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Abstract. Consumer RGB-D cameras have become very useful in the
last years, but their field of view is too narrow for certain applications.
We propose a new hybrid camera system composed by a conventional
RGB-D and a fisheye camera to extend the field of view over 180 degrees.
With this system we have a region of the hemispherical image with depth
certainty, and color data in the periphery that is used to extend the
structural information of the scene. We have developed a new method
to generate scaled layout hypotheses from relevant corners, combining
the extraction of lines in the fisheye image and the depth information.
Experiments with real images from different scenarios validate our layout
recovery method and the advantages of this camera system, which is also
able to overcome severe occlusions. As a result, we obtain a scaled 3D
model expanding the original depth information with the wide scene
reconstruction. OQur proposal expands successfully the depth map more
than eleven times in a single shot.

Keywords: 3D layout estimation - RGB-D - Omnidirectional cameras
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1 Introduction

Recent low cost RGB-D cameras have caused a great impact in the fields of
computer vision and robotics. These devices usually have a field of view (FoV)
too narrow for certain applications, and it is necessary to move the camera in
order to capture different views of the scene. However, that is often not easy to
achieve or requires to use SLAM algorithms or additional sensors to maintain
the system well localized. Recently, some alternatives to extend the FoV of depth
cameras using additional elements have been proposed: [1] uses two planar mir-
rors as a catadioptric extension of the RGB-D device and [2] a consumer set of
wide angle lens. Fernandez-Moral et al. [3] proposed a method to calibrate an
omnidirectional RGB-D multi-camera rig. While these approaches are interest-
ing, they are either complex to build and calibrate [1,3], or do not provide good
enough depth maps [2].

Here, we propose a new hybrid camera system composed by a depth and a
fisheye camera. The FoV of the fisheye is over 180°, in contrast with the usual
FoV of 43° x 57° of consumer depth cameras (Fig. 1a). Once the cameras are
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Fig.1: (a) Image scene as view from a conventional RGB-D camera. (b) Proposed
camera system. (c) Depth map projected to the fisheye camera. (d) Expansion of the
depth map through spatial layout estimation. (e) From the wide field of view depth
map of the scene, we compute a 3D model in a single shot.

calibrated, the system (Fig. 1b) is capable of viewing over a hemisphere of color
information where the central part of the image has also depth data (about
8.7% of the total number of pixels, as shown in Fig. 1c). One can think of this
configuration inspired in the vision of the human eye, where the central part
provides richer information (foveal vision) than the periphery, and the field of
view is slightly over 180°. To our knowledge, this is the first time this configu-
ration has been used, although the interest in such sensor pairing is clear in the
recent Google’s Tango!. Notice that, although our work uses a fisheye camera,
the approach could be extended to other kinds of omnidirectional systems.

The main contribution of this work is the proposal of a method to extend 3D
information from a conventional depth camera to over 180° of field of view in
one single shot. The depth camera provides a region of the image with 3D scaled
data, from which some basic information about the scene can be recovered. To
extend the depth information we propose a spatial layout estimation algorithm
based on line segments from the fisheye image, which provides scaled solutions
rooted on the seed depth information (Fig. 1d). The line segments from the
fisheye image are classified according to the Manhattan directions and projected
to a scaled 2D map where the layout hypotheses are built based on physically
coherent wall distributions. The algorithm is able to work even under high clutter
circumstances due to the combination of lines from both floor and ceiling. The
corners of the map are evaluated by our scoring function, and layout hypotheses
are proposed by the probability of these corners to occur in the real world. For
the evaluation stage we propose three alternative methods.

As a result, a final 3D scene reconstruction is provided. The 3D room layout
can be seamlessly merged with the original depth information to generate a

! https://get.google.com/tango/
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3D image with the periphery providing an estimation of the spatial context to
the central part of the image, where the depth is known with good certainty
(Fig. 1e). The collaboration between cameras is bidirectional, as the extension
of the scene layout to the periphery is performed with the fisheye, but the depth
information is used both to enhance the layout estimation algorithm and to scale
the solution. Experiments using real images show promising results about both
the proposed algorithm and the camera configuration.

2 Related Work

Probably the first attempt to recover 3D reconstructions of indoor environments
with single images was [4], which uses a Bayesian network model to find the floor-
wall boundary. In contrast, Lee et al. [5] use line segments to generate layout
hypotheses evaluating their fitness to an orientation map. Using lines has the
advantage of producing results without relying on scene-specific properties such
as colors and image gradients. However, while some lines can actually include
structural information of the environment (e.g. intersections wall-wall or wall-
floor), usually most of them belong to clutter or are useless and misleading.

To help with this problem, some assumptions are made, and consequently
some set of rules are proposed based on physical coherence. Usually the main
assumptions are that all structures in indoor environments are composed by
planar surfaces and that these surfaces are oriented according to three orthogonal
directions (known as Manhattan World assumption [6]). This assumption holds
for most indoor environments, and it is widely used in the literature [7,8]. Other
works try to simplify the problem by making assumptions about the structure,
e.g. assuming that the room is a 3D box [9,10,11,12]. In [13,14,15,16,17] they
used this kind of reasoning to simultaneously perform object detection. Other
approaches make use of video sequences instead of single images [18,19].

These methods have in common that all of them use images from conventional
cameras. As opposed to that, some recent works use omnidirectional cameras
such as catadioptric systems or fisheye cameras. Having greater field of view has
many advantages for this task:

— Cameras are able to capture more portion of the room at the same time,
which provides complete room reconstructions.
— Line segments appear entirely, so the reasoning is based on more evidence.
— Larger field of view (FoV) provides better view of the ceiling, which may
help in cluttered scenes assuming structural floor-ceiling symmetry.
Some related works taking advantage of omnidirectional cameras are [20,21,22,23].
In [20], they use a fisheye camera to perform layout retrieval, essentially extend-
ing the work from [5]. Lopez-Nicolas et al. in [21] perform the layout recov-
ery using a catadioptric system mounted in a helmet. Jia and Li [22] use 360°
panorama full-view images, which allows them to recover the layout of the whole
scene at once. Similarly, [23] uses the same type of images to perform layout re-
trieval along with a whole-room context model in 3D including bounding boxes
of the main objects inside the room.
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One common feature of all these approaches mentioned above is that the
recovered 3D layout is obtained up to a scale. Our proposal combines the advan-
tages of omnidirectional cameras (recover wider information) and depth cameras
(provide 3D certainty and scale) with an easy to reproduce camera system.

3 Depth and Fisheye Images Processing

Before addressing the layout recovery, in this section we present the essential
computer vision procedures in our approach, including calibration of the sys-
tem (Section 3.1), line extraction (Section 3.2), estimation of Vanishing Points
(Section 3.3) and classification of lines and points (Section 3.4).

3.1 System Calibration

To map world points X from the depth camera reference frame D to the fisheye
camera reference frame F', it is necessary to calibrate the extrinsic parameters
(R,t) and the intrinsic parameters of both cameras. The extrinsic calibration
of range sensors to cameras is not a new issue, but most related works require
manual selection of correspondences or do not support omnidirectional cameras
[24,25,26]. To obtain the intrinsic parameters of the fisheye camera, we need a
specific method with an appropriate camera model [27]. We adapted the proposal
from [28], substituting the color camera model to the one from [29]. The intrinsic
parameters of the depth camera are also computed as defined in [28] to improve
the default parameters of the system. The depth images as captured by the
sensor are transformed to point clouds using these parameters, and then they are
rotated and translated to the fisheye camera reference frame, following Xz =
R - Xp 4+ t. From now on, every computation is done in that frame. A more
detailed analysis of our calibration procedure is presented in [30].

3.2 Line Extraction in the Fisheye Image

For the line extraction in the fisheye camera we choose the work from [31], which
includes a method for self-calibration and line extraction for central catadioptric
and dioptric systems with revolution symmetry. It uses the sphere camera model
[32] to describe the point projection in dioptric systems (Fig. 2a). Every 3D
world point X; is first projected in a point x; onto a unitary sphere around the
viewpoint of the system. In the case of our equiangular fisheye lens this point is
projected to X; in the image plane by using the projection function 7# = f¢, where
% = (7, é) is expressed in polar coordinates with respect to the image center, ¢
is the elevation angle in the sphere and f is the main calibration parameter.
Unlike conventional cameras, 3D lines in space do not appear as straight
lines in the omnidirectional images, but they are projected to curves called line-
images. In the schematic scene from Fig. 2a we can see highlighted a vertical line
on the sphere model and its projection in the fisheye image. The shape of these
line-images changes with the type of omnidirectional camera and its specific
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Fig. 2: (a) Scheme of the system in a 3D world scene and the correspondent fisheye
image. (b) Depth planes classified according to the Manhattan directions (red in m,,
green in my, blue in m.), initial extracted vanishing points, horizon line (white dotted
line), and 3D intersections in yellow lines. (¢) Line-images classified with their contours
in white and the vanishing points after the second optimization.

camera configuration. We have used the implementation from [31] to extract the
main calibration parameter f and optical center from the images.

The projection of a line [; in the 3D space can be represented by the normal
of the plane IT; defined by the line itself and the viewpoint of the system, with
normal n;, = (ng,ny,n.)". The points X lying on a 3D line [ are projected to
points x satisfying the condition n;'x = 0. From [31], the constraint for points
on the line projection in image coordinates for equiangular dioptric systems with
symmetry of revolution is:

Na@ 4+ ny§ + nz7 cot(f/f) =0 (1)

where & and ¢ are the image coordinates centered in the principal point, X =
(Z,9). The line-images are non-polynomial and do not have conic shape. To
extract them is necessary to solve a minimization problem [31].

3.3 Extraction of the Vanishing Points

In this work we assume the scenes satisfy the Manhattan World assumption, i.e.
the world is organized according to three orthogonal directions (m,, m,,m;).
Parallel lines in the 3D world intersect in one single point in perspective images,
called Vanishing Point (VP). In omnidirectional images, line projections result
in curved line-images, and parallel lines intersect in two VPs. We estimate the
VPs to classify lines and planar surfaces from the depth information according
to the three Manhattan directions.
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There are previous approaches to obtain the VPs from omnidirectional im-
ages [33]. However, we propose a method to extract the VPs taking advantage of
both cameras with a two step optimization problem. Depth information is more
robust, but less accurate than RGB information. Using fisheye images typically
obtain a more accurate VP solution, but the problem may be unable to converge
if the initial solution is not good enough. Besides that, a joint optimization is
problematic as it needs to weight both terms appropriately. Experiments showed
that our two-stage optimization procedure performs well with no extra cost.

The initial solution of the Manhattan direction is set as a trivial three or-
thogonal vector base (I = {ej,es,e3}). The variables to optimize are the roll-
pitch-yaw angles (e, 8 and ) that form the rotation matrix R, g ~ that after the
optimization process should orient the vector base according to the Manhattan
directions, [m,, m,,m,] = Ry g~ - I = Ra g~ The two stages are:

1. The vector base is rotated until the angle between the normals of as many
points from the point cloud as possible and one of the three vectors from
the base is minimized. The normals nx, of every point X; can be estimated
using the method from [34]. To reduce computation time, the cloud can be
previously downsampled (e.g. with a voxel grid filter).

2. The vector base is rotated until the angle between the normals of as many
lines as possible and one of the three vectors from the base is as close of being
orthogonal as possible, using the initial solution provided by stage 1. This is
based in that, by definition, the normal n; of every line [; is orthogonal to
the direction of the line in the 3D world, and therefore, if a line follows the
Manhattan direction m;, then nZ -m; = 0.

The columns of the final rotation matrix R, g~ are the three Manhattan
directions. Our convention is to denote m, the column whose vector is closest
to the gravity vector given an intuition of how the camera is posed (pointing to
the front, slightly downwards). We choose m, to be the column pointing to the
front and leaving m, orthogonal to the previous two. The VPs are the points
in the image that result of projecting rays following the Manhattan directions
according to the sphere model.

3.4 Classification of Lines and Points

The points from the point cloud X are classified depending on the orientation
of their normals nx in the three orthogonal classes. A 3D clustering is then
performed for each class to recover the planes P in the image (Fig. 2b). For those
with normal np = m,, the lowest one is chosen as floor plane (Pfloor). Those
lines /; whose minimum angular distance to their closest Manhattan direction m;
is below a threshold are classified as lines in that direction L;, where j = z,y, 2
(Fig. 2¢). The horizon line is the line-image g corresponding to the normal
n;,, = m, (drawn in dotted white line in Fig. 2¢). Lines oriented in m, and m,
are classified as upper lines (L) when they are above horizon, and lower lines
(L) when they are below. Lines oriented in m, (L,) are classified as long lines
when they have contour points above and below the horizon.
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Some lines correspond to intersections of 3D planes extracted from the depth
image. In order to detect such correspondences, we compute the 3D intersection
lines of wall planes with the floor plane and between walls. When there are two
consecutive wall planes of the same orientation, the line of the border is computed
instead. An example is shown in Fig. 2b, where the 3D lines have been drawn
in yellow. These 3D intersection lines can be projected to the fisheye image
and have its line normal computed. To perform the association, we evaluate the
angular distance between their normals, and choose the closest if the angular
distance is below a small threshold. Those lines supported by 3D evidence have
more relevance when generating layout hypotheses.

4 Layout Estimation

To extend the depth information to the periphery, we look for features in the
fisheye image that allow us to draw coherent layout hypotheses. We choose cor-
ners, i.e. points of intersection of three alternatively oriented planes in the 3D
world, manifested in the image as intersections of line-images. The intersections
between lines in a general case with a highly populated scene can be endless,
so we consider only those segments close to each other as more likely to actu-
ally intersect. To determine the proximity between segments, instead of using
pixel distances, we reason in the 3D world with metric distances. Pixel distance
is misleading, as it is affected by how far the points are from the camera, the
perspective and the heavy distortion of the fisheye camera. Note that it is also
difficult to deal with distances in the 3D world when there is no scale information
available. With our system we can integrate scale information in the process.

We assume that, from previous steps, we have the 3D location of at least
one structural plane from the depth data. Without loss of generality, we use
the floor plane, which is the most probable plane to be in every scene. We use
that plane to project all the lower lines and place them in a scaled 2D floor
plan of the scene, we call XZ-plane. Similarly, the upper lines are projected
to the ceiling plane (Peeii), as explained in Section 4.1. Both floor and ceiling
are going to be considered unique and symmetric. Together with the Manhattan
World assumption, the 3D layouts we estimate from the images are a sequence of
vertical walls alternatively oriented in m, and m,, closed by the floor and ceiling
planes. One of the main advantages of using a 2D projection is that the layout
hypotheses can be generated using corners from floor or ceiling indistinctly,
potentially overcoming hidden corners. In Section 4.2 we describe how the corners
are detected and scored. The generation of layout hypotheses is explained in
Section 4.3, to finally deal with the evaluation process in Section 4.4.

4.1 Extraction of the Ceiling Plane for Horizontal Line Scaling

We can get the ray emanating from the optical center to every contour point
of every lower line in X and Z and intersect it with the Py,0, in 3D (Fig. 3a).
With the floor plane equation and the Manhattan directions, we can transform
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Fig. 3: (a) Projection of the lower line segments in the image to the Pfioor and the
upper segments to three virtual ceiling planes at different H..;;. The chosen H ei; is
the one with most overlapping in the XZ-plane (H> in the example). (b) Real example
of contour projection of lower lines (blue) and upper lines (red) to the XZ-plane. The
small circle represents the position of the camera system.

these points from the camera reference frame F' to a new reference axis M, with
the Manhattan directions and origin at the floor level. If we plot the transformed
points in the axis XZ, we can get a 2D scaled floor plan of the contours with
scale (the XZ-plane in Fig. 3a).

As for the upper lines, the rays traced from the optical center to the con-
tour points must be intersected with the P..; instead. As we assume structural
symmetry, we know that the normal of the ceiling plane will be the same as the
floor normal, but the distance to the origin is still unknown. To estimate Hq;
we use the fact that, in the XZ-plane view, wall-floor (/;) and wall-ceiling ({;)
intersections must be coincident. We can generate a P..; at an arbitrary height,
compute the 3D intersections of the projection rays and evaluate how well the
contours from upper segments C; coincide with contours from lower segments C;
in the XZ-plane. In Fig. 3a there is a visual example with three different H..;;.
H, is too small and Hs too big, so the segments of the floor do not match the
segments of the ceiling in the XZ-plane. H> is the best one as contours from both
planes match perfectly. Mathematically, we propose the following optimization
problem:

Nt
arg maXZ card(C;) -4 (2)

H

ceil  —1

where the function card(C;) means the number of contour points of the line I;
and 4 is a binary variable of value 1 when C;NC ; in the XZ-plane for at least one
L; in the set. One of the advantages of working with scaled distances is that we
can set reasonable valid ranges of heights to constraint the values of He.; (e.g.
2-3 meters for indoor environments). If the problem has no solution between the
valid range it could be due to clutter, undetected lines or absence of ceiling in
the image. Then the algorithm goes on without considering ceiling lines in the
layout retrieval. In Fig. 3b the XZ-plane with the contours of both lower and

upper lines from the case from Fig. 2c¢ is shown.
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Fig.4: (a) Graphical definition of a corner ¢, its line segments (I, Iy, I.) and the
dist and leng functions used in our scoring method. (b) Different types of corners we
consider. (¢) Example of a subset of the 100 most scored corners plotted as a yellow
circles of diameter proportional to their score projected to the image in floor and ceiling.

4.2 Detection and Scoring of Corners

Line segments are the main piece of information we use to create layout hy-
potheses. However, we do not know whether they come from actual wall-ceiling
or wall-wall intersections, or from other elements of the scene. In the literature
there are many approaches to tackle this problem. For instance, [5] defines a cor-
ner when a minimal set of three or four line segments in certain orientations are
detected. This requires having clear environments where most line segments can
be perfectly detected. However, in the real world, occlusions or bad lighting con-
ditions may cause some contours to remain undetected. In a Manhattan World,
two line segments are enough to define a corner. Other works such as [21,22] tend
to give more emphasis to vertical lines and the extension of their segments in
their corner definition, which may be problematic for the same reason as before.

We propose to use more relaxed requirements to define corners, using just
one or two line segments, and then use a scoring function to select the most
salient ones and favor their appearance in the layout hypotheses generation. A
corner c is then defined by a set of IV; line segments, and its score depends on
the number of lines and their score value, which is defined by:

Si, = (leng(l;) — dist(li; c)) - A (3)

where leng measures the length of the line segment in meters, dist measures the
distance of the closest point of the segment to the actual intersection point ¢ in
meters and A is a multiplier of value 2 when the line is associated to a 3D line
obtained from the depth camera and 1 when it is not (Fig. 4a). The score of
a corner is the sum of line scores multiplied by the NN; to increase the score of
corners supported by more lines:

N
=N, -y 5, (4)
=1

We consider four different cases of corners to be retrieved depending on the
classification of the lines involved according to our criterion (Fig. 4b):
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1. Horizontal intersections (I, — I,): If there is a [, passing through the
intersection point ¢, the contour points of [, are scaled by assuming they
share the same wall as [, (i.e. 3D plane Py, ) or I, (Pw.). If the scaled 3D
contours of I, have heights between 0 and H,.; the vertical is included to
improve the score of the corner.

2. Vertical intersections (I, — I, or [, —[.): As with the previous case, the
segment [, is scaled to verify plausability. The case of occluding walls is also
considered in this type of intersection.

3. Long vertical lines ([;): Only the ones crossing the horizon are considered
as they are more likely to be wall to wall intersections instead of clutter. The
projection of their topmost contour point to the P..;; and the bottommost
one to the Pyjoor are considered as two separate corners.

4. Long horizontal lines (I, or [,): Sometimes there is no visible or detected
corner at the farther end of a corridor or a big room. We consider the possi-
bility of long horizontal lines to intersect with the horizon. To keep layouts of
reasonable size we restrict the distance to a maximum of Dy (in particular
we set Dy = 10 m). The line score for this case is modified:

S, = length(l;) - A - max(Dg — dist(l;, c),0) (5)

After the extraction of corners we keep those with S, > 0. To avoid redundant
corners we merge those which are horizontally close to each other, summing the
score of all corners involved to increase the likelihood of the resulting corner to
appear in the hypotheses generation process. For this merging it is necessary to
watch that the direction of the contours is compatible to the physical coherence
(e.g. a corner supported by line segments directed towards m, and m, cannot
be merged with another corner whose line segments are directed towards —m,,
and —m.). In Fig. 4c there is an example of the 100 most scored corners after
the merging.

4.3 Layout Hypotheses Generation

Our algorithm for layout hypotheses generation starts by picking up a set of cor-
ners from the set and sorting them clockwise in the XZ-plane. We proportionally
increase the probability of choosing corners rewarding those with higher score.
In order, we generate 2D corner distributions where every wall in direction m,,
is followed by a wall in m,. We look for closed layout hypotheses. As the fisheye
can only view a hemisphere, if there is no corners from behind the camera, the
layout would be generated so it ends at the rear VPz (or by our design at D).
We extract the layout only of the room where the camera is, so all hypotheses
which are closed leaving out the camera position are discarded. As we have the
contour points that define the lines of the corners, the hypothetic walls must
not contradict their location in the map, otherwise the hypothesis is discarded
as well. One of the keypoints of our method is that, taking advantage of the
Manhattan assumption, we can integrate in the layout undetected corners and
form a closed solution: when consecutive corners do not generate walls in Man-
hattan directions, intermediate virtual corners are created in order to generate
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Fig. 5: (a) Sample hypothesis with the selected corners and the corresponding contours
drawn. (b) Overlay of the planes generated by the layout colored depending on their
orientation. (¢) Extended depth map of the scene. (d) Colored point cloud of the layout
obtained from the depth map.

two Manhattan-oriented walls. A more detailed description of the generation of
layout hypotheses with special cases can be found in the supplementary material.

In Fig. 5 there is an example of a layout hypothesis with the contours and
corners drawn in (a) and the resulting wall distribution colored in (b). As the
XZ-plane is scaled and the H..;; has been estimated we can generate a 3D depth
map of the scene (Fig. 5¢). We compare the result with the depth map provided
by the depth camera, and use that to discard contradictory hypotheses (i.e. there
cannot be walls in front of the given depth map). Finally, the depth map can be
used to recover the 3D point cloud of the complete layout (Fig. 5d).

4.4 Evaluation of the Hypotheses

We have described a method to find the relevant corners in the image and to
generate layout hypotheses. Next, we propose three methods to select the best
hypothesis:

— Sum of Scores (SS): We define the score of an hypothesis as the sum
of scores of the corners that have been used to generate it. The additional
corners defined to generate Manhattan layouts have a score of zero.

— Sum of Edges (SE): The polygon defined by the corners of the hypotheses
as vertices can be drawn on the XZ-plane in order to choose the hypotheses
which overlaps the most with the observed contours.

— Orientation Map (OM): It requires to build a reference image called
orientation map [5], which is an image whose pixels encode the believed
orientation given the line segments for perspective cameras. To build that
image we create a set of overlapping perspective images from the fisheye
image, apply the orientation map algorithm from [5] in each one of them
and finally stitch them back together to form an omnidirectional orientation
map. The evaluation consists in selecting that layout hypotheses which have
better fitness between pixels with the same orientation.

In general, the fastest method is to score the hypotheses, which does not require
any extra computation. Using the orientation map usually provides the best
results, but it requires the previous computation of the map itself, which can be
time consuming.
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Fig. 6: (a) Pixel accuracy over the number of hypotheses generated. (b) Boxplot of the
results using the three evaluation methods with the set of 70 images.

5 Experiments

In this work, we use a novel camera system with fisheye and depth image. Many
datasets for indoor layout retrieval are usually based on conventional images,
but not so many on omni-images, and none combining them with depth. For
the experimental evaluation we have collected a set of 70 captures of indoor
scenarios ourselves, including 23 from corridors/entrances, 15 from four different
bedrooms, 4 from a bathroom, 12 from two living rooms, 4 from a kitchen and
12 from two small cluttered rooms. In order to perform a quantitative evaluation
we have manually labelled these images to provide a per pixel tag between the
three main classes (walls in X or Z and floor/ceiling). The measure employed
is the percentage of pixels correctly tagged over the totality of pixels from the
ground truth, which we call pizel accuracy (PA).

To choose the best fixed number of geometrically valid hypotheses to draw, we
have tried with different quantities and observed the pixel accuracy for the three
evaluation methods (Fig. 6a). Evaluating with Orientation Map (OM) seems to
slightly improve the score when the number of hypotheses is increased. However,
using Sum of Scores (SS) or Sum of Edges (SE) does not seem to improve the
pixel accuracy at all. This is a consequence of a the good detection and scoring
of corners in our method, which affects the probability of good corners to be
selected when drawing hypotheses. As a result, only a few valid hypotheses are
necessary to get one with more than 80% of PA. For our experiments, we choose
a number of hypotheses of 20, substantially less than other similar works [23].

In Fig. 6b there is a boxplot showing the distribution of pixel accuracy in
the 70 images with the three evaluation methods. We can see how the SS and
SE evaluation methods are able to tag correctly about 83% of the pixels in the
image (83.8% and 83.2% respectively). Using the orientation map reaches the
90% and has less variance. However, the need for the previous computation of
the orientation map makes this approach the least suitable for real-time appli-
cations: In our current implementation it takes around 23 s just to generate the
map. The rest of the computations, including depth and fisheye preprocessing,
corner extraction, generation of hypotheses and evaluation in our current imple-
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Contours and corners Sum of Scores Sum of Edges Orientation Map

Fig. 7: Three examples of results from images from our set with best layout proposal
for each method. More examples in the supplementary material.

mentation take an average sum of 33 s. Some examples of scenes from our set
and their best results are shown in Fig. 7.

There is no fair comparison to be made with other works, because no other
related work known to the authors use similar type of image combination. How-
ever, we explore the benefits of using such camera system compared to merely
using a fisheye camera. We repeated the experiments aforementioned removing
all depth information throughout the system in order to numerically observe
how the results are affected. The first thing to notice is that the scale of the
system is now arbitrary. Also, the absence of depth affects the computation of
the VPs, the scoring of lines, the retrieval of the H..;; and the elimination of
contradictory hypotheses. A comparison of mean results with and without depth
information is shown in Table 1, where it can be observed how the mean pixel
accuracy decreases about 10%.

A breakdown of the results depending on the type of room is provided in
Table 2. In general we have experienced better performance in uncluttered en-
vironments (corridors), where structural lines can be easily seen. Compared to
conventional perspective images, using omnidirectional cameras are better suited
to overcome highly cluttered scenes, as the probability of encounter important
lines either from the wall-floor or wall-ceiling intersections is higher. Sometimes,
the problem does not come from the lines being occluded, but on the difficulty
of them being detected. When the walls and the ceiling have similar color or
the lightning conditions are poor, the line extraction algorithm might fail to
detect important lines. This is a common problem to all similar methods in the
literature. However, the depth information remains invariant to such problems
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Table 2: Mean pixel accuracy depend-

Table 1: Mean pixel accuracy of the system ing on the type of scene tested (%).

with and without depth information (%). Room SS SE OM
Method With depth No depth Corridor 86.5 84.3 90.3
Bedroom 78.6 79.6 87.7
SS 82.7 71.7
Bathroom 75.0 69.6 84.9
SE 82.5 72.2 ..
oM 89.9 0.2 Living Room  85.1 87.5 91.2
’ ’ Kitchen 83.2 76.9 85.3
Other 81.6 84.5 90.3

in indoor environments, so the hybrid camera system we propose for this task
always has some safe zone where we know for certain the shape of what is in
front of the camera, even when the scene visual conditions are far from perfect.
In normal conditions, with our camera configuration we are able to estimate the
omnidirectional scaled layouts in one single shot, where the information from
the depth camera can be integrated seamlessly and be used to detect objects
inside the room or generate complete 3D models as the one shown in Fig. le.

Additional experiments detailing failure cases, as well as a summary video,
can be found in the supplementary material.

6 Conclusion

In this work we have developed a new method to extend the 3D information of
a depth camera to a field of view of over 180 degrees. To do that, we propose
a novel spatial layout retrieval algorithm, whose main novelty is combining a
fisheye and a depth camera. The large field of view helps to use information
from both the ceiling and the floor, which is helpful when there is clutter in
the scene. To take advantage of that, we look for relevant corners by using the
line segments extracted from the fisheye image and the depth information to
assign probability of being actual corners in the scene. A heuristic procedure is
then used to generate layout hypotheses from these corners, which are then put
through an evaluation procedure for which we propose three methods. Experi-
mental evaluation with real images of indoor environments shows great results
in terms of accuracy, improving the state of the art in functionality: our method
has less layout shape restrictions, needs less hypotheses and provide 3D models
of the scene with scale in a single shot.
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