
Multi-camera architecture for perception strategies
Enrique Hernández-Murillo Rosario Aragüés Gonzalo López-Nicolás

Abstract—Building the 3D model of an object is a complex
problem that involves aspects such as modeling, control, percep-
tion or planning. Performing this task requires a set of different
views to cover the entire surface of the object. Since a single
camera takes too long to travel through all these positions, we
consider a multi-camera scenario. Due to the camera constraints
such as the limited field of view or self occlusions, it is essential to
use an effective configuration strategy to select the appropriate
views that provide more information of the model. In this paper,
we develop a multi-camera architecture built on the Robot
Operating System. The advantages of the proposed architecture
are illustrated with a formation-based algorithm to compute
the view that satisfies these constraints for each robot of the
formation to obtain the volumetric reconstruction of the target
object.

Index Terms—Multi-Robot, 3D Object Reconstruction, Robot
Operating System (ROS), Gazebo, Visual Perception.

I. INTRODUCTION

Nowadays in manufacturing industry, perception is one of
the most basic tasks related to manipulation of objects. Here,
the main goal is the reconstruction and perception along time
of an, a priori, unknown object. The process of building a 3D
model of a real object, which is known as volumetric object
reconstruction is essential in robotic manipulation.

On the one hand, active vision could be taken as a viable
alternative [3]. This technique may require using a vision-
based sensor, mounted on a mobile robot, providing dense 3D
input data. Active vision methods [1], [2], address the problem
of generating a complete volumetric model of the object,
as fast as possible, by solving the next best view problem.
Thus, they compute a sequence of camera locations (position
and orientation) around the object. In order to reduce the
number of candidate views, they may be restricted to a sphere
or a cylinder around the object. However, one of the main
challenges involved in active vision are deformable or mobile
objects, which requires instantaneous and full perception of the
object. The main drawback of active vision in this framework
is the time required to follow the sequence of camera locations.
So, how can be something perceived from multiple views at
once? The natural answer could be to fuse the information
from several cameras in a volumetric map of the entire object
at each moment (Fig. 1). Besides, the multi-camera system
could be a good choice if the model is deformable or the object
moves. We propose to place several cameras in a geometric
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(a) Perspective View (b) Top View

Fig. 1. Illustrations from two diferent views of the reconstructed Bunny object
and 6 cameras. Final representations (point cloud) of the scene and the multi-
camera formation enclosing the object are visualized. The figure depicts the
output of the system as the data structure visualized by Rviz.

formation around the moving object to enclose it and track
it. This strategy [6] ensures that the multi-robot system can
perform full perception of the target along its motion.

In this work, we consider the problem of the reconstruction
of an a priori unknown object that deforms and moves (its
boundaries are not limited). We approach the problem of the
instantaneous 3D reconstruction using a probabilistic volumet-
ric map built in real time. Besides, we extend the problem to
a multi-robot team scenario. We propose and evaluate a multi-
camera generic system architecture for the camera positioning
mechanism to model 3D arbitrary objects. The multi-robot
scenario allows us to elaborate a strategy which improves
the process of tracking a moving and deforming object. The
proposed approach presented in this paper is a modular tool
for the specific task of multi-sensor based reconstruction of
an object of interest. Nevertheless, numerous problems of a
technological nature can benefit of our proposed architecture.

The main goal of this work is to design a modular software
framework to perform the instantaneous reconstruction of an
object, with a multi-robot strategy. Versatility and modularity
are the main advantages of the proposed technological tool.
Within this framework, the architecture of our approach uses
both a ROS-based generic system and a Matlab-based front-
end strategy interface and builds on [5] and [6]. We evaluate
the complete volumetric map of the object in simulations
performed in Gazebo.

The paper is organized as follows: we introduce our back-
ground in Sect. II. In Sect. III we address the problem, then
give an overview of our software framework in Sect. IV.
Simulations testing the performance of the multi-robot strategy
and the camera positioning mechanism in a Gazebo-based
enviroment are shown in Sect. V.
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II. BACKGROUND

There are several robotic proccesses, such as track-
ing, robust perception and manipulation tasks where three-
dimensional reconstruction of real objects is an important step.
The model of the object could be obtained using an a priori
and accurate representation of the object, for instance, a CAD
model; this way is the least efficient due to the necessity of
a professional human modeller. Moreover, in case the object
deforms, the selection and reconstruction of an appropiate
model for the object is an open issue nowdays.

Because exhaustive observation is time-consuming, if we
want to perform the task efficiently, it is essential to choose the
points of view that provides more information. One possible
solution for robotic applications, is a view planning algorithm
which can automatically plan the location of the sensor [7].
To obtain a complete reconstruction of the object, the sensors
must be placed on different points of view that cover the entire
surface of the object.

A. Vision-based perception

In robotic applications, the visual perception of the object
to be manipulated is fundamental. Here, it is useful to have
3D information from the scene, and this data can be obtained
from stereo cameras. The stereo vision technique obtains
information about objects in the environment from images
in three dimensions. To obtain this 3D information, point
clouds are used, as shown in Fig. 1. A point cloud is a three-
dimensional representation of points based on a data structure.
Conceptually, point clouds are used to model both shape and
location of an object digitally on a three-dimensional axis.

3D enviroment processing: As a result of all the informa-
tion of the enviroment observed by 3D sensors, a point cloud
with the information is generated. To process this information,
several algorithms are developed to build a complete 3D model
of the scene. One basic element of these algorithms is Octree.

B. OctoMap: A 3D mapping framework based on octrees

OctoMap is an open source framework for three-
dimensional mapping. This approach is based on the imple-
mentation of both [4] and [5] that use an efficient data structure
with Octrees. Using probabilistic occupancy estimation, the
approach is able to represent volumetric 3D models that
include free and unknown areas.

Probabilistic representation: The sensors of the robots
carries out the construction of 3D maps by measuring 3D
distances in the environment with respect to the object to
be reconstructed. These measurements are presented with
uncertainty, in addition, there may be random measurements
caused by dynamic objects or reflections. In order to generate
an accurate model from these measurements, the uncertainty is
approached in a probabilistic manner. In this way, by merging
all the measurements taken, a robust estimate of the object
is obtained. Note that the probabilistic fusion of sensory
information allows the implementation of multiple sensors and
consequently, a multi-robot scenario.

(a) Bunny Stanford model (b) Voxels ocuppied cells

Fig. 2. Output model of our generic system for the bunny object. Image
a) shows the synthetic model of the bunny, while image b) shows the
reconstructed 3D object with the occupied voxels.

Full 3D Modelling: Octomap builds the volumetric map
of an object from a point cloud as a 3D grid based on an
octree structure based in voxels. A voxel is a cube containing
points clouds. These cubes are placed as a grid along the entire
point cloud to get a homogeneous and lower resolution than
the starting one. As discussed in the section II-A, to generate a
complete model of the object, Octomap receives as input data
point clouds, and provides as output the information for the 3D
model to be visualized (Fig. 2). Octomap is able to represent
both occupied areas and free space in a three-dimensional
environment.

C. Next Best View Problem
The planning of sensor views based on 3D sensor data is

often referred to as planning the next-best-view (NBV) [7].
The key point of NBV is the decision the robot must make to
locate a vision-based sensor. Despite all the research on this
problem, as mentioned in [3] and [5], a predefined model of
the target object is usually required.

Generally speaking, when it comes to the NBV problem,
there are always two assumptions that are common to all
approaches. One of them is that the NBV problem is located
within a workspace with a set of views sampled on a model of
a geometric figure (cylinder, sphere), which is predefined. The
other one is that these approximations do not take into account
that the performance of the sensor depends on the distance to
the surface of the target.

III. PROBLEM ADDRESSED

We first consider that the object from which we generate
a 3D model is rigid and is located at the center of an empty
simulation environment. The object is a generical representa-
tion of a static solid on the ground plane. For the volumetric
reconstruction task, we define that each robot mounts a pair
of vision-based sensors. These sensors provide the sensory
information necessary to carry out this task. Mostly, sensory
information is translated as images of the target object. In
order to build the volumetric map of the object it is necessary
to acquire several views around the target object and then
generate the images of its entire surface. Therefore, it is



necessary to have a positioning mechanism for the cameras
that places them in these views. Within this framework, the
pairs of stereo cameras are placed around the target object
according to a strategy to be chosen. The strategy we consider
consists of a circular formation that encloses the target object.
Thus, we obtain a set of images that covers the entire surface
of the object and gives Octomap a general view of it.

Mainly, the framework of our problem is an object that
presents a dynamic behavior, of which we intend to construct
a 3D model instantly, in order to observe the changes produced
in its surface. Then, one of the objectives is to design a multi-
camera architecture, in which we have multiple points of view
around the object. On the other hand, another objective is to
find a strategy for the cameras, which allows us to move the
perception system tracking the target without losing sight of
the object. In the following subsection we explain an example
strategy on how we have tackled this problem.

A. Multirobot Strategy
In a first approximation, we distribute a group of stereo

cameras according to a circular formation that encloses the
object [6]. This means that the cameras keep their relative
positions in formation with respect to the target object, at the
same time that they fulfill the objective within everyone’s field
of vision. We choose to distribute the robots evenly along the
circumference forming a regular polygon. The shape of the
polygon depends on the number of robots you wish to have.

Given a moving target that follows a previously defined path
in R2, we consider its positions qt(t) = (xt(t), yt(t))

T and its
orientation φt(t) ∈ R. These coordinates are found in a global
frame of reference, and we also assume that the target moves
according to the unicycle kinematics:

ẋt = vt cosφt, ẏt = vt sinφt, φ̇t = wt, (1)

where vt(t) ∈ R and ωt(t) ∈ R are the linear and angular
velocity of the target.

Consequently, in order to enclose and track the object, we
also consider robots in R2. Its position and orientation are
qi(t) = (xi(t), yi(t))

T and φi(t) ∈ R, with i = 1, ...., N .
These robots follow the the unicycle kinematics:

ẋi = vi cosφi, ẏi = vi sinφi, φ̇i = wi, (2)

where vi(t) ∈ R and ωi(t) ∈ R are the linear and angular
velocities of the robots. The scale of the formation is defined
by its radius di = d(t). We also consider that all robots are
pointing at the object at all times and that the object is in
the center of the circle. Therefore, the value d is constant for
all the robots in the formation, equivalent to the distance of
each robot from the target. To illustrate this, we expose the
coordinates of each robot with respect to the reference of the
moving target:

x0i(t) = d cosφi, and y0i = d sinφi. (3)

In the strategy proposed in [6], we design the possible trajec-
tories qri that each robot needs to accomplish the task. Figure
3 shows an example of a well-defined multi-camera strategy
in case of six cameras (N = 6). See details in [6].
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Fig. 3. Constant scale formation strategy: The parameters involved the multi-
robot strategy are depicted. We need to define the reference trajectories qri

for the robots qi to maintain a circular formation enclosing the target qt and
maintaining FOV constraints. Each robot qi will track its reference trajectory
qi. The FOV of the onboard fixed camera of one robot is also shown.

IV. SYSTEM ARCHITECTURE

Our work consists of two well-defined modules, depending
on the task they carry out. The objective of the implementation
of these programs is to perceive at each instant of time,
variations in the surface of the target object, either because
it is deformed, or because it is moving. To address this issue,
we split the problem into two separate processes and use a
different system architecture than the reconstruction task. Our
systems are built on the framework presented in [5] and in
[6]; as described in the sections II and III-A. Both systems
can be replaced by any other without affecting each other,
only by adapting the architecture of the system. Conceptually,
it is a modular system architecture consisting of different
independent modules that interact through communication
interfaces, as shown in Fig. 4. The method is summarized
in algorithm 1.

A. Instantaneous Perception and 3D Reconstruction

We approach the reconstruction task as an iterative process
at every instant; in addition, the architecture of the module
that implements this task is a generic system based on ROS.
We divided the multi-robot reconstruction task into three parts
(i) reconstruction of instantaneous volumetric models, (ii)
multi-camera view planner (Strategy) and (iii) multi-camera
positioning mechanism. In this section we present an overview
of our system, which is built on the frame observed in [5].

• The Perception System is responsible for data acquisi-
tion and its processing. The components which composes
this system are the sensor module and the 3D perception
Module. In the multi-camera scenario the output are as
many point-cloud of observed 3D points as the number
of cameras we have.



Algorithm 1 Instantaneous Reconstruction with Pose Planning
Input: Number of Robots (N ) .
Output: Volumetric map of the object.

Multi-robot Planner computes next position of the robots.
ROS Interface establishes communication with the robots.
Multi-robot Planner publishes topic position i to robot i.
ROS Interface subscribes and receives the position i of the
robot i.
while t < tfinal do

for i = 1 to N do
ROS Interface commands the Robot Driver to move
the robot i to the position i in Gazebo.
Gazebo gets the images from the sensor of the robot.
World Representation Module collects the images from
Gazebo and updates the Octomap.
Multi-robot Planner publishes position i to robot i.
ROS Interface subscribes and receives the position i of
the robot i.

end for
end while

• The World Representation Module registers all the data
perceived within the map, given access to the current
map. The images taken from previous iterations need to
be registered and merged in order to build a common
model. This module also carries out the reconstruction
task with OctoMap [4].

• The Motion Planning and Control implements the
camera positioning mechanism that locates the robot, and
the Robot Interface that provides the interface between
the ROS Interface Planner and the robot.

• The ROS Interface Module carries out path planning
and sends the new viewpoint to the robot, which receives
it using the Robot Interface. This new view is where the
robot must move the corresponding sensor.

B. Tracking and Enclosing of the Target

In order to provide the ROS Interface Module the new
location of each camera and also perceive at every moment of
time the changes experienced by the object in the environment,
we need a program that follows a multi-robot strategy that
calculates a geometric formation of the robots around the
object and their respective trajectories. Here we implement a
program that presents a Matlab-based module. As mentioned
in the section III-A, the objective is to enclose and track the
object in order to build the volumetric map.

• The Multi-robot Planner Module computes the relative
coordinates of the robots (2)-(3) with respect to the target
(1). As a result, we generate a circular formation around
the object with the N cameras. Thus, the output is the
N views at each instant. We go through each of the
generated viewpoint data and send them to the ROS
Interface Module. Note that each viewpoint data has

Fig. 4. Conceptual system overview: Main modules, and their communication
interfaces (arrows) are shown. At the bottom of the image is the Matlab-based
system, which sends the calculated locations to the ROS-based system. The
ROS Interface Module receives the positions and establishes communication
with each camera. The Robot Interface Module receives its respective location
and the Camera Positioning Mechanism is responsible for placing it in that
location. At the center of the image is the World Representation module, which
generates the 3D model using Octomap. This module builds the volumetric
map from the sensor data of each camera.

as many registers as robots times the number of time
instants.

C. Communication

In order to communicate both modules, we developed a
system architecture based on ROS. Thus, the ROS Interface
Module is able to receive from the Multi-robot Planner Mod-
ule, the id of the camera model to be moved according to the
defined strategy, and its position. We use topic-based commu-
nication, with their respective publishers and subscribers.

We also consider that the perception of the object is instanta-
neous, although our approximation takes N instants (as many
as there are N robots) to form a complete 3D map. Notice
that our system only moves one robot per instant in a loop,
so to finish the geometric formation around the object with N
robots, it takes N instants to build the complete perception.

V. SIMULATIONS

In this section we will describe two simulated examples.
We have decided to separate it into two parts, according to
the methodology carried out. The first simulation combines
both tasks, the volumetric reconstruction and the positioning
mechanism of the camera, to illustrate an scenario where
only one robot operates. In the second simulation we extend
the method to a multi-robot environment and implement the
strategy that allows us to reduce the computational cost and
time of generating the 3D model.



A. Simulations setup
Our architecture is designed in such a way that each module

works independently of the others, so if any problem arises
it can be easily debugged. Moreover, it is easy to include
additional requirements for the simulations or integrate new
design changes.

The simulation of the reconstruction scene includes an
object placed on an empty world (Fig. 5.) and an depth sensor
that provides information of each view. The model used for
the object is available on-line: the Stanford bunny (Fig. 2).
Around the object we generate the robot system. Each robot,
is a free-flying stereo camera with 6 DoF. The flying-stereo-
cam is an RGB-D sensor that obtains an image of part of the
scenario. All the simulations are carried out in Gazebo, in this
environment the stereo processing can be carried out using
ROS (Robot Operating System). In both simulations we start
by positioning the sensors in selected pre-defined views. The
output of the sensor is a point cloud that is rerouted by the
Robot Interface Module across several services that make use
of it, to the Octomap Representation Module. The probabilistic
volumetric map is based in the approach presented in [3],
where every pair of stereo-cameras share their computed point-
cloud message to be integrated on it. The camera positioning
planner is based in [6], which locates the cameras forming a
hexagonal formation (Fig. 3).

Fig. 5. Simulation reconstruction scenario: Both bunny object and stereo
camera pairs are simulated in Gazebo and shown by Rviz.

B. Example of volumetric reconstruction
First of all, we explain how the concepts presented in sec-

tions II and IV are implemented in the present application. Our
goal is to model a 3D object using a robot (a stereo camera).
For the reconstruction process, we use the volumetric map of
probabilities based on a mesh of voxels, implemented as an
approximation of [4], as well as, the positioning mechanism of
the camera, developed from the ROS Interface Module of [5].
We have approximated this mechanism by means of a ROS-
based implementation, in communication with the N robots.

Within this framework, the object is a priori unknown and
spatially limited, as it does not deform or move. Starting from
a system that iterated along a set of views to obtain the next

best position in which to place the camera, we have eliminated
the sequential loop of the algorithm. Our goal is to receive
views of an external algorithm, which does not have to select
the best view, the strategy is illustrated later. Once we have
received the location (position and orientation) our method
places the sensor in it, taking an image for the volumetric
map. To build the complete volumetric map of the target
object, Octomap needs point clouds as input data. These point
clouds are obtained by processing a set of images taken by
several cameras. As output, Octomap returns a data structure
of the target object that we visualize in Rviz. Note that in
order not to lose sight of the object at any time, we impose a
geometrical constraint so that the orientation of the camera is
always pointing to the center of the object.

C. Example of a multi-camera scenario
Secondly, we describe the proposed simulation for a multi-

robot scenario, using the planning algorithm based on [6],
which we discussed in section III-A. Although the number
of cameras used in each execution of the program can be
arbitrarialy chosen, in this simulation, we consider a team of
N = 6 agents, forming a hexagon. The circular formation was
observed in Fig. 3. In order to simulate changes in the rabbit
model, we make it move following an elliptical trajectory
predefined by us. As discussed in III-A, we calculate the
trajectories of the target object and the multi-camera team, as
well as the values of the formation radius d to accomplish
the task. Once the trajectories have been calculated, we carry
out a follow-up control. To calculate the positions at which
to move, each pair of cameras needs to estimate their relative
location with respect to the target object (see Fig. 6). In
Fig. 7 we present an example of the commented strategy,
with a target object that follows an ellipsoidal path and the
formation of cameras tracking it.

Note that the evaluation of the simulations is based on a
visual criterion. However, an interesting analysis for future
work could be the numerical evaluation of the error of
surface coverage over time, from which the effect of the
occlusions on the generated 3D model would be studied.

VI. CONCLUSIONS

In this work, we have developed an instantaneous recon-
struction framework based on [5] which is based on a multi-
robot approach. We have divided our approach into two inde-
pendent modules: the multi-camera volumetric reconstruction
and multi-camera strategy. We also proposed the connection
procedure between them, which ensures the adaptability of the
architecture of our modular system to other robot platforms.
Given an object with a dynamic behavior that follows a path,
our framework of instantaneous reconstruction considers the
problem of full perception and reconstruction of a probabilistic
3D model of that object in every instant of time, by means of
N stereo cameras placed around it.

We also consider the type of the trajectories that enclose
and track a moving target with a multi-robot system while



Fig. 6. Reconstruction in simulation: The full model for the Stanford bunny dataset is observed, where the occupied voxels are painted in blue. The multi-
camera hexagonal-shape formation is also visualized. In the task of instantaneous perception of an object, the field of view of each camera covers a portion
of the surface of the object at each instant of time. By merging these observations, the object is fully perceived.
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Fig. 7. The image shows a simulation that includes and tracks a target with
ellipsoidal motion. Two cases are shown from left to right: the number of
robots chosen is N = 3 and N = 6, respectively. The simulation depicts the
movement of the target and the robots surrounding it. In addition, the polygon
of the formation and the wedges (FOV) of each robot are also represented
during some instants of time.

obeying the restrictions of movement and FOV. We choose
a circular formation that encloses the target object due to
a criterion of simplicity and absence of occlusions between
cameras. The proposed architecture is general and any other
formation strategy can be easily tested by taking advantage of
the modular design on the ROS-based implementation.

In this work, we visually evaluate the results, focusing our
attention on whether the strategy adopted for the arrangement
of the cameras around the object produces the object model,
without taking into account the accuracy of the observation.
The performance of the implemented strategy can be visually
evaluated through the Rviz program, where the tracking of the
dynamic object carried out by the multi-camera system and
the corresponding volumetric reconstruction of the model is

shown.
Future directions in the field of instantaneous volumetric re-

construction of dynamic objects using multiple robots include
many different topics. Some of these aspects are shared among
the above strategies, and could be summarized as follows:
improvements to the system framework efficiency; evaluation
of different multi-robot strategies; and optimization of the
communication interface between the components.
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