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N. D. Özışık, G. López-Nicolás and J. J. Guerrero

Instituto de Investigación en Ingenierı́a de Aragón - Universidad de Zaragoza, Spain

didemozisik@gmail.com, gonlopez@unizar.es, jguerrer@unizar.es

Abstract

This work tackles the problem of recovering the struc-

ture of a scene from a single image. The goal is to inter-

pret automatically the image to obtain the spatial layout of

the scene. In essence, the method proposed classifies the

environment as floor or walls and their relative positions.

Instead of using standard cameras for solving this particu-

lar task, our work is novel in using omnidirectional vision,

which is advantageous as it captures in a single image the

whole surrounding structure. We also consider man-made

indoor scenes, where geometric relationships like paral-

lelism and orthogonality are common. Our contribution is

a new method for recovering the scene layout by using ex-

tracted line segments from a single omnidirectional image.

Collection of lines and geometric constraints provide suffi-

cient information to generate a set of possible scene struc-

tures. We also create a map of orientations in the image to

test these hypotheses and select the one with the best fitting

as the resultant structure.

1. Introduction

Visual sensors are powerful tools for perception in many

applications. In particular, they provide rich information

and high angular accuracy at low cost compared with other

sensors. In this work, we tackle the problem of reconstruct-

ing the scene layout from visual information. This problem

has especial interest in the absence of direct measurements

of the scene for the reconstruction. Several images may pro-

vide enough information of the environment to allow the

reconstruction of the scene layout. A basic work about cre-

ating architectural models from conventional images is pre-

sented in [15], other methods for 3D reconstruction are [19]

and [18], which are based on user-provided coplanarity, per-

pendicularity and parallelism constraints. However, using

less images reduces the computational cost and the prone-

error process of matching information across images. Thus,

we focus on the problem of scene layout recovery from a

single image. A seminar paper in this context is [7], adress-

ing the problem of single view metrology.

Figure 1. Examples of omnidirectional images (top) and standard

images (bottom) taken at the same position. These examples illus-

trate that omnidirectional vision is more powerful for recovering

the whole spatial layout of the scene from a single image.

Nowadays, omnidirectional vision is a hot topic research

because of the advantages of the higher field of view with

respect to standard cameras. In particular an image taken

by a standard camera will only captures a small part of the

scene whereas omnidirectional vision provides information

in a wide field view of 360 degrees in one single image. Two

examples obtained from a public database [5] are given in

Fig. 1 to illustrate the superiority of omnidirectional vision

for structure recovery.

In essence, scene structure recovery classifies the envi-

ronment as floor or walls and their relative positions. We

present a new method for recovering the scene structure by

using automatically extracted line segments from a single

catadioptric image. Previous works available in this field

tend to focus on the use of conventional cameras opposite to

omnidirectional ones, but in general, these techniques can-

not be directly applied to omnidirectional vision.

We take advantage of the Manhattan World Assumption
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[6], that considers that most indoor surfaces are planes fol-

lowing the dominant directions. If the viewer can estimate

the three principal directions, then it becomes significantly

easier to interpret the scene. In our framework, we assume

the existence of geometric relationships such as parallelism

and orthogonality are available between the scene surfaces.

An example of scene recognition is given in [16], which

is based in a classification of indoor and outdoor scenes that

simplifies the scene recognition. Another related work is

[10], that considers the presence of clutter, which is a major

problem for 3D reconstruction algorithms relying on find-

ing the ground-wall boundary. However, the versatility of

the method is reduced by assuming that the global room

space can always be modeled with a parametric 3D box.

In more complicated situations, [13] presents a scene struc-

ture recovery method based on a collection of lines. Several

physically valid structure hypotheses are proposed by geo-

metric reasoning and verified to find the best fitting model

to line segments. The advantage of this work in compari-

son with [10] is the ability to recognize several corner types.

Thus, [13] is compatible with many indoor scenes. Our pro-

posal is inspired in the work of [13] but using catadioptric

images instead of conventional cameras and a different pro-

cedure for the scene recognition.

Basically, our goal is to interpret a collection of line

segments from the omnidirectional image to recognize the

buildings structures. The input of our algorithm is a sin-

gle indoor image and we assume that the camera calibra-

tion parameters are known. The outputs of our work are the

orientations of each part in the scene from three dominant

directions (two horizontal and one vertical). Thus, we label

the parts such as floor or wall. The main disadvantage of

omnidirectional vision is that it contains significant defor-

mations due to the geometry of projection. For example,

3D lines in conventional images degenerate into curves in

catadioptric images, and then the projection of a 3D line is

a conic in the omnidirectional image [1]. For this reason

many techniques in image processing become unsuitable if

they are applied directly to catadioptric images.

Because of the fact that we do not have any measure-

ment of the scene, we exploit prior knowledge of the world.

Indoor scenes in human environments have some signifi-

cant characteristics (e.g. perpendicularity between wall and

floor, parallelism between floor and ceiling, types of cor-

ners between connected walls etc.). These characteristics

are significant and we can group the lines due to dominant

directions and imagine a three dimensional scene. Thus,

our scene structure recovery approach is based on geomet-

ric reasoning and it is independent from color, texture and

light information.

Lines in the scene and geometric constraints of cata-

dioptric images may provide sufficient information to create

possible scene structures. In order to choose the best hy-

pothesis, we create a map of orientations consisting of the

orientations of the different planar regions in which the im-

age is divided. From the possible structures generated, the

best fitting one with respect the computed map of orienta-

tions is chosen as the resultant structure.

The paper is organized as follows. In section 2 we briefly

explain line extraction and vanishing points computation.

The hypotheses generation from corners is described in sec-

tion 3. The following section explains the procedure to gen-

erate the orientation map of the image. Section 5 is devoted

to the hypotheses evaluation to select the best one. In sec-

tion 6, the approach proposed is tested with real images.

2. Line Extraction and Vanishing Points

The projections of parallel lines intersect on a point,

which is a vanishing point. The first stage of the procedure

developed here requires the extraction of lines and vanish-

ing points from the input image. In this section, we briefly

describe the method selected for this purpose.

In the context of omnidirectional vision, some works

about line extraction are [3] [4] [17] [21]. In the proposal

presented in [3], the catadioptric lines are represented by

their normal vectors in the sphere space and the proposed

algorithm detects the edge chains in the image, projects the

chains to the sphere and check if at least 95% of the chain

points belong to the great circle, providing as a output the

set of vanishing points. A difference between [4] and [3] is

the sequence of stages of the procedure for vanishing points

estimation and line grouping. In [4], they first compute the

vanishing points in the scene and then group the extracted

lines according to their vanishing points; whereas in [3],

they use the reverse order: first they group the extracted

lines according to their normal vectors, and then compute

their vanishing points. Besides that, in [4] conics in the im-

ages are extracted instead of projection planes in the sphere

model as in [3]. In our work, we benefit from the Bazin

et al’s line extraction algorithm [2],[3]. In particular, we

consider central catadioptrics systems. Nevertheless, the

extraction of lines for structure computation in non-single

viewpoint systems has already been addressed in [20], [9].

3. Hypotheses Generation

In this section, we describe the procedure to generate

a set of hypotheses from the extracted lines and vanish-

ing points of the input image. A hypothesis hi consists

of a set of corners and conics defining the structure of the

scene. Each hypothesis also classifies the different regions

in walls or floor and assigns their orientation. Important

elements for generating a hypothesis are the corners and

boundaries between walls and floors. Another approach is

given in [13], which prefers the ceiling-wall boundary in-

stead of floor-wall boundary in order to avoid the problem



Figure 2. The left image contains three different types of corners.

These are depicted in the right image: blue lines define concave

corner type, green lines define convex corner type and red lines

define occluding corner type.

of occluding objects in the scene. But in general, this is un-

available in catadioptric images, given that we are not able

to see the whole ceiling-wall boundary because of the mir-

ror shape. The corners and the floor-wall boundaries of an

indoor scene may provide us sufficient information to rec-

ognize the layout of the scene. Therefore, the basic step of

the scene structure recovery is to detect corners and com-

pute the floor-wall boundaries. To do that, firstly, we de-

fine the intersection points of vertical and horizontal lines

as corners, and then, we create some hypotheses by pairing

corners randomly in order to detect real corners of the room.

The number of actual scene corners is unknown a priori.

Thus, the algorithm will test hypotheses considering four,

five, six... corners. For the generation of one hypothesis,

the algorithm select four (or five, six...) corners from the

extracted corner’s list of the scene, and create a hypothesis

from these corners. Given the set of corner of an image,

c = {c1, c2, · · · , cn} (1)

where n is the number of detected corners. The set of dif-

ferent hypothesis are denoted as

h = {h1, h2, · · · , hk} (2)

where k is the number of the possible hypotheses and it is

given by the combination’s equation:

k =

(

n

r

)

=
n!

r!(n − r)!
(3)

where r is the number of corners considered for each hy-

pothesis (i.e. r = 4, 5, 6...).

3.1. Find Corners

A general classification for types of vertices and edges

in the scene is explained in [11] and [13]. In essence, there

are three types of corners for scene structure: convex, con-

cave and occluding corners. A convex or concave corner

is formed when two walls meet at one place in 3D space

Figure 3. Example of the extracted corners of the scene using the

procedure described in section 3.1.

and an occluding corner is formed when one wall is in front

of another wall but appears to be adjacent in the image. A

convex or a concave corner is obtained by the intersection

of one vertical and two horizontal lines. An occluding cor-

ner is obtained by the intersection of one vertical and one

horizontal line (Fig. 2). In the 3D world, the intersection

point of three orthogonal lines, i.e. in different directions,

is defined as a corner of the room. But sometimes we are

not able to see all these three lines due to the viewpoint

or occluding objects. For this reason, we extend the cor-

ner searching criterion in order to find more corners in the

scene, and then, the intersection point of a vertical and a

horizontal line is also considered as a corner. This intersec-

tion of lines process is carried out in the projective space.

We assume that the consideration of corners from the in-

tersection of at least one horizontal and one vertical line

allows us to detect and recognize all corners in the scene.

However, we detect not only the real corners of the room,

but we also detect spurious corners which are not the cor-

ners of the room: corner of a window, corner of a table

frame on the wall, etc. Therefore, we need to define addi-

tional constraints to filter these spurious corners. The first

condition for the filtering step is that one vertical line in

the world plane can contain only one corner. In order to de-

fine the elimination criterion, we take advantage of the man-

made environment assumption. In indoor scenes, when the

optical axis of the camera is approximately perpendicular to

the ground plane, the vertical vanishing point is close to the

principal point which is also close to the image center. So,

the highest point on a vertical line in the 3D world has the

longest distance from the principal point of the image, and

the lowest point, which will be on the ground plane, has the

shortest distance. If we assume that the wall in the scene

contains several horizontal lines such as a fence, the real

corner will be the closest one from the intersection points.

Therefore we compute the distances between the intersec-

tion points and the principal point of the image. Then, we

eliminate the intersection points with the longer distances.

The second criterion of the filter eliminates the corners

which are too close to each others in the horizontal direc-



tion. In this criterion, we aim to avoid inaccurate vertical

lines of the corners. For example, the vertical borders of

a door intersect with the floor-wall boundary and cause er-

roneous corners. In order to filter these corners, we use a

threshold value which is the minimum angle between two

possible real corners, and we use the orientation map as a

guide to select the corner which will be eliminated. The

computation procedure of the orientation map will be de-

tailed in section 4.

In the 3D world, the corners are between adjacent walls

with two different orientations. So, the neighbors of a

real corner must have different orientations. We check the

neighbor regions of the corner in the orientation map, and

we eliminate the corner whose neighbor regions have the

same orientation with each other. The number of detected

corners is very important in our algorithm. The reason is

that each corner in the scene create several hypotheses by

the possible combinations (3). Therefore, each eliminated

erroneous corner reduce the execution time of the algo-

rithm. Figure 3 shows an example of the extracted corners

in the scene after applying the previous constraints.

3.2. Floor­Wall Boundaries

In order to create hypotheses of the floor and wall re-

gions, we need to recognize the floor-wall boundaries.

Floor-wall boundaries is a useful visual cue widely used

in the literature, for instance, in the segmentation of indoor

corridor floors [14]. The start and end points of each bound-

ary are its two corresponding corners of the scene. We can

compute this boundary in standard images by drawing a

straight line between these corners. But, as previously men-

tioned, the lines in the 3D world are seen as curves in the

omnidirectional images. So, the goal of this step is the com-

putation of the conics that joins the corners of each bound-

ary. First, the corner points on the image are projected to

the unitary sphere, and then, we compute the normal plane

by using the rays on the sphere. Finally, we compute the

great circle with the known normal vector.

Without loss of generality, for generating the floor hy-

potheses, we assume that the omnidirectional camera sys-

tem axis is approximately vertical with respect to the floor.

Notice that this is not a hard constraint, as it is only required

to detect automatically the floor orientation. Most mobile

robots consist of wheel-based systems. For this reason, we

can clearly assume that the central region of the catadiop-

tric images indicates the floor. Thus, we can consider the

area from the image center through the floor-wall boundary

as a floor hypothesis. In particular, we consider the floor

hypotheses like a cake slice. Note that, once the vanishing

points have been estimated, this assumption allows to de-

termine the vanishing point of the vertical direction. There-

fore, the assumption of verticality for the omnidirectional

system is not a handicap for the algorithm presented.

Figure 4. Example of the radii generated on the omnidirectional

image in the first step of the orientation map generation.

On the other hand, for generating the wall hypotheses,

we assume that walls in the scene contain two corners and

each wall hypothesis is independent from the others. Two

corners on the same line direction create a wall hypothe-

sis by a floor-wall boundary. The vertical line segments

of the corners are vertical boundaries of the wall hypoth-

esis. We denote two corners of the wall as c1=(lxi
, lyj

, lzk
)

and c2=(lxi
, lym

, lzn
), where lx, ly , lz are line segments on

directions x, y and z, respectively. The parameter lxi
indi-

cates the i’th line on direction x. Line segments on direction

x of c1 and c2 are the same, denoting that this wall is aligned

with the x direction. In order to define a wall, we need to

recognize the borders. Corners include sufficient informa-

tion to create two vertical putative borders of the wall. The

third border of the wall is the floor-wall boundary, which

was created with the procedure described above.

At this point, a set of floor and wall hypotheses has been

generated. However, the orientations of the hypotheses are

still undefined. These orientations will be assigned in the

evaluate hypotheses section by similarity comparison with

the orientation map.

4. Orientation Map Generation

The goal of generating the orientation map is to assign

the orientations of each region. For this purpose, we in-

tend to divide the projected scene on the image into small

regions, as many and small as possible. In the evaluating

hypotheses step, these regions vote the different hypothe-

sis. So, smallness of regions provides more robust results.

The procedure for the orientation map generation consists

of four different steps: i) Creating radii. ii) Searching inter-

ception line segments. iii) Generating regions. iv) Orienta-

tion map definition. Each one of these steps is described in

the following.

Due to the fact that omnidirectional images have circular

shapes, we start to create regions from the vertical vanishing

point (approximately the image center in our case) like a

cake slice. A cake slice is defined as the angular section

between two radii. We denote as radii the vertical lines of

the walls projected onto the image. If the camera system



Figure 5. Example of two regions generated in an angular sector.

The yellow polygon is the first region and the magenta polygon is

the second region.

axis is vertical, these are radial lines, i.e. radii. Given that

we require only approximated vertical alignment, vertical

lines may be projected into conics, but anyway, we will still

refer to them as radii. Human eye can distinguish regions

in a scene trivially. However, this is a very complicated

problem when we consider the automatization of this task.

So, we need to consider the procedure to distinguish them

via image processing algorithms. Next, we aim to obtain

smaller regions by grouping each significant line. We start

by defining a set of radii as radial lines that start from the

center of the image and continue through each vertical line

in the scene and finish on the limit circle of the catadioptric

image (Fig. 4).

Although we have divided the scene such as cake slices,

we need smaller regions than cake slices for providing more

rich information. Then, searching intercept line segments is

the second iteration for the image labeling. The line seg-

ments, which are extracted in the procedure described in

section 2, are used to identify the orientation of the cake

slices. Each consecutive two radii create a slice, and we call

the line segments inside this slice as intercept line segments.

Let us consider that si is a slice, and si is created by two

radii rs and re. The line segments found in this step inside

si are denoted as

si = {l1, l2, l3, · · · } . (4)

Once the set of slices has been obtained (4), the next step

is the generation of the regions by means of these slices.

Regarding to the definition of regions in indoor scenes, we

have generally that the first level is the floor plane and the

second level is the wall plane. Therefore, in this method we

consider that there are two levels in a slice (Fig. 5).

Apart from walls and floor, the third kind of plane, the

ceiling, cannot be seen in general because of the point of

view and the mirror shape. Thus, the first intercept line

segment in a slice creates the first region for this slice. We

can define the first region as follows

g1 = (si, l1) . (5)

Figure 6. The orientation map. Red color represents orientation z

(i.e. the floor), green color represents orientation y and blue color

represents orientation x.

where si is the corresponding angular sector and l1 is the

first intercept line segment. The second region of this slice

consists of the other line segments inside the area of the

slice, which are denoted as

g2 = (si, l2, l3, · · · ) . (6)

In the last step for the orientation map generation, the

orientations of each region of the omnidirectional image is

defined. In general, the more we have small regions, the

more we obtain better results. In the Hypotheses Evaluation

step, described in the next section, the orientation map will

be used as a guide. So, a fatal region in the orientation map

may affect the result. All line segments inside the region af-

fect the computation of the orientation of that region. Thus,

each line segment contributes to the count of the possible

orientations of the region. In particular, the orientation with

the higher line segment count is chosen as the resultant ori-

entation of the region. Then, we can define the ratios rx, ry ,

and rz of the x, y, and z directions, respectively, as follows

rx =
Lx

L
, ry =

Ly

L
, rz =

Lz

L
, (7)

where Lx, Ly, and Lz are the number of lines inside the

region on the x, y, and z directions, and L is the number of

all the lines inside the region.

Figure 6 presents an example of a computed orientation

map. The three different directions are drawn with different

colors. It can be seen that not all the regions have their ori-

entations correctly estimated. For example, some parts of

the walls are detected with orientation in direction z, i.e. a

floor region. This is usual as we cannot assume perfect data

for the input set of extracted lines, and its quality affects

directly to the orientation map. Given that these orienta-

tions are not coherent with the real scene, the application

of the geometric reasoning via the hypotheses will produce

a coherent result with the geometric constraints of the real

scene. This evaluation follows in the next section.



Figure 7. Examples of two different hypotheses for an image. The

left one is a bad hypothesis, whereas the right one is a good hy-

pothesis obtained as the best fitting result with respect the orienta-

tion map in Fig. 6.

5. Hypotheses Evaluation

In order to identify the correctness of the floor and wall

hypotheses, we use the orientation map. The image of the

hypotheses and the image of the orientation map are cre-

ated. We show an example of an orientation map image in

Fig. 6, and two examples of hypothesis images are given

in Fig. 7. The common pixels in both images give us the

similarity rate,

Similarity rate =
Number of common pixels

Number of total pixels
. (8)

The most similar hypothesis to the orientation map is cho-

sen as the best hypothesis and assigned as the resultant

structure of the scene. For example, the hypothesis with

the biggest similarity rate is chosen as the resultant struc-

ture in Fig. 7 right, while an example of a bad hypothesis,

with lower similarity rate, is shown in Fig. 7 left.

The difference between the resultant images of the ori-

entation map generation part and the hypotheses evaluation

part is that, in orientation maps, colored regions are created

by each vertical line in the scene, and their orientations are

computed by horizontal lines inside the region. Thus, they

give local information for the orientation regions. On the

other hand, in floor-wall hypothesis evaluation step, regions

are given by the area between two sequential corners, and

their orientations are computed from the orientations of re-

gions in the orientation map. Therefore, the region orienta-

tions are globally computed from local information. In this

way, local errors in the orientation map can be avoided in

the hypotheses evaluation step.

6. Experiments

In this section, we present the experimental evaluation

of the proposed algorithm. Experiments with real im-

ages taken with different cameras in different environments

are presented to evaluate the performance of the approach.

In our experiments, the camera calibration parameters are

known and we use the efficient algorithm proposed in [3] to

extract lines from single catadioptric images.

We have taken part of the images tested from the omnidi-

rectional image database from the University of Amsterdam

[22], which is available via web. These omnidirectional

images were taken by a camera with a hyperbolic mirror

on a mobile robot driving through an indoor environment.

The image size is 1024× 768 pixels. The calibration of the

omnidirectional camera and data from laser range scanner,

sonar range scanners and odometry sensors are also avail-

able [22]. We also tested images publicly available taken

from [5]. They provide sensor data sets for the testing of

systems on real-world environmental data. In particular, the

sensor used is an omnidirectional camera, consisting of a

Prosilica GC1020C color GigE Vision camera fitted with an

off-the-shelf hyperbolic mirror by Vstone [5]. In this case,

the image size is 640 × 640 pixels.

One of the most important difficulties of omnidirectional

image processing algorithms is the deformation on the im-

age, and it is common to come across broken edges because

of the illumination, blurry scenes or a shadow in the scene,

etc. Therefore, we extended the algorithm to recognize the

structure even with broken edges as previously explained.

So, our work is able to recognize the structure with partially

extracted lines. However, the accuracy rate of the resultant

structure still depends on the accuracy of the directions of

the lines. This is because our work is based on the corners

in the scene, and the corners are created by using these ex-

tracted lines and their directions.

The execution time of the algorithm depends on the

scene and the number of extracted corners. If the parameters

in the corner extraction step are adjusted with a wide range,

the accuracy of the resultant structure increases. But, in this

manner, the execution time also increases. So, in order to

obtain faster results, the parameters of the corner extraction

step must be adjusted carefully. However, by using potent

computers, there is no need to this parameter adjustment.

Figure 8 shows experimental results of our algorithm.

The images in the first and second rows are taken from the

omnidirectional database of University of Amsterdam [22].

The images in the third, fourth and fifth rows are taken from

the database in [5]. Each column in the in Fig. 8, illus-

trates a step of the algorithm. In particular, the first column

shows the result of the line extraction. The second column

illustrates the orientation map generation. The third column

shows the corners eventually extracted and the last column,

shows the final result, obtained as the best fitting hypothesis

given by the hypotheses evaluation step. The first example

corresponds to an image of a room with four walls, with

a big window. The second example corresponds to a long

corridor with convex and concave corner types. The third

row image consists of occluding corner types. The image

in the fourth row includes convex and concave corner types.

The last row shows an example in which the algorithm fails.

When the corners of the room cannot be seen because of the



Figure 8. Different examples with images taken from public databases [22] [5]. Each row represents one example illustrating the different

steps of the procedure. The first column shows the extracted lines grouped by colors according to their vanishing points. The second

column depicts the orientation maps. The third column shows the set of putative corners, and the last column shows the best hypothesis

given as a result of the algorithm. The four first rows are successful examples, whereas the last row is an example of failure.



image deformation or an occluding object, the structure of

the scene cannot be detected correctly. For example, some

parts of the bookshelf in the left side are recognized with

different orientations from the real one, and the table in the

right side is detected as floor plane.

7. Conclusions

In this work, we present a method to make sense of a set

of line collections in the scene. In essence, we define some

hypotheses about the scene by using prior knowledge of

man-made environments. These hypotheses are compared

with a map of orientations, which is created according to the

3D directions of the line segments in the image. Then, the

best fitting hypothesis is chosen, and we recover the scene

structure over the image provided.

A main advantage of this work is that using single im-

ages allows us to avoid the costly and prone-error process

of matching. Our proposal is simple to implement and

versatile and, as shown in the experiments, our method

provides high accuracy rates for images even with broken

edges, which is another advantage of our method. Nev-

ertheless, future work is devoted to the evaluation of the

possible advantages of using multiple views. Moreover, if

multiple images are available, visual SLAM [12] or recon-

struction methodologies [8] could be used to improve the

performance of the proposal. A possible application of the

work is the detection of obstacles in the guide task of im-

paired people. Another research line for future work is that

general structure of a building with different rooms may be

recovered by adding structures consecutively.
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