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Abstract

Reset observers (ReOs) are a novel sort of observer consisting of an integrator, and a
reset law that resets the output of the integrator depending on a predefined switching
condition. For SISO systems, the switching condition is defined in such a manner that
the ReO is reset when the output estimation error and the reset term have different sign.
However, the way to define the reset condition to deal with MIMO systems has not
been analyzed previously. The contributions of this paper are a formulation to handle
ReO for MIMO systems, and an algorithm to compute theL2 gain of the MIMO ReO
for performance purposes. Additionally, the effectiveness of our proposed MIMO ReO
is analyzed by simulations.
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1. Introduction

State observers for linear time invariant systems (LTIs) have been widely studied
since 1970s (see, for instance, [1], [2] and references therein). Those precursory works
were characterized by having only a proportional feedback term in the estimation laws
and were known as proportional observers (POs). After that, proportional integral ob-
servers (PIOs) were introduced to overcome the performance limitation of traditional
proportional observers. Specifically, PIOs include an additional integral feedback loop,
which increases robustness of the estimation process against disturbances, and mo-
deling errors. They were initially introduced by Shafai and his co-workers for loop
transfer recovery and robustness improvement in few publications (see [3], [4] and
the references therein). The adaptive version of this observer for linear systems was
reported in [5] and [6], and generalized for certain class of nonlinear systems in [7].

Although PIOs outperform traditional POs, they are still affected by the inherent
limitations of linear feedback control. That is, they cannot decrease the overshooting
and settling time of the estimation process simultaneously. To overcome this drawback,
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a novel sort of observer named reset observer (ReO), was proposed in [8]. ReOs are
observers consisting of an integrator and a reset law that resets the output of the integra-
tor depending on a predefined switching condition. Similar to traditional proportional
observers and PIOs, ReO can be regarded as a recursive algorithm for state estimation
in dynamic systems, and therefore, it can play a key role in many applications such as
monitoring, maintenance and fault tolerant control [9], [10]. The main advantage of
ReOs compared with traditional observers is that their estimation laws are no longer
linear. Thus, the ReO overcome the inherent limitations of linear feedback laws. The
introduction of the reset element, which is essentially nonlinear, in the estimation laws
can improve the performance of the observer.

Reset elements for control purposes were firstly introducedby Clegg in 1958 [11],
who proposed an integrator which was reset to zero when its input is zero. In 1974,
Horowitz generalized that initial work substituting the Clegg integrator by a more gene-
ral structure called the first order reset element (FORE) [12]. Nevertheless, the stability
analysis of those early works were mainly based on simulations, and it would take two
decades to find stability analysis demonstrations [13]. Themain contribution of those
works was a stability test applicable to reset control systems, called theHβ condition.
However, theHβ condition is rather conservative, and it requires the plantdynamics to
be stable [14]. Recently, reset elements based on the classical formulation have also
been generalized to time-delay systems in [15], and [16], wherein the authors include
the plant time delay in the stability analysis.

Additionally, some authors have been focused on improving the steady state per-
formance of reset compensators. Since the state of the resetelement is eventually reset,
it does not have the characteristic of eliminating the steady state error in response to
step disturbances by itself, thus, a steady state error is expected for all systems without
an integrator. To overcome this drawback, [17] proposed reset elements with variable
reset that improve the closed-loop performance of the system.

Other authors aim at reducing the conservatism of theHβ condition, and extending
the stability analysis to unstable plants. A relevant survey on this line is [18]. There, the
authors modified the reset condition in such a manner that, the system is no longer reset
when the input of the FORE is zero, but when the input and the output of the FORE
have different sign. Indeed, this novel reset criterion results in a much smaller flow
region, and allows a significant relaxation of the stabilityand performance conditions.
Nonetheless, this modification is more complicated to implement in real applications.

Another important issue to solve within the reset system framework, is how to
deal with MIMO systems [19], since a proper formulation of the reset conditions in
the MIMO case is far from trivial. In the SISO case there is only one reset condition
whereas in the MIMO case there are many possible reset conditions, and it is not clear
which choices are the best ones. For this reason, we present in this paper a ReO formu-
lation to handle MIMO systems. According to the authors knowledge, this contribution
can be regarded as the first result about how to cope with MIMO systems with multiple
reset conditions within the reset system framework.

This paper is organized as follows. In Section 2, we present definitions in which our
stability results are based. In Section 3, the ReO formulation for LTI MIMO systems is
presented. Stability and convergence analysis of the ReO byusing quadratic Lyapunov
functions is given in Section 4. Besides, an algorithm to compute theL2 gain of the
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MIMO ReO for performance purposes is also presented. A simulation example is
shown in Section 5 in order to show the effectiveness of the proposed ReO. Finally,
concluding remarks are given in Section 6.

Notation: In the following, we use the notation (x, y) =
[

xT yT
]T

. Given a state
variablex of a hybrid system with switches, we will denote its time derivative with
respect to the time by ˙x. Furthermore, the value of the state variable after the switch
will be denoted byx+. Finally, we omit its time argument and we writex(t) asx.

2. Preliminaries

For future reference, we present here the following definitions for asymptotic sta-
bility, andL2 gain stability of hybrid systems [20], [21], [22].

Definition 1. Consider the reset systemR with statex ∈ R
n, and the origin as an

equilibrium point. Let two closed setsF0, andJ0 be given, such thatF0 ∪ J0 = R
n,

whereinF0 is the flow set, andJ0 is the jump set. If there exists a Lyapunov-function
candidateV(x) : Rn→ R such thatV(0) = 0 and

V̇(x) < 0 x ∈ F0

V(x+) ≤ V(x) x ∈ J0

then the origin is asymptotically stable.

Definition 2. The setL2 consists of all measurable functionsf (·) : R+ → R such that
∫ ∞

0
| f (t)|2 dt < ∞.

Definition 3. Consider the reset systemR with input d ∈ L2, and outputy ∈ L2. Let
us define theL2 gain of the reset systemR as the following quantity

L2 gain= sup
‖d‖2,0

‖y‖2
‖d‖2

where‖y‖2 denotes the 2-norm ofy, defined as the square root of‖y‖22 =
∫ ∞

0
yTy dt, and

‖d‖2 is defined in a similar manner.

Additionally, we present the following lemma that will be used in the sequel [23].

Lemma 1. TheL2 gain of a LTI system with an input signal d, and an output signal y
is less thanγ, if there exists a quadratic function V(x) = xT Px, P> 0 andγ > 0 such
that

V̇(x) < γ2dTd − yTy

Definition 4. Consider the reset systemR with statex ∈ R
n, input d ∈ L2, output

y ∈ L2, and the origin as an equilibrium point. Let two closed setsF0, andJ0 be
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given, such thatF0 ∪ J0 = R
n, whereinF0 is the flow set, andJ0 is the jump set. If

there exists a Lyapunov-function candidateV(x) : Rn→ R such thatV(0) = 0 and

V̇(x) < γ2dTd − yTy x ∈ F0

V(x+) ≤ V(x) x ∈ J0

then the origin is asymptotically stable and the reset system R has aL2 gain lower or
equal toγ.

3. Problem Statement

In this paper, we address the problem of the state estimationof linear time invariant
systems which are described by

ẋ = Ax+ Bu+ Bww

y = Cx

yL = CLx (1)

wherex ∈ R
n is the state vector,u ∈ R

l is the input vector,w ∈ R is the disturbance
vector,y ∈ R

m is the output vector.A, B, Bw, C, andCL are constant matrices with
appropriate dimensions. In addition,yL ∈ R

L2 is a performance evaluation output
which will be used to estimate theL2 gain of the MIMO ReO in a similar way than
[24].

The structure of our proposed ReO applied to a LTI system (1) is given in Fig. 1.
The ReO dynamics are described as follows:

˙̂x = Ax̂+ Bu+ KIζ + KPỹ

ŷ = Cx̂

ŷL = CL x̂ (2)

wherex̂ is the estimated state,KI andKP represent the integral and proportional gain
respectively, ˜y = Cx̃ = C(x − x̂) is the output estimation error. We define ˜yL = CL x̃
as the output estimation error for performance evaluation purposes andζ is the reset
integral term.

In the SISO case [8],ζ is computed as

ζ̇ = Aζζ + Bζ ỹ ỹ · ζ ≥ 0
ζ+ = Arζ ỹ · ζ ≤ 0

(3)

whereAζ ∈ R andBζ ∈ R are two tunning scalars which regulate the transient response
of ζ, andAr is the reset matrix. Specifically, we defineAr = 0, since the reset integral
termζ is reset to zero when ˜y·ζ ≤ 0. Notice that,Aζ is not directly set to zero in order to
fit the FORE formulation (see, for instance, [14] and [25]), and the PIAO formulation
proposed in [7].

Moreover, it is worth mentioning that the definition of the reset law based on a
sector condition for flowing (˜y · ζ ≥ 0) and resetting (˜y · ζ ≤ 0) is preferred throughout
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Figure 1: Reset observer applied to a LTI system.

this paper rather than classical condition (˜y = 0). Both definitions are equivalent for
reset dynamics that correspond to first order reset elementslike (3), and although the
classical condition is clearly easier to implement, we havechosen the sector condition
because it has advantages for stability and convergence analysis.

In the SISO case, the reset observer can be regarded as a hybrid system with one
flow setF and with onejump or reset setJ . Regarding (3), the two conditions at the
right side are theflow and thejump condition respectively. On one hand, as long as
(ỹ, ζ) ∈ F the observer behaves as a proportional integral observer. On the other hand,
if the pair (ỹ, ζ) satisfies thejump condition, the integral term is reseted according to
the reset mapAr . Thus, the observer flows whenever ˜y · ζ ≥ 0, that is, ifỹ andζ have
the same sign, whereas the observer jumps whenever ˜y · ζ ≤ 0, that is, ifỹ andζ have
different sign. Introducing the augmented stateη =

[

x̃ ζ
]T and by using ˜y = Cx̃ we

can formalize the definition of both sets by using the following representation:

F :=
{

ηT Mη ≥ 0
}

, J :=
{

ηT Mη ≤ 0
}

, (4)

whereM is defined as

M =

[

0 CT

C 0

]

. (5)

Nevertheless, this formulation is no longer valid when we are dealing with MIMO
systems. In this case the reset observer can be regarded as a hybrid system with one
flow setF and with severaljump or reset setsJi each one defined by a different reset
condition. As before, a MIMO reset condition will depend on whether each output
estimation error ˜yk and its associated reset termζk has or not different sign. However,
since the reset observer has now several reset sets, the reset conditions have to be
designed in such a manner that only one reset condition can besatisfied at the same
time and, as a consequence, the ReO only can jump to one of the different jump sets.
Indeed, the number of reset conditions can be obtained by computing the different
combinations of reset terms. Undoubtedly, the number of reset conditions and, as a
consequence, the number of reset regions depends on the number of outputs of the
system. Using straightforward combinatorial mathematics, the number of different
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reset conditionsβ for a system withm outputs is

β =

m
∑

i=1

m!
i!(m− i)!

. (6)

Additionally, let us define the following auxiliary sets forfuture reference. Let us
assume without loss of generality that for each outputj = 1 . . .m there exists a matrix
M j = MT

j ∈ R
(n+m)×(n+m) which defines the following auxiliary sets:

S j := ηT M j η ≤ 0⇒ ỹ jζ j ≤ 0

S
′

j := ηT M j η ≥ 0⇒ ỹ jζ j ≥ 0 (7)

Using these auxiliary setsS j , S
′

j the different reset sets can be formalized. Let us
defineA as the set of all natural numbers from 1 tom. Additionally, for each different
reset combinationi = 1 . . . β let us defineBi = {k : ỹkζk ≤ 0,Bk ⊆ A}, which repre-
sents the indexes of the pairs (˜yk, ζk) which have different sign, andCi = {k : ỹkζk ≥ 0,Ck ⊆ A},
which represents the indexes of the pairs (˜yk, ζk) which have the same sign, in such a
manner thatBi∩Ci = ∅ andBi∪Ci = A,∀i = 1 . . . β. Therefore, the possiblei = 1 . . . β
combinations of reset sets can be defined as:

Ji :=
⋃

j∈Bi

S j

⋃

j∈Ci

S
′

j (8)

whereas the flow set would be defined as:

F :=
⋃

j∈A

S
′

j (9)

Once the different reset conditions and reset sets have been properly defined, we
can define the dynamic of the reset term within the flow region as well as after each
different reset condition. Analogously to (3), the evolution ofζ for MIMO systems is
defined as follows:

ζ̇ = Aζζ + Bζ ỹ η ∈ F

ζ+ = ARiζ η ∈ Ji , i = 1 . . . β
(10)

whereARi ∈ R
(n+m)×(n+m) are diagonal matrices defined as

ARi =

[

In 0
0 Ari

]

, i = 1 . . . β (11)

andAri ∈ R
m×m are diagonal matrices whose diagonal termsai

r,r are defined as follows

ai
r,r =

{

0 if r ∈ Bi

1 if r < Bi

}

i = 1 . . . β (12)

Finally, we assume that the proposed reset observer for MIMOsystems (2),(10)
holds the following assumptions:
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Table 1:β = 7 reset combinations for a systems withm= 3 outputs

i Combination Strucure Reset terms Non reset terms

1 ỹ1ζ1 ≤ 0 ∧ ỹ2ζ2 ≤ 0∧ ỹ3ζ3 ≤ 0 1st,2nd,3th None
2 ỹ1ζ1 ≤ 0 ∧ ỹ2ζ2 ≤ 0∧ ỹ3ζ3 ≥ 0 1st,2nd 3th

3 ỹ1ζ1 ≤ 0 ∧ ỹ2ζ2 ≥ 0∧ ỹ3ζ3 ≤ 0 1st,3th 2nd

4 ỹ1ζ1 ≥ 0 ∧ ỹ2ζ2 ≤ 0∧ ỹ3ζ3 ≤ 0 2nd,3th 1st

5 ỹ1ζ1 ≤ 0 ∧ ỹ2ζ2 ≥ 0∧ ỹ3ζ3 ≥ 0 1st 2nd,3th

6 ỹ1ζ1 ≥ 0 ∧ ỹ2ζ2 ≤ 0∧ ỹ3ζ3 ≥ 0 2nd 1st,3th

7 ỹ1ζ1 ≥ 0 ∧ ỹ2ζ2 ≥ 0∧ ỹ3ζ3 ≤ 0 3th 1st,2nd

Assumption 1. The reset observer described by (2),(10) is such thatη ∈ Ji ⇒ ARiη ∈

F .

This condition guarantees that after each reset, the solution will be mapped to the
flow setF and, as a consequence, it is possible to flow after resets.

Assumption 2. The reset observer described by (2),(10) is such that the reset times
t j+1 − t j ≥ ρ ∀ j ∈ N, ρ ∈ R > 0.

This assumption ensures that the reset observer uses time regularization to avoid
Zeno solutions. It guarantees that the time interval between any two consecutive resets
is not smaller thanρ which is a positive constant.

It is important to note that both assumptions are quite natural to assume for hybrid
system, and consequently, these conditions are commonly used in most of current reset
system formulations available in literature [14], [22].

To give insight into the proposed reset formulation for MIMOsystems, we ap-
ply the previously explained design to the following example. Let us consider a sys-
tem with m = 3 outputsy = [y1, y2, y3], their corresponding output estimation errors
ỹ = [ỹ1, ỹ2, ỹ3] and their associated reset terms asζ = [ζ1, ζ2, ζ3]. According to (6), a
ReO for a system withm = 3 outputs hasβ = 7 different combinations of reset con-
ditions. These reset conditions are defined depending on thedifferent combinations of
how many reset terms can be reset at the same time. Specifically, theseβ = 7 reset
combinations are outlined in Table 1.

Then by using (7), we could definem= 3 auxiliary setsS1 := ηM1η ≤ 0⇒ ỹ1ζ1 ≤

0,S2 := ηM2 η ≤ 0⇒ ỹ2ζ2 ≤ 0,S3 := ηM3 η ≤ 0⇒ ỹ3ζ3 ≤ 0 and their corresponding
complement setsS

′

1, S
′

2 andS
′

3. Moreover, by using these auxiliary sets, we can state
the different index sets and their associated reset regions which are defined according
to (8), and additionally, the differentAri reset matrices which are defined according to
(12) as it shown in Table 2. Finally, sincem = 3 thenA = [1,2,3], and we can define
the flow region asF := S

′

1 ∪ S
′

2 ∪ S
′

3 according to (9).
It is worth mentioning that the reset conditions (6), and theauxiliary sets (7), can

lead to complex reset regions for large systems (e.g.m ≥ 10). Therefore, regarding
real-time implementation, it would be ill-advised to use this proposal for large systems,
unless they were controlled with a powerful enough processor. Nevertheless, notice
that the complexity is linear with the number of outputsm when considering all the

7



Table 2:β index setsBi , andCi and their associated reset regionsJi for a systems withm= 3 outputs

i Combination Bi Ci Ji Ari

1 [1,2,3] ∅ S1 ∪ S2 ∪ S3 diag(0,0,0)
2 [1,2] [3] S1 ∪ S2 ∪ S

′

3 diag(0,0,1)
3 [1,3] [2] S1 ∪ S3 ∪ S

′

2 diag(0,1,0)
4 [2,3] [1] S2 ∪ S3 ∪ S

′

1 diag(1,0,0)
5 [1] [2,3] S1 ∪ S

′

2 ∪ S
′

3 diag(0,1,1)
6 [2] [1,3] S2 ∪ S

′

1 ∪ S
′

3 diag(1,0,1)
7 [3] [1,2] S3 ∪ S

′

1 ∪ S
′

2 diag(1,1,0)

reset conditions defined following (12), since the reset regions are explicitly defined
just by checking the product of each output error ˜yi , and its corresponding reset term
ζi .

4. Stability and Convergence Analysis

In this section we state computable sufficient conditions forL2 stability via quadratic
Lyapunov functions for reset observers defined by (2) and (10) applied to LTI systems
described by (1).

4.1. State stability analysis

Let us begin analyzing the augmented error system dynamics,which can be ob-
tained subtracting (2) from (1) and by using the previously defined augmented state
η =

[

x̃ ζ
]T ,

η̇ = Aη η + Bη w η ∈ F

η+ = ARi η η ∈ Ji , i = 1 . . . β
ξ = Cη η
ξL = CηL η

(13)

where

Aη =

[

A− KPC −KI

BζC Aζ

]

, Bη =

[

Bw

0

]

, Cη =

[

C
0

]

, CηL =

[

CL

0

]

. (14)

Let us now state a sufficient condition for the existence of a quadratically stable
ReO based on a LMI approach.

Theorem 1. For given Aη, Bη and ARi the augmented error dynamics shown in (13)
with Bw = 0, m outputs, i= 1 . . . β reset conditions computed according to (6), the
collections of index setsA, Bi andCi , and j= 1 . . .m matrices Mj defined according
to (7), are quadratically stable if there exist a matrix P= PT > 0 and scalarsτF j ≥
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0∀ j ∈ A, τJ ji ≥ 0∀ j ∈ Bi andτJ ji ≥ 0∀ j ∈ Ci subject to

AT
ηP+ PAη +

∑

j∈A

τF j M j < 0, (15)

AT
RiPARi − P−

∑

j∈Bi

τJ ji M j +

∑

j∈Ci

τJ ji M j ≤ 0, i = 1 . . . β, (16)

which is a linear matrix inequality problem in the variablesP, τF j andτJ ji .

Proof. Let us begin considering the following quadratic Lyapunov function for the
augmented error dynamics described by (13):

V(η) = ηT P η (17)

According to Definition 1, to prove the quadratically stability of our proposed reset
observer, we have to check that:

V̇(η) < 0 η ∈ F

V(η+i ) ≤ V(η) η ∈ Ji , i = 1 . . . β
(18)

According to (4), sinceF :=
⋃

j∈A S
′

j = η
T M1 η ≥ 0 ∧ . . . ∧ ηT Mm η ≥ 0 and

employing the S-procedure [23], the first term of (18) is equivalent to the existence of
τF j ≥ 0∀ j ∈ A such that

V̇(η) < −
∑

j∈A

ηTτF j M jη (19)

Then, let us take derivative of (17) to obtain

V̇(η) = η̇T Pη + ηT Pη̇

= ηT(AT
η P+ PAη)η (20)

Rearranging terms of equations (19) and (20), the first term of (18) holds if the
following inequality is satisfied

ηT(AT
η P+ PAη)η +

∑

j∈A

ηTτF j M jη < 0 (21)

which can be rearranged as an equivalent LMI problem in the variablesP > 0 and
τF j ≥ 0

AT
ηP+ PAη +

∑

j∈A

τF j M j < 0, (22)

which is analogous to (15) and consequently, proves the firstequation of (18).
Similarly, employing again the S-procedure, the second term of (18) holds if for all

i = 1 . . . β there existτJ ji ≥ 0∀ j ∈ Bi andτJ ji ≥ 0∀ j ∈ Ci such that

V(η+i ) ≤ V(η) +
∑

j∈Bi

ηTτJ ji M jη −
∑

j∈Ci

ηTτJ ji M jη, i = 1 . . . β (23)
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which is equivalent to

ηT AT
RiPARiη − η

T Pη −
∑

j∈Bi

ηTτJ ji M jη +
∑

j∈Ci

ηTτJ ji M jη ≤ 0, i = 1 . . . β (24)

Rearranging terms, (24) can be also rewritten as an equivalent LMI problem in the
variablesP > 0 andτJ ji ≥ 0 as follows

AT
RiPARi − P−

∑

j∈Bi

τJ ji M j +

∑

j∈Ci

τJ ji M j ≤ 0, i = 1 . . . β (25)

which is analogous to (16) and proves the second equation of (18) and, as a conse-
quence, completes the proof of the theorem.

4.2. Input-output stability analysis

Now, we present our results on the input-output properties of the ReO for MIMO
systems. We use the previously defined performance evaluation outputξl ∈ RL2 which
will be used to estimate theL2 gain of the MIMO ReO in a similar way than [24].

Theorem 2. For given Aη, Bη, Cη, CηL and ARi the augmented error dynamics shown
in (13) with m outputs, i= 1 . . . β reset conditions computed according to (6), the
collections of index setsA, Bi andCi , and j= 1 . . .m matrices Mj defined according
to (7) are quadratically stable and has aL2 gain from w toξL which is smaller thanγ,
if there exist a matrix P= PT > 0 and scalarsτF j ≥ 0 ∀ j ∈ A, τJ ji ≥ 0 ∀ j ∈ Bi and
τJ ji ≥ 0∀ j ∈ Ci andγ > 0 subject to

[

AT
η P+ PAη +CT

ηL
CηL +

∑

j∈A τF j M j PBη
BT
ηP −γ2I

]

< 0, (26)

AT
RiPARi − P−

∑

j∈Bi

τJ ji M j +

∑

j∈Ci

τJ ji M j ≤ 0, i = 1 . . . β

which is a linear matrix inequality problem in the variablesP, τF j , τJ ji andγ.

Proof. According to Definition 4, to prove the stability of our proposed reset observer
and that theL2 gain fromw to ξL is smaller thanγ, we have to check that:

V̇(η) < γ2wTw− ξTL ξL η ∈ F

V(η+i ) ≤ V(η) η ∈ Ji , i = 1 . . . β
(27)

The first equation of (27) relays on Lemma 1, and the second equation of (27)
is equal to the second equation of (18) which has been alreadyproved. Then, let us
concentrate on the first equation of (27). Again, sinceF :=

⋃

j∈A S
′

j = η
T M1 η ≥

0∧ . . .∧ηT Mmη ≥ 0 and employing the S-procedure, the first term of (27) is equivalent
to the existence ofτF j ≥ 0∀ j ∈ A such that

V̇(η) < γ2wTw− ξTL ξL −
∑

j∈A

ηTτF j M jη (28)
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In this case, the time derivative of (17) is

V̇(η) = η̇T Pη + ηT Pη̇

= ηT AT
η Pη + wT BT

ηPη + ηT PAηη + η
T PBηw

= ηT(AT
ηP+ PAη)η + wT BT

ηPη + ηT PBηw

(29)

Rearranging terms of equations (28) and (29), the first term of (27) holds if the
following inequality is satisfied

ηT(AT
ηP+ PAη)η + wT BT

ηPη + ηT PBηw

+ξTL ξL +
∑

j∈A

ηTτF j M jη − γ
2wTw < 0 (30)

SinceξTL ξL = η
TCT
ηL

CηLη, (30) can also be rearranged as an equivalent LMI problem
in the variablesP > 0 andτF j ≥ 0 as follows

[

AT
η P+ PAη +CT

ηL
CηL +

∑

j∈A τF j M j PBη
BT
ηP −γ2I

]

< 0, (31)

which is analogous to (26) and proves the first equation of (27) and, as a consequence,
completes the proof of the theorem.

5. Simulation Results

It was shown in [8] how a properly designed ReO could decreasethe settling time
as well as the overshooting compared with traditional observers dealing with SISO
systems. Now, an example is presented in order to show that wecan obtain the same
improvement for MIMO systems by using the presented proposal. In order to highlight
the effect of the reset elements on the estimation process, we compare the simulation
results obtained by our proposed ReO with two PIOs. On the onehand, the first PIO
will be tuned to minimize the overshooting and, as a consequence, it provides a smooth
response. On the other hand, the latter PIO will be designed to minimize the rising time,
and hence, it gives an oscillating and faster response. The next simulation example will
show that our proposed ReO can achieve both requirements (i.e. a smooth and quick
response) simultaneously.

Let us consider the following forth-order noise-corruptedLTI system:

ẋ1 = −1.5x1 − 1x2 + 0.5x3 + u1 + 0.5w

ẋ2 = 0.5x1 − 2x2 + 2u1 − u2 + 0.5w

ẋ3 = −0.5x1 − 2x3 + x4 − 1u1 + u2 + 0.5w

ẋ4 = −1.5x1 − x4 + 2u2 + 0.5w

y1 = x1

y2 = x3

yL = x1 (32)
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with x(t = 0) = [−2.5,1.5,−1.5,−2]T , u(t) = [sin(4t), t/(t + 1)]T andw(t) = sin(15t).
The aim is to develop an state observer for the system described by (32) which satisfies
that the state estimation error tends to zero without overshooting as fast as possible.
According to (1), (32) has the following parameters:

A =





























−1.5 −1 0.5 0
0.5 −2 0 0
−0.5 0 −2 1
−1.5 0 0 −1





























, B =





























1 0
2 −1
−1 1

0 2





























, Bw =





























0.5
0.5
0.5
0.5





























,

C =

[

1 0 0 0
0 0 1 0

]

, CL =
[

1 0 0 0
]

.

The system (32) hasm= 2 outputs and by using (6) it hasβ = 3 different reset con-
ditions. Additionally, we can also define them= 2 auxiliary setsS1 := η M1 η ≤ 0⇒
ỹ1ζ1 ≤ 0 andS2 := η M2 η ≤ 0 ⇒ ỹ2ζ2 ≤ 0 and their corresponding complementary
setsS

′

1 ⇒ ỹ1ζ1 ≥ 0 andS
′

2 ⇒ ỹ2ζ2 ≥ 0. According to (7),M1 andM2 are defined as
follows:

M1 =



















































0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0



















































, M2 =



















































0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0



















































.

Moreover, the different index sets would beA = [1,2], B1 = [1,2] andC1 = ∅,
B2 = [1] andC2 = [2], B3 = [2] andC3 = [1]. Using these auxiliary sets and the
index sets, thei = 1 . . . β reset regions could be finally defined asJ1 := S1 ∪ S2,
J2 := S1 ∪ S

′

2 andJ3 := S2 ∪ S
′

1, whereas the flow set would beF := S
′

1 ∪ S
′

2.
Finally according to (12), we can define theβ = 3 different reset matricesAri asAr1 =

diag(0,0), Ar2 = diag(0,1) andAr3 = diag(1,0).
The other tuning parameters have been obtained following the guidelines given [8].

Firstly, we have designed the conservative PIO in such a manner that its rising time is
roughly equal to 0.6 seconds without overshooting. After that, to design the oscillating
PIO we have increased theKI gain until its rising time is around 0.2 seconds, that
implies an oscillating estimation process. Finally, to make the results more comparable,
the ReO has the sameKI andKP than the oscillating PIO.

On the one hand, the parameters of the conservative PIO are ˆx(t = 0) = [0,0,0,0]T ,
z(t = 0) = [0,0]T , Az = diag(−0.1,−0.1), Bz = [1,1]T , KP = [3.19,−1.31,−0.21,−0.82;
0.65,−0.20,4.49,7.36]T , andKI = [0.83,−0.11,−0.06,−0.25; 0.19,−0.06,0.45,0.17]T ,
whereas the parameters of the oscillating PIO are ˆx(t = 0) = [0,0,0,0]T , z(t =
0) = [0,0]T , Az = diag(−0.1,−0.1), Bz = [1,1]T , KP = [3.19,−1.31,−0.21,−0.82;
0.65,−0.20,4.49,7.36]T , andKI = [25.55,−10.50,−1.67,−6.59; 5.21,−1.60,35.94,58.88]T .

On the other hand, the ReO for the system (32) has been designed according to
(2)-(10) and it has the following tuning parameters: ˆx(t = 0) = [0,0,0,0]T , ζ(t =
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0) = [0,0]T , Aζ = diag(−0.1,−0.1), Bζ = [1,1]T , KP = [3.19,−1.31,−0.21,−0.82;
0.65,−0.20,4.49,7.36]T , KI = [25.55,−10.50,−1.67,−6.59; 5.21,−1.60,35.94,58.88]T .
Notice that theKP andKI gains of the ReO are equal to the gains of the oscillating PIO.
For a further discussion on the structure of PIOs and PIAOs the reader is referred to [7]
and [8].

The state estimation error ˜x(t) = [ x̃1(t), x̃2(t), x̃3(t), x̃4(t)]T of each observer is shown
in Figs. 2-3. It is evident that our proposed ReO has a better performance compared
with the traditional PIOs, since it has a response as quick asthe oscillating PIO but
without overshooting.
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Figure 2: State estimation error ˜x1(t) and x̃2(t) for each observer. (A) Dotted lines have been obtained by
using the conservative PIO. (B) Dasehd lines have been obtained by using the oscillating PIO. (C) Solid lines
have been obtained by using the ReO.

Additionally, the integral absolute error (IAE) and the integral time absolute error
(IT AE) are computed to numerically evaluate the performance of our proposal, com-

13



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.5

0

0.5

1

1.5

Time [sec]

x 3 e
st

im
at

io
n 

er
ro

r

 

 

(A)
(B)
(C)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.5

0

0.5

1

1.5

2

Time [sec]

x 4 e
st

im
at

io
n 

er
ro

r

 

 

(A)
(B)
(C)

Figure 3: State estimation error ˜x3(t) and x̃4(t) for each observer. (A) Dotted lines have been obtained by
using the conservative PIO. (B) Dasehd lines have been obtained by using the oscillating PIO. (C) Solid lines
have been obtained by using the ReO.
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Table 3: Performance indexes obtained by each observer

Observer IAE IT AE

Conservative PIO 439.87 135.89
Oscillating PIO 560.69 242.05

ReO 272.56 63.44

pared with traditional state observers. They are defined as follows

IAE =

n
∑

i=1

(∫ ∞

0
|x̃i(t)|dt

)

,

IT AE =

n
∑

i=1

(∫ ∞

0
|t · x̃i(t)|dt

)

, (33)

which should be as small as possible. Table 3 summarizes the performance indexes
obtained by each observer. These results underline the potential benefit of using reset
elements. From Figs. 2-3 and Table 3, we can conclude that ReOs can be used to
improve the transitory response of some estimation processes. The rationale behind
this is that ReOs remove almost completely the oscillating behavior of the estimated
variables by resetting their corresponding integral term.

Finally, it can be interesting to estimate an upper bound of theL2 gain of ReO for
performance purposes. Indeed, it can be done by solving the LMI problem showed in
(2) which obtainsL2 = 0.22 as an estimation of the upper bound of theL2 gain of the
ReO.

6. Conclusion

So far, the application of reset elements for control and observation purposes has
been limited to SISO systems. Since in the SISO case there is only one input and one
output, the reset condition is automatically obtained. On the other hand, in the MIMO
framework there are many possible reset conditions and as a consequence a proper
formulation is far from trivial.

In this paper, we have extended our previous results on resetobservers to the MIMO
framework. According to the authors knowledge, this contribution can be regarded as
the first result about how to cope with MIMO systems with multiple reset conditions
within the reset system framework. Moreover, an algorithm to compute a estimated
L2 gain of the MIMO ReO for performance proposal is also given. Additionally, a
simulation example has been given to check the effectiveness of the proposed MIMO
ReO, compared with traditional state observers.

However, the research on ReO is still an open problem. One topic for future re-
search would be the application of the proposed methodologyto nonlinear systems.
As it shown in [26], the LTI system formulation can be modifiedthrough a change of
coordinates in order to handle certain class of nonlinear systems. Another topic would
be the development of a method to automatically determine the optimal ReO tuning

15



parameters. Recent results in the adaptive observer framework [7], show that it could
be done by solving the L2 gain minimization problem, which can be rewritten as an
equivalent LMI problem.
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