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Abstract

Reset observers (ReOs) are a novel sort of observer consisting of an integrator, and a
reset law that resets the output of the integrator depending on a predefined switching
condition. For SISO systems, the switching condition is defined in such a manner that
the ReO is reset when the output estimation error and the reset term have different sign.
However, the way to define the reset condition to deal with MIMO systems has not
been analyzed previously. The contributions of this paper are a formulation to handle
ReO for MIMO systems, and an algorithm to compute 13egain of the MIMO ReO

for performance purposes. Additionally, the effectiveness of our proposed MIMO ReO
is analyzed by simulations.
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1. Introduction

State observers for linear time invariant systems (LTIs) have been widely studied
since 1970s (see, for instance, [1], [2] and references therein). Those precursory works
were characterized by having only a proportional feedback term in the estimation laws
and were known as proportional observers (POs). After that, proportional integral ob-
servers (PIOs) were introduced to overcome the performance limitation of traditional
proportional observers. Specifically, PIOs include an additional integral feedback loop,
which increases robustness of the estimation process against disturbances, and mo-
deling errors. They were initially introduced by Shafai and his co-workers for loop
transfer recovery and robustness improvement in few publications (see [3], [4] and
the references therein). The adaptive version of this observer for linear systems was
reported in [5] and [6], and generalized for certain class of nonlinear systems in [7].

Although PIOs outperform traditional POs, they are still affected by the inherent
limitations of linear feedback control. That is, they cannot decrease the overshooting
and settling time of the estimation process simultaneously. To overcome this drawback,
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a novel sort of observer named reset observer (ReO), wassedpn [8]. ReOs are
observers consisting of an integrator and a reset law thats¢he output of the integra-
tor depending on a predefined switching condition. Simiaraditional proportional
observers and P10s, ReO can be regarded as a recursivatatyfor state estimation
in dynamic systems, and therefore, it can play a key role inynagoplications such as
monitoring, maintenance and fault tolerant control [9P][1The main advantage of
ReOs compared with traditional observers is that theimegion laws are no longer
linear. Thus, the ReO overcome the inherent limitationsre&fdr feedback laws. The
introduction of the reset element, which is essentiallylinear, in the estimation laws
can improve the performance of the observer.

Reset elements for control purposes were firstly introdinge@legg in 1958 [11],
who proposed an integrator which was reset to zero whenptst iis zero. In 1974,
Horowitz generalized that initial work substituting theeGdj integrator by a more gene-
ral structure called the first order reset element (FORE) [N2vertheless, the stability
analysis of those early works were mainly based on simulafiand it would take two
decades to find stability analysis demonstrations [13]. e contribution of those
works was a stability test applicable to reset control systecalled theHg condition.
However, theH; condition is rather conservative, and it requires the pligmiamics to
be stable [14]. Recently, reset elements based on the cdh$simulation have also
been generalized to time-delay systems in [15], and [16§rein the authors include
the plant time delay in the stability analysis.

Additionally, some authors have been focused on improviegsteady state per-
formance of reset compensators. Since the state of thealesatnt is eventually reset,
it does not have the characteristic of eliminating the stestdte error in response to
step disturbances by itself, thus, a steady state erropisotad for all systems without
an integrator. To overcome this drawback, [17] proposeetrelements with variable
reset that improve the closed-loop performance of the syste

Other authors aim at reducing the conservatism oHeondition, and extending
the stability analysis to unstable plants. A relevant syiorethis line is [18]. There, the
authors modified the reset condition in such a manner tragytstem is no longer reset
when the input of the FORE is zero, but when the input and thpubwf the FORE
have diferent sign. Indeed, this novel reset criterion results inughmsmaller flow
region, and allows a significant relaxation of the stab#ibd performance conditions.
Nonetheless, this modification is more complicated to imm@et in real applications.

Another important issue to solve within the reset systerméwork, is how to
deal with MIMO systems [19], since a proper formulation o tleset conditions in
the MIMO case is far from trivial. In the SISO case there isyamhe reset condition
whereas in the MIMO case there are many possible reset aamsliind it is not clear
which choices are the best ones. For this reason, we presthidg paper a ReO formu-
lation to handle MIMO systems. According to the authors kiealge, this contribution
can be regarded as the first result about how to cope with MIy#ess with multiple
reset conditions within the reset system framework.

This paper is organized as follows. In Section 2, we presefitiitions in which our
stability results are based. In Section 3, the ReO formandtr LTI MIMO systems is
presented. Stability and convergence analysis of the Ra@ibg quadratic Lyapunov
functions is given in Section 4. Besides, an algorithm to pota the£, gain of the



MIMO ReO for performance purposes is also presented. A sitiul example is
shown in Section 5 in order to show th&extiveness of the proposed ReO. Finally,
concluding remarks are given in Section 6.

Notation: In the following, we use the notatiorx,y) = [XT yT]T. Given a state
variable x of a hybrid system with switches, we will denote its time dative with
respect to the time by. ‘'Furthermore, the value of the state variable after thecéwit
will be denoted byk*. Finally, we omit its time argument and we writ&) asx.

2. Preliminaries

For future reference, we present here the following defingtifor asymptotic sta-
bility, and £, gain stability of hybrid systems [20], [21], [22].

Definition 1. Consider the reset systefwith statex € R", and the origin as an
equilibrium point. Let two closed sef&, and. 7, be given, such thaky U Jo = R",
wherein¥y is the flow set, andfy is the jump set. If there exists a Lyapunov-function
candidateV/(x) : R" — R such that/(0) = 0 and

V(x) <0 x € Fo
V(x+) <V(X) xeJo

then the origin is asymptotically stable.

Definition 2. The setL, consists of all measurable functioh) : R* — R such that
S 1f P dt < oo

Definition 3. Consider the reset systefwith inputd € £, and outpuly € £,. Let
us define thel, gain of the reset systef as the following quantity

Logain= sup Iiylly
idi,=0 [1dll2

where]lyl|, denotes the 2-norm ¢f defined as the square rootmjﬂ% = fo‘x’ yTydt, and
[|dll» is defined in a similar manner.

Additionally, we present the following lemma that will beadsin the sequel [23].

Lemma 1. The £, gain of a LTI system with an input signal d, and an output signa
is less thany, if there exists a quadratic function(¥) = x"Px, P> 0 andy > 0 such
that

V(x) <y4dTd-y'y

Definition 4. Consider the reset systefiwith statex € R", inputd € £, output
y € L5, and the origin as an equilibrium point. Let two closed s&fsand. 9y be



given, such tha¥, U Jo = R", wherein¥y is the flow set, andyy is the jump set. If
there exists a Lyapunov-function candidste) : R" — R such that/(0) = 0 and

V() <y2dTd-y'y xe %o
V(x+) < V(X) X€ Jo

then the origin is asymptotically stable and the reset syRehas al, gain lower or
equal toy.
3. Problem Statement

In this paper, we address the problem of the state estimetiimear time invariant
systems which are described by

Ax+ Bu+ Byw
= Cx
yu = Cix 1)

wherex € R" is the state vectory € R! is the input vectorw € R is the disturbance
vector,y € R™ is the output vectorA, B, By, C, andC, are constant matrices with
appropriate dimensions. In additiom, € R"“ is a performance evaluation output
which will be used to estimate th&, gain of the MIMO ReO in a similar way than
[24].

The structure of our proposed ReO applied to a LTI systems(ijvien in Fig. 1.
The ReO dynamics are described as follows:

X = AX+ Bu+ K+ Kpy
gy = CX
b = C.X 2

whereXis the estimated stat&,; andKp represent the integral and proportional gain
respectivelyy™= CX = C(x — X) is the output estimation error. We defige = C X
as the output estimation error for performance evaluatimpg@ses and is the reset
integral term.

In the SISO case [8]; is computed as

[ =AL+BY §-020 a)
ro=AL y-<0

whereA; € R andB; € R are two tunning scalars which regulate the transient respon
of £, andA, is the reset matrix. Specifically, we defiAe = 0, since the reset integral
term{ is reset to zero wheyrJ < 0. Notice thatA, is not directly set to zero in order to
fit the FORE formulation (see, for instance, [14] and [251) &he PIAO formulation
proposed in [7].

Moreover, it is worth mentioning that the definition of thesee law based on a
sector condition for flowingy(~¢ > 0) and resettingy(~¢ < 0) is preferred throughout
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Figure 1: Reset observer applied to a LTI system.

this paper rather than classical conditign="0). Both definitions are equivalent for
reset dynamics that correspond to first order reset elentikat€3), and although the
classical condition is clearly easier to implement, we hawesen the sector condition
because it has advantages for stability and convergentgsama

In the SISO case, the reset observer can be regarded as d Bysiem with one
flow set¥ and with ongump or reset seff. Regarding (3), the two conditions at the
right side are thdlow and thejump condition respectively. On one hand, as long as
(¥, 0) € ¥ the observer behaves as a proportional integral observethéother hand,
if the pair , ) satisfies thgump condition, the integral term is reseted according to
the reset mag\,. Thus, the observer flows whenewer > 0, that is, ify'and/ have
the same sign, whereas the observer jumps wheryevek0, that is, ify'and/ have
different sign. Introducing the augmented state [X g“]T and by usingy™= CX we
can formalize the definition of both sets by using the follogviepresentation:

Fi={n"Mn >0}, 7 = {1" My <0}, (4)

whereM is defined as

0 CT
M _[ c o ] (5)
Nevertheless, this formulation is no longer valid when wedealing with MIMO
systems. In this case the reset observer can be regardedybsddystem with one
flow setF and with severglump or reset sety; each one defined by aftérent reset
condition. As before, a MIMO reset condition will depend ohether each output
estimation errogy and its associated reset tetinhas or not dierent sign. However,
since the reset observer has now several reset sets, thecoesktions have to be
designed in such a manner that only one reset condition caatisied at the same
time and, as a consequence, the ReO only can jump to one oiffBeedt jump sets.
Indeed, the number of reset conditions can be obtained bywetng the dfferent
combinations of reset terms. Undoubtedly, the number adtresnditions and, as a
consequence, the number of reset regions depends on theenombutputs of the
system. Using straightforward combinatorial mathematihe number of dferent



reset conditiong for a system withm outputs is
m
m!
5= 2 s ®

Additionally, let us define the following auxiliary sets ffuture reference. Let us
assume without loss of generality that for each oufpstl. .. mthere exists a matrix
Mj = M € RO+™=(m which defines the following auxiliary sets:

S; =" Min<0=¥j<0
S;=n"Mjn=0=¥;>0 (7)

Using these auxiliary sets;, S’j the diferent reset sets can be formalized. Let us
defineA as the set of all natural numbers from Into Additionally, for each dierent
reset combinatiom = 1...8 let us defineB; = {k: ¥k < 0, Bk € A}, which repre-
sents the indexes of the paig,((k) which have dterent sign, an@; = {k : <« > 0,Cx € A},
which represents the indexes of the paifg £) which have the same sign, in such a
manner tha3iNC; = 0 andB;UC; = A, Vi = 1...8. Therefore, the possible= 1...8
combinations of reset sets can be defined as:

J=UJsJs; 8)
jEBi j€Ci
whereas the flow set would be defined as:
7= S 9)
jeA

Once the dierent reset conditions and reset sets have been propenedgfie
can define the dynamic of the reset term within the flow reg®mvell as after each
different reset condition. Analogously to (3), the evolutiod é6r MIMO systems is
defined as follows:

¢ =AL+BY neF
;= At ned i=1..p (10)

whereAg; € RMMx(m are diagonal matrices defined as

, i=1...8 (11)

andA;; € R™™ are diagonal matrices whose diagonal teah}sare defined as follows

i o if B :
ar,r={1 :f:ZBi} i=1...8 (12)

Finally, we assume that the proposed reset observer for Miyikbems (2),(10)
holds the following assumptions:



Table 1:8 = 7 reset combinations for a systems with= 3 outputs

i Combination Strucure Resetterms Non reset terms
1 V11 <O A $olo <OA §3l3<0 15200 30 None
2 Y141 <0 A $20 <OA §3{3>0 15t pnd 3th
3 V11 <0 A 920 20A ¥33<0 15t 3th ond
4 V1120 A $olo <O0A §303<0 ond 3th 1t
5 V1l1 <0 A ¥20o > 0A ¥343>0 1st ond gth
6 yl{l 20 A y2§2 <0A y3§3 >0 ond 1St,3th
7 Vid1 20 A $20o > 0A §343 <0 3h 15t pnd

Assumption 1. The reset observer described by (2),(10) is suchitalf; = Arin €
F.

This condition guarantees that after each reset, the solwill be mapped to the
flow set¥ and, as a consequence, it is possible to flow after resets.

Assumption 2. The reset observer described by (2),(10) is such that thet tewes
tisr —tj> pVjeN,peR>0.

This assumption ensures that the reset observer uses tjulaneation to avoid
Zeno solutions. It guarantees that the time interval betveas two consecutive resets
is not smaller thap which is a positive constant.

It is important to note that both assumptions are quite ahtarassume for hybrid
system, and consequently, these conditions are commoadyinsnost of current reset
system formulations available in literature [14], [22].

To give insight into the proposed reset formulation for MIM@stems, we ap-
ply the previously explained design to the following exaemplet us consider a sys-
tem withm = 3 outputsy = [y1, Y2, Y], their corresponding output estimation errors
¥ = [V1, 2, ¥3] and their associated reset terms‘as [{1, {2, {3]. According to (6), a
ReO for a system witlm = 3 outputs hag = 7 different combinations of reset con-
ditions. These reset conditions are defined depending odifiteeent combinations of
how many reset terms can be reset at the same time. Speygjfib@ltes = 7 reset
combinations are outlined in Table 1.

Then by using (7), we could defime= 3 auxiliary setsS; :=nMi1np < 0= {11 <
0,82 :=nMan <0= §,02 <0,83:=nMzn < 0= ¥33 < 0 and their corresponding
complement setS’l, S’2 andS’s. Moreover, by using these auxiliary sets, we can state
the diferent index sets and their associated reset regions wheathedined according
to (8), and additionally, the tferentA;; reset matrices which are defined according to
(12) as it shown in Table 2. Finally, since= 3 thenA = [1, 2, 3], and we can define
the flow region as¥ := S U S, U S, according to (9).

It is worth mentioning that the reset conditions (6), anddhgiliary sets (7), can
lead to complex reset regions for large systems (engz 10). Therefore, regarding
real-time implementation, it would be ill-advised to usis froposal for large systems,
unless they were controlled with a powerful enough proaeslsi@vertheless, notice
that the complexity is linear with the number of outpatsvhen considering all the



Table 2: index set$B;, andC; and their associated reset regigisfor a systems withm = 3 outputs

i Combination B Ci Ji Ari
1 [1,23] 0 S;US,US; diag(Q0,0)
2 [1,2] B] S1UuSuUS; diag(Q0,1)
3 [1,3] [2] S:1US3US, diag(Q1,0)
4 23] [1] SuS;usS; diag(10,0)
5 1]  [2.3] S;uS,uS, diag(Q1,1)
6 2]  [1,3] SuUS;US, diag(10,1)
7 B [12] S;uS;uS, diag(11,0)

reset conditions defined following (12), since the resetoregyare explicitly defined
just by checking the product of each output elygrahd its corresponding reset term

&

4. Stability and Convergence Analysis

In this section we state computabléfstient conditions forZ, stability via quadratic
Lyapunov functions for reset observers defined by (2) anyidfplied to LTI systems
described by (1).

4.1. State stability analysis

Let us begin analyzing the augmented error system dynamitish can be ob-
tained subtracting (2) from (1) and by using the previousjireed augmented state

n=1[% ¢,

n =An+Bw nef

]l+ :ARln nem, |=1ﬂ
1
é: :C1]77 (3)
_{:L :CT]LTI
where
[ A-KpC K, [ Bu [c la
I I

Let us now state a $licient condition for the existence of a quadratically stable
ReO based on a LMI approach.

Theorem 1. For given A, B, and Ag; the augmented error dynamics shown in (13)
with B, = 0, m outputs, i= 1...3 reset conditions computed according to (6), the
collections of index setdl, 8; andC;, and j= 1...m matrices M defined according
to (7), are quadratically stable if there exist a matrix=PP" > 0 and scalarsrgj >



O0Vje A 155 >0VjeBandr; = 0Vj e Cj subject to

A;P+PA7+ZTFJ-MJ- < 0 (15)
jeA

ALPAR =P = > TyMj+ > 1My < 0, i=1...4 (16)
jEBi j€C|

which is a linear matrix inequality problem in the variablBsrr; andry;;.

Proof. Let us begin considering the following quadratic Lyapunandtion for the
augmented error dynamics described by (13):

V() =n" Py 17)

According to Definition 1, to prove the quadratically stalibf our proposed reset
observer, we have to check that:

V() <0 negF
Vi) <V@) nedi i=1..8 (18)

According to (4), sincé := UjecnS; = 7" Min =2 0A... A" Myn > 0 and
employing the S-procedure [23], the first term of (18) is ggldint to the existence of
Tgj 2 0V] € A such that

V) <= D neMyy (19)
jeAa
Then, let us take derivative of (17) to obtain
V) = 7" Pp+n'Ph
n" (AP +PA)n (20)
Rearranging terms of equations (19) and (20), the first tefrifl®) holds if the
following inequality is satisfied

0 (AJP+PA+ > 0" 1e M < 0 (21)
jeA

which can be rearranged as an equivalent LMI problem in thabiesP > 0 and
;>0

ATP+PA, + > 76 M; <O, (22)
jeA

which is analogous to (15) and consequently, proves thesfipsation of (18).
Similarly, employing again the S-procedure, the second t&r(18) holds if for all
i =1...8there existryj > 0Vj € B; andry; > 0V € C; such that

Vo) V@) + Y n toMin = Y nTtgMin, i =1...8 (23)
j€Bi jeCi



which is equivalent to

0 ARPARn —n Py = ) Tty Min+ > 0Tt M <0, i=1..8  (24)
jE.’Bi jECi

Rearranging terms, (24) can be also rewritten as an equaivMaMl problem in the
variablesP > 0 andr;; > 0 as follows

ALPAR =P = > T3iMj+ > 15M; <0, i=1...4 (25)

j€B j€Ci

which is analogous to (16) and proves the second equatioh8)fand, as a conse-
gquence, completes the proof of the theorem. O

4.2. Input-output stability analysis

Now, we present our results on the input-output propertidheReO for MIMO
systems. We use the previously defined performance evatuatitputs, € R which
will be used to estimate th€, gain of the MIMO ReO in a similar way than [24].

Theorem 2. For given A, B, C,, C,_ and Ag; the augmented error dynamics shown
in (13) with m outputs, i= 1...8 reset conditions computed according to (6), the
collections of index setdl, 8; andC;j, and j= 1...m matrices M defined according
to (7) are quadratically stable and has£ gain from w tog, which is smaller thary,

if there exist a matrix P= PT > 0 and scalarsrrj > 0Vj € A, 135 2 0V]j € B; and
735 > 0Vj € Ci andy > O subject to

T T i j Mj
AP +PA, + C77|__|_C7IL + 2jea TriM; fy%l < 0, (26)

n
AEiPARi_P_ZTinMj‘}'ZTJjIMj < 0 i=1...8
j€Bi jeCi

which is a linear matrix inequality problem in the variablBstej, 755 andy.

Proof. According to Definition 4, to prove the stability of our pregeal reset observer
and that thef, gain fromw to &, is smaller thary, we have to check that:

Vi) <yWw-¢lé neF
V) < V() nedi i=1..8

The first equation of (27) relays on Lemma 1, and the secondtequof (27)
is equal to the second equation of (18) which has been alneswyed. Then, let us
concentrate on the first equation of (27). Again, siffce= [Jjcn S’j =3 My >
OA...An" My > 0 and employing the S-procedure, the first term of (27) is\edeit
to the existence ofg; > 0V € A such that

(27)

Vi) < yW'w—glé - > n"eMjn (28)
jeAa

10



In this case, the time derivative of (17) is

Vi) = 7"Pp+n'Ph
= 7 AlPp+W'BIPy+n'PAn+n PBwW

= nT(A;PJr PA)7 +w' B;Pq +1' PB,w
(29)

Rearranging terms of equations (28) and (29), the first tefrif20) holds if the
following inequality is satisfied

n'(AjP+PA)n+w' Bl Py +n'PBW
+§I§|_ + Z T]TTF]' Min — yw'w<0 (30)
jeA

Since&[ & = ' C] C,, 1, (30) can also be rearranged as an equivalent LMI problem

y[s

in the variabled® > 0 andrg; > 0 as follows

T T M

A’IP+PA7+CULS77L +Zi€ﬂTFJMJ PBZW <0, (31)
B, P -4l

which is analogous to (26) and proves the first equation of2d, as a consequence,

completes the proof of the theorem. O

5. Simulation Results

It was shown in [8] how a properly designed ReO could decrdassettling time
as well as the overshooting compared with traditional oleserdealing with SISO
systems. Now, an example is presented in order to show thaawebtain the same
improvement for MIMO systems by using the presented prdpésarder to highlight
the dfect of the reset elements on the estimation process, we certipasimulation
results obtained by our proposed ReO with two P1Os. On thehand, the first PIO
will be tuned to minimize the overshooting and, as a consecpyét provides a smooth
response. On the other hand, the latter P10 will be designetitimize the rising time,
and hence, it gives an oscillating and faster response. &ktesimulation example will
show that our proposed ReO can achieve both requiremesatsa(emooth and quick
response) simultaneously.

Let us consider the following forth-order noise-corruptdd system:

X1 = =15x;— 1% +0.5x%x3 +u; + 0.5w

Xo = 0.5%; — 2% + 2u; — uy + 0.5w

X3 = -0.5%; —2X3+ X4 — 1up + up + 0.5w

Xas = =15x1— X4+ 2u, + 05w

Yy = Xt

Y2 = X3

Yy = Xu (32)

11



with x(t = 0) = [-2.5,1.5,-1.5,-2]7, u(t) = [sin(4t),t/(t + 1)]" andw(t) = sin(15t).
The aim is to develop an state observer for the system desidoip (32) which satisfies
that the state estimation error tends to zero without owsrtsig as fast as possible.
According to (1), (32) has the following parameters:

-15 -1 05 0 1 0 0.5
05 -2 0 © 2 -1 0.5
A= Bl 1| Be=los |

-05 0 -2 1
-15 0 0 -1 0o 2 05

cz[é 8 (1) 8],(1:[1 00 0]

The system (32) haw = 2 outputs and by using (6) it h@s= 3 different reset con-
ditions. Additionally, we can also define the= 2 auxiliary setsS; .=nM;n < 0=
Y11 < 0andS, := n Mz 7 < 0 = §2¢> < 0 and their corresponding complementary
setsS| = ¥1&1 > 0 andS, = §-¢> > 0. According to (7)M; and M, are defined as
follows:

000010 000O0O0O
000O0O0O 000O0O0O
M._|0 00000  |0OO0O0O0O1
1lo oo o0o0O0”™|00O0O0O0OTO0O O]
100000 0 00O0OO O
000O0O0O 001000

Moreover, the dierent index sets would bél = [1,2], 8, = [1,2] andC; = 0,

B, = [1] andC2 = [2], B3 = [2] andC3 = [1]. Using these auxiliary sets and the
index sets, thé = 1...8 reset regions could be finally defined 83 = S; U S5,
J2 = S1US, and g3 1= S, U S), whereas the flow set would b€ = S} U S,,.
Finally according to (12), we can define the= 3 different reset matrice&; asA;; =
diag(Q 0), Az = diag(Q 1) andA 3 = diag(1 0).

The other tuning parameters have been obtained followiagtidelines given [8].
Firstly, we have designed the conservative PI1O in such a erahat its rising time is
roughly equal to 0.6 seconds without overshooting. Aftat,tto design the oscillating
PIO we have increased th§ gain until its rising time is around 0.2 seconds, that
implies an oscillating estimation process. Finally, to m#ie results more comparable,
the ReO has the sang andKp than the oscillating PIO.

On the one hand, the parameters of the conservative PItaze0) = [0,0,0,0]",

z(t = 0) = [0,0]", A, = diag(-0.1,-0.1), B, = [1,1]", Kp = [3.19,-1.31, -0.21, -0.82;
0.65,-0.20,4.49,7.36]", andK, = [0.83,-0.11, -0.06, -0.25; 019, —0.06,0.45,0.17T",
whereas the parameters of the oscillating PIO xte=" 0) = [0,0,0,0]", z(t =

0) = [0,0]", A, = diag(-0.1,-0.1), B, = [1,1]", Kp = [3.19,-1.31,-0.21, -0.82;
0.65,-0.20,4.49,7.36]", andK, = [25.55,-10.50, -1.67, -6.59; 521, -1.60, 35.94,58.88]".

On the other hand, the ReO for the system (32) has been ddsigerding to
(2)-(10) and it has the following tuning parametes§t = 0) = [0,0,0,0]", /(t =

12



0) = [0,0]", A; = diag(-0.1,-0.1), B, = [1,1]", Kp = [3.19,-1.31,-0.21, -0.82;
0.65,-0.20,4.49,7.36]", K, = [25.55,-10.50,-1.67, —6.59; 521, —-1.60, 35.94,58.88]".
Notice that theKp andK, gains of the ReO are equal to the gains of the oscillating P1O.
For a further discussion on the structure of PIOs and PIA@sahder is referred to [7]
and [8].

The state estimation errat) = [%a(t), % (t), X3(t), Xa(t)]" of each observer is shown
in Figs. 2-3. Itis evident that our proposed ReO has a bettdopnance compared
with the traditional P10s, since it has a response as quidka®scillating PIO but
without overshooting.
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Figure 2: State estimation errag(f) and X>(t) for each observer. (A) Dotted lines have been obtained by
using the conservative PIO. (B) Dasehd lines have beenr@atdiy using the oscillating P1O. (C) Solid lines
have been obtained by using the ReO.

Additionally, the integral absolute errofAE) and the integral time absolute error
(IT AE) are computed to numerically evaluate the performance opmposal, com-
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14



Table 3: Performance indexes obtained by each observer
Observer IAE ITAE
Conservative PIO  439.87 135.89
Oscillating PIO 560.69 242.05
ReO 27256 63.44

pared with traditional state observers. They are defined|ks\s

n

Z(fowm(t)mt),

i=1

IAE

n

> [ sona). (39

i=1

ITAE

which should be as small as possible. Table 3 summarizesettiermance indexes
obtained by each observer. These results underline thatfateenefit of using reset
elements. From Figs. 2-3 and Table 3, we can conclude thasRa® be used to
improve the transitory response of some estimation preses§he rationale behind
this is that ReOs remove almost completely the oscillatielgavior of the estimated
variables by resetting their corresponding integral term.

Finally, it can be interesting to estimate an upper boundhef, gain of ReO for
performance purposes. Indeed, it can be done by solvinghteptoblem showed in
(2) which obtainsf, = 0.22 as an estimation of the upper bound of #fiegain of the
ReO.

6. Conclusion

So far, the application of reset elements for control anceplagion purposes has
been limited to SISO systems. Since in the SISO case therdyi®oe input and one
output, the reset condition is automatically obtained. @ndther hand, in the MIMO
framework there are many possible reset conditions and amsequence a proper
formulation is far from trivial.

In this paper, we have extended our previous results onebsetvers to the MIMO
framework. According to the authors knowledge, this cdmiibn can be regarded as
the first result about how to cope with MIMO systems with npléireset conditions
within the reset system framework. Moreover, an algoritncampute a estimated
L, gain of the MIMO ReO for performance proposal is also giverdditionally, a
simulation example has been given to check tiiectiveness of the proposed MIMO
ReO, compared with traditional state observers.

However, the research on ReO is still an open problem. Orie fopfuture re-
search would be the application of the proposed methoddiogynlinear systems.
As it shown in [26], the LTI system formulation can be modiftedough a change of
coordinates in order to handle certain class of nonlinestesys. Another topic would
be the development of a method to automatically determiaeoitimal ReO tuning

15



parameters. Recent results in the adaptive observer frarkdi], show that it could
be done by solving the L2 gain minimization problem, whicln ¢& rewritten as an
equivalent LMI problem.
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