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Abstract Pushing is one of the strategies to perform robotic
manipulation when the object is too large or too heavy. Mo-
tivated by this, we address the problem of how to push an ob-
ject on a plane to a target pose with two cooperating robots.
The main contribution is a new uncalibrated image-based
control scheme that computes the required motion of the ob-
ject to reach the target pose. Then, as an application of this
control scheme, we study the conditions that allow perform-
ing the task of pushing the object with two robots. The setup
consists of a fixed external uncalibrated camera looking at
the workspace where the object and the robots stand. The
task is defined with a target image of the object in the de-
sired pose. The proposed control scheme computes the mo-
tion commands of the pusher robots and, as a result, they
translate and rotate the object by imposing non-holonomic
velocity constraints. This yields smooth, continuous and ef-
ficient trajectories. The stability of the control scheme is also
proven. Experiments illustrate the performance of the con-
trol scheme.

Keywords Pushing - manipulation - visual servoing

1 Introduction

Manipulation of objects using robots is a classical problem
that has attracted the attention of the research community
during the last decades [5]. Robotic systems able to per-
form efficient and robust manipulation are of great interest
in many applications. In a pick and place application, the
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end-effector of the robot grips the object with a clamp or
similar device to perform the task. However, this approach
can be useless if the object to be grasped is too large or too
heavy [12]. Different manipulation strategies have been pro-
posed in the literature to solve such an application using
pulling, pushing, throwing, vibrating, etc. These strategies
are denoted as non-prehensile or grasp-less manipulation.

Here, we focus on the problem of moving an object by
pushing. There has been extensive research on the funda-
mental mechanics of pushing [28]. However, this is still a
complex problem that raises different challenges with re-
spect to classical grasping such as planning a pushing tra-
jectory to reach the desired configuration or how to push the
object. Classical approaches in manipulation by pushing are
usually open-loop methods. In general, these works focus
on how to define a sequence of pushes to remove the posi-
tion uncertainty of an object [2,6,22]. A main problem is to
identify a reliable sequence of pushes to achieve the over-
all pushing while preventing the object from slipping on the
contact [18, 30]. However, the slipping of the object on the
contact surface of fences or fingers during pushing has been
also considered to define a sequence of elementary opera-
tions to remove the pose uncertainties of the objects [34,35].
Due to the open-loop nature of these approaches, failing
to accurately follow the planned sequence of pushes or the
presence of unaccounted perturbations might yield slip or
rolling problems.

The works discussed in the previous paragraph proposed
open-loop schemes, and therefore there was no sensing or
feedback to compensate for the accumulating error. An-
other approach considers measurements under closed-loop
schemes to improve the robustness against uncertainties and
perturbations. The measured data used for the control in-
put can be for instance the angles of the push [32], tactile
feedback [23], or vision [13, 14, 40]. Just like these latter
works, our approach is based on visual feedback. Usually,
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these methods consist of two different parts. One is the per-
ception system that estimates the position of the object in the
Euclidean space and the other is devoted to performing the
pushing actions. In contrast, our approach is an image-based
control scheme defined directly in terms of uncalibrated im-
age information and performed without computing the 3-D
pose of the object.

The related work on manipulation by pushing can be
classified depending on the number of contact types used
in pushing. For example, there can be a single point con-
tact [40], two point contacts [4, | 4], line contact [3] or multi-
ple point contacts [39,42]. Our proposal fits in the category
of two point contacts push. We propose to use two robots
which push the object coordinately but they are controlled
independently in a closed-loop manner.

Vision sensors have been extensively used in robotics
[8=11,15,31], because of the versatility, low cost and rich
information they provide. A main advantage of calibrated
camera-based visual servoing is that classical control theory
can be directly applied. The drawback is that they depend
critically on the accuracy of the calibration. A failure can
occur because of the initial calibration errors, aging of com-
ponents, changes of environmental conditions, maintenance
work, etc. Uncalibrated visual servoing approaches are usu-
ally simple, computationally efficient and accurate, but they
bring a number of challenges such as local minima, singular-
ities or contorted trajectories in the Cartesian space, as well
as different practical issues [37].

A complex problem often addressed in visual servoing
is the estimation of the Jacobian matrix in uncalibrated se-
tups [19,36,41]. In [26] a visual servoing scheme which is
invariant to changes in camera-intrinsic parameters is pre-
sented. The basic idea in [26] is to use projective invari-
ance to build the control task from only measured image
features. The idea of designing a mapping from the control
task to a different space than the image has been used pro-
fusely [1,7, 17]. Here, a novelty of the approach presented
in this paper resides in the control law defined directly in
terms of image information and the procedure to show the
stability analysis, which is a difficult issue in image-based
approaches.

An important limitation in uncalibrated visual servoing
arises when the initial pose discrepancy is large and the fea-
ture points may leave the camera’s field of view. An example
solving this limitation by planning trajectories in the image
space using uncalibrated stereo cameras is presented in [33].
Moreover, standard uncalibrated visual servoing methods
cannot be applied directly to the problem considered here
because of the required constrained motions. Therefore, spe-
cific control schemes, as the one we propose, need to be de-
signed taking into account the different limitations of the
actuators.

Fig. 1 Kuka dual-arm manipulator platform pushing a box shaped ob-
ject. One of the top cameras observing the scene is used in an uncali-
brated eye-to-hand configuration for the control.

Recently, in [20] we proposed a vision-based approach
to push an object to a target pose with two mobile robots.
This approach unifies all the advantages of previous related
works such as being sensor-based (vision), closed-loop, sta-
bility proven, applicable to non-polygonal objects, perform-
ing smooth, continuous and efficient trajectories, etc., and
beyond all these it is an uncalibrated approach. This ap-
proach was validated by simulation. However, that approach
required a rectification step of the input images to remove
the projective distortion and recover similarity properties in
order to prove the stability of the control scheme.

Here, in this paper, we improve the solution given in [20]
(i) by eliminating this rectification step of the input images
and thus making it fully image-based, (ii) by proposing a
method for the selection of the pushing points on the ob-
ject, (iii) by adapting it for both mobile robots and manipu-
lators (e.g., a dual-arm robotic platform, see Fig. 1), (iv) by
proving stability of the proposed solution, and (v) by val-
idating it experimentally. In the pushing task, we consid-
ered that each pusher robot interacts with the object through
frictional point contacts under the quasi-static motion as-
sumption, which is usually assumed in the literature [22],
although there are works that take into account the dynamics
of the object during pushing [16, 38]. We applied the push-
ing force with an angle relative to the surface so that it was
inside the friction cone and no slip occurred during the push-
ing if some conditions are met [13,32]. This allowed us to
be able to push the object like a non-holonomic vehicle ac-
tuated only for forward motion.

Consequently we exploited the well-studied contact
physics and the non-holonomic vehicle kinematics theo-
ries to model and control the pushing task. Moreover, we
performed the pushing task only with the image informa-
tion obtained from an uncalibrated camera looking at the
workspace from an arbitrary pose. Here, we consider a con-
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ventional camera that can be modeled as a pinhole camera.
This allows us to avoid both intrinsic and extrinsic calibra-
tion of the camera. The pinhole camera model cannot be as-
sumed if, for example, there is an important image distortion
due to a wide angle lens. In that case, an initial calibration
of the intrinsic camera parameters to unwarp the distortion
would be needed. This methodology simplified the pushing
task from a practical point of view and increased the system
robustness. We made the following assumptions as in [22]
for the pushing task:

— All motions and forces are on an obstacle-free plane
which is normal to the gravity vector.

— Frictional forces conform to Coulomb’s Law [23].

— The friction is uniform between the object and the sup-
port plane. This means that the center of friction of the
pushed object is the point on the support plane beneath
the center of mass of the pushed object [25].

— Motions are slow enough that inertial forces are negli-
gible, i.e., quasi-static motion assumption. This means
that the pushing forces and the frictional forces balance
each other.

Shortly, the proposed solution contributes on the existing
literature in three ways: (i) It performs pushing manipulation
with an uncalibrated image-based visual servoing scheme.
This does not need any metric information, calibration, nor
rectification. (ii) It yields smooth, continuous, and efficient
trajectories by imposing non-holonomic velocity constraints
on the pushed object. (iii) Finally, it proves the local and
global stability of the uncalibrated image-based control law.

The rest of this paper goes on as follows: Section 2 ex-
plains how to actuate an object by pushing with two fric-
tional point contacts; Section 3 develops the control law
based on non-holonomic motion kinematics for an object
with forward motion constraints; Section 4 discusses how to
compute an optimal motion direction for the pushed object;
Section 5 proposes an algorithm to find two pushing points
on the object; Section 6 presents the experimental results;
and finally Section 7 concludes the paper.

2 Pushing with two frictional point contacts

Here first, we explain the physics of a frictional point con-
tact, then we show how to actuate an object by pushing with
two frictional point contacts like a non-holonomic vehicle.
We choose a point contact with friction when friction ex-
ists between the fingertip and the object. In a point contact
with Coulomb friction model, we can apply a force F to an
object in any direction as long as it is oriented within the
friction-cone. The apex of the friction-cone coincides with
the contact point, and the cone axis is aligned with the in-
ward object boundary normal n. The cone aperture is de-
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Fig. 2 (Left) Point contact on the object boundary with Coulomb fric-
tion . (Right) An applied force F pointing inside the friction cone.

object non-holonomic vehicle

Fig. 3 Moving an object like a non-holonomic vehicle by pushing.

fined by the static friction coefficient i = tan 3,5, > 0, see
Fig. 2.

Exploiting the above frictional point contact physics, we
now would like to move an object like a non-holonomic ve-
hicle by pushing as it is illustrated in Fig. 3. In order to do
so, we should push the object from points located on the left
and right sides of its mass center G, and each contact fric-
tion cone should allow to generate a force oriented towards
the desired motion direction of the object. Afterwards, we
know that from Newton’s second law, if the mass of the ob-
ject is constant, then the linear and angular acceleration of
the object are directly proportional to the global force and
torque acting on the object and they are in the direction of
this force and torque. Thus, up to certain conditions and lim-
itations that will be studied in the following sections, it is
possible to move the object like a non-holonomic vehicle by
pushing.

This approach is considerably different than other clas-
sical solutions such as the one described in [24,29]. In [29],
a single line contact is used to push the object along a previ-
ously planned trajectory in an open-loop manner. That tra-
jectory is defined through a method for finding the instan-
taneous centers of rotation that will produce stable pushes.
Failing to accurately follow this trajectory or the presence of
unaccounted perturbations might yield slip or rolling prob-
lems. In our proposal, we use two robots which push the
object coordinately but are controlled independently in a
closed-loop manner. As we explain in the next sections, we
first constrain the control commands with appropriate con-
ditions on the control gains to only produce forward mo-
tions. Then, each robot pushes in the selected contact point



Gonzalo Lépez-Nicolds et al.

P

R

P

L

Fig. 4 Geometry of the object with two pushing points. This can be
considered as a pseudo non-holonomic vehicle with only forward mo-
tion.

for which possible slip and rolling are compensated by the
image-based closed-loop control.

We remark that the possible complex shape of the ob-
ject forms a non-symmetric non-holonomic vehicle geom-
etry (see Fig. 4), and unlike a real non-holonomic vehi-
cle, the object can move only forward (and not backward).
Given the desired non-holonomic velocity vector (v, ®) of a
non-symmetric object, we can compute the velocities of the
pushing points as follows:

P, =G+r, 1)
v, =G +wxr, 2
P, =G+r, 3)
v, =G+wxr, @)

wherer, = [r,x,7,y,0]7 and r, =[x, 74y, 0]7 are the vectors
from the mass center to the left and right pushing points Py,
and Pg; v, and vg are the velocities of the pushing points;
G = vy is the velocity of the mass center with the unit vec-
tor y = [0,1,0]7 of the fixed motion direction and the linear
speed v; and w = o z is the rotational velocity vector with
the rotational axis z = [0,0, 1]7 and the angular speed . We
can simplify and rewrite the velocities of the pushing points

for 2D planar space from (2) and (4) as below:
=l o)
I ryl|o

_ 0—r RY v
-l
3 Forward non-holonomic motion
In this section, we develop the kinematic model, the control
law, and the necessary conditions of an object which per-
forms only forward non-holonomic motion.
3.1 Kinematics

Let us define an object frame fixed to the object and defined
by y and G (See Fig. 5). We also denote the object frame in

Fig. 5 State variables of the object with respect to a target pose. The
object frame attached to the object is defined by y and G. The same
frame with the object in the target location is denoted with y* and G*,
being this target frame fixed in the world frame. The speed v is in the
direction of y and  is positive counter-clockwise.

the desired position, fixed with respect to the world frame,
with y* and G*. Let the state vector of the object in polar
coordinates, between the current and target locations, be x =
[p, &, ¢]7 in the real world plane 7y (See Fig. 5 and Fig. 6).
Here p is the distance of the object to the desired position,
¢ is the alignment error of the object with respect to the
desired orientation, and « is the alignment error of the fixed
motion direction of the object towards the desired position.
The object state vector is thus defined as a relative alignment
error with respect to the target configuration:

p=[G" -G
a = atan2 ((u x y),u’y) ©6)
¢ = atan2( (y* xy);,¥y"y)

where u = (G* — G) /p, and where (-), represents the z-
axis component of an associated vector. Afterwards, let the
desired motion of the object be the linear speed v and the
angular speed m, then the non-holonomic kinematics of the
object can be written as follows [21]:

P —cosa 0
Lsino 1 {V} )
¢ o 1]t?

This previous kinematics will be used to model the object
when pushed. However, note that the idea is not to assume
that the system behaves under this model but to impose, us-
ing adequate constraints presented in the following sections,
this behavior to the system.

3.2 Relating image plane to Euclidean plane

We use a conventional uncalibrated camera looking at the
workspace. This camera is assumed to comply with the pin-
hole model. Then, neither intrinsic nor extrinsic calibration
is required. The input of the control law consists of the im-
ages acquired with the camera and a prior target image with
the object in the desired pose. Next we analyze the relation
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P2

Fig. 6 World plane showing its coordinate frame. The image plane of
the camera aiming at the scene is represented on top left. The map
between points in the world plane 7, and their image in 7, is a ho-
mography.

of the state variables between the images and the real world.
The goal is to show that the state variables computed from
the image plane are related to the corresponding variables
in the real world with a bounded matrix T. This property
is used in the subsequent analysis to establish the stability
conditions on the control scheme.

First, let us formulate the following assumption regard-
ing the system configuration: The relative position between
the camera and the real world plane where the motion of the
object occurs is not in a degenerate configuration. In partic-
ular, the camera center does not lie in the world plane. More
specifically, we assume that the camera is above the world
plane pointing to the workspace where the task is performed.

Proposition 1 The relation between the measured state
variables computed from the image plane m; and the physi-
cal world plane my can be written down as X = T x:

p I, 0 0 p
a|l=107T,0 o 3
0 Ty 0 Ty (0
—— ~——
X T X

where X € 7y is the vector of measured state variables from
the input image, and Ty(X), Ta(x), Tp(X) and To(X) are
scalar functions with lower and upper bounds as follows:

0< Ty < T, < Ty )
0 < TIn < T, < T (10
0 < Ty < Ty < TP (11)

" < Ty < Ty (12)

Proof : Let us define two points (p;, p2) on the physical
world plane my and (P, p2) their image projections. We
choose the world coordinate frame with Z-axis orthogonal
to the physical world plane and origin in this plane as shown
in Fig. 6. Then, the mapping between the points on the X-Y
world plane and the image plane is a homography H such as

pir=AHp, (13)
p2 =2, Hp (14)

with finite scalar coefficients A;,A; # 0. We also define p =
P2 — P1. P = P2 — p1- By definition we have p = ||p|| and
p = ||p||- Then, we can write function 7}, as follows

Bl [H(Rp2—Aip)|
p = = .

[Ipl| llp2—pil|

Without loss of generality we can choose p, = 0, and then

MH Ml ||H
T, _ [Hp| (A [Hp] (16)
[[p1] [[p1]
Denoting A, (H) and A,,;, (H) the maximum and minimum

eigenvalues of the homography matrix H we can write:

5)

T = 2| Anin(H) < T < A4 A (H) = T . (17)

Note that if p; = p2 we have p =0 < p = 0, otherwise
p >0 & p > 0. In the former singular case, taking limits
to T produces |A| ||H||. Therefore, bounds of 7, in (9) can
always be defined as in equation (17).

Regarding Ty, = @/ @, note that a planar projective trans-
formation such as the homography H is known to preserve
collinearity. Therefore, & = 0 < a = 0 (or alternatively
0 = 7 < a = £7m). As a consequence we have that the
angle between two intersecting lines in the real world and
the projection of this angle to the image plane have the same
sign,ie. 0 € (0,m) < a € (0,m)orelsex € (—7,0) = & €
(—m,0). We can write function Ty, as follows

@ _aun2((axy)..y)

T, =— = 18
T a  atan2((uxy),,ury)’ (18)

which is clearly positive and bounded for any & # 0 (i.e. u

and y not collinear). In the singular case of u and y collinear,

we have small values for o and &. Therefore we consider

o ~tana and & ~ tan .. Since « and & have same sign we

can write

_ o foxyll oyl _ [[AHux 2, Hy]|| [u”y]
lof ey [oryl [lexyl |20 BT Hy A,

-T

_ |HuxHy[[[ury] _ [H]H (uxy)|lu"y|
luxy|[lurH Hy[|  [juxy] [ur H Hy]|

with finite scalar coefficients A,,A, # 0 and |H| the deter-

minant of matrix H. Properties of quadratic forms lead to

Ty

, (19)

[ 20 (H ) _ [HHC (uy) w7 y]| _ [H]2na(H )
23 (H) =yl JuHHy[ = A2, (H)
(20)

Therefore, bounds of Ty, in (10) can always be defined as in
equation (20).

The case of (¢, ) in (8) is different than (¢, &) because
¢ = 0 (or £7) does not imply ¢ = 0 (or £7). Therefore
¢ =0 and ¢ # 0 is a singular case. It appears when two
lines are parallel (y x y* = 0) but not collinear (u x y* # 0)
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in the world plane. This is a consequence of perspective pro-
jection which makes parallel lines intersect in the image. In
(8), multiplying ¢, when ¢ = 0, only with a positive constant
Ty cannot produce ¢ # 0. We handle this by adding some
contribution from p exploiting that in the singular case we
have p # 0 (since ¢ = 0 and p = 0 implies ¢ = 0):

¢=Top+Tp¢, (21
where we define functions Ty and Tj as follows

tan2((7* x§)- .57 § .
Tty (0 £0)

WLl HHH) H i (6=0)

min (

Ty = (22)

T — {atan2<(y* X§)e,¥7Y)/p s if (9 =0)A (P # 0)
0, if(9#0)V((9=0)A(¢=0))
(23)

By defining arbitrarily small thresholds ¢p,dp € R we
can obtain the following bounds: Tq;"’”‘ =1 /¢y and de”i” =
¢o / 7. For the singular case, the definitions of Ty and Tp
given in (22) and (23) allow to express correctly the map-
ping between ¢ and ¢. For the non-singular case, ¢ behaves
similar to «, therefore it is bounded. Then, bounds for 7
and Ty can be found from (22) and (23). a

3.3 Control Law

In this section we describe the proposed control law, which
is inspired from [21]. In [21], the position-based control
scheme is based on Euclidean space information, and it is
applied to a non-holonomic mobile robot equipped with a
calibrated onboard camera. Here, we adapt this control law
to be computed from uncalibrated image information, and
then apply it to a system where an object is pushed on a
plane and observed by an external uncalibrated camera look-
ing at the scene. We define the object’s desired motion with
this new control law for this new system (i.e., object ma-
nipulation by pushing) from the computed state variables as
follows:

v =kpp cosa (24)
O =kyd—kqo (25)

where kj, ko, and kg are positive constant control gains.

Theorem 1 (Local exponential stability) If the chosen con-
trol gains satisfy the following condition:
Ty ko — (Ty" ko + Ty kp) > 0 (26)

then the control law (24-25) is locally exponentially stable.

Proof : Using (8), (24) and (25) in (7), we can obtain the
closed-loop system described as below:

P = —kyTpp cos(Ty &) cos

O =kyTyd+kyTop —koToot+kyTp cos(Ty ) sina
(]SZk(qu)(P-i-kq)Top—kaTa(X 27

The first-order Taylor series approximation of this closed-
loop system (27) around the equilibrium state (x = 0) gives
the following linearized system X ~ Ax:

p —kpTp 0 0 p
O.C a2 kq) To kpTy —koTy k¢ Ty o (28)
¢ ko To —kaTo k¢ Ty ()

A

This system is locally exponentially stable if and only if
the eigenvalues of the linearized system matrix are negative.
This yields to the following condition:

Take — Tyky — Tpkp > 0 (29)

The worst case is given then by (26), and satisfying (26) is
sufficient for local exponential stability. a

Theorem 2 (Global asymptotical stability) The control law
(24-25), with gains satisfying (26), is globally asymptoti-
cally stable if the following condition also holds:

1> 4kp T2 Ayax(P) (30)

being Apmax(P) the maximum eigenvalue of P, where P is:

1 P11 P12 P13
= | pu pm P23 G
2To ko Ty ko N
ere P te P31 P32 P33
with N = (Taka — T¢k¢ — Tpkp) s (32)

it = ((Tokg)*(Tuka + Tyks) + TakaTskoN) / (Toke)
p12 = p21 = Toky (T¢k¢Tpkp + (Toke — T¢k¢)2) / (Taka)
(

p13 = p31 = Toky (Takankp Toke — T¢k¢)2) / (Toke)
P2 = (Taka)? + (Tokg)® + Toko Tpkp

P23 = P32 = *(Taka)z (Tq)kq)) + TakaTpkp

P33 = (Taka —Tpkp)* + (Toko)* + Tyko Tokp

Proof : We define the candidate Lyapunov function as:
V(x) =x' Px (33)

where P is a symmetric positive definite matrix to be found.
We write the system dynamics (27) in the following form:

X = Ax + f(x) (34)
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with A defined in (28) and f(x) as below:

p —p cosacos(Ty @)
sino cos(Ty o) — @
0

f(x) = ko T, (35)

Notice that the matrix A is Hurwitz given that constraint (26)
holds. The derivative of (33) yields:

V =x"Px +x’ Px
=x"(ATP +PA)x + ' Px + x’ Pf

= —x"Qx + 2x"Pf (36)

where ATP + PA = —Qand Q= Q” > 0. Choosing Q =1
and solving for P = P7, we obtain P as defined in (31). It can
be shown that P is positive definite if constraint (29) holds
by checking that all leading principal minors of P are pos-
itive. Now, we work out (36) with the goal of showing that
V < 0. It can be demonstrated that, there exists a constant

M € R in such a way that:
[E()[] < M[x]] - 37

In particular, the norms of the vectors involved in the in-
equality (37) results in:

ko T3 (p*(1 —cos ot cos(To @))* + (sin ot cos(Ty @) — @)?)

<QRkpyTrp)?+(2a) <M*(p>+a*+¢%)  (38)
which is true if
M? > (2ky Ty)? 39

Therefore, we choose M"* > (2kp Tj"*) in such a way that
(37) holds. Then, we can develop (36) as follows:

vV < —x" Qx + 2||Px||M||x]|

< _Amin(Q)HXHZ + 2M)“maX(P)||XH2

= — (Amin(Q) — 2MAax(P)) HX”2 (40)
Therefore, V < 0 if the next inequality holds:
)vmin(Q) > 2Mmax)“max(l)) (41)

where A, (Q) = 1, which yields (30). Therefore the control
law is globally asymptotically stable if (26) and (30) hold.
O

Finally, the input velocities of the pushers v, and v,
from the desired motion of the object —the speeds v and @
in (24) and (25) — are computed using (5).

The condition of local stability (29) can be interpreted
intuitively by noticing that it imposes that T, ky must be
greater than the sum of Ty ky and 7p kp. This means that
the convergence of a must be faster than p and ¢ ensuring
alignment of the system with the desired direction of motion
and following it. This avoids undesirable behaviors such as
spiral trajectories around the target position. Global stability

also takes into account the non-linear term f(x) with con-
dition (30), which guarantees that non-linear terms (35) are
bounded by the convergence rate of A (34), so the system
copes with non-holonomic motion constraints guaranteeing
global convergence.

Remark 1 We would like to remark that these speeds are
normally for non-holonomic vehicles and they can move
the vehicles forward and backward. In case of a pushed ob-
ject, we should avoid backward motion since we cannot pull.
Next subsection emphasizes the required conditions for for-
ward motion maneuvers only.

3.4 Forward Motion Conditions

The first condition that should hold for the state variables to
guarantee the forward motion (v > 0) is as below:

|| < m/2 and |y| < m/2 (42)

where Y is the image projection of y (see Fig. 5) and can
be defined as ¥ = ¢ — &. Constraint (42) avoids cusps in the
trajectory of the object which cause backward motion. This
constraint is guaranteed by the proper choice of the motion
direction y of the object. Next section explains how to com-
pute the motion direction of the object.

The second condition that we should also impose while
pushing the object is to limit the angular speed of the object:

o] <v/r (43)

where r is the distance between a pushing point and the mass
center of the object (See Fig. 4). This distance r is computed
as follows:

.|l if @ >0

r=< |l ifo<0
o ifw=0

(44)

Constraint (43) avoids velocities of the pushing points v,
and v, to have negative values for the motion axis y (5).
This prevents the control scheme from asking for backward
motions by constraining the rotational motion speed @ with
respect to the forward motion speed v. Not imposing this
constraint will result in non-viable motions. Another com-
plex issue to deal with is to guarantee the non-slip condi-
tion and continuous contact of the pushers with the object,
since constraint (43) is a necessary condition but not suf-
ficient. Thus, in our approach each robot pushes in the se-
lected contact point for which possible slip and rolling are
compensated by the image-based closed-loop control. The
procedure to deal with this issue is presented in Section 6.1
for the case of mobile robots and in Section 6.2 for the case
of the dual arm manipulator.
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The previous condition (43) is required to limit the angu-
lar speed of the object. In order to guarantee that the control
commands do not break this condition, we seek for the rela-
tions of the control gains that impose this constraint. To do
so, next proposition elaborates on (43) using the proposed
control law (24) and (25).

Proposition 2 Constraint |®| < v/r (43) is satisfied if the
following two conditions hold:

T Tmin k p
5 |2k —ka| < e <"f”*—ka (45)
2(kp TV 4 ko ™) > ko T (46)

where p. > 0; where ¥ = T, r is the distance between the
mass center and the corresponding pushing point of the ob-
Jectin the plane 7y with T, defined as in (8); and where &y is
an arbitrary small positive angle (hence sin(£é&y) = t&g).

Proof : Next, we study the conditions when constraint (43)
is violated. The worst cases for this constraint can be divided
according the value of p into p =p, >0and p =0.

Casep=p, >0 .
We can rewrite the angular speed constraint |@| < v/r
using (8), (24) and (25) as follows:

Tp kp P, cosa

ko ¢ —ka @] < : 47)

7
where we consider the case of p = p, any positive value.
Then, the worst case which violates the above condition hap-
pens for & = +m/2 , when the motion direction of the ob-
ject is orthogonal to the direction towards the target. In this
case, v = 0 and the constraint |@| < v/r is violated. This is
a singular case that can be avoided in practice by, for ex-
ample, applying the proposed algorithm for motion direc-
tion selection (see Section 4). We thus set the worst case
as & = +m/2 F &, where &y is an arbitrary small positive
angle. Addition of ¢4 to & also keeps v > 0.

Regarding ¢, it can be deduced that the worst case corre-
sponds to ¢ = 4. This happens when the motion direction
of the object is oriented backward with respect to desired
configuration. Note that, although ¢ = F7 could seem a
worse case, it cannot happen with & = 4+ /2 at the same
time given that we express all angles in [—x,x]. For in-
stance, if @ = 7/2 and given that by definition & = ¢ — ¥,
we have that ¢ = —7 leads to ¥ = —37/2 whereas the cor-
rect expression of the angles would be ¥ = 7/2 resulting in
0=r.

Finally, (47) can be rewritten for the worst case values
of &, ¢ and Tp as (45). Note that condition (45) relates gains
k¢ and kg, which are directly related with , with gain k),
which is related with v. Thus, this condition is constraining
@ with respect v to avoid larger rotations at the beginning of
the motion.

Casep=0 .

Condition (45) allows tuning the control gains to avoid
control law saturation when v > 0. Nevertheless, it does not
guarantee |®| < v/r at the end of the motion period, when
p — 0 and therefore v — 0. In that case, we must guarantee
that the convergence rate of @ is higher than v. This case
appears when the system is getting closer to the equilibrium
state. Therefore, we can consider here the first-order Tay-
lor series approximation of the closed-loop system given in
(28). The eigenvalues of this system are as follows:

NT ARy To ks

Ty
> (48)

l«w =

with N defined in (32). Since the convergence rates of the
state variables are given by their eigenvalues:

p(r) = pye®?  thus v~ kyp,ee?) (49)

we derive the conditions for (48) such that |A, | is the small-
est eigenvalue. In particular, we look for condition:

Aal = |Ag] > [Ap]. (50)
We can deduce from (48) and (50) the following expression
2(kpTp + ko Ty) > ko Ty , 51

from which the worst case leads to (46). The intuition on
(46) is that the pushed object should approximate the de-
sired position with the target orientation. In particular, note
that whereas (26) imposes a higher value for kq over k, and
kg, condition (46) imposes that kq should be below a com-
bination of kp and k. This is to avoid large corrections on
the orientation from the control law with low linear speed,
which would be impractical due to the angular speed limita-
tion in the pushing of the object.

We can thus sustain the constraint of the angular speed
given in (43) by satisfying (45) and (46). O

3.5 Illustrative Scenario on Bounds and Stability

We now illustrate with a numerical example the stability
conditions. In this scenario, Proposition 1 and Theorems 1
and 2 are used to validate convergence to the solution. The
object is placed in position (x,y,z) = (—500,1000,0) mm
with orientation on the plane of ¢ = 45 deg. The target pose
is the origin. The camera has a focal length of 6 mm and it
is located in position (—2000, 1000,2000) mm with orien-
tation angles of (—20,—10,0) deg. The size of the acquired
images is 640 x 640 pixels. The control gains have been set
as follows: k, = 0.2, ko = 0.7, and ky = 0.4. The simulated
results using the proposed control law (24-25) give the
following bounds in (9-12): (T‘;"i", 75') = (0.223,0.247),
(Tg™, Tge) = (0.885,1.070),  (T;™, T3) =
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(0.888,1.043),  (Tgmn, Tg") = (2.546,5.193), and
Amax(P) = 0.733. It can be checked that the control
parameters and these values hold the stability conditions
(26) and (30).

4 The direction to push

In this section, we propose a way to assign an optimal mo-
tion direction to the object, i.e. the y axis, such that the
maneuvers performed toward the target are minimized. In
the measurable state vector X, the state variables p and ¢
are computed from the given input images of the initial and
desired poses of the object. However, & can be arbitrarily
defined by determining the motion direction (i.e. defining
the vector y). Therefore, motion direction y may be defined
from the best value of &. In order to find the best motion
direction, we propose to minimize the Lyapunov function
V(x) given in (33) for & (see Theorem 2) when the object
is in its initial configuration before starting the pushing task.
Here, we first rewrite the Lyapunov function in terms of the
measurable state vector X using (8) which yields:

VE) =x"TTPT k. (52)
We then minimize (52) by subjecting to condition (42):

min V(X) subjectto @ < n?/4 and ¥* < m?/4 (53)
o

so that the solution & does not violate forward motion. The
values of T are bounded scalar functions, but they are un-
known in practice. In order to compute (53), and since the
actual values of T will not be computed in this uncalibrated
approach, we can use the approximation T ~ I, and then

V(x) ~ %' Px. (54)

This approximation is exact only if there is no image distor-
tion with respect to the real world (e.g. an affine camera).
This is not the case in practice and therefore the computa-
tion for the optimal value of & will be an approximation.
Notice that control stability is independent of this approxi-
mation, and this only concerns to the efficiency in terms of
performed maneuvers.

Denoting p;; with 7, j = 1,2,3 the entries of matrix P,
we can therefore write

V(R)~ prip*+p33 > +pnd*+2pnad. (55)

We search the minimum of this function with respect to &:

av -

—— ~2ppa+2 =0. 56
5g 2P ®+2png (56)
Solving for & and using the values of P we obtain

_ (k5 —kakp + K
a=4¢ (‘;"“’j) . (57)
K2+ koko + K2

We finally use this solution to assign an approximately op-
timal motion direction y to the object. Then, the object will
be pushed along this motion direction during the pushing
operation. We note that this is computed only once at the
beginning of the pushing task and it is set for the rest. More-
over, the stable control law does not violate the forward mo-
tion condition (42) while moving the object toward the target
during the rest of the task.

Two different examples showing the performance of the
object motion when the motion direction is chosen arbitrar-
ily or following the procedure just presented are shown in
Fig. 7. The target position in the simulations is (x,y)” =
(0,0)7 and the initial position is also in both examples
(x,y)T = (-0.5,0)". The initial error in ¢ is 0 deg, and
90 deg for the left and right column example, respectively.
In the first and second rows, the control law is performed
with the pushing directions computed as explained above,
whereas in the third row they are arbitrarily defined. The re-
sults in the first row are computed using undistorted images
(so the approximation in (54) is exact). This is provided for
illustrative purposes to show the performance with the ac-
tual optimal value for the direction to push. The results of
the second row are obtained in a general case where an ap-
proximation of the optimal values due to (54) are computed.
In particular, the camera is located at height of z =5 m and
slanted 45 deg. It can be seen that the first and second rows
perform better than the third row in the sense that less ma-
neuvers are required to reach the desired poses. The results
in the second row also illustrate that the proposed proce-
dure to select the direction to push is adequate for the uncal-
ibrated framework.

5 Selection of the points to push

Once the motion direction for pushing is computed for a
given object, the next step is to choose two pushing points
on the contour of the object. These points should allow the
object to be pushed along the computed motion direction.
Here we show how to compute these two pushing points
on a convex object. Let us define the boundary of the ob-
ject as a function B(y) where angle y € [0,2 7] is measured
counter-clockwise starting from y. First, we calculate the an-
gle B between the motion direction y and the inward unit
normal vector n at each point of the object boundary B():

B(y) =atan2((y xn),,y"n), y=0..27. (58)

Then, we find the pushing region on the object boundary
which satisfies:

ﬁmin < ﬁ < Bmax (59)
where |Bin| and | Biax| are equal, and they are defined by the
friction coefficient as 4 = —tan f3,,;,, = tan B,,4x. Any point
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Fig. 7 Two examples, each one in a column, of maneuvers with dif-
ferent pushing directions (denoted with an arrow) on an object. The
pushing directions are computed in (a) and (b) with the presented pro-
cedure. (a) shows an illustrative example where the approximation in
(54) is exact, whereas the uncalibrated case is shown in (b). (c) shows
maneuvers by defining an arbitrary pushing direction. It can be seen
that examples in (a) and (b) perform better with simple maneuvers.

B(7y) that belongs to the pushing region is a possible pushing
point candidate. Finally, we choose the left pushing point P,
and the right pushing point P, as follows:

P, = B(YL)
PR = B(’}/R)
where Vi, and Y4y are the angles of the extremities of the

pushing region (ﬁmin = ﬁ(’Ymin)’ ﬁmax = ﬁ(’}/max) ); and Ay
is a small positive angle (e.g., Ay ~ 10° degrees). Figure 8
shows two different examples of pushing points selection.

with ¥, = Ymin +AY (60)
with ¥, = Ynax —AY 61)

6 Experimental results

Manipulation of an object by pushing with two frictional
point contacts is validated by experiments. An uncalibrated
camera observes the scene from an arbitrary fixed pose. In
the following experiments, we assume that the object has
uniform density and therefore the center of mass will be lo-
cated at the centroid. Experiments are conducted with two

different groups of robots. First group is composed of two
Khepera non-holonmic mobile robots, and the second group
is composed of two Kuka manipulators.

Next sub-sections explain how these different groups of
robots are used for pushing, and then present the results of
experiments. Additionally, video attachments are also pro-
vided to show examples of the control performance of these
pushing tasks.

6.1 Pushing with non-holonomic mobile robots

In general, we consider that the actuators can push in any di-
rection. However, in the following set of experiments we use
mobile robots as actuators. We remark that a non-holonomic
mobile robot can not push the object in every direction. It
can push only along its forward motion direction. Therefore,
to be able to use non-holonomic mobile robots to manipu-
late the object, we first choose the two pushing points on
the object such that points are at equal distance to the grav-
ity center of the object along the motion direction y. Then,
the lateral components of the required action (which cannot
be produced by the mobile robots) are equal in magnitude
and opposite in sign for both robots. Therefore these compo-
nents are cancelled and the mobile robots are eventually not
required to perform lateral actions. This allows us to write
the linear speeds of the non-holonomic mobile robots from
(5) as below:

V,=VHr,0 (62)
Ve =V I O (63)

Secondly, the non-holonomic mobile robots may diverge
from the pushing points. Therefore we correct the orienta-
tion of the non-holonomic mobile robots toward the pushing
points (see Fig. 9) with a proportional control given below:

{“’L] = kg {“L} . k>0 (64)
wR aR

where @, and @, are the computed angular speeds; kg is
the positive control gain; and o, and o, are the orienta-
tion errors of the non-holonomic mobile robots with respect
to their desired contact points on the object. Since the de-
sired contact point is implicitly used in (64), this control law
guarantees that the mobile robot is always pointing toward
this contact point. Given that the mobile robots move for-
ward and that they present unicycle motion constraints, this
means that the robots will keep contact with the object in the
desired points during pushing.

6.2 Pushing with manipulators

Here, we explain how to push an object with a finger-like
manipulator tool tip. First, to prevent any divergence from
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Fig. 8 Examples illustrating the algorithm to select the pushing points in a convex object with two different motion direction y (First and third
graph, respectively). The pushing points selected are denoted with dashed arrows. Second and fourth graphs show the corresponding alignment
angles f of each example. Angle 8 (58) is defined between the motion direction vector y of the object and its inward edge normal vector that

varies along the boundary of the object B(7).
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Fig. 9 An object with two non-holonomic mobile robots for pushing.

the pushing point, we assign a velocity v, to a finger-like
tool tip so that it tracks its pushing point:

o [,
r = —ke {((eTX)X)TyJ , ke >0 (65)

where k. is a positive scalar gain, e is the vector from the
finger-like tool tip to the pushing point, x is the axis of the
object coordinate frame, and x, and y, are the local co-
ordinate frame axes of the tool tip (See Fig. 10). This tool
tip local frame is computed directly from the available im-
age information. Equation (65) keeps a finger-like tool tip
in contact with the chosen pushing point. When (65) is inte-
grated with a pushing point velocity computed from (5), the
pushing task is performed correctly. This yields:

vIix

VFL = |:V§" y£:| + VTL (66)
vI'x

VFR = |:V11§ yi:| + VTR (67)

where v, and v, are the final velocities of the finger-like
left and right tool tips of the manipulators; where A2 and
Vy, are the pushing point tracking velocities computed from
(65) for the left and right tool tips; and where v, and v,, are
the pushing point velocities computed from (5). Later, these
final tool tip velocities are transformed to the joint velocities
of the manipulators through the known position and velocity

kinematics of the manipulators.

Object AY
G—>X

Tool tip

Fig. 10 An object and one of the manipulator tool tips for pushing.

6.3 Experiments
6.3.1 Pushing with Khepera non-holonomic mobile robots

First part of the experiments is conducted with two Khepera
non-holonomic mobile robots and a box shaped object. The
size of the box is 80cm x 40cm. An uncalibrated camera is
used to observe the scene from a fixed pose. The camera,
connected through Firewire to a computer, is from Allied Vi-
sion Technologies and mounts a lens with a focal length of
3.6 mm. The setup of the robots is located on a table of di-
mensions 2m X 1.5m with the camera at a distance about
1.5 meters. The size of the robots is 13 cm in diameter and
7 cm in height. We put patterns on the top of the robots
and the object so that they can be detected and identified
in the images easily (See Fig. 11). Since we proposed un-
calibrated image-based visual servoing, we do not compute
the robots’ poses. The computer that processes the images
and computes the control inputs is a laptop with an Intel
Core 2 Duo CPU at 2.50 GHz with operating system Ubuntu
GNU/Linux (version 8.04). The control scheme runs on this
personal computer at some 10Hz. The size of the acquired
images is 1280 x 960 pixels. The code implementation is in
C++ and the images are processed with the OpenCV library.
The control gains are kp =0.2, kg = 1, kg = 0.4, and kg = 2.
The control velocities are sent to the mobile robots through
wireless Ethernet network connection.
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Fig. 11 Box shaped object (left) and the two khepera robots (right).

Figures 12, 13 and 14 show the results of three differ-
ent experiments where the proposed control law pushes the
object from three different poses to the same target pose.
In each figure, the desired and initial configurations of the
box are shown in the images of the top row. The second row
shows the object in the final configuration after running the
control algorithm with the plot of the resultant robots’ path.
Third row presents the input velocities of the robots (v, wp),
and (vg, wg), computed from (62-63) and (64). Notice that
the maximum allowed velocity of the robots was set to 10
cm/s, so the output control values are saturated to this value.
The last row shows the evolution of the state variables of the
object p and ¢ during the pushing operation. From these re-
sults, one can see that the object is placed to the target pose
correctly. Although we assume non-slip contact between the
robots and the object, varying distances can be seen between
the two pushers along the trajectories. This is a practical is-
sue due to system perturbations, such as the initial acceler-
ation of the pusher robots. Nevertheless, it can be seen that
the system recovers properly during the motion even if the
transient is long due to the low actions and slow motions.
Note that motions are required to be slow enough so that
inertial forces are negligible.

6.3.2 Pushing with Kuka dual-arm manipulator

Second part of the experiments is conducted with Kuka
dual-arm manipulator platform and a box shaped object.
The setup of the robots is located on a table of dimensions
about 80cm x 200 cm. The size of the box is 60cm x 40 cm.
Kuka dual-arm manipulator platform has a stereo camera
head. The camera model is Imaging Source DFK 31AFO03-
Z2 and belongs to the T0O40 Stereo Pan-Tilt Head from Ro-
bosoft. One of these uncalibrated Firewire cameras is used
to observe the scene from a distance around 1.5 meters (See
Fig. 1). This camera has zooming degree of freedom so its
focal changes between 5mm to 45 mm. The Kuka dual-arm
manipulator platform is connected to a personal computer.
The control scheme runs on this personal computer at some
25 Hz. The size of the acquired images is 1024 x 768 pixels.
The computer model used is a Dell Precision T3600 with
processor Intel Xeon at 3.60 GHz, and Ubuntu GNU/Linux
operating system (version 12.04). The code implementation
is again in C++ although now the images are processed
with the ViSP library [27]. The control gains are k, = 0.03,
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Fig. 12 1% row: Target (left) and initial (right) object poses with two
pushing non-holonomic mobile robots. 2" row: Performed pushing
manipulation and robots’ trajectories. 3" row: Evolution of the robots’
velocities. 4" row: State variables p and ¢ of the object versus time.

ko =0.15, ky = 0.05, and k, = 0.003. The computed control
velocities are sent to the pushing hand actuators of the Kuka
dual-arm manipulator using the robot model.

Figures 15 and 16 show the results for a performed push-
ing manipulation of the box shaped object with the Kuka
dual-arm manipulator platform. The images in Fig. 15 shows
the initial pose of the object and the the final pose when the
target configuration is reached. In this manipulation, the ini-
tial values of the state variables of the object were as fol-
lows: p = 127 pixels, & = —10° degrees and ¢ = 10° de-
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Fig. 13 1% row: Target (left) and initial (right) object poses with two
pushing non-holonomic mobile robots. 2" row: Performed pushing
manipulation and robots’ trajectories. 3" row: Evolution of the robots’
velocities. 4" row: State variables p and ¢ of the object versus time.

grees. First row in Fig. 16 shows the evolution of the veloci-
ties of the tool tips of the manipulators computed from (66)
and (67) with the proposed control law. Second row shows
the evolution of the state variables p and ¢ of the object ver-
sus time. The results show that the control performs properly
and that the object converged to the target pose correctly.

Fig. 14 1% row: Target (left) and initial (right) object poses with two
pushing non-holonomic mobile robots. 2”4 row: Performed pushing
manipulation and robots’ trajectories. 3" row: Evolution of the robots’
velocities. 4" row: State variables p and ¢ of the object versus time.

7 Conclusion

This paper proposed an uncalibrated image-based visual ser-
voing scheme to position objects on the plane by pushing
with two mobile robots or dual-arm manipulator. Standard
approaches usually require performing a number of discrete
maneuvers to guarantee reaching the target, whereas our ap-
proach is smooth in the sense that the motion is performed in
one go without chaining several maneuvers. As can be seen
in the results, trajectories performed by the pushed objects
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Fig. 15 Top image shows the initial pose of the dual-arm manipulator,
the box shaped object before manipulation, and the target pose frame
of the object. Bottom image shows the performed pushing manipula-
tion and the traces (blue and green) of the tool tips of the dual-arm
manipulator during pushing.
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Fig. 16 Results of the manipulation performed in Fig. 15. First row
shows the evolution of the velocities of the tool tips of the manipulators
computed from (66) and (67). The velocity of each tool tip consists of
a two dimensional vector where the x-component is plotted in red and
the y-component in blue. Second row shows the state variables p and
¢ of the object versus time.

are smooth and continuous. Moreover, performing several
maneuvers would be specially inefficient in our framework
since it would require to repeat the control execution sev-
eral times, each time defining the new pushing points (and
translating the pushing actuators to them). In our approach,
the key point to avoid unnecessary maneuvers is that we can
initially choose the direction to push that minimizes the ini-
tial energy of the system in the sense of Lyapunov. This im-
proves the efficiency because the cost over the entire trajec-
tory is reduced producing a more direct motion to the target.

The stability of the control law of this uncalibrated ap-
proach is also proven. Regarding the workspace of the ap-
proach, there are no constraints for the possible desired
poses of the object as far as it can be appropriately pushed,
i.e. the direction to push computed by the method can be ap-
plied in practice. These limits are defined by the considered
assumptions. In particular, we constrain the setup for convex
objects, and we impose that no slip occurs during the push-
ing. One of the conditions for the feasibility of the proposed
approach is the quasi-static assumption, which is reasonable
as long as the dynamic forces are negligible. Here, this as-
sumption can be easily ensured by using appropriate control
gains to provide low control signals, but also with enough
thrust to overcome dead zones. The correctness of the pro-
posed control scheme is validated by several experiments.
Furthermore, this approach is easy to put in practice since it
is uncalibrated, and it is robust to modeling errors since it is
closed directly in the sensor space.
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