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Abstract— We address the problem of driving autonomously
a nonholonomic vehicle to a target location by using a purely
vision-based control framework based on three view geometry.
We present three different approaches based on the trifocal
tensor. The first one is a control law defined by an exact
input-output linearization of the trifocal tensor model, with
the desired evolution of the system directly defined in terms
of the trifocal tensor elements. The second proposal uses a
simplified trifocal tensor, avoiding the need of a complete
camera calibration, by means of a sliding mode control law
ensuring stability and robustness for the closed loop. The third
approach employs a reference set of images of the environment
previously acquired at different locations. We define a purely
angle-based approach, by means of multiple trifocal tensors
computed across the image database to solve the homing task.
The trifocal tensor presents important advantages for visual
control purposes because distance information is not needed
and the additional geometric constraints enforced by the tensor
improve the robustness in the presence of mismatches. The good
performance of the control system is proven via simulations and
real world experiments.

I. INTRODUCTION

Visual servoing is a growing research field that involves
computer vision and control theory in order to command the
robot motion. In particular, visual servoing allows mobile
robots to improve their navigation capabilities in a single
robot task [4] or in cooperative tasks [5], [6]. In this work we
tackle the problem of visual servo control of a nonholonomic
vehicle with an on-board monocular vision system, which
can be a conventional [7] or omnidirectional camera [8].
The goal is to design a control framework for autonomous
navigation to a desired location, which is defined by a target
image taken previously at that location. The control scheme
is based on the trifocal tensor model, which is computed
from feature correspondences across three views.

A direct way to face the problem of extracting information
from the images is to rely on landmarks or particular features
which can be extracted and tracked, and then, these features
matched between images are directly included in the control
scheme [9]. In favour of robustness, a good choice is to
process the image information through a geometric model
relating the acquired images. Then, from the set of point cor-
respondences there is less probability that spurious matches
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could reduce the control performance. An early work [10]
based on the epipolar geometry, where the image information
relies on the epipoles, has been followed by others [11].
Nevertheless, the epipolar geometry has main drawbacks.
One is that the fundamental matrix is ill-conditioned with
short baseline and therefore, a control based on it becomes
unstable. Another issue is that the solution is degenerated
when all the detected points belong to one plane. A natural
way to overcome these drawbacks is using the homography
defined by a plane of the scene. This geometric model is
robust and well defined with short baseline. Some examples
of visual control based on homographies are [12], [13].
However, the performance of a homography-based control
can be affected if there is no dominant plane in the scene.

Here, we propose a new framework based on the trifocal
tensor. This tensor comprises the intrinsic geometry between
three views and it is independent of the observed scene
[14]. This geometric model has several advantages: It is
more robust than the two view geometry models as it
involves the information given by a third view, and the set
of matches obtained is more robust to outliers. Besides, the
trifocal tensor is still useful with short baseline, whereas the
epipolar geometry fails. The problem of localization has been
discussed in [15] through the 1D trifocal tensor and with
the 2D trifocal tensor [16], [17]. We propose and compare
three different methods for solving the control task. In the
first method [1], the control law is obtained by an exact
input-output linearization of the 2D trifocal tensor. Then, the
desired evolution of the system towards the target is directly
defined in terms of the trifocal tensor elements by means
of sinusoidal functions without needing metric or additional
information from the environment. The trifocal tensor is
computed from three views, and in our approach the three
images are the initial, the current and the target images. So,
at the start, the initial and current images are the same and, as
the vehicle moves towards the target, the current and target
images get similar.

On the one hand, the use of the 2D trifocal tensor has the
advantage of providing of all the information available in
the 2D images. On the other hand, the 1D trifocal tensor is
more robust and it is easier to compute than the 2D trifocal
tensor. The second method presented [2] takes advantage of
the 1D trifocal tensor, with its elements introduced directly
in the control law without requiring any prior knowledge
of the scene. The approach is suitable for all central cata-
dioptric cameras and even for fisheye cameras, since all
of these imaging systems present high radial distortion but
they preserve the bearing information, which is the only
required data in our approach. The control design consists of
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a sliding mode control (SMC) law in a square system that
ensures stability and robustness for the closed loop. In these
approaches, rather than decomposing the trifocal tensor to
obtain pose information, the control is performed directly on
the trifocal tensor elements.

A different approach for solving the visual control problem
is the angle-based homing method using omnidirectional
vision, being [18] an early work and [19], [20] more recent
contributions. These are purely feature-based approaches
where the angles of landmarks in the images are used to
generate a homing vector. The third approach [3] presented is
a homing method that makes use of the angular information
between omnidirectional views extracted by means of the
1D trifocal tensor. This approach employs only the visual
information provided by omnidirectional images to obtain the
angles between the current position and a set of previously
acquired reference images taken at different locations, any
of which can be selected as goal position.

The proposed approach has been tested experimentally.
The results show the performance of the three proposed
methods via simulations with synthetic images, experimental
analysis with real images and real-world experiments in
closed loop.

II. VISUAL CONTROL WITH THE 2D TRIFOCAL TENSOR

Three images can be geometrically linked by the trifocal
tensor. This tensor only depends on the relative locations be-
tween the three views and the internal calibration parameters
of the cameras, being independent of the observed scene [14].
Let us suppose that the three images are taken with the same
calibrated camera, represented by the pinhole model. The
global reference system is defined with the origin attached
to the third camera. Then, the locations of the cameras in the
global reference are C1 = (x1, y1, z1), C2 = (x2, y2, z2)
and C3 = (0, 0, 0) with their respective orientations φ1, φ2

and φ3 = 0. Given that we consider planar motion we have
y1 = 0, y2 = 0. The camera translations in local coordinate
systems can expressed as ti = (txi, tyitzi)T = −RiCi,
with i = 1, 2, 3 and Ri the rotation matrices. It can be
deduced that the geometry constraints of the three views lead
to the trilinear relations that define the trifocal tensor [14] as
follows

T ′111 = −tx1 cos φ2 + tx2 cosφ1

T ′113 = tx1 sin φ2 + tz2 cosφ1

T ′131 = −tz1 cosφ2 − tx2 sin φ1

T ′133 = tz1 sin φ2 − tz2 sin φ1

T ′212 = −tx1

T ′221 = tx2

T ′223 = tz2

T ′232 = −tz1

T ′311 = −tx1 sin φ2 + tx2 sin φ1

T ′313 = −tx1 cos φ2 + tz2 sin φ1

T ′331 = −tz1 sin φ2 + tx2 cos φ1

T ′333 = −tz1 cosφ2 + tz2 cosφ1

(1)

The other elements of the trifocal tensor are zero as a result
of the planar motion constraint.

In our visual control framework, (x1, z1, φ1) is the initial
location of the vehicle, (x3, z3, φ3) = (0, 0, 0) is the target
location and (x2, z2, φ2) is the current location that varies
as the vehicle moves. The goal is to drive the vehicle to the
target location. Therefore the objective of the control law
is to drive the vehicle to (x2, z2, φ2) = (0, 0, 0). When the
vehicle is in the desired target location we have the following
values for the trifocal tensor elements

T ′d111 = T ′d212 = T ′d313 = −tx1 ,
T ′d131 = T ′d232 = T ′d333 = −tz1 ,

(2)

with the rest of the trifocal elements equal to zero.

• Control Law with the 2D trifocal tensor
In this section, the first proposal for vision-based control is

presented. An overview of the control loop is as follows: Im-
age features are extracted from the initial and target images,
and matched with the features extracted from the current
image. Then, the 2D trifocal tensor (Tijk) is computed. The
input of the control is defined by νijk which depends on
the trifocal tensor and its desired value (T d

ijk). The control
law gives the velocities necessary to drive the vehicle to the
target location. We consider the nonholonomic differential
kinematics of the vehicle modeled with the unicycle equa-
tions expressed in state space form (x, z, φ) as a function of
the translation and rotation velocities of the robot (v, ω).

In the model of the system, the output (the trifocal tensor)
is only indirectly related to the input (the robot velocities).
Therefore, it is not easy to see how the input can be designed
to control the desired evolution of the system. Then, we
carry out an exact input-output linearization to find a direct
relation between the system variables. So, we transform
the problem of nonlinear control into a tracking problem
where the desired evolutions of the trifocal tensor elements
are defined. The input-output linearization is obtained by
means of the derivatives of all the trifocal tensor elements
as detailed in [1]. After the first derivative we have already
obtained a linear relation between the system input and
output. Then, the system can be modeled as follows,




Ṫ111

Ṫ113

Ṫ131

Ṫ313

Ṫ331

Ṫ333




=




0 T113
− cos φ1

T ′N
−T111

0 T133
− sin φ1

T ′N
−T311

0 T333
− cos φ1

T ′N
−T331




(
v
ω

)
, (3)

where the previous decoupling matrix is denoted with L.
From the derivative of the available trifocal tensor ele-

ments (1), six of them have been selected for the control of
the system. Two velocities of the system are controlled and,
in principle, two elements of the trifocal tensor would be
enough. However, a two-element based control would fail in
solving the control task from some location of the workspace
(i.e. there are locations of the workspace in which the robot is
uncontrollable with these particular elements). Additionally,
with the selection of more elements we can guarantee no sin-
gularity of the control. The selection of the elements has been



studied experimentally and the best elements to work with
have been found to be the selected ones. Note that no metric
information or depth estimation is used in our approach.
Then, we define a common scale for tensor by normalizing
their elements with T ′N = sign(T ′232)

√
(T ′212)2 + (T ′232)2,

and Tijk are the normalized trifocal tensor elements.
Solving (3) for the control outputs we have

(v, ω)T = L+ νijk , ijk =111,113,131,313,331,333 (4)

where L+ is the pseudo-inverse of L and νijk are the
new inputs to be defined. The tracking error is defined as
(Tijk(t)− T d

ijk(t)) and we choose

νijk = Ṫ d
ijk − k(Tijk − T d

ijk) , (5)

k > 0 being constant gains.
Once the input-output linearization is carried out and the

control law is obtained, the desired evolution of the input
control in order to reach the target has to be defined. The
input control consists of the tensor elements Tijk. Then,
the objective is to define smooth functions which lead
from the initial to the final desired values of the trifocal
tensor elements. In [1] we proposed a continuous and time
differentiable function for each element of the input control
to be tracked as follows:





T d
111(t) = (T111(0)− T212)

ψ(t)
ψ(0) + T212

T d
113(t) = T113(0)

2 + T113(0)
2 cos

(
πt
tb

)

T d
131(t) = (T131(0)− T232)

ψ(t)
ψ(0) + T232

T d
313(t) = T313(0)+T212

2 + T313(0)−T212
2 cos

(
πt
tb

)

T d
331(t) = T331(0) ψ(t)

ψ(0)

T d
333(t) = T333(0)+T232

2 + T333(0)−T232
2 cos

(
πt
tb

)

(6)

where ψ can be computed from the trifocal tensor as

ψ(t) = arctan
(

T223 sin φ2 − T221 cos φ2

T223 cosφ2 + T221 sin φ2

)
. (7)

If (0 ≤ t ≤ tb) and the final desired values of the trifocal
tensor elements, taken from (2) and (1), if (tb < t < ∞).
More details about the design of the desired evolution of the
trifocal tensor entries as well as the stability analysis of the
system under the proposed control law can be found in [1].

III. VISUAL CONTROL WITH THE 1D TRIFOCAL TENSOR

The 1D Trifocal Tensor is a simplified tensor that relates
three views in the frame of planar motion, which is the
typical situation in the context of mobile robots. This tensor
provides the advantage of being estimated from bearing
visual measurements avoiding the need of complete camera
calibration. In general, the point features have to be converted
to their projective formulation in a 1D virtual retina in order
to estimate the 1D trifocal tensor. The computation of this
geometric constraint is basically the same for conventional
cameras and for central catadioptric systems assuming that
all of them approximately obey the generic central camera
model. For omnidirectional cameras, a bearing measurement
θ of an image point, measured with respect to a frame

centered in the principal point of the image, can be converted
to its 1D projection as p = (sin θ, cos θ). By relating this
representation for three different views of a feature that is
expressed in a 2D projective space, it results in the simplified
trifocal constraint

2∑

i=1

2∑

j=1

2∑

k=1

Tijkuivjwk = 0 (8)

where u = (u1,u2)T , v = (v1,v2)T and w = (w1,w2)T are
the image coordinates of a feature projected in the 1D virtual
retina of the first, second and third camera respectively, and
Tijk are the eight elements of the 1D trifocal tensor. Let us
define a global reference frame in the plane analogue as in
section II with the origin in the third camera. The geometry
across the three views in 1D coordinates leads to a similar
result to the 2D trifocal tensor as follows:

T ′111 = tz1 sin φ2 − tz2 sinφ1

T ′112 = −tz1 cos φ2 + tz2 cosφ1

T ′121 = tz1 cos φ2 + tx2 sin φ1

T ′122 = tz1 sin φ2 − tx2 cosφ1

T ′211 = −tx1 sin φ2 − tz2 cos φ1

T ′212 = tx1 cosφ2 − tz2 sin φ1

T ′221 = −tx1 cos φ2 + tx2 cos φ1

T ′222 = −tx1 sin φ2 + tx2 sin φ1

(9)

where txi = −xi cosφi−zi sin φi, tzi = xi sinφi−zi cos φi

for i = 1, 2. In order to fix a common scale during the nav-
igation, each estimated element of the tensor is normalized
(Tijk = T′ijk/TN ) with TN = T ′121.

To design a controller for solving the pose regulation
problem using only the tensor elements, we have to consider
the corresponding final tensor values as control objective,
analyze the dynamic behavior of the tensor elements and
select an adequate set of them as outputs to be controlled.

Next, the values of the 1D trifocal tensor in particular
locations is obtained. Initially, when the second camera is
in the starting location then C2 = C1, the relative location
between these cameras is tx2 = tx1 , tz2 = tz1 and the values
of the tensor elements produce the following relationships

T121 + T211 = 0, T122 + T212 = 0. (10)

with the rest of the entries equal to zero. When the robot
is in the goal C2 = C3, i.e., (x2, z2, φ2) = (0, 0, 0), the
relative location between these cameras is tx2 = 0, tz2 = 0,
and it yields the following relationships

T112 + T121 = 0, T212 + T221 = 0. (11)

with the rest of the entries equal to zero.
In order to carry out the control from the tensor elements,

we have to obtain the dynamic system that relates the change
in the tensor elements exerted by a change in the velocities of
the robot. The normalized time-derivative of the 1D trifocal



tensor elements yields

Ṫ111 =
sinφ1

TN
υ + T121ω, Ṫ211 =

cos φ1

TN
υ + T221ω,

Ṫ112 = −cos φ1

TN
υ + T122ω, Ṫ212 =

sin φ1

TN
υ + T222ω,

Ṫ121 = −T111ω, Ṫ221 = −T211ω,

Ṫ122 = −T112ω, Ṫ222 = −T212ω.
(12)

The derivative of the normalizing parameter TN is nearly
zero in practice. Therefore, given that this tensor element
changes slightly as the robot moves, we have assumed that
it is constant in the previous derivatives.

• Control law with the 1D Trifocal Tensor
We present in this section the development of a two-

step control law, which firstly drives the robot to a desired
position and then corrects its orientation. The first step is
based on solving a tracking problem for a nonlinear system
in order to correct x and z positions. The second step uses
direct feedback on the tensor to correct orientation.

When the robot reaches the target, it achieves the condition
given in (11) and therefore, the following sum of normalized
tensor elements are selected as outputs

ξ1 = T112 + T121, (13)
ξ2 = T212 + T221.

Then, a robust tracking controller is proposed to take the
value of both outputs to zero in a smooth way. Let us define
the tracking errors as e1 = ξ1 − ξd

1 and e2 = ξ2 − ξd
2 . Thus,

the error system is given as

(
ė1

ė2

)
=

[ − cos φ1
TN

T122 − T111
− sin φ1

TN
T222 − T211

] (
υ
ω

)
−

(
ξ̇d
1

ξ̇d
2

)

(14)
This system has the form ė = M (T, φ1)u − ξ̇d, where
M (T, φ1) corresponds to the decoupling matrix and ξ̇d rep-
resents a known disturbance. We treat the tracking problem
as the stabilization of the error system (14). We propose a
robust control law to solve the tracking problem using SMC,
which provides good properties to the control system.

A common way to define sliding surfaces in an error
system is to take directly the errors as sliding surfaces, in
such a way that, if there exist switched feedback gains that
make the states to evolve in s = 0, then the tracking problem
is solved.

s =
(

s1

s2

)
=

(
e1

e2

)
=

(
ξ1 − ξd

1

ξ2 − ξd
2

)
.

We use these sliding surfaces and the equivalent control
method in order to find switched feedback gains to drive the
state trajectory to s = 0 and maintaining it there for future
time. From the equation ṡ = 0, the so-called equivalent
control is

ueq = M−1ξ̇d.

A control law that ensures global stabilization of the error
system has the form usm = ueq + udisc, where udisc is a

two-dimensional vector containing switched feedback gains.
We propose these gains as follows

udisc = M−1

( −κ1sign(s1)
−κ2sign(s2)

)
,

where κ1 > 0 and κ2 > 0 are control gains. Although usm

can achieve global stabilization of the error system, high
gains may be needed, which can cause undesirable effects in
real situations. We add a pole placement term in the control
law to alleviate this problem

upp = M−1

[ −λ1 0
0 −λ2

](
s1

s2

)
,

where λ1 > 0 and λ2 > 0 are control gains. Finally, a
decoupling-based control law that achieves robust global
stabilization of the system (14) is as follows

udb =
(

υdb

ωdb

)
= ueq + udisc + upp = M−1

(
u1

u2

)
,

(15)
where u1 = ξ̇d

1 − κ1sign(s1) − λ1s1, and u2 = ξ̇d
2 −

κ2sign(s2) − λ2s2. The goal of the reference tracking is to
take the outputs to zero in a smooth way in such a way that
the robot performs a smooth motion in a desired time. Thus,
suitable trajectories are defined for ξd

1 and ξd
2 (see [2] for

details). We use the inverse of the decoupling matrix and,
to avoid the singularity problem at the final condition, we
propose the commutation to a direct sliding mode controller
when det(M) is near to zero. This issue is detailed in [2]

Once position correction has been reached in t = τ , we
can use any single tensor element whose dynamics depends
on ω and with desired final value zero to correct orientation.
We select the dynamics Ṫ122 = −T112ω. A suitable input ω
that yields T122 exponentially stable is

ω = λω
T122

T112
, t > τ (16)

where λω > 0 is a control gain. Stability analysis of this
control scheme is provided in [2], and as a result, robustness
of the control system is accomplished.

IV. VISUAL HOMING USING THE 1D TRIFOCAL TENSOR

Next, we propose a different approach to take advantage
of the information provided by the 1D trifocal tensor. This
approach employs only the visual information provided by
omnidirectional images to obtain the angles between the
current position and a set of previously acquired reference
images taken at different locations, any of which can be
selected as the goal position.

After the 1D trifocal tensor has been estimated, we can
directly extract what are known as the intrinsic homographies
from the coefficients of the trifocal tensor. Then, the epipoles
are extracted from them as their eigenvectors, obtaining the
six epipoles of each set of three views. However, there
are three ambiguities that need to be resolved in order to
determine the correct values of the angles of the 2D epipoles
from the values of the epipoles extracted using the 1D trifocal
tensor. In [3], we proposed a method for the resolution of
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Fig. 2. Three simulations with initial locations at (−2,−10,−20◦), (3,−12, 30◦) and (−5,−15,−10◦). The target location is (0, 0, 0◦). The three
left plots represent the evolution of the 2D trifocal tensor entries error for each example, respectively. Robot paths are plot on the right.
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Fig. 1. Elements involved and angles employed in the homing strategy.
C is the robot’s current localization, at the coordinate origin (0, 0, 0). G
is the goal location. Ri are reference views. Three of the n views on the
reference set are depicted as example.

the ambiguities in the estimation of the angles, so we can
disambiguate the assignment of the complete set of epipoles.

The initial stage of our method involves the calculation
of the angular relations between the images on the reference
set. This processing can be done off-line and therefore its
time consumption is not a critical issue. The aim is to build
and store a matrix containing the angles of the epipoles
between every pair of reference views, for their use during
homing. The procedure for the computation of all the angular
information needed for the homing task is explained in detail
in [3].

• Homing strategy
We now describe the strategy designed in order for the

mobile robot to perform homing. The homing method is
based solely on the computation of the angles between the
locations in which a series of omnidirectional images of the
environment were obtained. This group of snapshots consists
of the image taken by the robot from its current position and
a set of previously acquired reference images, which includes
an image obtained at the desired target location. The angles
between the views on the reference set have been previously
computed and stored, as described in [3]. Therefore only the
angles between the robot and the reference views must be
worked out during homing.

For every reference view Ri(xi, zi, φi) (where xi, zi and
φi define its position and orientation in the ground plane),
the difference between the angles of its epipoles with respect
to the current and goal locations defines an angular sector

of size Si = |αiC − αiG|, as illustrated in Fig. 1. We use
the average value of the angular sizes of these sectors to set
the linear velocity at which the robot will move toward the
target position

v = kv sign(cos αCG) · 1
n

n∑

i=1

Si, (17)

where kv > 0 is a control gain. When the target is behind the
robot, sign(cos αCG) will be negative, therefore generating
backward motion. As the robot moves closer to the goal, the
mean size of the angular sectors seen from the reference po-
sitions will become smaller; thus, the robot’s linear velocity
will gradually decrease and eventually become zero when
the target is reached.

The direction in which the robot travels is determined by
the angle at which the goal position is seen from the current
location, i.e. the angle αCG of the epipole eCG. The angular
velocity of the control law is given by

ω = kω(αCG − αd
CG) , (18)

αd
CG =

{
0 if |αCG| ≤ π

2
π if |αCG| > π

2

, (19)

where kω > 0 is a control gain. Before tuning the algorithm
on a real system, it is strongly recommended to first perform
some simulations, and tune the observer gains in such a
way that the response of the system is fast enough without
saturation. The value of these gains is more related with
the distance to be covered as well as the time required to
perform the task rather than the images acquired or the
environment. From a minimum number of four reference
views, one of which would be the view from the target
location, the robot will navigate to the home position. Note
that the orientation in which the robot reaches the target
position is not controlled, since, by definition, the purpose of
the homing task is getting to the goal location. The stability
of this control law is studied in [3], and the conditions in
which the system under the proposed control is globally
asymptotically stable are given.

V. EXPERIMENTAL VALIDATION

In the following, different experiments are presented to
show the validity of the approaches and their performance.
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A. Experiments with the 2D trifocal tensor

The virtual scene consists of a random set of 3D points.
The points of the scene are projected into the image plane
through a pin-hole camera model. The image size is 640 ×
480 pixels. The 2D trifocal tensor between the initial, current
and target images is computed from the point correspon-
dences. Three simulations from different initial locations are
presented in Fig. 2. It can be seen that the evolution of the
2D trifocal elements error along time converges to zero. The
motion of the vehicle is also shown in Fig. 2. As it can be
seen, the resultant motion is smooth and converges properly
to the target location.

The robustness of the 2D trifocal-based control has been
tested in presence of image noise. Simulations with and
without image noise are superposed in Fig. 3. The image
noise of the point correspondences consist in Gaussian noise
with a standard deviation of σ = 1 pixel in point coordinates.
The results show that the control law can cope with image
noise converging to the target location successfully.

Before computing the trifocal tensor from the point cor-
respondences they have to be transformed to calibrated
coordinates by means of the internal camera calibration pa-
rameters. As expected, the simulations carried out show that
the final location error increases with the camera calibration
parameter errors. However, it is stable and the performance
is still acceptable with small calibration errors.

B. Experiments with the 1D trifocal tensor

1) Simulation results: We present some simulations of the
overall control system. The 1D trifocal tensor is estimated
from a minimum of five point correspondences in virtual
omnidirectional images of size 1024 × 768. These images
have been generated from a 3D scene (Fig. 4) through the
generic model for central catadioptric cameras. We report re-
sults with hypercatadioptric, paracatadioptric and also fisheye
cameras, which can be approximately represented with the
same model. Figure 4 shows the paths traced by the robot
from four different initial locations.

We can see in Fig. 5(left) that both outputs are driven to
zero in 100 s for all the cases. This is achieved by using
bounded inputs, which are presented in Fig. 5(right) for the
case (-5,-12,-30◦). Both control inputs commute to a bounded
value around 86 seconds because the determinant of the
decoupling matrix falls under the fixed threshold. We can
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Fig. 5. Control law performance. (Left) Controlled outputs for the four
cases of Fig. 4. (Right) Example of the computed velocities for initial
location (-5,-12,-30◦).

also see how the rotational velocity presents an exponential
decay after 100 s, which takes the element T122 to zero. This
forces the orientation to decrease with a fixed exponential
rate, whose settling time is approximately 16.7 s (5/λω).

The previous results have been obtained for three different
kind of omnidirectional cameras. Figure 6 shows the motion
of the image points for the case in which a hypercatadioptric,
paracatadioptric and fisheye camera are simulated. For all the
experiments, the mean squared tracking error is very low, in
the order of 1× 10−5.

In order to achieve an adequate closed loop frequency,
we evaluate the strategy of tracking a set of chosen points
using the Lucas-Kanade algorithm. It allows us to have
the matching between features for each iteration without
additional computations, which makes the scheme feasible
for real-world experimentation. Additionally, the smooth
motion of the image features with the Lucas-Kanade tracker
results in a stable tensor estimation. Analysis and discussion
of the behavior of the proposed control scheme using SIFT
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Fig. 6. Motion of the points in the image plane for three different
kind of omnidirectional virtual images. (Left) Hypercatadioptric. (Center)
Paracatadioptric. (Right) Fisheye. The images depict the point features from
the initial, current and target views.
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Fig. 7. Experimental results with the control law in closed loop. (Left)
Resultant path. (Right) Computed velocities. The data to plot the path is
given by the robot odometry.

Fig. 8. Motion of the image points to illustrate the behavior of the visual
measurements for the real experiments.

features and the Lucas-Kanade pyramidal algorithm can be
found in [2].

2) Real-world experiments: The proposed approach has
been tested in closed loop with real conditions using a
Pioneer 3-AT robot. For these experiments, we use an omni-
directional system with a camera Sony XCD-X7101CR and
a mirror Neovision H3S to capture images of size 800×600
pixels. We have implemented these experiments using the
tracking of features because its low computational cost. It
gives good closed loop frequency, which leads to a good
behavior in the 1D trifocal tensor estimation. Figure 7(left)
presents the resultant path, given by odometry, of the closed
loop control from the initial location (-0.55 m,-1.35 m,-35◦)
for one of the experimental runs. The duration of the task
is almost 14 s, the final position error is around 2 cm and
the orientation error is practically negligible. We can see in
Fig. 7(right) that the bounded SMC law is applied due to the
singularity of the decoupling-based controller.

According to Fig. 8, the motion of the image points along
the sequence does not exhibit a damaging noise, in such a
way that the tensor elements evolve smoothly during the task.

In accordance to the results and the methodology pre-
sented, we can state that the main advantages of using the
1D trifocal tensor on visual servoing are that the geometric
constraint improves the robustness to image noise by filtering
the data, allows applying the control approach with any
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Fig. 9. Robot path of three sample simulated homing trajectories.

Fig. 10. Example image (left), omnidirectional camera (center) and
complete setup (right) used for the experiments.

visual sensor obeying approximately a central projection
model and avoids the problem of short baseline by exploiting
the information of three views. Thus, total correction of both
position and orientation is ensured without commuting to any
visual constraint other than the 1D trifocal tensor.

C. Experiments of homing with the 1D trifocal tensor

The performance of the third proposed method (section
IV) has been tested both in simulation and with real images.
For the simulations, the reference views were positioned
forming a square grid, although any arbitrary distribution
guaranteeing sufficient geometric diversity on the plane could
be chosen. A randomly distributed cloud of 200 points in
3D was generated and projected in each camera. Three
sample homing trajectories with a 16-view reference set are
displayed in Fig. 9.

The setup for the real experiments consisted of an Ac-
tivMedia Pioneer nonholonomic unicycle robot base with a
catadioptric vision system mounted on top. The resolution
of the employed images was 800× 600 pixels. The imaging
system is used without specific calibration other than the
assumption that the camera and mirror axis are vertically
aligned. The images were obtained in an indoor, laboratory
setting. The experimental setup is illustrated in Fig. 10. To
generate the reference set of views, 20 images were acquired
from locations forming a 5 × 4 rectangular grid with a
spacing of 1.2 m., thus covering a total area of 4.8 × 3.6
m2. Features in the images were extracted and matched, and
a RANSAC robust estimation was used to calculate the 1D
trifocal tensors between the views. The number of three-
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Fig. 11. Displacement vectors (arrows) and directions of the epipoles (line
segments) with respect to the goal estimated at every reference position for
two different goal locations (marked with a cross) in real setting.

view correspondences employed to obtain the trifocal tensor
estimations lied in the range of 30 to 70. Although images
taken on opposite sides of the room could not be matched,
the connections between adjacent or close sets of views
were sufficient to recover the relative angles of the complete
reference set. Vector field representations for two different
goal locations within the grid are displayed in Fig. 11. The
arrows at each location represent the displacement vectors
associated with the motion that a vertically oriented robot
with nonholonomic constraints would perform from that spot,
according to the proposed control law (section IV). The
results show good accuracy despite the presence of outliers
in the putative matches.

VI. CONCLUSIONS

We have presented three different vision-based control
approaches which are based on the trifocal tensor. The first
control law is defined by the exact input-output linearization
of the system through the 2D trifocal tensor. Some advan-
tages of the trifocal tensor based approach are that it is
more robust than two view geometry thanks to additional
information of a third view and that the problem of short
baseline with epipolar geometry is overcome. The second
control law follows a similar design but taking advantage of
the robustness of the 1D trifocal tensor using sliding mode
control techniques. From a control theory point of view, an
advantage of this approach is that the selected outputs allow
us to prove stability on the basis of a square control system.
The third controller relies on the 1D trifocal tensor to obtain
the angular information provided by a set of omnidirectional
reference images, being this information very precise. The
designed control law employs these angular relations to guide
the robot to the target location. The computational cost of
the proposed method is low and it can be directly applied
in settings where stored image databases are available. Our
proposal assumes that the optical center of the camera is
located in the robot rotation axis, and this issue has been
further considered in [21], where the camera is translated a
distance from the robot rotation axis. Experimental validation

showing the performance of these approaches shows that the
methods perform properly.
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[15] K. Åström and M. Oskarsson, “Solutions and ambiguities of the
structure and motion problem for 1D retinal views,” Journal of
Mathematical Imaging and Vision, vol. 12, pp. 121–135, 2000.

[16] F. Dellaert and A. W. Stroupe, “Linear 2D localization and mapping for
single and multiple robot scenarios,” in IEEE International Conference
on Robotics and Automation, May 2002, pp. 688–694.

[17] L. Quan and M. Lhuillier, “Structure from motion from three affine
views,” in Proceedings of the 16th International Conference on Pattern
Recognition, vol. IV, Aug. 2002, pp. 1–6.

[18] J. Hong, X. Tan, B. Pinette, R. Weiss, and E. M. Riseman, “Image-
based homing,” Control Systems Magazine, IEEE, vol. 12, no. 1, pp.
38–45, Feb. 1992.

[19] A. A. Argyros, K. E. Bekris, and S. C. Orphanoudakis, “Robot homing
based on corner tracking in a sequence of panoramic images,” in IEEE
Conference on Computer Vision and Pattern Recogntion, 11–14 Dec.
2001, pp. 3–10.

[20] K. E. Bekris, A. A. Argyros, and L. E. Kavraki, “Angle-based
methods for mobile robot navigation: Reaching the entire plane,” in
Int. Conference on Robotics and Automation, 2004, pp. 2373–2378.
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