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Abstract— This paper shows how to push an unknown object
in the plane from an initial pose to a target pose with two co-
operating mobile robots. On the object motion, we deliberately
impose non-holonomic velocity constraint with pushing mobile
robots. This yields smooth and efficient trajectories. Pushing
manipulation is performed, for the first time, with a new
uncalibrated image-based control scheme. This is achieved by
transforming the image information to a scaled Euclidean space
without using any metric information or calibration. Stability
of the control law is also demonstrated.

I. INTRODUCTION

The task of moving an object in robotics is usually
performed by grasping. However, sometimes the robot lacks
the size to grasp or the strength to lift the object. This
problem can be overcome by moving the object by pushing.
Moreover, since one robot may have not enough power to
push the object, a multi-robot approach has been considered.
Here, we propose a new visual servoing control law for
pushing an object in a multi-robot framework.

In the literature, there have been exhaustive studies on
moving objects by pushing: Mason was the first to study
the mechanics of pushing [1]. Pushing is mainly served in
two ways: (i) to remove uncertainty in the pose of an object
before grasping it [1], [2], [3] or (ii) to move an object from
one pose to another [4], [5]. Related works can be grouped
into open-loop [6], [7] or closed-loop [8], [9], [10], [11]
approaches with single point contact push [10], two point
contacts push [11], line contact push [12] or multiple contacts
push [13], [14], [15].

This paper proposes a new solution to the problem of
pushing an object in the plane to a desired pose. We push
the object with two mobile robots. Robots and the object
interact with each other through frictional point contacts.
We constrain the object with these frictional point contacts to
move like a non-holonomic vehicle actuated only for forward
motion. By doing so, we can exploit the well-studied contact
physics and the non-holonomic vehicle kinematics theories
to model and control the pushing. Afterwards, we perform
the pushing by using only the image information obtained
from an uncalibrated camera looking to the workspace. The
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advantage of uncalibrated approaches is that their results
do not depend on the quality of the system calibration and
are more robust to system degradation. Therefore, we avoid
using the camera calibration or additional information, such
as the size of the object or its 3D model.

Similar to [7], we consider the following assumptions for
the pushing task definition: (i) All motions and forces are in
an obstacle-free plane which is normal to the gravity vector.
(ii) Frictional forces conform to Coulomb’s Law. (iii) The
friction is uniform between the object and the support plane.
This means that the center of friction of the pushed object is
the point in the support plane beneath the center of mass of
the pushed object. (iv) Motions are slow enough that inertial
forces are negligible, i.e., quasi-static motion assumption.

The contribution of this paper is an uncalibrated image-
based control scheme to manipulate objects by pushing under
non-holonomic velocity constraint. First, we define a new
procedure to transform the image information to a scaled
Euclidean space with the novelty that we do not need to
use any metric information, calibration, or 3D model of
the object. Secondly, we propose a new control scheme
for pushing with two mobile robots which yields smooth
and efficient trajectories. The proposed control strategy is
inspired from [16]. In particular, the control law in [16] was
defined for a single mobile robot equipped with a calibrated
camera on board, whereas here we use uncalibrated image
information from an external camera looking to the scene,
and then apply it to a system composed by two mobile
robots and the object to be pushed. Finally, constraints on the
system are studied and stability of the control law is proven.
Simulations show the validity of the approach.

II. FROM PROJECTIVE TO SIMILARITY SPACE

Since we propose an uncalibrated approach to manipulate
an unknown object, we cannot recover the metric values of
the object state as in [17]. However, we can still correct
the distorted angles and recover the distances up to a scale
by transforming the image points from projective space to
a similarity space, i.e., scaled Euclidean space. This will be
enough to fulfill our task.

The control task requires a target image with the object in
the desired pose and the image of the object in the current
position. Given enough correspondences between the target
and current object features (e.g., points), we know how to
compute a homography matrix H which maps the target
object points p T to the corresponding current object points
p

C
up to a scale in the measurable image plane πI :

pC = H p T , {pC , p T } ∈ πI (1)
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where H is as follows:

H =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 (2)

After this step, to recover back the undistorted angles, we
do an affine rectification. That is to say, we relate the target
object to the current object by an affine transformation A
in an affine plane πA. This can be done by a computable
matrix HA which maps the features from the measurable
image plane πI to the affine plane πA. In order to compute
HA, we exploit the following expression:

A = HA H H−1
A (3)

where the structure of A and HA are given as below:

A =

 a11 a12 b1
a21 a22 b2
0 0 1

 , HA =

 1 0 0
0 1 0
ℓ1 ℓ2 1

 (4)

The unknown variables ℓ1 and ℓ2 of HA are computable
from the two constraints (a31 = 0 and a32 = 0) of (3)
which are written explicitly as follows:

h31 − ℓ1 (h33 + h13 ℓ1 + h23 ℓ2) + h11 ℓ1 + h21 ℓ2 = 0

h32 − ℓ2 (h33 + h13 ℓ1 + h23 ℓ2) + h12 ℓ1 + h22 ℓ2 = 0 (5)

Then, we do Euclidean rectification. That is to say, we relate
the target object to the current object by an Euclidean trans-
formation E in a similarity plane πS (i.e., scaled Euclidean
plane). This can be done by a computable matrix HS which
maps the features from the affine plane πA to the similarity
plane πS . In order to compute HS , again similar to previous
step, we exploit the following expression:

E = HS A H−1
S (6)

where the structure of E and HS are given as below:

E =

 r11 r12 t1
r21 r22 t2
0 0 1

 , HS =

 m1 0 0
m2 m3 0
0 0 1

 (7)

The unknown variables m1, m2 and m3 of HS are com-
putable from the constraints of (6) which are shown implic-
itly using the components of the rotational matrix part of E
as follows:

r11 − r22 = 0
r12 + r21 = 0
r11 r22 − r12 r21 = 1

(8)

Now, we can bring the measured image points from an image
plane to a scaled Euclidean plane as below:

p̄ = HS HA p , p̄ ∈ πS , p ∈ πI (9)

We again note that a similarity plane πS preserves the
angles, but the distances are up to an unknown scale. This
unknown scale also changes with respect to current object
pose. We need to fix this scale to a constant value so that
stability of the control law defined in the following sections
is guaranteed. In order to keep the unknown scale constant,

Fixed
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Fig. 1. Overview of the framework for visual servoing by pushing. A fixed
camera observes the workspace, where two robots will push an object, and
provides the current image to the visual loop. A homography H is computed
from point matches on the object in the current and target views. Image
points are then transformed so as to be related by ES . State of the object
in these transformed images gives the image error to be corrected by the
control law. Control law computes and sends to robots their velocities so
that they push the object to the target location.

we transform the similarity plane πS(t) at time t back to the
first similarity plane πS(t0) at time t0 by a computable matrix
ES . Given the corresponding points of the target object in
two similarity planes πS(t) and πS(t0), we can compute
this scaled Euclidean transformation ES which maps the
target object from πS(t) to πS(t0). The computed ES has
the following form:

ES =

[
R

S
t
S

0 1

]
(10)

where R
S

is a rotation plus scale matrix. The final step is
then to transform the features from πS(t) back to the πS(t0):

p̄ t0 = ES p̄ t (11)

A summary of the framework for visual servoing by
pushing is shown in Fig. 1. This includes the proposed
method for projective to similarity space transformation and
the control scheme presented in the remainder of the paper.

III. ACTUATION BY PUSHING WITH TWO
FRICTIONAL POINT CONTACTS

Next, we propose a new control scheme for pushing
with two mobile robots which yields smooth and efficient
trajectories. We first address the model of the system in this
section and the control design in the following.

The dynamics of multi-agent system manipulation has
been investigated in [18]. In particular, they model the
dynamics of pushing system under two agents. They also
consider the case when both agents push in parallel so the
reaction forces are always on the same direction. Here, we
propose to model this particular system with the kinematics
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Fig. 2. Moving an object like a non-holonomic vehicle by pushing.

of a nonholonomic vehicle. Note that without appropriate
motion strategy, the object can actually translate in any
direction. Then, in order to guarantee the validity of this
model, an adequate control law should be designed to enforce
the system to behave like a driftless nonholonomic system.

Since the object will be controlled by pushing, we first
explain the physics of a frictional point contact, and then
show how to actuate the object by pushing with two frictional
point contacts like a non-holonomic vehicle. In a point
contact with Coulomb friction model, the pusher can apply
a force f to an object in any direction as long as it is
oriented within the friction-cone. The apex of the friction-
cone coincides with the contact point, and the cone axis is
aligned with the inward object boundary normal. The cone
aperture is defined by the static friction coefficient µ > 0,
see Fig. 2.

Exploiting the above frictional point contact physics, we
now would like to move an object like a non-holonomic
vehicle by pushing as it is illustrated in Fig. 2. In order to do
so, we should push the object from points located on the left
and right sides of its mass center G, and each contact friction
cone should allow to generate a force oriented towards the
desired motion direction of the object. Afterwards, we know
that from Newton’s second law, if the mass of the object
is constant, then the acceleration of the object is directly
proportional to the net force and torque acting on the object
and it is in the direction of the net force and torque. Thanks
to these conditions and the control scheme proposed in the
following sections, it is possible to move the object like a
non-holonomic vehicle.

We remark that an object with a complex shape can
form a non-symmetric, non-holonomic vehicle geometry (see
Fig. 3), and unlike a real non-holonomic vehicle, the object
can move only forward. Given the desired non-holonomic
velocity vector (v, ω) of a non-symmetric object, we can
compute the pushing velocities as follows:

PL = G + rL , vL = Ġ + w × rL (12)
P

R
= G + r

R
, v

R
= Ġ + w × r

R
(13)

where r
L

= [r
Lx, rLy, 0]

T and r
R

= [r
Rx, rRy, 0]

T are
the vectors from the mass center to the pushing points PL

and PR; where vL and vR are the velocities of the pushing
points; where Ġ = v y is the velocity of the mass center
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Fig. 3. Geometry of the object with two pushing points. This can be
considered as a pseudo non-holonomic vehicle with only forward motion.
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Fig. 4. State variables of the object with respect to a target pose.

with the unit vector y = [0, 1, 0]T of the fixed motion
direction and the linear speed v; and where w = ω z
is the rotational velocity vector with the rotational axis
z = [0, 0, 1]T and the angular speed ω. We can simplify
and rewrite the pushing velocities for 2D planar space from
(12) and (13) as below:

v
L

=

[
0 −rLy

1 r
Lx

] [
v
ω

]
, v

R
=

[
0 −rRy

1 r
Rx

] [
v
ω

]
(14)

IV. FORWARD NON-HOLONOMIC MOTION
In this section, we develop the kinematic model, the

control law, and the constraints of an object with forward
non-holonomic motion.

A. Kinematics
Let the state vector of the object in polar coordinates

be x = [ ρ, α, ϕ ]T in the real world plane πW (See
Fig. 4). Here, ρ is the distance of the object to the desired
position, ϕ is the alignment error of the object with respect to
desired orientation, and α is the alignment error of the fixed
motion direction of the object toward the desired position.
Afterwards, let the desired motion of the object be the linear
speed v and the angular speed ω, then the non-holonomic
kinematics of the object can be written as follows: ρ̇

α̇

ϕ̇

 =

 − cosα 0
1
ρ sinα 1

0 1

 [
v
ω

]
(15)



B. State Variables in the Similarity Space

Note that after transforming the measured image points
by (9) and (11) from image plane πI to the similarity plane
πS(t0), we have the following relations between the state
variables of the object expressed in planes πS(t0) and πW :

ρ̄ = k ρ , ᾱ = α , ϕ̄ = ϕ (16)

where {ρ̄, ᾱ, ϕ̄} ∈ πS(t0), and k is an unknown constant
positive scale with known bounds 0 < kmin ≤ k ≤ kmax.
See Appendix D for the computation of bounds.

C. Control Law

In this section we describe the proposed control law which
is inspired from [16]. As said before, we need to adapt that
control law from calibrated to uncalibrated framework, where
the camera is now in eye-to-hand configuration instead of
eye-in-hand, and it is applied to a system consisting of two
mobile robots and an object instead of a single robot. We
write this new control law (i.e., the desired motion) for this
new system (i.e., object manipulation by pushing) from the
computed state variables as follows:

v = kρ ρ̄ cos ᾱ , (17)
ω = kϕ ϕ̄ − kα ᾱ (18)

where kρ, kα, and kϕ are positive constant control gains. If
the chosen control gains satisfy the following condition:

kα − kϕ − kmax kρ > 0 (19)

where kmax is the known upper bound of the unknown k,
then the control law is locally exponentially stable. Again the
control law, with gains satisfying (19), is globally asymptot-
ically stable if the following condition also holds:

kα − 2 kϕ > 0 . (20)

Proofs can be found in the Appendices A and B. Note that,
contrary to [16], the stability analysis is performed here in
the uncalibrated image space instead of the Euclidean space,
which is known to be a difficult issue to solve in general.

We next obtain the input velocities of the pushing robots
v

L
and v

R
from the desired motion of the object – the speeds

v and ω in (17) and (18) – using (14).
We would like to remark that these speeds are for non-

holonomic vehicles so they can move forward and backward.
In case of a pushed object, we should avoid backward
motion since we cannot pull. Next subsection emphasizes
the required conditions for forward motion maneuvers only.

D. Forward Motion Conditions

In this section, we study the forward motion conditions of
the system which should be satisfied during manipulation.
The first condition that should hold for the state variables to
guarantee the forward motion (v ≥ 0) is as below:

| ᾱ | ≤ π/2 and | ψ̄ | ≤ π/2 (21)

where ψ̄ = ϕ̄ − ᾱ. Condition (21) avoids cusps in the
trajectory of the object which causes backward motion. This

condition is guaranteed if we choose the motion direction y
of the object in such a way that the maneuvers performed
toward the target are minimized. In particular, this is done
by minimizing the Lyapunov function V (x̄) – used in the
stability proof of the control law in the Appendix B – at the
initial configuration for ᾱ subject to (21):

min
ᾱ

V (x̄) subject to ᾱ2 ≤ π2/4 and ψ̄2 ≤ π2/4 (22)

In x̄, state variables ρ̄ and ϕ̄ are known, and ᾱ is unknown.
The second condition, that we should also impose while

pushing the object, is to limit the angular speed of the object:

|ω| ≤ v / r (23)

where r is the distance between a pushing point and the mass
center of the object. This distance r is computed as follows:

if ω > 0 then r = ∥r
L
∥ else r = ∥r

R
∥ (24)

See Fig. 3. Condition (23) avoids pushing velocities vL and
v

R
to have negative values along the motion axis y, and

it guarantees that we do not lose contact with the object.
Condition (23) is satisfied if the following expressions hold:

π | 2 kϕ − kα | / 2 ≤ εα ( kmin kρ ρ̄0 /r̄ − kα ) (25)

2 (kmax kρ + kϕ) ≥ kα (26)

where ρ̄0 is the initial distance equal to ρ̄(t) ∈ πS(t0) when
time was t = 0; where r̄ = k r is the distance between
the mass center and the corresponding pushing point of the
object on the plane πS(t0) with k being equal to the one
in (16); where εα is an arbitrary small positive angle; and
where kmin and kmax are the known bounds of the unknown
k. Proofs of (25) and (26) can be found in the Appendix C.

V. RESULTS

We validated the pushing tasks with realistic simulation
using V-REP free and open source software [19]. In simula-
tions, an uncalibrated camera observes the scene from a fixed
pose. Non-holonomic mobile robots are used for pushing.
Figure 5 shows the simulation environment and the two non-
holonomic mobile robots used for pushing the object.

We remark that a non-holonomic robot cannot push the
object in every direction. It can push only along its fixed
motion direction. Therefore, to be able to use non-holonomic
robots to manipulate the object, we first choose two pushing
points on the object such that points are at equal distance to
the line defined by gravity center and the y-axis. This cancels
the velocity components along the x axis of the object (see
Fig. 3), and allows us to write the linear speeds of the mobile
robots from (14):

vL = v + rLx ω vR = v + rRx ω (27)

Secondly, we correct the orientation of the non-holonomic
mobile robots toward the pushing points (see Fig. 3) with a
simple proportional control law given below:[

ω
L

ωR

]
= −kω

[
α

L

αR

]
, kω > 0 (28)



Fig. 5. V-REP simulation environment. Top image shows the two non-
holonomic mobile robots and the box shaped object. Images in the middle
row show an initial pose (left) and the target pose (right) from the
uncalibrated camera viewpoint. At the bottom image, we see an example of
the performed pushing task and the trajectories of the mobile robots.

where ω
L

and ω
R

are the computed angular speeds; kω is the
positive control gain; and the αL and αR are the orientation
errors of the non-holonomic mobile robots. Equation (28)
keeps the non-holonomic mobile robots at the pushing points
and orients them towards the correct motion direction of the
object during the manipulation.

In simulations, we pushed a box shaped object from three
different poses to the same target pose. The target pose is at
[x (m), y (m), ϕ (deg)] = [0, 0, 0◦] and the initial poses are
at [4, −6, −50◦], [2, −11, 0◦] and [−3, −8, 40◦]. Figure 6
shows these three pushing tasks. In this figure, each type of
line represents a different simulation. For each one, the trace
of the center of mass of the pushed box is represented with
a thick line. The paths followed by the pushing robots are
depicted with thin lines. The box in the initial and target
poses is also depicted. It can be seen that the system evolves
correctly to the desired state. An example of the results is
provided in Fig. 5, where the traces of the two pushing
robots are plotted in white. Figure 7 shows the evolution
of the linear v and angular ω speeds of the object versus
time during these three pushing tasks. Figure 8 shows the
evolution of the state variables ρ̄ and ϕ̄ of the object versus
time during these three pushing tasks. Note that the control
fails if the proposed constraints are violated when defining
the control setup or reaching the target location requires
several manoeuvres. In that case, the system cannot reach
the target location because of robots losing contact with
the object. Supplementary illustration of the simulations is
provided by the video that accompany the paper.
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Fig. 6. Three different initial poses of the object and its maneuvers toward
the target pose at the origin (0, 0) in the V-REP simulation environment.
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Fig. 7. Evolution of the linear v and angular ω speeds of the object versus
time. Each different line corresponds to one of the simulations in Fig. 6.

VI. CONCLUSIONS

This paper proposed, for the first time, an uncalibrated vi-
sual servoing scheme to pose objects in the plane by pushing
with two non-holonomic mobile robots under non-holonomic
velocity constraint. Our method yields smooth and efficient
trajectories with guaranteed stability. This scheme is then
validated by realistic simulation results obtained with V-REP
software. Regarding possible directions for future work, one
idea that can be addressed is how to automatically select the
points to push in the border of a convex object with arbitrary
shape. It would be also interesting to study the possibility of
extending the presented method to robot manipulators for the
pushing task instead of using mobile robots.
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Fig. 8. Evolution of the state variables ρ̄ and ϕ̄ of the object versus time
for the simulations shown in Fig. 6.



APPENDIX

A. Local Exponential Stability of the Control Law

Using (16), (17) and (18) in (15), we can obtain the closed-
loop system described as below:

˙̄ρ = −kρ k ρ̄ cos2 ᾱ

˙̄α = kϕ ϕ̄ − kα ᾱ+ kρ k cos ᾱ sin ᾱ (29)
˙̄ϕ = kϕ ϕ̄ − kα ᾱ

The first-order Taylor series approximation of this closed-
loop system (29) around the equilibrium state gives the
following linearized system: ˙̄ρ

˙̄α
˙̄ϕ

 ≈

 −k kρ 0 0
0 k kρ − kα kϕ
0 −kα kϕ

  ρ̄
ᾱ
ϕ̄

 (30)

This system is locally exponentially stable if and only if
the eigenvalues of the linearized system matrix are negative.
This yields the condition (19). Therefore, satisfying (19) is
sufficient for local exponential stability.

B. Global Stability of the Control Law

The closed-loop system (29) with control gains selected
following (19) is globally asymptotically stable if (20) holds.

Proof: We define the Lyapunov function as

V (x̄) = x̄T P x̄+
1

2
sin2 ᾱ , (31)

where V (x̄) > 0 for all x̄ ̸= 0, with

P =
1

2 kρ

 1 0 0
0 kϕ −kϕ
0 −kϕ kϕ

 . (32)

The derivative of (31) yields

V̇ = ᾱ sin ᾱ cos ᾱ (kϕ + kρ
sin ᾱ cos ᾱ

ᾱ
− kα)

−ρ̄2 cos2 ᾱ . (33)

It can be seen that V̇ < 0 for all ᾱ ∈ (−π/2, π/2) if the
following constraint holds:

kα − kϕ − (kρ sin ᾱ cos ᾱ)/ᾱ > 0 . (34)

Since (sin ᾱ cos ᾱ)/ᾱ is bounded by 1, constraint (34) leads
to (19). We next study the case of ᾱ = ±π/2, which results
in V̇ = 0. In this case, we check the derivative of ᾱ in (29).

˙̄α(ᾱ = ±π/2) = ∓kα π/2 + kϕ ϕ̄ . (35)

We can ensure that ˙̄α < 0 when ᾱ = π/2, and ˙̄α > 0 when
ᾱ = −π/2, if the following constraint holds:

−kα +
2

π
kϕ ϕ̄ < 0 , kα +

2

π
kϕ ϕ̄ > 0 . (36)

If the maximum bounds of ϕ̄ are considered, i.e. ϕ̄ = ±π re-
spectively, we obtain constraint (20). Therefore, the regulated
system is asymptotically stable for all ᾱ ∈ [−π/2, π/2].

In order to show the region of attraction of the equi-
librium x̄ = 0 is global, we also analyze the case of

ᾱ ∈ [−π,−π/2] ∪ [π/2, π]. By checking the derivative of
ᾱ in (29) we have

ᾱ ∈ [π/2, π] ⇒ ˙̄α < 0 ⇔ −π
2 kα + kϕ ϕ̄ < 0 , (37)

ᾱ ∈ [−π,−π/2] ⇒ ˙̄α > 0 ⇔ π
2 kα + kϕ ϕ̄ > 0 . (38)

where the most unfavorable case of ᾱ is used. These previous
constraints yields to constraint (20) when the maximum
bounds of ϕ̄ are included. Thus, the global asymptotic stabil-
ity of the regulated system (29) is guaranteed if constraints
(19) and (20) holds.

C. Viability of the Angular Speed Condition
We can rewrite the angular speed condition |ω| ≤ v/r

using (16), (17) and (18) as follows:∣∣kϕ ϕ̄− kα ᾱ
∣∣ ≤ k kρ ρ̄ cos ᾱ / r̄ (39)

The worst case, which violates the above condition, hap-
pens for ᾱ = ±π/2 when the motion direction of the object
is orthogonal to the direction towards the target. In this case,
v = 0 and the condition |ω| ≤ v/r is violated. This is a
singular case that can be avoided in practice by, for example,
applying the proposed solution for motion direction selection
(22). We thus set the worst case as ᾱ = ±π/2 ∓ εα where
εα is an arbitrary small positive angle. Addition of ±εα to
ᾱ also keeps v > 0.

Regarding ϕ̄, it can be deduced that the worst case
corresponds to ϕ̄ = ±π. This happens when the motion
direction of the object is oriented backward with respect to
desired configuration. Equation (39) can then be rewritten
for the worst case values of ᾱ, ϕ̄ and k as (25). We also
assumed that sin(±εα ) ≈ ±εα.

Condition (25) allows tuning the control gains to avoid
control law saturation during the beginning of the motion
period. Nevertheless, it does not guarantee |ω| ≤ v/r at
the end of the motion period, when v tends to zero. In that
case, we must guarantee that the convergence rate of ω is
higher than v. This case appears when the system is getting
closer to the equilibrium state, therefore here for analysis,
we can consider the first-order Taylor series approximation
of the closed-loop system given in (30). The eigenvalues of
this system are as follows:

λρ = −k kρ , λα,ϕ =
−kL ∓

√
(kL)2 − 4 k kρkϕ

2
(40)

where kL = kα − kϕ − k kρ. Since the convergence rates
of the state variables are given by their eigenvalues, e.g.:

ρ̄(t) = ρ̄0 e
(λρ t) thus v ≈ kρ ρ̄0 e

(λρ t) (41)

we derive the conditions for (40) such that |λρ| is the smallest
eigenvalue. In particular, we look for the following condition:

|λα| ≥ |λϕ| > |λρ| (42)

We can deduce from (40) and (42) the following expression:

2 (kmax kρ + kϕ) ≥ kα (43)

where kmax is again the upper bound of the unknown
constant positive scale k. We can thus sustain the angular
speed condition given in (23) by satisfying (25) and (43).



D. Boundedness of Lengths in the Image Plane

Perspective projection scales/foreshortens a length of an
object to a smaller length. Physical world lengths can then be
related to the image plane lengths from the ratios of similar
triangles:

ρ̄ ≈ f

Z
ρ with

f

Z
< 1 (44)

where f is the unknown focal length of the uncalibrated
camera, and Z is the unknown distance of the line segment –
located between the current and target positions of the pushed
object in the support plane– to the optical center of the
uncalibrated camera. As long as the objects are visible to
the camera, the Z is greater than the f . In equation (44), ρ
and ρ̄ are expressed in the same metric units. The metric unit
can be chosen arbitrarily (e.g., m, µm). Expressing metric
units in microns –µm– and knowing that the state-of-the-
art smallest CCD/CMOS sensor pixel size s is about a few
microns (s > 1µm), we can rewrite (44) for ρ̄ expressed in
pixels as follows:

ρ̄ ≈ 1

s

f

Z
ρ with

1

s
< 1 (45)

This time in (45), ρ is in microns and ρ̄ is in pixels. We
rewrite (45) as below:

ρ̄ ≈ Tρ ρ with Tρ =
1

s

f

Z
< 1 (46)

where Tρ is the unknown scale. This unknown scale then
can be bounded as follows:

0 < Tmin ≤ Tρ ≤ Tmax < 1 (47)

Finally, one can choose Tmin and Tmax regarding (47) and
compute kmin and kmax as below:

kmin = SE Tmin , kmax = SE Tmax (48)

where SE is a known scale extracted from ES (10).
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