

points between the feet and the ground [16]. Any trajectory

not satisfying this constraint cannot be realized properly. This

needs to be taken into account when computing a walking

motion with the MPC scheme (4). The foot on the ground

is assumed to have a polygonal shape, so that this constraint

can be expressed as a set of constraints on the position of the

CoP which are linear with respect to the position of the foot

on the ground but nonlinear with respect to its orientation.

2) Constraints on the foot placement: we need to assure

that the footsteps decided by the above mentioned algorithm

are feasible with respect to maximum leg length, joint limits,

self-collision avoidance, maximum joint velocity and similar

geometric and kinematic limitations. In order to keep the

Linear MPC structure of the algorithm, simple approxima-

tions of all these limitations are expressed in the form of

linear constraints defined in [15].

C. Following a reference velocity

This section sets the optimisation problem to solve to

ensure that the CoM velocity tracks a reference velocity.

In order to keep the constraints linear, the optimisation is

split in two steps: first, translations are treated, then rotations

along the vertical axis are considered. This control is used

as the highest priority task in a general inverse kinematics

framework to compute whole body motion.

1) Translational velocity: It has been proposed in [12] to

generate walking motions by directly following a reference

velocity Ċ∗. Only horizontal translations were considered.

Secondary objectives were also introduced to help obtaining

a more satisfying behaviour: centring the position of the feet

with respect to the position of the CoP, and minimizing the

jerk
...
c (t) to slightly smoothen the resulting trajectory.

min
α

2

∥∥∥Ċx
i+1 − Ċx,∗

i+1

∥∥∥
2

+
α

2

∥∥∥Ċy
i+1

− Ċy,∗
i+1

∥∥∥
2

+
β

2

∥∥∥C̄x
i+1 − Ċx,∗

i+1

∥∥∥
2

+
β

2

∥∥∥C̄y
i+1

− Ċy,∗
i+1

∥∥∥
2

+
γ

2

∥∥F x
i+1 − Zx

i+1

∥∥2 + γ

2

∥∥F y
i+1

− Zy
i+1

∥∥2

+
ε

2

∥∥∥
...
C

x

i

∥∥∥
2

+
ε

2

∥∥∥
...
C

y

i

∥∥∥
2

(4)

where C̄ is the mean speed of the CoM over two steps. Intro-

ducing the vector ui =
[...
C

x

i F x
i+1

...
C

y

i F y
i+1

]
of motion

parameters which automatically computed, this optimization

problem can be expressed as a canonical Quadratic Program

with the aforementioned constraints [12].

2) Following a reference rotational velocity: If the robot

trunk has to rotate, then the orientations of the feet have to

be adapted properly. Yet, introducing θ as a variable in II-

B.2 would result in non-linear constraints. In order to keep

the linear form, Herdt et al [12], [13] chose to predetermine

the orientation of the feet before solving the translational

Quadratic Program.

To increase the robustness of trunk rotational motion, the

feet orientations have to be aligned with the trunk orientation.

Furthermore, feet and trunk acceleration and velocity have

to be limited to avoid infeasible trajectories. This leads to

the formulation of a decoupled Quadratic Program:

min
uθ

i

δ
2
||Cθ

i+1 − F θ
i+1||

2 + ǫ
2
||Ċθ

i+1 − Ċθ,∗
i+1

||2 (5)

s.t. Ḟ θ,s
i+1

= 0 (6)

||F θ,r
i+1

− F θ,l
i+1

|| < θrlmax (7)

||F θ
i+1 − Cθ

i+1|| < θFT
max (8)

||Ḟ θ
i+1 − Ċθ

i+1|| < θ̇FT
max (9)

||F̈ θ
i+1 − C̈θ

i+1|| < θ̈FT
max, (10)

The two terms of the above objective ensure that the trunk

follows the desired rotational velocity and that at the same

time the feet are aligned as much as possible with the trunk.

The constraints assure the feasibility of the desired motions.

D. Over-all behaviour of pattern generator

In order to compute a proper control law for the walk,

we have to understand the over-all behaviour of the pattern

generator. The PG ensures that the CoM tracks a reference

velocity yet on average and in the limit of the dimension
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of the robot (length of legs, actuator torque limit, etc.). We

describe here these two aspects of the PG (see Fig. 2).

+−

Pattern Generator

t

Ċ

Ċ

τ

Sway motion

Fi

CoM

CoP

ĊĊ

Fig. 2. The pattern generator ensures that the input velocity is tracked on
average on the preview horizon. The output of the Model Predictive Control
is the first control computed on the preview horizon. The difference between
the reference velocity and the real velocity is mostly a sway motion due to
the stepping.

1) Limiting the velocity: In order to ensure the tracking

of the reference velocity, the three velocity components have

to be limited to feasible ones, i.e. velocities that respect

the walking constraints which mainly depends on the robot

geometry and actuators capabilities. It can be shown that

the maximum speed for the HRP-2 robot is : ċlimit =(
0.2 0.2 0.2

)
for the considered PG [13].

2) Sway Motion: In most of the existing PG, the stepping

motion induces a lateral sway motion that prevents the CoM

velocity from following instantaneously the expected one.

The sway motion is mandatory for a proper walk and the

control law should not compensate for it but cancels its

effects on the visual error computation.

Let us define ḃ the additional sway of period T = τstep/τ .

Let assume that ḃ is such that
∫ i+T

l=i
ḃ(t)dt = 0. Then the

behaviour of the PG can be approximated by

ċ = ċ+ ḃ (11)

where ċ is the velocity of a virtual average CoM that

corresponds to a displacement without the stepping. The

camera velocity can then be written :

k̇ = k̇ + kVcḃ (12)

where cVk is the twist matrix related to the camera-center of

mass transform cMk (see Fig 1).

III. VISION BASED CONTROL

In this section, a position based visual servoing scheme

is introduced to compute the velocity that is given as a

reference to the reactive PG.

When the robot walks, its stepping makes its head shake

and oscillate. Each time a foot hits the ground, the impact

propagates to the robot’s head and the camera jolts which

causes blur and shift in the image. Moreover, the inherent

sway motion disturbs the control law. It makes the use

of on-board images challenging. We will first describe a

model-based tracking [17] that is robust enough to track a

known object in such a difficult image sequence. Then, we

present our visual control law that modify online the current

measurement to cancel the sway motion.

A. Model Based Tracking

The model-based tracking introduced in [17] provides a

robust solution to the challenging issue of tracking an object

while walking. It can be used to track geometrical shapes

(lines, cylinders, ellipsoids, ...) as soon their perspective

projection can be computed. It estimates on-line the position

of a known object in the camera frame k̂Mo. This tracking

algorithm can be divided in two steps: i) 2D tracking where

contour points are locally tracked and ii) pose estimation that

is based on a non linear iterative algorithm.

Fig. 3 depicts the tracking principle. 1) Starting from an

initial pose, the lines of the 3D object model are projected

on the image and sampled (light blue lines and black points).

Then the normal to the line are computed for every sampled

points (yellow lines). Pixels are tested in the neighbourhood

of the sampled points and along the normal to find the

maximum gradient response (red points). 2) In a second step,

a virtual visual servoing is used to find the object position

by controlling a virtual camera so that the projection of the

3D model fits best with the tracked points (black lines). The

current visual features are the projection of the 3D lines li
according to the pose k̂Mo and the desired visual features

are the tracked points pi. The error is the distance between

a point and a line (see bottom right frame Fig. 3).

Finally the optimisation problem can be written as:

k̂Mo = argmin
kMo

∑

i

C(d⊥(pi, li(
kMo))) (13)

where C is a robust function that allows to handle outliers.

The distance d⊥ is represented in Fig. 3.

match the point

along the normal

model projection

at time t

model projection

at time t+1

matched points
at time t+1

sample points
at time t

ρd

θ

x

y

l(t)

P

d
ρ

distance point to line

Fig. 3. Model-based tracking principle.

The robust part of the tracker can not be found in the

features extraction itself but in the weighting of their contri-

butions relatively to the confidence given in each measure-

ment. Classically, the outliers are rejected using Hough or

RANSAC methods. The considered tracker is based on a

statistical methods, the M-Estimator [18]. Further details on

the algorithm for robust tracking may be found in [17].
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B. Visual Servoing

Classically, visual servoing aims to regulate an error vector

e = s − s∗ between some current features observed in an

image s and some desired visual features s∗ [19].

Here the current and the desired features are the current

pose of the object in the camera frame kMo and the pose of

the object in the desired camera frame k∗

Mo. The positioning

task is regulated when k∗

Mk = I . The task error can be

expressed as 6 dimensional pose vector s = (t, θu): the first

three coordinates are the three translations t and the last three

coordinates are a rotation vector in a (θu) representation

where θu defines the angle and axis of the rotation of the

current camera with regards to the desired one.

The key feature in this control scheme is the interaction

matrix L that links the time variation of the visual features

ṡ to the relative camera velocity k̇. It is defined by:

ṡ = Lk̇ (14)

Then, the control law that regulates e with an exponential

decrease ė = −λe is [19]:

k̇ = −λL̂+e (15)

where L̂+ denotes the Moore-Penrose pseudo inverse of an

approximation or a model of L.

For the chosen type of features, the interaction matrix is

[19]

L =

(
k∗

Rk 03×3

03×3 Jω

)
(16)

where Jω = Lω and Lω is such that L−1
ω θu = θu.

Then we can write the CoM reference speed ċ :

ċ = −λcVkL̂
+e (17)

C. Cancelling the sway motion

Due to the sway, the features oscillate in the image. Using

(12) and (15) the feature variations can be written:

ṡ = L̂k̇ + L̂kVcḃ (18)

Let us define a virtual camera (Fig. 4) K that corresponds

to the position of the on-board camera if there was no sway

motion. The velocity of this virtual camera is k̇, it is actually

the velocity that is input into the reactive PG. Its value is

given in(23). In order to compute a control law that does not

include the sway motion, we will servo this virtual camera

s(k) to s(k
∗

).

t=0

t=T

O

K̄

K

Fig. 4. K is the current camera frame and K is the camera position obtained
if the visual servoing velocity is applied without the walking constraints.

We have now to express s = s(k) with regards to the

current measurement s = s(k). With (14) we can write:

s(t)− s(0) =

∫ t

0

L̂k̇dt =

∫ t

0

L̂(k̇ + ḃk)dt (19)

and s(t)− s(0) =

∫ t

0

L̂k̇dt (20)

Then assuming that s(0) − s(0) = E and using (19) and

(20) we obtain

s(t) = s(t) +

∫ t

0

L̂kVcḃdt− E (21)

from which we can deduce the corrected visual error

e(t) = s(t)− s∗ = e(t)− (

∫ t

0

L̂kVcḃdt− E) (22)

Notice that when e −→ 0 then e −→
∫ t

0
Lḃk. In this study,

we do not expect e to converge to zero but to oscillate around

zero with a period T . The convergence of the control law

is then reached when
∫ t

t−T
edt = 0, which is obtained if∫ t

t−T

∫ t

0
L̂kVcḃdt = 0. Let us define E =

∫ t

t−T

∫ t

0
L̂kVcḃdt

and note that in general E �= 0. It can be estimated over one

period of time T . In order to avoid drift accumulation in the

comutation of E we can use a sliding windows to define the

current virtual error e and deduce the control law

k̇ = −λL̂+(e− (

∫ t

0

L̂kVcḃdt−

∫ t

t−T

∫ t

0

L̂kVcḃdt)) (23)

And finally, the CoM reference velocity can be computed

as :

ċ = −λcVkL̂
+(e− (

∫ t

0

L̂kVcḃdt−

∫ t

t−T

∫ t

0

L̂kVcḃdt))

(24)

D. Vision based control

Visual Model Predictive Control Scheme has been studied

to deal with constraints, eg to ensure the visibility of the

target or avoid joint limits [20]. In order to improve the

results presented in this paper, we propose to write a general

non linear model predictive control scheme to select the

optimal jerk of the CoM
...
C regarding some visual criteria.

Then the function to minimise is now

min...
C,F

1

2

N∑

i=1

‖s(ki)− s∗i ‖
2

(25)

IV. A PRELIMINARY RESULT

Fig. 5, Fig. 6 depicts an experiment of visual servoing for

dynamic walking that shows the feasibility of the approach

on the HRP2 robot.

The experimental scheme is the following : the robot has

to reach a desired position with regards to a partially known

object. First, the system is given a desired pose of the object

in the camera frame. It can be arbitrarily set or it can be

estimated by placing the robot at the desired position. The

object is then tracked in the image and its pose is estimated
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Fig. 5. Model tracking while walking on a square on the ground. The robot firstly walks forward, then sideways, then backwards, and sideways again
to reach its initial position. On images 2-8, we can notice white horizontal curved line. They are induced by the reflexion of the light on the dark plastic
shield. The model-tracker gives good positioning results when the tracked object has 3 dimensional edges.

in the camera frame. It allows to learn k∗Mo. The advantage

of the learning solution is that the position is estimated using

the same camera as the one used on-line for visual servoing,

which compensate for calibration errors. Secondly the robot

is placed to an initial arbitrary position kMo from where the

reference object can be seen. In this paper, the robot has to

perform both translational motions and rotational motion to

reach the desired position.

Fig. 5 presents some tracking results while the robot is

walking. On images 2-8, we can notice white horizontal

curved line. They are induced by the reflexivity of the light

on the dark plastic shield that protects the HRP-2 camera.

They cause some partial occlusion and worse, they can

masquerade object lines and make the tracking fail. The

model-based tracker we use is designed for convex objects.

If the current projection of the model only allows to track

2D planes, it can happen that the optimisation problem falls

in a local minimum. The order of magnitude of the model-

tracking accuracy, while walking 2m away from the object,

is about 0.1m and 0.1rad.

In the experiment illustrated Fig. 6 a position based visual

servoing is given the Pattern Generator as an input. In this

experiment, the robot has approximatly to move 1m forward,

1.5m sideways and 0.7rad in rotation. A convergence thresh-

old is arbitrarily set to 0.1m in translation and 0.1rad in

rotation. Then the accuracy of the positioning reaches these

values at best. Besides, the reference velocity is limited to

0.2m/s in translation and 0.2rad/s in rotation. This limits

have be chosen to secure the robot mechanical parts. It may

be increase in the future.

The top left figure depicts the estimated position of the

object frame with regards to the camera frame. Notice that

the on board camera axis are not parallel to the ground plane.

The robot head is oriented slightly towards the ground. Also

remark that the position estimation could be replaced by any

localisation technique (such as SLAM) except that the model

based scheme has the advantage to handling mobile object

tracking 1. In the top left graph, we can see that the lateral

1some examples of rolling ball tracking and other objects tracking are
available on the lagadic team website : http://www.irisa.fr/lagadic/demo.html

motion oscillates. This is directly due to the stepping motion.

This lateral motion can be also found in the bottom right

figure that is the output velocity of the pattern generator. The

walking control guaranties this sway motion to be minimal.

Furthermore, the upper body of the HRP2 robot can not

compensate for this sway motion due to a lack of degrees

of freedom. Anyway, the model tracker proved to be robust

enough to track an object even when the camera oscillates

under the sway motion. The top right figure first shows an

increase of the error and then a visual servoing classical

exponential decrease. The increase of the error is directly

related to the variation of the pose estimation that can be

observed in the top left figure. Both changes are due to the

motion induced by the robot first steps. Usually, the robot

needs two steps to reach the desired velocity and make the

error decrease. The bottom left figure presents the visual

control law that is the reference pattern generator velocity.

The resulting motion has been compared to a planned

trajectory executed with a Kajita’s PG. As shown in [21],

when the robot is walking forward or backward, the open

loop execution of the planned trajectory results in a good

positioning (less than 1cm in translation and less than 0.1rad
in rotation). However, lateral motion induces a large drift

and an error in rotation, such that the difference between

the initial position and the final position is more than 60cm

in translation and more that 0.5rad in rotation. Since we

have set the convergence threshold to 0.1, the translational

error is less than 2cm. Yet, the error in rotation is small and

less than 0.1rad even after lateral motion. The difference

between the first position and the final position was less that

15cm and the error in rotation less than 0.1rad. As excepted,

the greater error are found along the sagital plane. Indeed,

this is the direction where the pose estimation is the more

uncertain for a monocular camera.

V. CONCLUSION

We think that vision based control is well suited to control

the walk of the humanoid robot HPR-2. The method proved

to be robust to model errors and gives better result than

executing a planned trajectory without closing the control

loop. Our going work on vision based pattern generator
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Fig. 6. Visual servoing of dynamic walking experiment. Top left : trajectory of the object’s pose in the camera frame. Top right : evolution of the error
norm. Bottom left : control Input of the pattern generator (reference CoM velocity ¯̇

c). Bottom right : control output of the pattern generator (real CoM
velocity ċ), we can remark two picks to zero which are only due to client reading error from the middle ware and these values are not the one sent to the
system

is expected to improve these results in several ways : the

predictive framework allows to include both balance and

visibility constraints, we expect the system to be more

reactive and we expect more natural trajectories that do not

necessary follows an exponential decrease of the error.
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Weakly-Calibrated Visual Control of Mobile Robots using the Trifocal

Tensor and Central Cameras

H. M. Becerra, G. López-Nicolás and C. Sagüés

Abstract— In this paper, we present the synthesis of two
control schemes that exploit the properties of the trifocal tensor
computed from bearing measurements (1D TT), for the pose-
regulation problem of mobile robots. Both control schemes are
valid for vision systems obeying a central projection model, in
such a way that visibility constraint problems can be overcome.
The use of the 1D TT avoids the need of a complete camera
calibration for any type of central camera, so that, weakly-
calibrated control schemes are obtained. This benefit of the
1D TT as measurement is exploited in an image-based (IB)
approach as well as in a position-based (PB) approach. The IB
scheme employs direct feedback of the elements of the tensor
without commuting to any other approach during the control
task. The PB approach relies on the feedback of the pose
estimated dynamically from the 1D TT. Both visual control
schemes are evaluated through real-world experiments using a
hypercatadioptric imaging system.

I. INTRODUCTION

Visual control of mobile robots is an interesting research

field, motivated by the introduction of this type of robots as

service robots. Particularly, wheeled mobile robots (WMR)

are well appreciated in service tasks, where the positioning

at a desired location is an important aspect. This paper

describes an approach to drive a WMR equipped with a

central generic camera onboard to a desired location, which

is specified by a target image previously acquired, i.e., using

a teach-by-showing strategy. Along the years, the research

on visual control has dedicated important efforts to find

suitable error functions in order to obtain a desired behavior

of the robotic system in terms of stability and robustness of

the closed loop control. The basic approaches are typically

separated in image-based (IB) schemes, in which the error

function consists of a set of features that are directly available

in the image data, and position-based (PB), in which a set of

3D parameters must be estimated from image measurements

[1].

The goal of steering a robot to a desired location by

visual servoing (VS) is carried out by minimizing an error

function that relates visual data, typically from two images:

the current and the target one. We propose to take advantage

of more information by using three views and the geometric

constraint that describes the complete geometry between

them, the trifocal tensor (TT). This geometric constraint

is more robust and more stable than those based on two

views an it is also independent of the observed scene [2]. Its

simplified version constrained to planar motion, the 1D TT,

This work was supported by project DIP 2009-08126. The authors
are with Instituto de Investigación en Ingenierı́a de Aragón, Univer-
sidad de Zaragoza C/ Marı́a de Luna 1, E-50018 Zaragoza, Spain
{hector.becerra, gonlopez, csagues}@unizar.es

has proved its effectiveness for localization in [3] and [4],

but has been less studied for control applications. In these

works, conventional perspective and omnidirectional cameras

are converted to 1D virtual cameras through a transformation

of bearing measurements. The authors of [5] assert that the

radial 1D camera model is sufficiently general to represent

the great majority of omnidirectional cameras under the

assumption of knowing the center of radial distortion. The 2D

TT has been introduced for visual control of mobile robots

in [6]. This approach shows good results reaching the target

location, but it uses a non-exact system inversion that suffers

of potential stability problems. An application of the TT

related to camera-motion estimation is presented in [7]. It

introduces a filtering algorithm with the TT as measurement

model to tackle the vision-based pose-tracking problem for

augmented reality applications. The use of more than two

views in VS provides robustness and enough information to

correct also depth from visual feedback, which is not possible

from two views.

In this paper, we present two visual control schemes

that exploit the property of the 1D TT of being estimated

from bearing information. This provides the advantage that

parameters related to focal length do not appear in the con-

trol laws, so that, weakly-calibrated schemes are obtained.

Additionally, the simplified representation of the imaging

systems as 1D virtual cameras provides the versatility of the

schemes to be applied using any central camera [8]. First,

an IB scheme that uses direct feedback of the elements of

the 1D TT is presented, as a summary of our previous work

[9]. The proposed switching control law turns out to be a

square control system that consists of two controllers, which

correct position and orientation in two steps. Secondly, we

present a PB scheme that feeds back the robot pose estimated

dynamically from the 1D TT, which has been introduced in

[10]. We show the property of observability of the system

with the 1D TT as measurement using linear theory. The pro-

posed PB scheme corrects the robot position and orientation

using smooth robot velocities from a single control law. Real-

world experiments using a hypercatadioptric imaging system

as sensor show the validity of the proposed approaches.

The paper is organized as follows. Section II specifies the

mathematical modeling of the mobile robot and the 1D TT

geometric constraint. Section III presents the development

of the image-based approach and Section IV describes the

position-based approach. Section V shows the performance

of the proposed approaches via real-world experiments. Fi-

nally, Section VI provides the conclusions.
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Fig. 1. Description of the robot-camera configuration. (a) Our robotic plat-
form with an hypercatadioptric camera on top. (b) Robot frame definition.
(c) A generic central catadioptric system.

II. MATHEMATICAL MODELING

A. Robot Model

This work focuses on controlling a wheeled mobile robot

through the information given by a generic central camera

mounted onboard, as shown in Fig. 1(a), and under the

framework that is depicted in Fig. 1(b). The camera can be

eventually translated a distance ℓ along the longitudinal axis

of the robot. The kinematic motion model of the camera-

robot system as expressed in state space is

ẋ = −ωℓ cos φ − υ sin φ, (1)

ẏ = −ωℓ sin φ + υ cos φ,

φ̇ = ω.

By applying an Euler approximation (forward difference)

on the continuous derivatives, the discrete version of the

camera-robot model is obtained:

xk+1 = xk − Ts (ωkℓ cos φk + υk sin φk) , (2)

yk+1 = yk − Ts (ωkℓ sin φk − υk cos φk) ,

φk+1 = φk + Tsωk,

where Ts is the sampling period. In the sequel, we use the

notation sφ = sin φ, cφ = cos φ.

B. The Trifocal Tensor for Central Cameras

The procedure to estimate the trifocal tensor (TT) is

basically the same for conventional and central catadioptric

cameras if it is formulated in terms of rays that emanate from

the effective viewpoint [8]. In the case of planar motion,

the simplified version of the tensor, the 1D TT, particularly

adapts to the property of omnidirectional images to preserve

bearing information regardless of the high radial distortion

induced by lenses and mirrors. Fig. 1(c) shows the bearing

angle of an observed feature in a hypercatadioptric system

looking upwards. Therefore, the bearing measurement θ can

be converted to its 1D projection as p = (sin θ, cos θ)T . For

conventional cameras looking forward, the projective formu-

lation can be obtained using the normalized x-coordinate

of the point features with respect to the principal point,

i.e., p = (un, 1)T . By relating this representation for three

different views of a feature, it results in the trifocal constraint

2
∑

i=1

2
∑

j=1

2
∑

k=1

Tijkuivjwk = 0, (3)

where u = (u1,u2)
T , v = (v1,v2)

T and w = (w1,w2)
T

are given by bearing measurements projected as described

before into the 1D virtual retina of each view, and Tijk are

the eight elements of the 1D TT. In general, the trifocal tensor

elements are estimated linearly by stacking seven constraints

(3).
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Fig. 2. Framework of the three-view geometry. (a) Global reference
definition with origin in the third view and bearing measurements θ of a
feature. (b) Relative location between cameras with a fixed reference frame
on each view.

Let us define a global reference frame as depicted in

Fig. 2(a) with the origin in the third camera. Then, the

camera locations with respect to that global reference are

C1 = (x1, y1, φ1), C2 = (x2, y2, φ2) and C3 = (0, 0, 0).
The relative locations between cameras are defined by a local

reference frame in each camera as shown in Fig. 2(b). The

geometry of the three views is encoded in the tensor elements

as follows:

Tm
ijk =
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(4)

where txi
= −xicφi−yisφi, tyi

= xisφi−yicφi for i = 1, 2.

Some details on deducing the trifocal constraint (3) and the

expressions in (4) can be found in [4]. Additional constraints

−T111 + T122 + T212 + T221 = 0, and T112 + T121 + T211 +
T222 = 0 are accomplished when the 1D TT is computed

from a calibrated retina. These calibration constraints allow

us to estimate the 1D TT from only five triplets of point

correspondences, which improves the estimation [4]. These

additional constraints can be always used for central cameras,

because the bearing measurements are independent on focal
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length. Only the center of projection for omnidirectional

images or the principal point for conventional cameras is

required to estimate the 1D TT. Thus, the use of this tensor

as measurement results in weakly-calibrated control schemes,

in contrast to previous approaches [11], [12], [13]. It is worth

mentioning that it is needed to normalize the tensor elements

in order to fix a scale of the measurements, where normalize

means to divide each element by one of them that can be

assumed as constant (Tm
N = T121).

III. IMAGE-BASED CONTROL FROM THE 1D TT

The problem of taking three variables to desired values

(x2, y2, φ2) = (0, 0, 0) may be solved with at least three

outputs being controlled, but defining more than two outputs

generate a non-square control system, in which its non-

invertibility makes difficult to prove stability. The trifocal

tensor is an overconstrained measurement; however, it is

possible to find two outputs to drive them to desired values

and then a third variable remains as a DOF to be cor-

rected a posteriori. By taking into account the values of

the tensor elements at the final location, the solution of the

homogeneous linear system generated when the outputs are

equal to zero and the invertibility of the matrix relating the

output dynamics with the robot velocities, we find that it

is feasible to design a square control system that corrects

both longitudinal and lateral error, leaving the orientation as

a DOF. The orientation error can be corrected in a second

step considering that the robot uses a differential drive.

A. First-Step - Position Correction

Let us define the following sum of normalized tensor

elements as outputs to be controlled:

ξ1 = T112 + T121, (5)

ξ2 = T212 + T221.

A robust tracking controller is proposed to take the value

of both outputs to zero in a smooth way. Let e1 = ξ1 − ξd
1

and e2 = ξ2−ξd
2 be the corresponding tracking errors, where

ξd
1 and ξd

2 are suitable sinusoidal references. Using the time

derivatives of these errors and considering that the camera

location coincides with the vertical axis of rotation of the

robot (ℓ = 0), we obtain the error system

[

ė1

ė2

]

=

[

− cφ1

T m

N

T122 − T111

− sφ1

T m

N

T222 − T211

]

[

υ

ω

]

−

[

ξ̇d
1

ξ̇d
2

]

. (6)

This system has the form ė = D (T, φ1)u − ξ̇d, where

D (T, φ1) corresponds to the decoupling matrix, ξ̇d repre-

sents a feedforward term depending on the known references

[9] and Tm
N is defined at the end of Section II.B. We treat

the tracking problem as the robust stabilization of the error

system (6). A control law based on sliding mode control

[14], which has been already applied in the context of visual

control [15], is proposed as follows:

udb =

[

υdb

ωdb

]

= D−1

[

ξ̇d
1 − κ1sign(s1) − λ1s1

ξ̇d
2 − κ2sign(s2) − λ2s2

]

(7)

where κ1 > 0, κ2 > 0, λ1 > 0, λ2 > 0 are control gains

and s1 = e1, s2 = e2 are the so-called sliding surfaces.

Note that the control law depends on the orientation of the

fixed auxiliary camera φ1. This parameter can be fixed to

zero and any error with respect to the real value is tackled

by the robust control. The control law uses the inverse of

the decoupling matrix D to compute the robot velocities,

which presents a singularity when the robot reaches the target

position. This entails the problem that the rotational velocity

ωdb increases to infinity as the robot reaches the target.

However, we propose the commutation to a direct sliding

mode controller when det(D) is near to zero in order to

keep ωdb bounded. This kind of controller has been studied

for output tracking through singularities [16]. For our case,

a bounded sliding mode controller is

ub =

[

υb

ωb

]

=

[

kυsign(s1)
−kωsign(s2 (T222 − T211))

]

(8)

where kυ and kω are suitable control gains.

B. Second-Step - Orientation Correction

Once position correction has been reached, we can use

any single tensor element whose dynamics depends on ω

and with desired final value zero to correct orientation. We

select the dynamics Ṫ122 = −T112ω. A suitable input ω is

ω = λω
T122

T112
, (9)

where λω > 0 is a control gain. This rotational velocity as-

signs the following dynamics to T122, which is exponentially

stable:

Ṫ122 = −T112

(

λω
T122

T112

)

= −λωT122.

Note that (9) never becomes singular because at the

beginning of this step T112 = −ty1
cos φ2, and it tends to

−ty1
6= 0 as final value. Although only a rotation is carried

out in this second step, we keep the translational velocity υb

given in (8) in order to keep closed loop control along the

whole motion.

IV. POSITION-BASED CONTROL FROM THE 1D TT

The elements of the 1D TT are very useful providing

information of position and orientation of a camera [4]. We

propose to make use of the information provided by the 1D

TT to estimate the camera motion dynamically, according to

the nonholonomic motion model (2). Once the robot pose is

estimated, it can be used to control the robot in the Cartesian

space.

Consider the problem of estimating the state xk =
(xk, yk, φk)T of the discrete model of the robot (2) by using

measurements yk, which depend on the robot state through

a nonlinear function h. It is assumed that the robot state and

the measurements are affected by Gaussian noises mk and

nk, respectively. The noisy system and measurement model

can be expressed in compact form as follows:

xk+1 = f (xk,uk) + mk, (10)

yk = h (xk) + nk

29



where it is accomplished mk ∼ N (0,Mk), nk ∼ N (0,Nk)

and E
[

mk,in
T
k,j

]

= 0, with Mk the state noise covariance

and Nk the measurement noise covariance. This estimation

problem can be solved by a filtering approach using an

Extended Kalman Filter (EKF), however, the property of

observability must be ensured in order to achieve a consistent

estimation.

A. Linear Observability from Measurements of the 1D TT

There are few works concerned about observability when

an estimation based on Kalman filtering is applied. Some of

them are [17] and [18]. To analyze our case, let us consider

the linear approximation (Fk, Gk, Hk) of the system (2) in

the time k, where

Fk =

∣

∣

∣

∣

∂f

∂xk

∣

∣

∣

∣

xk=x̂
+

k
,

mk=0

Gk =

∣

∣

∣

∣

∂f

∂uk

∣

∣

∣

∣

xk=x̂
+

k
,

Hk =

∣

∣

∣

∣

∂h

∂xk

∣

∣

∣

∣

xk=x̂
−

k
.

nk=0

Due to the matrices Fk and Hk are changing at each

instant time, observability may not be ensured, which affects

the convergence properties of the estimation algorithm. As

mention in [17], a system that is locally observable over

every time segment [tk, tk+1] in the interval [t0, tk+1] will

also be completely observable over the interval [t0, tk+1].
Then, the condition to accomplish for every k to ensure the

system to be completely observable is

rank

(

[

HT
k (HkFk)

T
· · ·

(

HkF
n−1

k

)T
]T

)

= n.

Because of the triangular form of the matrix Fk, the rows

of the observability matrix become linearly dependent. The

only possibility of achieving the full rank condition is by

building Hk of full space. It can be done by taking three

elements of the TT as outputs. By analyzing the Jacobian of

each element of the tensor, we find that a suitable selection

of measurements is T122, T211, T111, in such a way that

Hk =





cφ1cφ̂ cφ1sφ̂ ty1
cφ̂ − t̂ycφ1

−cφ1sφ̂ cφ1cφ̂ −tx1
cφ̂ + t̂xcφ1

−sφ1sφ̂ sφ1cφ̂ ty1
cφ̂ + t̂xsφ1



 , (11)

where φ̂ = φ̂k|k−1, t̂x = −x̂k|k−1cφ̂k|k−1 − ŷk|k−1sφ̂k|k−1,

t̂y = x̂k|k−1sφ̂k|k−1 − ŷk|k−1cφ̂k|k−1, and tx1
, ty1

and φ1

are constant values. The measurement matrix in (11) ensures

local observability for every k even for some particular initial

conditions, for instance φ1 = 0, in which case this matrix

remains full rank due to the cosines in the main diagonal. It

is worth emphasizing that the result is valid for normalized

tensor elements, although we show the previous expressions

for non-normalized elements for simplicity. Actually, observ-

ability from only one element of the tensor as measurement

is ensured according to a nonlinear analysis [19]. In the same

paper can be found a method for the EKF initialization using

the information provided by the tensor.

B. Control Law using the Estimated Robot Pose

In this section, we assume that the robot pose is avail-

able, given by the EKF using three elements of the TT as

measurements. The outputs to be controlled are the camera

position coordinates xk and yk. Consequently, the orientation

(φk) is left as a DOF which is automatically corrected by

tracking suitable desired trajectories. To take the value of

both outputs to zero in a smooth way, we design a tracking

controller. Let us define the tracking errors as ξ1
k = xk −xd

k,

ξ2
k = yk − yd

k , with xd
k and yd

k suitable references [19].

Thus, the error dynamics ξk = (ξ1
k, ξ2

k)T obey the following

difference equation:

ξk+1 = ξk + Ts

[

−sφk −ℓcφk

cφk −ℓsφk

]

uk − Ts

[

ẋd
k

ẏd
k

]

. (12)

We can see that the control inputs appear in the first order

difference equation of each output. Then, the system (2) with

outputs (xk, yk) has a vector relative degree {1,1}. Then, we

have a first order zero dynamics, which corresponds to the

DOF of the control system, the orientation φk. A static state

feedback control law that achieves global stabilization of the

system (12) is
[

υ̂k

ω̂k

]

=
1

ℓ

[

−ℓsφ̂k ℓcφ̂k

−cφ̂k −sφ̂k

] [

ν̂1
k

ν̂2
k

]

, (13)

where ν̂1
k = −k1ξ̂

1
k + ẋd

k and ν̂2
k = −k2ξ̂

2
k + ẏd

k . The error

behavior will be exponentially stable iff k1 > 0, k2 > 0.

Note that this input-output linearization via static feedback

is valid for ℓ 6= 0. Otherwise, a singular decoupling matrix

is obtained. However, the case of having the camera shifted

from the robot rotation axis over the longitudinal axis is a

common situation. Orientation correction is simultaneously

achieved by tracking a parabolic path in the Cartesian space,

which is demonstrated in [19].

V. EXPERIMENTAL EVALUATION

Both proposed approaches have been tested in real-world

experiments using the robot presented in Fig. 1(a). The

camera acquires images of size 800×600 pixels. The 1D

TT is estimated using the five-point method as described in

Section II.B with estimated projection center (x0 = 404,

y0 = 316) as the only required calibration parameter.

These experiments have been carried out using a tracking

of features as implemented in the OpenCV library.

A. Image-based Approach

The experiment shown in this section corresponds to a

trial of the image-based approach. Fig. 3(a) presents the

resultant path, given by odometry, from the ground truth

initial location (-0.55 m,-1.35 m,-35 deg). The time to

accomplished the pose-regulation task is almost 14 s. The

execution time of the first step is set to 9.4 s through fixing

a number of iterations in which the tracked references reach

zero. Before that, we can see in Fig. 3(b) that the bounded

sliding mode control law is applied when the singularity

appears. Fig. 3(c) shows that the behavior of the outputs is

always close to the desired one but with a small error. The

reason of the remaining error is that our robotic platform is

not able to execute commands at a frequency higher than 10

Hz, and consequently the performance of the sliding mode

control is not the optimum. According to Fig. 4(a) the motion
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Fig. 3. Experimental results with the image-based approach. (a) Resultant path from the data given by the robot odometry. (b) Computed velocities. (c)
Controlled outputs.
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Fig. 4. Behavior of the visual measurements for the experiment using the image-based approach. (a) Motion of the image points. The marker “·”
corresponds to the initial points, the marker “O” to the target points and the marker “+” are the points in the image at the end of the motion. (b) Evolution
of the first four tensor elements. (c) Evolution of the second four tensor elements.

of the image points along the sequence does not exhibit

a damaging noise, in such a way that the tensor elements

evolve smoothly during the task, as presented in Fig. 4(b)-

(c). The robot finally reaches the target with good precision.

B. Position-based Approach

For the evaluation of the position-based approach the

sampling time Ts is set to 0.5 s. The distance from the

camera to the rotation axis of the robot has been roughly set

to ℓ = 10 cm. The ground truth initial location is (-0.6 m,-1.8

m,0 deg). Fig. 5(a) presents the resultant path, given by the

estimated state of the robot, for one of the experimental runs.

The figure also shows the reference path and the one given

by odometry. It can be seen that the estimated path is closer

to the reference than the path obtained from odometry. The

duration of the pose-regulation task is fixed to 40 s, when the

tracked references reach zero. Fig. 5(b) shows the behavior

of the estimated state together with the tracked references

for the position coordinates. According to Fig. 5(c) the robot

velocities behave smoothly along the task, which represent

an improved performance with respect to the image-based

approach. Fig. 6(a) presents the well behaved motion of the

image points along the sequence. The evolution of tensor

elements is shown in Fig. 6(b). It is worth noting that the

tensor estimation is not affected when the robot is reaching

the target, i.e., there is no problem with the short baseline.

VI. CONCLUSIONS

In this paper, we have presented and evaluated experimen-

tally two control schemes that rely on monocular vision to

solve the pose-regulation problem of mobile robots. The pro-

posed schemes are valid for vision systems obeying a central

projection model, so that visibility constraint problems are

avoided with the adequate sensor. In both proposed schemes,

an adequate set of visual measurements are taken from the

1D trifocal tensor (TT). This tensor is estimated from bearing

information of the visual features, which avoids the need

of a complete camera calibration for any type of central

camera and therefore, weakly-calibrated control schemes are

obtained.

The properties of the 1D TT have been exploited in image-

based (IB) and position-based (PB) schemes. The proposed

IB scheme employs the direct feedback of elements of the

1D TT without commuting to any other approach during the

whole task. This scheme is a two-step control law that is

based on the sliding mode control technique. The proposed

PB approach relies on the feedback of the estimated pose for

control in the Cartesian space, with the benefits of reducing

the dependence of the servoing on the visual data and

facilitating the planning of complex tasks. We have shown

that the 1D TT provides enough information to estimate

the robot pose dynamically through a linear observability
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Fig. 5. Experimental results with the position-based approach. (a) Resultant path plotted using the estimated camera-robot state, although the reference
path and the odometry are also shown. (b) Estimated camera-robot state. (c) Computed velocities.
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Fig. 6. Behavior of the extracted information from the images for the experiment with the position-based approach. (a) Motion of the point features.
Initial points - “·”, target points - “O” and final points - “+”. (b) Four normalized tensor elements, three of them are taken as measurements.

analysis. The PB scheme is a single-step control law that

corrects the robot pose using smooth robot velocities.
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Abstract—Navigation of a Mobile Robot is based on its 

interaction with the environment, through information acquired 

by sensors. Particularly for Mobile Robot navigation in 

unknown environment, the type and number of sensors 

determines the data volume necessary to process and compose 

the image from the environment. Nevertheless, the excess of 

information imposes a great computational cost in data 

processing. Taking into account the temporal coherence 

between consecutive frames, a Discarding Criteria methodology 

based on Pearson’s Correlation Coefficient (PCC) was proposed 

and applied as a Dynamic Power Management solution to a 

robotic visual-machine perception. In this context, this work 

proposes an environment observer method based on PCC that 

instead of processing all image pixels, it selects automatically 

only the regions-of-interest (ROI) and processes it in real time 

in order to perform a task: road detection and obstacle 

avoidance. This real-time visual perception system has been 

evaluated from real data obtained by two experimental 

platforms.

I. INTRODUCTION

ately, several applications for control of autonomous 

vehicles are being developed, and, in most cases, the 

machine vision is an important part of the set of sensors used 

for navigation. Some of these applications include: the aerial 

robots that offer great perspectives in many applications as 

search and rescue, real-time monitoring, high risk aerial 

missions, mapping, etc [1], [2]. Similarly, the development 

of Unmanned Aerial Vehicles (UAVs) has been of interest 

for military applications, however, one limitation is their 

maximum flight time; therefore they cannot carry large fuel 

payloads [3]. Future exploration of Mars requires long-

endurance UAVs that use resources that are plentiful on 

Mars [4], [5], [6], [7]. Finally, for military or civil purposes, 

vehicular applications [8], [9], [10] have as objective the 

development of autonomous and semi-autonomous systems 

capable of traversing unrehearsed and off-road terrain, 

driving a car autonomously in an urban environment and also 

to help the driver in its driver task.  
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The perception is a common task to all cases previously 

presented, and an important factor is the variety and 

complexity of environments and situations. These real-time 

intelligent platform developments have a common issue: 

providing to the platform the capability of perceiving and 

interacting with its neighbour environment, managing power 

consumption, CPU usage, etc. Then, taking into account the 

temporal coherence between consecutive frames, this work 

proposes an environment observer method based on 

Pearson’s Correlation Coefficient that observes if there are 

no significant changes in the environment, permitting that 

regions-of-interest (ROI) are automatically selected in order 

to perform a task: road detection and obstacle avoidance. 

The Section II presents a review of previous works. The 

Section III introduces the Pearson’s Correlation Coefficient, 

followed by the Discarding Criteria method in Section IV. 

The Automatic Regions-of-Interest (ROI) Selection is 

presented in the Section V. The results and conclusions are 

given in Section VI and VII. 

II. RELATED WORKS

A. Sensor Perception  

Environment perception is a major issue in autonomous 

vehicles. It uses many types of sensors [8], [9], including 

ultrasonic sensors, laser rangefinders, radar, cameras, etc. 

However, when incorporating several types of sensors, there 

is an increase of autonomy and “intelligence” degrees, 

especially in relation to navigation in unknown 

environments. In contrast, the type and quantity of sensors 

determine the volume of data for processing that requires, in 

most cases, a high computational cost. For unstructured 

environments, the scenario for study is dynamic, with several 

elements in motion. Thus, running a semi- or autonomous 

system involves carrying out complex, and non-deterministic 

operations in real time. 

Moreover, a real-time system must satisfy explicit 

response-time constraints, including failure. This system is 

one whose logical correctness is based on both the 

correctness of the outputs and their timeliness [11]. 

Furthermore, there is a considerable complexity in the sense 

that correctness not only depends on the logical ordering of 

events of the systems, but also on the relative timing between 

them [12]. 

Aware that in the majority of the semi- and autonomous 

navigation systems, the machine-vision system is working 
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together with other sensors, added to its low cost, this paper 

proposed a monocular vision-based sensor. Because it uses 

simple techniques and fast algorithms, the system is capable 

to achieve a good performance, where the compromise 

between processing time and images acquisition is 

fundamental. 

Additionally, the vision-based sensors are defined as 

passive sensors and the image scanning is performed fast 

enough for Intelligent Transportation Systems [13]. 

Furthermore, on the safety front, the progressive safety 

systems will be developed through the manufacturing of an 

“intelligent bumper” peripheral to the vehicle in answering 

new features as: blind spot detection, frontal and lateral pre-

crash, etc. The objective in terms of cost to fill ADAS 

functions has to be very lower than the current Adaptive 

Cruise Control (500 Euros) [14]. 

B. Machine Vision  

Autonomous robots can perform desired tasks in 

unstructured environments without continuous human 

guidance. An important variable is the state conditions in 

combination with environment events, because they may 

determine the system behavior. 

In this way, Dynamic Power Management (DPM) is a 

design methodology for dynamically reconfiguring systems 

to provide the requested services and performance levels 

with a minimum number of active components or a minimum 

load on such components. For example, DPM and Real-Time 

Scheduling (RTS) techniques were presented in [15]. They 

were applied to reduce the power consumption of mobile 

robots.  At the same time that scheduling is a key concept in 

computer multitasking and real-time operating system, the 

DPM dynamically adjusts power states of components 

adaptive to the task’s need, reducing the power consumption 

without compromising system performance. 

The machine vision, part of the embedded computers, is 

an important component of the set of sensors. Although 

extremely complex and highly demanding, thanks to the 

great deal of information it can deliver, it is a powerful 

means for sensing the environment and it has been widely 

employed to deal with a large number of tasks in the 

automotive field [13]. However, complex machine vision 

systems can lead to some losses due to the processing time.  

A great amount of information would not necessarily lead 

to better decisions and could also harm the performance of 

the system, overloading it. Then, taking into account that it 

has been estimated that humans perceive visually about 90% 

of the environment information required for driving [13], it 

is not a bad idea to reduce information acquired by a vision 

system, in order to reduce processing time.  

The method proposed here is based in an automatic image 

discarding criteria [16], [17], a low complexity and easy 

implemented solution. It improves the performance of a real-

time system by choosing, in an automatic way, which images 

should be discarded and which ones should be treated at the 

visual perception system. 

Furthermore, the fundamental premise for the applicability 

of DPM is that systems experience non-uniform workloads 

during operation time. A second assumption is that it is 

possible to predict, with a certain degree of confidence, the 

fluctuations of workload [18]. In this case, a simple DPM 

method shuts down a component when it is idle and it is 

essentially a prediction problem [15]. Thus, according to 

[18], the rationale in all predictive techniques is that of 

exploiting the correlation between the past history of the 

workload and its near future in order to make reliable 

predictions about future events.  

III. PEARSON’S CORRELATION COEFFICIENT (PCC) 

According to [19], an empirical and theoretical 

development that defined regression and correlation as 

statistical topics were presented by Sir Francis Galton in 

1885. In 1895, Karl Pearson published the Pearson’s 

Correlation Coefficient (PCC) [20]. The Pearson's method is 

widely used in statistical analysis, pattern recognition and 

image processing. Applications on the latter include 

comparing two images for image registration purposes, 

disparity measurement, etc [21]. It is described in (1): 
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where
ix is the intensity of the th

i pixel in image 1,
iy is the 

intensity of the th
i pixel in image 2, 

mx is the mean intensity 

of image 1, and
my is the mean intensity of image 2. The PCC 

threshold,
1r , has value 1 if the two images are identical, 0 if 

they are completely uncorrelated, and –1 if they are 

completely anti-correlated, for example, if one image is the 

negative of the other. 

IV. DISCARDING CRITERIA

The discarding criteria was presented in [16] as a simple 

solution to improve the performance of a real-time 

navigation system by choosing, in an automatic way, which 

images should be discarded and which ones should be 

treated at the visual perception system. It was a new 

approach to the Pearson’s Correlation Coefficient (PCC).  

In Fig. 1, basically, if the PCC indicates that there is a 

high correlation between a reference frame and another new 

frame acquired, the new frame is discarded without being 

processed, Fig. 1 (c). In this case, some logical components 

may be shut down to save processor energy consumption, 

and/or to make the CPU available for running concurrent 

processes (the system can repeat a last valid command). 

Otherwise, the frame is processed and it is set as the new 

reference frame for the subsequent frame. For all cases 
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presented in this paper a threshold is chosen in an empirical 

way, as explained next. 

Fig. 1 – Discarding criteria [16]. 

Whereas the main problem that has to be faced when real-

time imaging is concerned and which is intrinsic to the 

processing of images is the large amount of data [13], a 

logical dynamic optimization methodology based on 

Pearson’s Correlation Coefficient (PCC) was introduced in 

[22]. To better understand this proposal, the Fig. 2 presents 

the accumulated time of a hypothetical image processing 

time (15ms) versus the gain obtained by using the discarding 

criteria, which could allow significant savings in CPU power 

consumption. In desert context were discarded 470 of 530 

frames, whilst in off-road context were discarded 5595 of 

6740 frames. For these two cases, the discarding rate remains 

over 80%. 

Fig. 2 – (a) Desert video [23]; (b) Off-road video [23]; In 

blue: the cumulative impact computations (ms) without the 

discarding criteria; In red: the cumulative computations (ms) 

by using the discarding criteria. 

Fig. 3 – Real environment: Red line: discarding rate; Blue 

line: the vehicle speed; Green line: computational time (ms). 

However, this discarding rate is not dependent on the 

video sequence or image size, but on the obstacles / objects 

influence. As shown in Fig. 3, it is also important to notice 

that there is no diffeomorphism between the robot speed and 

the PCC variation, because if there are no changes between 

consecutive frames, the PCC threshold remains static. In this 

case, the isomorphism cannot be guaranteed and it ensures 

more efficiency for our proposal. In real, dynamic and 

unknown environments, this rate remains over 65%. For 

these examples, the PCC threshold was fixed at 0.85. 

V. AUTOMATIC REGIONS-OF-INTEREST (ROI) SELECTION 

According to the Pearson’s correlation, in a certain 

analysis window (pair of frames), if the obstacle/object 

occupies a big portion of the scene, the PCC threshold tends 

to be low. Conversely, if obstacle/object occupies a small 

portion of the frame, it means that it is away from the vehicle 

and the system will have time enough to react. Nevertheless, 

where are these interest points/pixels? Or, which pixels 

(ROI) of the pair of images contributed most to the Pearson’s 

coefficient computed? Which of them really need to be 

reprocessed (or resent to a server)?  

Right after the Pearson’s correlation in (1), it has xm and 

ym, respectively: the mean intensities of images 1 and 2, i.e. 

Xmr1
and

Ymr1
.

From these two values, it begins again the process’s 

correlation in (2), where for each pair of pixels analyzed, the 

only possible result is: [-1 or +1]. That is, all pixels with 

intensities below these means will be candidates for interest 

points. The Fig. 4 (c) and (f) present this process, where the 

red pixels (ROI) represent 12 −=r .
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where
i

x is the intensity of the th
i pixel in image 1, 

iy is the 

intensity of the th
i pixel in image 2, 

Xmr1
and 

Ymr1 were 

obtained in (1).  

Fig. 4 – (a) and (b) are frames of the desert video [23]; (d) 

and (e) are frames of the off-road video [23]; (c) and (f) 

present the process’s correlation in (2), where the red pixels 

(ROI) represent 12 −=r .

A. Road detection 

Different techniques on automatic and semi-automatic 

road extraction methods are proposed in the literature. With 

respect to these specific tasks, a road detection method based 
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on Otsu thresholding algorithm was proposed in [24], [25]. 

As shown in Fig. 1, the road detection process (imaging 

processing) is performed only when the PCC indicates that 

there is a low correlation between the reference frame and 

the current frame. Otherwise, the current frame is discarded 

without being processed. When an image is discarded, the 

system keeps the previous segmentation result, which is 

linked to an Otsu threshold. This stored threshold represents 

the navigable area. Consequently, in order to further improve 

the navigable area detection, for each discarded image, in 

Fig. 1, it classifies only the interest pixels (ROI) obtained in 

(2) from the last stored Otsu threshold. As an example, Fig. 5 

(d) presents the interest pixels from the correlation between 

the Fig. 5 (a) and (b), where the white pixels (ROI) 

represent 12 −=r . In Fig. 5 (e), these interest pixels are 

classified as navigable area in blue. 

Fig. 5 – (a) and (b) are frames of the off-road video [23]; (c) 

the road detection process result; (d) the interest pixels 

(white pixels); (e) the interest pixels are classified as 

navigable area in blue; (f) line detection using Hough 

transform from the interest pixels (ROI) in Fig. 5 (d). The 

horizontal red lines represent the horizon detection process 

[25]. 

B. Identifying the limits (boundaries) of the road 

In order to identify the limits of the road (which includes 

the obstacles), many research works proposing methods to 

detect road boundary. As an example, the Canny edge 

detector [26] can be employed as input of Hough transform 

[27] due to its robust performance and accurate edge 

localization. Nevertheless, to demonstrate another 

application for the proposed method here, Fig. 5 (f) presents 

the line detection using Hough transform from the Fig. 5 (d), 

where the white pixels represent 12 −=r .

C. Obstacle avoidance 

According to [28], the robots enter in the military context 

especially when it is necessary to reduce human exposure to 

hazardous situations. Many of these robotic missions can be 

observed, among them, as shown in Fig. 6 (d), an Improvised 

Explosive Device (IED) detonation. In this context, obstacle 

avoidance is a robotic discipline that includes reactive 

control in real time, i.e. reactive obstacle avoidance. 

In this way, as discussed earlier, in order to make reliable 

predictions about future events, a predictive technique 

explores the correlation between the past history of the 

workload and its near future [18]. On the other hand, the 

Pearson's method explores regression and correlation 

aspects. Then, in order to reduce the risk of collision, for the 

obstacle avoidance task, it uses a PCC threshold equal to 

0.65, which put in evidence the past history properties. In a 

computational process running in parallel to what was 

discussed in section V-A, for each frame processed, 

evidencing the past history properties, another old Otsu 

threshold is also stored. Besides the results presented in the 

Fig. 6, this procedure also allows a greater level of security, 

especially when the camera does not “see” the navigation 

area (i.e. in front of a wall), as will be shown in next section. 

Therefore, for each discarded image, in Fig. 1, it classifies 

only the interest pixels (ROI) obtained in (2) from the last 

Otsu threshold obtained by a road detection algorithm 

(reference frame). Fig. 6 (c) and (f) represent the interest 

pixels classified as obstacle, where the white pixels (ROI) 

represent 12 −=r . As shown in Fig. 6 (b) and (e), the interest 

pixels are classified as obstacle in yellow. 

Fig. 6 – (a) is a frame of the off-road video [23]; (d) 

Improvised Explosive Device example; (b) and (e): the 

interest pixels are classified as navigable area in blue; (b) 

and (e): the interest pixels classified as obstacle in yellow. 

The horizontal red lines represent the horizon detection 

process [25]. 

VI. EXPERIMENTAL RESULTS

Besides the experimental DARPA test-banks [23], this 

section presents results on real, dynamic and unknown 

environments, and they were obtained using two 

experimental vehicles, from a moving vehicle with a Sony 

DFW-VL500 camera. In order to reduce the number of data, 

it includes a resolution reduction of image to 160x120 

pixels. 

From displacements on the outskirts of the Heudiasyc 

Laboratory in France, the test-bank presented in the Fig. 7, 9 

and 10 contains images recorded using the Carmen vehicle 

shown in Fig. 11 (a). The data were collected while a driver 

was driving the vehicle. Results for two different types of 

image texture (road surfaces) were selected and its results are 

presented in the Fig. 7 (b) and (e). 

The next cases present autonomous displacements at 

Renato Archer IT Center (CTI) in Brazil. This stage of 
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testing evaluates the proposed algorithm at low speed on 

real-time conditions using the vehicle VERO shown in Fig. 

11 (b). The VERO platform is equipped with SICK LMS and 

Hokuyo UTM30 outdoor laser scanners, GPS receiver, a 

monocular camera, and a CAN-bus interface which grants 

access to encoder data for the four wheels and steering, and 

allows commands to be sent to two independent motors 

driving the rear wheels and to control the steering angle. In 

the Fig. 8 (b) and (e), the trajectory control system had a 

single goal: to keep the robot in the center of the navigable 

path based on the mass of center. Fig. 8 (d) shows the task 

execution to go through a gate in off-road context. Fig. 8 (c) 

and (f) present the line detection using Hough transform 

from navigable area pixels. Two types of image texture (road 

surfaces) also were selected and its results are presented in 

Fig. 8 (b) and (e). 

Fig. 7 – (a) and (d) are frames in real environments; (b) and 

(e): the interest pixels are classified as navigable area in 

blue; (b) and (e): the interest pixels are classified as obstacle 

in yellow; (c) and (f): line detection using Hough transform 

from navigable area pixels. The horizontal red lines 

represent the horizon detection process [25]. 

Fig. 8 – (a) and (d) are frames in real environments; (b) and 

(e): the interest pixels are classified as navigable area in 

blue; (b) and (e): the interest pixels are classified as obstacle 

in yellow; (c) and (f): line detection using Hough transform 

from navigable area pixels. The horizontal red lines 

represent the horizon detection process [25]. 

As expected, in grass areas, on the parallelepiped streets 

or where an excessive noise is observed, the efficiency of the 

method decreases considerably, what can be improved with 

the application of a smoothing filter, and/or from region-

merging algorithm that mainly aims to represent 

homogeneous regions. 

As shown in Fig. 9, it is not expected that a single camera 

provides all needed information to the safe navigation system 

to take decisions on routes. However, following what was 

presented in section VI-C: Obstacle avoidance, the new 

results in front of walls are presented in Fig. 10.  

A video showing the application of this method is 

available in [29]. 

Fig. 9 – (a) Original image (in front of a wall) and its road 

detection result in (c); (b) Canny edge detection result. 

Fig. 10 – (a) and (d) are frames in real environments; (b) and 

(e): the interest pixels are classified as navigable area in 

blue; (b) and (e): the interest pixels are classified as obstacle 

in yellow; (f) and (i): line detection using Hough transform 

from navigable area pixels. The horizontal red lines 

represent the horizon detection process [25]. 

Fig. 11 – The experimental vehicles: (a) Carmen vehicle at 

Heudiasyc Laboratory in Compiegne, France; (b) 

Autonomous vehicle (VERO) at Renato Archer IT Center 

(CTI) in Campinas, Brazil. 

VII. CONCLUSION

This work proposes a real-time machine vision algorithm 

based on monocular vision. It is important to notice that this 

algorithm is not based on previous knowledge of the 

environment (lane shape, geometric inference, etc) neither 

camera calibration. A remarkable characteristic of 

methodology presented in this work is its independence of 

the image acquiring system and of the robot itself. The same 

implementation works in different mobile robots, with 
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different embedded vision systems, without the need of 

adjusting parameters. Moreover, this visual-observer 

methodology may be extended to other sensors and 

components. Future work would be also focused to provide 

ground truth measurements from a front mounted radar 

and/or LIDAR system. 
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