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Abstract— The goal of this paper is twofold. Firstly, we aim
at investigating the potentials of reset observers applied to
process control. Secondly, we aim to overcome the existing
performance limitations of the temperature control in domes-
tic cookers. To this end, we present an adaptive simmering
control for induction cookers, whose parameters are updated
on-line depending on the estimates provided by a Multiple-
Model Reset Observer (MMReO). This new observer results
of extending the idea of multiple models to the state observer
framework. MMReO consists of a reinitialized reset observer,
and of multiple fixed identification models. The resultant control
scheme satisfies the user requirements such as quick heating up,
accurate temperature control, and fast disturbance rejection,
outperforming previous results. Moreover, the proposed control
scheme reduces energy consumption and, consequently, it can
increase the efficiency of the whole cooking process. Addition-
ally, a fixed robust QFT-based controller is designed, and it is
also used for comparison purposes. Several verification tests are
carried out in real induction hobs, to underline the effectiveness
of our proposal compared with the QFT-based controller.

Index Terms— Adaptive Control, Robustness, Induction
Heating, Observers, Temperature Control, Home Appliances.

I. I NTRODUCTION

In domestic induction cookers, an inverter topology sup-
plies a high-frequency current to an induction coil, producing
an alternating magnetic field. If this field is applied to a
ferromagnetic pan, it produces eddy currents, and magnetic
hysteresis, which heat up the pan. Recently, domestic in-
duction hobs have become increasingly popular thanks to
their specific features such as quick warming, energy saving,
and high efficiency. Consequently, the research on induction
cookers has attracted the attention of theory specialists, and
practical engineers [1].

The effort to increase the efficiency, and the energy
saving during a cooking process using an induction hob has
been mainly focused on providing to the pot the maximum
power in the more efficient way. For instance, designing
highly efficient resonant inverter topologies [2], modulation
strategies [3], and inductors [4].

However, since user has no any feedback about how
high the temperature is, user tends to use more power than
the cooking process actually needs. This waste of energy
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highly decreases the efficiency of the whole cooking process,
although the efficiency of the power electronics is very
high. Therefore, an improvement in the efficiency during
the whole cooking process could be achieved by means of
pot temperature control. Besides, it has more advantages.
For instance, pot temperature control ensures a correct food
cooking minimizing the cooking time, and avoiding to reach
too high temperatures, which burn the food, or too low
temperatures, which cause underdone food. Additionally, it
can be used to perform more complicated cooking process
such as simmering. During simmering, the food is submerged
in water at a temperature from 88◦C to 94◦C which causes
a great effect on the flavour of food. However, it is almost
impossible to carry out in conventional cookers where user
does not control the temperature of the cooking pot.

The first work related to pot temperature control for
induction hobs is [5]. There the authors developed a tem-
perature control for frying pans. Since the pan temperature
was not directly measured, it had to be estimated from the
measurements of a NTC sensor situated below the ceramic
glass. However, that measurement was highly dependent
on the cooking load. Therefore, it did not work properly
with high-load cooking process such as boiling and deep
frying. This problem does not appear when using the external
infrared sensor proposed in [6], rather than a NTC sensor.
This approach guarantees an accurate measurement of the pot
wall temperature, and it was successfully applied to radiant
hobs in [7]. Fig. 1 shows the lay-out of both sort of sensors
used in domestic induction hobs. It is worth mentioning that
in this work, the measurements of the NTC sensor are not
used, and the proposed control strategies only relay on the
external infrared sensor.

Fig. 1. Main elements of a domestic induction hob. 1: pot. 2: ceramic
glass. 3: induction coil. 4: internal NTC sensor. 5: external infrared sensor

In this paper, we present an adaptive simmering control
for domestic induction cookers. It is based on an infrared
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sensor rather than on a NTC sensor, and consequently, it
can be applied to high-load cooking process unlike other
previous works [5]. Our proposal exploits the potential
benefits of using an accurate model of the system [8]. One
of the contributions of this work compared with [7], is that
our control strategy is based on an analytical model of
the system rather than on multiple experimental tests, and
consequently, the controller tuning process is highly simpli-
fied. Specifically, we propose an adaptive controller whose
parameters are updated on-line depending on the estimates
provided by a Multiple-Model Reset Observer (MMReO). It
consists of a reinitialized reset observer, which is a novel
sort of observer recently proposed by the authors, and of
multiple fixed identification models, which estimate the best
initial parameters of the reset observer. For this reason,
this paper also contributes at analyzing the potentials of
reset observers applied to process control. Furthermore, for
comparison purposes, we have designed a fixed robust QFT-
based controller, which is a control technique widely applied
to industrial applications. To highlight the performance of our
proposal, both control schemes have been implemented in a
real induction hob, and several verification tests have been
carried out.

This paper is organized as follows. In Section II, the state
space model of the system is presented. In Section III, the
adaptive MMReO-based controller design is given. After
that, the tuning process of the fixed QFT robust controller
is outlined in Section IV. Experimental results are shown in
Section V in order to test the robustness and performance
of both control schemes. Finally, concluding remarks are
outlined in Section VI.

II. SYSTEM MODEL

State space model can be used to represent the relation
between the power supplied by the induction coil, and the
temperatures of the system. Generally, linear time invariant
systems are described as follows

ẋ(t) = A · x(t) +B · u(t)

y(t) = C · x(t) (1)

wherex(t) ∈ R
n is the state vector,u(t) ∈ R

l is the input
vector,y(t) ∈ R

m is the system output vector, andA,B,C

are constant(n× n), (n× l), (m× n) matrices.
In this paper, we use the analytical pot model presented in

[8]. Thus, readers interested in how that system is obtained
are referred there. The main idea is that, by using an
electrical equivalent model that represents the differentheat
transmissions which appear in our system, it is possible to
obtain the following state space model:

[
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θ̇W

]

=
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] [
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]

θW =
[

0 1
]

[

θB
θW

]

(2)

TABLE I

NOMINAL MODEL PARAMETERS AND THEIR RANGES

Parameter Nominal Value Variations

a11 -0.0197 [-0.0461 -0.0048]
a12 0.0097 [0.00230 0.02291]
a21 0.0018 [0.00030 0.00540]
a22 -0.0010 [-0.0029 -0.0002]
b11 0.0018 [0.00120 0.00290]
b22 0.0001 [0.00010 0.00040]

whereθB = TB−T0 is the difference between the pot bottom
temperatureTB and the ambient temperature,θW = TW −
T0 is the difference between the pot wall temperatureTW

and the ambient temperature,P is the power supplied by
the inductor coil which takes into account the efficiency of
the electronics and of the inductor, andQE is the energy
loss because of evaporation. Additionally,a11, a12, a21, a22,
b11, and b22 are uncertain parameters that depend on the
pot and glass thermal properties, as well as on the different
thermal losses of the system. Namely, convection, radiant,
and conduction losses.

Since the pot which is being used during the simmering
process is unknown, these uncertain parameters are initially
unknown. However, according to our results obtained from
simulations, the value of each uncertain parameter is within
a known variation range. Table I summarizes the nominal
values of all model parameters and their variations obtained
from a study of 150 different pots.

Notice that most of cooking processes are carried out using
a lid, because it highly decreases the thermal losses of the
system, and consequently, improves efficiency. Therefore,we
consider that the simmering cooking process is done in a
pot covered with a lid which implies thatQE = 0. It is also
worth mentioning that the pot bottom temperatureTB cannot
be directly measured, therefore an observer scheme is needed
in order to estimatêTB . Since the output of the system (i.e
TW ) is the variable to control,TB is not strictly needed for
control purposes. That is the way in which the QFT-based
controller is designed. However, better performance wouldbe
obtained, if all the state variables were known or estimated.
Thus, the MMReO-based controller relays on the state space
model (2), considering all the state variables.

III. A DAPTIVE MMREO-BASED CONTROLLER

Robust control techniques such as QFT or H∞ can be
regarded as conservative, due to the fact that the resultant
controller has to be designed to meet control requirements,
for the worst-case behavior between all the considered op-
eration points (i.e. for all the uncertainty of the system).
Therefore we could obtain a better performance, if we
were able to reduce the uncertainty of the cooking process
somehow.

Adaptive observers can play a key role in this approach,
since they have been widely used to estimate the unknown
parameters of a system from the information available (e.g.
system input and output measurements) [9]. Therefore, this
sort of algorithms represents a useful tool in order to cope



with problems that may appear in any industrial application.
For instance, they can be used to deal with systems whose
parameters are initially unknown due to modeling uncer-
tainties, and also to handle systems whose parameters are
time variant. Additionally, they have important applications
not only in adaptive control but also in fault detection and
isolation [10].

Among the different sort of adaptive observers, we present
an estimation strategy that relays on multiple models of the
system, in order to increase the robustness of the estimation
process. The idea of multiple models was firstly introduced
for control purposes [11]. It is commonly accepted that the
convergence time of an adaptive control scheme will be
large if the initial parameter of the controller are not close
enough to the plant parameters. This transient behavior can
be improved using multiple models [12], [13]. Assuming that
the plant parameters belong to a compact setS, this approach
relays on usingN identification models with different param-
eters but uniformly distributed inS. A controller for each
model is also calculated and tuned. Therefore, the proposed
strategy is to determine the best model for the real system
at every instant, and using the corresponding controller to
control the plant.

Build on [12], we extended the idea of multiple models to
the state observer framework. The resultant observer scheme
is denoted as Multiple Model Observer (MMO). In a similar
way, N identification models with different parameters but
uniformly distributed inS are used to estimate the best model
for the real system. At every instant, the parameters of the
best identified model are used as the starting parameters of
an additional state observer. This process is known as the
reinitialization of the state observer. Since the reinitialized
parameters of the state observer are closer to the real ones,
the convergence time of the estimation process is decreased.
Afterwards, the state estimated by the reinitialized observer
can be used in the control law. Furthermore, the parameters
corresponding to the best identified model can also be used to
adapt the control law, to improve even more the closed-loop
response of the system.

Based on this approach, we present in this paper an
adaptive controller whose parameters are updated on-line
depending on the estimates provided by a Multiple-Model
Reset Observer (MMReO). MMReO scheme is depicted in
Fig. 2. It consists of a reinitialized reset observer, and of
multiple fixed identification models. Each fixed identifica-
tion model has the structure shown in (2) with different
parametersa11, a12, a21, a22, b11, andb22 defined according
to Table I, which actually define the convex setS for our
system. The behavior of the MMReO scheme is as follows.
It selects the identification model that best represents the
cooking process depending on the output of the systemy

(i.e. the temperature measured with the infrared sensor), and
the input of the systemu (i.e. the power supplied with the
induction coil). Specifically, the algorithm uses the following

cost functionJi to find out the best modeli ∈ [1, N ]

Ji = ǫ2i (t) +

∫ t=∞

t=0

ǫ2i (t)dt (3)

whereǫi(t) = y(t) − ȳi(t) is the identification error of the
model i defined as the difference between the output of the
systemy(t) and the output of the identification modelȳi(t).
The algorithm also generates a switching signalσ that is used
to update the parameters of the reinitialized reset observer.
Since the observer parameters are closer to the real system
parameters, it is expected to decrease the transient behavior
of the observer and, as a consequence, to improve the control
performance which relays on the estimated state.

Fig. 2. Multiple Model Reset Observer Scheme.

As it is shown in Fig. 2, we use a reset observer (ReO)
whose matricesĀ, B̄ are reinitialized according to the
matrices of the best model chosen. The aim of the ReO is
to estimate the system state variables (i.e.x̂ = [θ̂B , θ̂W ]),
which will be used afterwards in the control law. The ReO
dynamics are described as follows [14]

˙̂x = Āx̂+ B̄u+KIζ +KP ỹ

ŷ = Cx̂ (4)

where x̂ is the state estimated by the ReO,KI and KP

represent the integral and proportional gain of the ReO
respectively, and̃y = y − ŷ is the output estimation error
of the ReO,Ā and B̄ are the system matrices associated
with the best model previously identified. In addition,ζ is
the reset integral term which is computed as

ζ̇ = Aζζ +Bζ ỹ ỹ · ζ ≥ 0
ζ+ = Arζ ỹ · ζ ≤ 0

(5)

whereAζ ∈ R and Bζ ∈ R are two tuning scalars which
regulate the transient response ofζ, and Ar is the reset
matrix.

Regarding (5), ReO can be seen as an hybrid observer
with a flow and aresetstate, and the two conditions at the
right side are theflow and thereset condition respectively.
On one hand, as long as̃y · ζ ≥ 0 the observer behaves as a
proportional integral observer. On the other hand, ifỹ ·ζ ≤ 0,
the integral term is reset according to the reset mapAr.



Recent results have highlighted the potential benefit of
including a reset element in the estimation laws. Since the
ReO is mainly nonlinear, it can meet requirements that
cannot be satisfied by pure linear observers. Namely, reset
elements can decrease the overshoot, and settling time of the
estimation process without sacrificing the rise time. Readers
interested in the stability, and convergence analysis of the
ReO as well as in how to select the tuning parameters of the
ReO are referred to [14].

Once the estimation process is done (i.e. whenx̂ has
been computed), the parameters of the adaptive controller are
updated depending on the identified model. An adaptive PI
controller is selected because of its simplicity and easy auto-
tuning. Fig. 3 shows the proposed adaptive control scheme,
whereas the designed control law is

u = LIxI − LS x̂

ẋI = r − y (6)

where r is the target temperature,xI is the integral error,
LI and LS are the integral gain of the controller and the
state gain of the controller respectively, which are off-line
computed with pole placement method, and afterwards, are
updated on-line through a look-up table depending on the
best model identified with the MMReO scheme.

Fig. 3. Adaptive Control Scheme.

It is worth mentioning that since we have implemented
N = 60 fixed identification models, we do not include here
for brevity all the values of the parameters involved in this
control scheme that depend on the identified model (e.g.Ai,
andBi in the MMReO scheme;LI , andLS in the adaptive
control scheme).

To give insights into the behavior of the proposed adaptive
control based on MMReO, we show some simulation results
obtained with the simulator developed from [8]. We aim at
heating up a cooking pot filled with 1 liter of water from
ambient temperature (i.e.25◦C) to the target temperature
(i.e. 91◦C).

Fig. 4 shows the parameters of the best model identified
minimizing the cost function (3) at every instant. Since the
number of fixed identification models is finite there still
exists a small difference between the best model and the real
system. Nonetheless, identified parameters are close enough
to real ones in such a manner that the convergence speed
of the reinitialized reset observer is highly decreased. Fig. 5
shows the temperatures of the cooking process as well as the
temperatures estimated by the ReO. It underlines the good

performance of the MMReO, since both temperatures are
properly estimated.

Additionally, Fig. 6 shows the action computed by us-
ing the control law (6), which relays on the temperatures
estimated by the ReO. It is evident the good performance
of the whole control scheme, sinceTW reaches the target
temperature without overshooting as it is shown in Fig. 5.
Finally, Fig. 7 shows the reset integral termζ, and how
it is reset at t = [200, 310, 550]. These resets as well
as the reinitializations of the state observer, cause small
discontinuities in the temperature of the bottom of the pot
estimated by the ReO, and thus, in the action computed by
the adaptive controller, as it is shown in Fig. 6. However,
these discontinuities allow the water temperature to reach
the desired reference, minimizing rise time and overshoot.
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Fig. 4. Simulation Results with the adaptive controller based on MMReO.
Solid lines are the parametersa11, a12, a21, a22, b11. Dashed lines are
the estimated parameterŝa11, â12, â21, â22, b̂11. Notice that, since it is
assumedQE = 0, the effect ofQE ·b22 is negligible for allb22. Therefore,
b22 is not estimated on-line but set to the nominal value during allthe tests.
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Fig. 5. Simulation Results with the adaptive controller based on MMReO.
TB is the temperature of the bottom of the pot,T̂B is the estimated
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the pot which is almost equal toTW , Ref is the target temperature.
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Fig. 6. Simulation Results with the adaptive controller based on MMReO.
Power computed with the control law (6) which depends on the state
estimated with the ReO.
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Fig. 7. Simulation Results with the adaptive controller based on MMReO.
Reset integral termζ computed with the ReO. Whenζ is reset to zero, it
means that the reset condition holds.

IV. F IXED QFT-BASED CONTROLLER

We also present here a fixed QFT-based controller, which
does not need estimation of variableTB , and it is used for
comparison with the adaptive MMReO-based controller.

Quantitative Feedback Theory (QFT) is a robust control
technique developed by Isaac Horowitz [15]. It has been
widely used in industrial applications for the last three
decades [16], [17], because it takes into account system
parameter uncertainty in the design of the controller. It has
been recently applied to simmering control for induction
cookers in [18], and here we summarize how that controller
was designed, for the paper to be self-contained.

The first step in QFT design is to translate the system
uncertainty to frequency domain. For this purpose, the fre-
quency responses of all possible combinations of system
parameters are represented in a Nichols chart. Each point
plotted represents a possible plant or sensor for a given fre-
quency. Therefore all these points define a region of the un-
certainty of the system at the different working frequencies.
These regions are known as templates. In particular, the tem-
plates obtained for the uncertain system described in TableI

for the working frequenciesw = [0.002, 0.005, 0.02, 0.1, 1]
rad/s are shown in Fig. 8.
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Fig. 8. Plant templates at the working frequenciesw =
[0.002, 0.005, 0.02, 0.1, 1] rad/s.

In the next step, control requirements have to be translated
into boundaries in a Nichols chart. In QFT, each closed-loop
specification, such as robust stability, tracking ability,and
disturbance rejection, generates a boundary. If the nominal
open loop avoids the boundaries, it is guaranteed that the
closed loop specifications are satisfied for all the plants
considered in the template.

For our system, we have selected the following closed-
loop performance specifications:

1) Robust Stability: To ensure robust stability of the
closed-loop system, the following constraint on the
peak magnitude of the closed loop frequency response
is set:

∣

∣

∣

∣

P (s)G(s)

1 + P (s)G(s)

∣

∣

∣

∣

≤ γ (7)

whereP (s) is the plant, andG(s) is the controller.
Moreover,γ is the maximum peak magnitude which
corresponds to a minimum gain margin (GM ), and
phase margin (PM ), [19] as follows:

GM = 20log

(

γ + 1

γ

)

[dB] (8)

PM = 2sin−1

(

1

2γ

)

[deg] (9)

in particular, we have chosenγ = 1.5 which gives
GM = 4.43 andPM = 39◦ .

2) Reference Tracking: Due to system uncertainty, we
define an acceptable range of variations in the closed
loop tracking responses. According to [20], [21], we
define an upperTUP (s), and lowerTDW (s) bounds
for the closed-loop response of our system as follows:

|TDW (s)| ≤

∣

∣

∣

∣

P (s)G(s)

1 + P (s)G(s)

∣

∣

∣

∣

≤ |TUP (s)| (10)



Specifically, we have selected the following tracking
bounds

TUP (s) =
1.02

(20s+ 1)(5s+ 1)
(11)

TDW (s) =
0.98

(80s+ 1)(70s+ 1)(1s+ 1)(0.1s+ 1)
(12)

3) Plant input noise rejection: According to (2), the
power supplied by the inductor is the input of our
system which is measured with a Sigma-Delta analog-
to-digital converter implemented in the ASIC of the
induction hob [22]. Since this converter has a measure-
ment error about a 5%, we have designed a controller
able to reject this kind of disturbances. In particular,
we have chosen the following input noise rejection
specification:

∣

∣

∣

∣

P (s)

1 + P (s)G(s)

∣

∣

∣

∣

≤ 0.01 (13)

Fig. 9 shows the intersection of these three performance
specifications at the design frequencies used during the
template generation. To satisfy performance specifications,
the open-loop response has to be above the corresponding
boundary as long as it is drawn in solid line, whereas if the
boundary is drawn in dashed line the open-loop response has
to be below the boundary.

It is easy to see that the system does not meet the
performance specifications since the open-loop frequency
response is below the performance specification bounds at
each frequency. Therefore, we have to modify the system
response adding poles and zeros, until the nominal loop lies
near its bounds and results in nominal closed-loop stability.
This process is known as loop-shaping, and generates directly
the robust feedback compensator.
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Fig. 9. Open-loop frequency response and performance specification
bounds. To meet the control requirements, the nominal open loophas to
avoid the boundaries.

Fig. 9 also points out that an appropriate control gain
should be introduced to push the open-loop frequency re-
sponse upwards. Additionally, a dynamic compensator is

required in order to change the shape of the open-loop fre-
quency response too. Following this approach, the resulting
controller is:

G(s) = 9

(

1

0.0028
s+ 1

) (

1

0.035
s+ 1

)

s
(

1

0.9
s+ 1

) (14)

whose frequency response with the plant is illustrated in Fig.
10. It is clearly seen that the open-loop frequency response
meets now all performance requirements, since it is above
all bounds at the corresponding frequency. Therefore, we can
state that the designed controller ensures robust stability, and
an appropriate noise rejection for all of the family of plants
defined under the uncertainty shown in Table I.
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Fig. 10. Open-loop frequency response with the controller.To meet the
control requirements, the nominal open loop has to avoid the boundaries.

Nevertheless, the controller is not able to satisfy the
tracking specification as it is shown in Fig. 11. Therefore,
a dynamic pre-filter is required to shape the frequency
response to be within the required envelope, and attenuate
high frequency peaking. Specifically, we have designed the
following pre-filter:

F (s) = 1

(

1

0.3
s+ 1

)

(

1

0.017
s+ 1

) (

1

0.1
s+ 1

) (15)

which allows to meet now the tracking specification as it is
shown in Fig. 12.

So far, we have only ensured that the proposed controller
meets the performance requirements at some discrete fre-
quencies. Consequently, an additional checking step at all
frequencies inside the working range is needed. For this
reason, we show in Figs. 13, 14 and 15 the closed-loop
response of the system with the designed controller and pre-
filter for the robust stability, reference tracking, and noise
rejection specifications respectively.

Concluding, the proposed fixed QFT-based controller
meets the robust stability, and noise rejection specifications
at all frequencies, since the closed-loop response is below
the corresponding boundary in both cases (see Fig. 13 and
Fig. 15). Additionally, it satisfies also the reference tracking
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Fig. 12. Closed-loop frequency response with the controller and the pre-
filter. Red dashed lines are the reference tracking boundaries. Blue solid
line is theupperclosed-loop response. Green solid line is thelower closed-
loop response. To meet the tracking requirement, both closed-loop responses
must be within the reference tracking boundaries.

specification, since the maximum and minimum closed-loop
response are inside the tracking range defined in (12).

V. EXPERIMENTAL RESULTS

Both proposed controllers have been implemented in the
microcontroller of a real induction hob. Specifically, these
algorithms have been programmed in C language. In order
to verify that the designed control schemes work properly,
several verification tests on real induction hob were done.
Main elements of the induction hob used are shown in Fig.
16 while the real hob used during the verification tests is
shown in Fig. 17.

The induction heating process in a domestic hob comes
up as follows. Hob takes the energy from the mains voltage;
after that, an electromagnetic compatibility filter removes the
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Fig. 13. Closed-loop stability margins. Blue dashed line is the closed-loop
stability boundary. Black solid line is the closed-loop stability response.
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Fig. 14. Closed-loop reference tracking margins. Red dashedlines are
the reference tracking boundaries. Blue solid line is theupper closed-loop
response. Green solid line is thelower closed-loop response.
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Fig. 15. Closed-loop noise rejection margins. Blue dashed line is the
closed-loop noise-rejection boundary. Black solid line isthe closed-loop
noise-rejection response.



voltage disturbances, which is subsequently rectified by a full
bridge of diodes. Finally, the inverter topology provides to
the induction coil the high-frequency current needed to heat
up the vessel. Since power supplied depends on it (the lesser
the frequency, the higher the power), the microcontroller
modifies the working frequency of the inverter to provide
the desired power. The frequency control algorithm used is
described in [23]. The changes of the working frequency are
taken in fixed and small steps, which ensures stability and
convergence of the frequency control algorithm but which
causes a transient behavior before the algorithm determines
the proper working frequency. Nevertheless, it has no effect
in the temperature control, due to the fact that the thermal dy-
namics are much slower than the inverter topology dynamics
(less than one second).

Fig. 16. Arrangement of the induction hob.

Fig. 17. Domestic induction hob used during verification test.

During verification tests, the temperature evolution of the
water during a simmering process is measured. It has to
reach a settling temperature between88◦C and 94◦C. The
software of the microcontroller automatically calculateshow
much power is needed in order to reach the set point with
the minimum rise time but without overshoots. To check the
system behavior, we measure the water temperature with an
additional thermocouple situated inside the water during all
the test. Notice that the software does not use the temperature
measured by the thermocouple. Therefore, this thermocouple
is not used in household conditions.

Figs. 18-23 show some of the results obtained with both
control schemes during the verification tests. We have used
a 180mm-diameter induction coil whose maximum power is
1800 watts. The objective is to heat up a predefined amount

of water until the simmering temperature as fast as possible.
After that, each controller has to keep the water temperature
inside the simmering range.

Fig. 18 and Fig. 19 show the results obtained with the
QFT-based controller when the initial amount of water is
1.5 liters and 2.5 liters respectively. On the other hand, Fig.
21 and Fig. 22 show the results obtained with the adaptive
controller based on MMReO when the initial amount of
water is 1.5 liters and 2.5 liters respectively. It is worth
mentioning that in all these tests the pot was covered with a
lid, so thatQE = 0.

Analyzing those figures, it is easy to see that both proposed
controllers meet control requirements because the water
reaches the simmering temperature without overshooting
independently of the initial amount of water. However, the
adaptive controller based on MMReO has a better perfor-
mance as long as we compare the rising time. Depending
on the initial amount of water, up to a 30% time saving is
achieved by using the adaptive scheme presented in Section
III.

Additionally, we have tested the robustness of each con-
troller dealing with disturbances. Two different sort of dis-
turbances have been considered. Firstly, we have performed
these tests without a lid, and thusQE is not longer negligible
(i.e. QE 6= 0), which as a matter of fact was an assumption
for the tuning of both controllers. Secondly, we have also
considered typical disturbances that take place during any
cooking process because of the addition of food. Specifically,
they have been simulated adding 0.5 liters of water to the
pot after the water temperature has reached the simmering
temperature. Fig. 20 shows the results obtained with the QFT-
based controller whereas Fig. 23 shows the results obtained
with the adaptive controller based on MMReO. Both con-
trollers show a good behavior since both are able to keep
the water temperature within the simmering range even after
more water is added to the pot. Nevertheless, the adaptive
controller based on MMReO outperforms again the fixed
QFT-based controller, since the disturbance rejection time
is significantly decreased. Specifically, it is up to 50 seconds
shorter which represents about a 33% time reduction.

Regarding energy consumption, since both control
schemes avoid overshooting, no energy is wasted to evapo-
rate water. For comparison purposes, let us analyze energy
consumption of induction cookers without temperature con-
trol, and with temperature control. Let assume that the user
selects the maximum power level during all the test (i.e.
1800 watts), in order to heat up 2.5 liters of water for 20
minutes, in the induction cooker without temperature control.
In this case, the energy consumption would be 600W · h.
On the other hand, the induction cooker with the QFT-
based controller would consume 265.55W ·h to perform the
same process, whereas the induction cooker with the adaptive
MMReO control would only need 260.33W · h. This result
underlines the fact that temperature control can play a key
role reducing energy consumption and, as a consequence, it
can increase the efficiency of the whole cooking process.



Fig. 18. Experimental results obtained with the fixed QFT-based controller.
It has to heat up 1.5 liters of water to the simmering range. The pot
is covered with a lid. Black line represents the supplied power. Blue
line represents the water temperature measured with a thermocouple. Area
between red lines represents the simmering range.

Fig. 19. Experimental results obtained with the fixed QFT-based controller.
It has to heat up 2.5 liters of water to the simmering range. The pot is
covered with a lid. Blue line represents the water temperature measured with
a thermocouple. Area between red lines represents the simmering range.

Fig. 20. Experimental results obtained with the fixed QFT-based controller.
It has to heat up 1.5 liters of water to the simmering range. Besides, 0.5
liters of water are added att=12:15. The pot is not covered with a lid. Blue
line represents the water temperature measured with a thermocouple. Area
between red lines represents the simmering range.

Fig. 21. Experimental results obtained with the adaptive MMReO-based
controller. It has to heat up 1.5 liters of water to the simmering range. The
pot is covered with a lid. Black line represents the suppliedpower. Blue
line represents the water temperature measured with a thermocouple. Area
between red lines represents the simmering range.

Fig. 22. Experimental results obtained with the adaptive MMReO-based
controller. It has to heat up 2.5 liters of water to the simmering range.
The pot is covered with a lid. Blue line represents the water temperature
measured with a thermocouple. Area between red lines represents the
simmering range.

Fig. 23. Experimental results obtained with the adaptive MMReO-based
controller. It has to heat up 1.5 liters of water to the simmering range.
Besides, 0.5 liters of water are added att=12:10. The pot is not covered
with a lid. Blue line represents the water temperature measured with a
thermocouple. Area between red lines represents the simmeringrange.



VI. CONCLUSION

This paper has shown the potential of the reset observers
applied to process control. Specifically, Multiple-Model Re-
set Observer (MMReO) has been applied to water tempera-
ture control for induction cooker, which guarantees a proper
food cooking, and allows to perform more complicated
cooking processes such as simmering.

Since the amount of water and food are initially unknown,
a previously developed analytical model has been used to
characterize the uncertainty of the process, simplifying the
design and tuning of the proposed MMReO. For comparison
purposes, a fixed robust QFT-based controller has also been
designed.

Both proposed controller meet all user requirements such
as a low settling time, an accurate temperature control within
the simmering range, and fast disturbance rejection. The
adaptive controller based on MMReO has shown a higher
performance compared with the fixed QFT-based controller.
Depending on the initial amount of water, up to a 30% time
saving is achieved by using the adaptive controller based on
MMReO. The rationale behind this is that it can identify
the system parameters on line so that the uncertainty of
the process is significantly decreased. On the other hand,
since the effectiveness of the adaptive controller relays on
the number of fixed identification models of the MMReO,
its computational cost is higher compared with the fixed
QFT-based controller. Although this drawback, the adaptive
controller based on MMReO is preferred because of its
superior performance.

Independently of the implemented controller, the resultant
control scheme is robust, safe, and very user friendly. Even-
tually, it could be applied in domestic induction hobs for
automatic cooking.
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